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Extensive Monte Carlo simulations in the semi-grand-canonical ensemble are used to study the critical
behavior of a three-dimensional compressible Ising model with antiferromagnetic interactions under constant
volume conditions. Elastic forces between spins are introduced by the Stillinger-Weber potential and energy
parameters are chosen in such a way that antiparallel spin ordering is favored, analogous to the antiferromag-
netic coupling in the rigid Ising Hamiltonian. All the quantities analyzed strongly indicate that the system
remains in the universality class of the standardsrigidd three-dimensional Ising model, in contrast with theo-
retical predictions.
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I. INTRODUCTION

The Ising model, proposed by Lenz in 1925 as a micro-
scopical model for ferromagnetism, has asconstantd interac-
tion J included only between the nearest-neighbors spins on
a srigidd lattice. Despite itssformald simplicity an analytical
solution has been found only for one- and two-dimensional
models in zero magnetic field.1 For the three-dimensional
Ising model only approximate solutions are availablefe.g.,
series expansions,2 renormalization-group calculations,3

e expansions,4 Monte Carlo renormalization-group calcu-
lations,5 and Monte CarlosMCd simulations6,7g, although
quite precise results have been found.

It was clear, a few years after its introduction, that the
Ising model could be employed to describe other phase tran-
sitions. For instance, phase separation in binary alloys can be
studied by an Ising model in which “up” and “down” spins
are replaced with sites occupied by an “A”- or “ B”-type
atom, respectively. The chemical potential plays the role of
the magnetic field, the density of the magnetization, etc.,
and the appropriate statistical ensemble is the
semi-grand-canonical,8 instead of the canonical. With the
above-mentioned analogy in mind, in the present work we
will use the languages of magnetism and alloys interchange-
ably.

In a real magnetic crystal, however, atoms interact with
each other through a combination of elastic and magnetic
forces. The next step in realism is, therefore, the explicit
introduction of elastic degrees of freedom in the traditionally
rigid system. The resulting model is termedcompressible
Ising sCIMd. Several empirical potentials have been pro-
posed and employed to mimic the elastic force, from the
simple Lennard-Jones to the more specific Tersoff,9

Keating,10 Stillinger-Weber,11 and otherssthese last three
have been introduced, mainly to reproduce the interaction
between silicon and germanium atoms in the study of
Si1−xGex, viewed as Ising binary alloy modelsd.

The issue of how the presence of elastic interactions af-
fects the critical behavior of the Ising model has been inten-
sively studied. In 1954, using thermodynamic considerations,

Rice12 predicted that if an Ising system with divergent spe-
cific heat is put on a deformable lattice at constant pressure,
it undergoes a first-order transition. A number of calculations
appeared later,13–15 all of which led to the conclusion that a
first-order transition was expected to occur. All these studies
assume that a “pure” Ising singularity happens at constant
volume. In 1968, Fisher16 changed the situation drastically
with his “hidden variable” theory, assuming that the “pure”
phase transition occurs at fixedintensivevariable, i.e., at
fixed pressure. As a result of this hypothesis a second-order
transition was found with Fisher-renormalized exponents, if
the critical exponent of the specific heata is positive. A
significant highlight in this controversy was the work of Lar-
kin and Pikin,17 who considered a Hamiltonian with fluctua-
tions of both the order parameter and the elastic modes, and
pointed out the special role of the macroscopic modek =0
sin Fourier spaced. As a result a first-order transition is found
at constant pressure and quadratic coupling of the order pa-
rameter and the strain tensor, also ifa=0. It was later rec-
ognized that this result is only valid at low pressure, whereas
at high pressure the critical behavior seems to be much more
complex.18,19 A different approach was used by Baker and
Essam,20 who mapped an Ising model onto a compressible
lattice, including the coupling between magnetic and elastic
degrees of freedom, onto a standard Isingson a rigid latticed,
but with parameters which depend on the elastic degrees of
freedom. Both at constant volume and constant pressure, the
model exhibited identical critical behavior as the underlying
rigid system, but with Fisher-renormalized exponents. This
model, as well as others of the same type, however, considers
a negligible shear modulus. This somewhat unphysical as-
sumption was soon recognized to be the reason of the disap-
pearance of the first-order transition. Further work21–24 with
more elaborate schemes did not change the result: a first-
order transition was always predicted at constant pressure,
and a second-order transition with Fisher-renormalized expo-
nents at constant volume. Finally, we cite the long and com-
plicated work by Bergman and Halperin,25 in which a cubic
anisotropy in the elastic forces was introduced. In the isotro-
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pic case the same, already established result was obtained,
i.e., a first-order transition at constant pressure ifa.0, and a
second-order transition with renormalized exponents at con-
stant volume. However, this last condition is realized only if
the atoms at the surface are fixed, otherwise the system has
still enough degrees of freedom to develop a macroscopic
instability. In the anisotropic case, however, a so-called mi-
croscopic instability was found at constant volume, and this
is interpreted as a first-order transition. In his habilitation
thesis Dünweg26 pointed out that the elementary approach
taken by Larkin and Pikin is essentially sufficient to under-
stand most of the theoretical results. Starting from the
Landau-Ginzburg-Wilson Hamiltonian he was able to show
that the CIM under constant pressure exhibits mean-field
critical behavior,27 in agreement with simulations.28,29 At
constant volume he predicted two first-order lines ending in
critical points, which are likely to belong to the mean-field
universality class. If the magnetic interactions areantiferro-
magneticsAFMd instead of ferromagnetic,30 a quadratic cou-
pling between the order parameter and the elastic deforma-
tion should be expected. In this case the predictions are:sid a
second-order phase transition with Fisher-renormalized ex-
ponents in the case of constant volume31 sthis is in agreement
with thee-expansion work of Bergman and Halperin25d; sii d a
first-order phase transition in the case of antiferromagnetic
interactions and constantszerod pressure.32 As pressure in-
creases, the first-order line in pressure-temperature space
should split into two first-order lines at a triple point. The
theoretical prediction in the case of FM interactions at con-
stant volume has been checked by Tavazzaet al.33 by MC
simulations. In disagreement with theory, they found a closed
first-order line which separates ordered and disordered
phases.

This result raises the intriguing question of whether or not
theory will be correct for the case of AFM interactions and
constant volume. This will be the topic of the study that we
report here.

II. MODEL AND SIMULATION TECHNIQUES

We use the same model as considered previously in Refs.
29 and 33. We consider a binary alloy ofA andB atoms on
the nodes of a distortable diamond lattice, free to move on
condition that the diamond fourfold coordination is pre-
served, and that the atomic species on each node may
change. The coordination requirement speeds up consider-
ably the simulations as the list of the nearest neighbors of a
given atom, which enter the Hamiltonianssee belowd, is
known from the very beginning and does not change during

the simulations. The diamond network is decomposed into
eight interpenetrating simple cubic sublattices of linear size
L, so there areN=8L3 atomsssitesd. Each atom in the system
has four degrees of freedom: the three spatial coordinatesr
and its speciesS, which is defined to beS=1 if the atom is an
A, or S=−1 if it is a B type. The total number of atomsN is
kept constant during the simulation, while the relative con-
centration ofA andB particles can vary and is controlled by
the chemical potential. The corresponding appropriate statis-
tical ensemble is termed semi-grand-canonical. The Hamil-
tonian is given by

H = −
1

2
smA − mBdo

i

Si + HSW, s1d

wheremA, mB are the chemical potentials ofA andB, respec-
tively, andHSW is the Stillinger-WebersSWd potential given
by

HSW= H2bd + H3bd. s2d

The SW potential contains a two-body interactionH2bd in-
volving nearest neighbors and a three-body interactionH3bd
that includes next-nearest neighbors as well. This last term is
essential to stabilizing a diamondlike structure. The two-
body interaction is given by

H2bd = o
ki,jl

esSi,SjdF2fr ij /ssSi,Sjdg, s3d

where

F2syd = 5C1FC2

yp − 1Gesb−yd if y , b

0 otherwise,

s4d

whereC1, C2, p, b are positive constantssfor the values see
Ref. 29d, ssSi ,Sjd=21/6R0, R0 being the ideal distance of the
atoms,r ij is the distance between sitesi and j , ande is the
covalent binding energy. For a binary alloy of silicon and
germanium sSi=A, Ge=Bd it has been estimatedes1,1d
=2.17 eV, es−1,−1d=1.93 eV, andes1,−1d=2.0427 eV,29

and these values were used for elastic ferromagnet
simulations.29,33 In the present work we increased the value
for the A-B binding energy by 0.3 eV to favor alternate or-
dering of A-B particles analogous to the antiferromagnetic
ordering in magnets, specificallyes1,−1d=2.3427 eV. The
behavior for this value is expected to be typical of that in the
AF regime, but a much larger value could conceivably pro-
duce unanticipated effects. A systematic study of the depen-
dence upon the value ofes1,−1d is beyond the scope of this
paper. The three-body part of the Hamiltonian is given by

H3bd = o
ki,j ,kl

HesSi,Sjd1/2esSj,Skd1/2LsSi,Sj,SkdF3fr ij /R0sSi,Sjd,r jk/R0sSj,SkdgScosui jk +
1

3
D2J , s5d
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where cosui jk =r i j ·r jk / ur i j uur jku;

F3sy1,y2d = Hef1.2/sy1−bd+1.2/sy2−bdg if y1 , b, andy2 , b

0 otherwise;

s6d

L=flsSidlsSjdlsSkdg1/4, with ls+1d=21.0 andls−1d=31.0
ssee Ref. 29d. The sum in Eq.s5d is performed over all trip-
letssi , j ,kd with the vertex at sitej , i andk are nearest neigh-
bors of j . Note thatH3bd contains an angular term which is a
sort of angular stiffness essential to stabilizing the diamond
lattice sin fact, assigning the bond’s length alone is not suf-
ficient, because the lattice has 3N translational degrees of
freedom, and the bond length only imposes 2N constraintsd.
A single MC stepsMCSd is performed in the following man-
ner: an atom of speciesSi at positionr i is randomly chosen
and a transition to the stater i8, Si8 is attempted. The change in
energy is then calculated and the move is accepted or re-
jected according to the standard Metropolis criterion. Note
that not necessarily bothr i8 andSi8 have to be different from
the initial valuesr i, Si. We simulated systems of sizesL
=4 sN=512d, 6 sN=1728d, 8 sN=4096d, 10 sN=8000d,
12 sN=13 824d, 14 sN=21 952d, and 18sN=46 656d. Peri-
odic boundary conditions were used. A number ranging from
53104 MCS for the smallest systems to 53105 MCS were
discarded to thermalize the system. The typical number of
MC steps for sampling ranges from 23106 to 63106. For
each system size we performed 10-50 independent runs, us-
ing different random number sequences to achieve a satisfac-
tory statistical error on the averages of the sampled quanti-
ties. During a simulation the volume is kept constant at a
value corresponding to the lattice constanta0 of the ferro-
magnet, for consistency to the simulations of Refs. 29 and
33. Simulations were performed at a fixed chemical potential
mB=m0 varying the temperatureT, as well as at fixedT=T0
varying mB ssee Sec. IIId. In this study we deal with antifer-
romagnetic ordering and consider atoms sitting on an “even”
site to belong to a sublattice SL1 and those sitting on an
“odd” site to belong to a different sublattice SL2. During the
simulations we sampled the SW energy, and the fraction ofA
and B particles in SL1 and SL2. Using these quantities as
input, we calculated all the thermodynamic quantities needed
by employing the histogram reweighting method.34

The order parameterM is defined by the absolute value of
the staggered magnetizationm+, i.e.,

m+ =
1

2NSo
SL1

Si − o
SL2

SiD , s7d

and

M = kum+ul, s8d

where the first and second sums in Eq.s7d are performed
over spins belonging to the SL1 and SL2 sublattices, respec-
tively. The finite lattice staggered susceptibility of the order
parameter is

x f l
+ = Nskm+2l − kum+ul2d/kBT, s9d

wherekB is the Boltzmann constant andT the absolute tem-
perature; the staggered susceptibility is

x+ = Nsksm+d2l − km+l2d/kBT. s10d

We also determined the average concentration of theB spe-
cies

cB =
1

N
knBl, s11d

where nB is the number ofB particles in the system; the
reduced fourth-order cumulant of the order parameter

U4 = 1 −
km+4l

3km+2l2; s12d

the specific heat

Cv = K2skE2l − kEl2d/N, s13d

whereE is the total energy, andK=1/kBT. In our analysis we
considered, in addition, the logarithmic derivatives ofm+ and
of U4 with respect toT. To calculate them we used the rela-
tion

]

]K
lnkum+unl =

kum+unEl
kum+unl

− kEl, n = 1,2, . . . . s14d

Moreover, the derivatives of a thermodynamic quantityX
with respect toT were calculated using its cross correlation
with the energy, i.e.,

]kuXul
]K

= kuXuEl − kuXulkEl. s15d

III. MONTE CARLO RESULTS

A. Phase diagram

We started the present study with a rough determination
of the phase diagram in thesmB,Td plane. We performed
simulations at different values ofT ranging from 0.05 to
0.35 eV.35 At fixed T we swept the chemical potentialmB
from 0 to 4 eV at intervals of 0.1 eV, whilemA was kept
constant at 1 eV. For each value ofT we determined the
value of mB at which the maximum value ofx occursfsee
Fig. 1sadg. The behavior of concentrationcB as the chemical
potential is swept, is shown in Fig. 1sbd. The solid dots in-
dicate the locations of the peaks in the finite lattice ordering
susceptibility. The resulting phase boundary is plotted in Fig.
2sad, whereas Fig. 2sbd shows the phase diagram in the
scB,Td plane. Note that this procedure gives only an approxi-
mate phase diagram, which does not take into account ex-
trapolation to the thermodynamic limit. It is, however, very
useful as it provides us with information on where to focus in
thesmB,Td plane with higher-resolution simulations and with
finite-size scaling analysis. A transition point from the disor-
dered to the ordered phase is estimated atmB.1.42 eV and
T.0.34 eV. We decided, therefore, to keepmB fixed at the
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above value and to run simulations in a neighbor ofT
.0.34 eV. This corresponds to moving along they axis, i.e.,
perpendicularly to the phase boundary of Fig. 2sad. We also
performed simulations at constantT=0.1 eV, varyingmB.
The results, not shown in this paper, are consistent with those
obtained by moving in the orthogonal direction. Note the
slight asymmetry of the curves in Fig. 2, which is a conse-
quence of the three-body interactions. The phase boundary
shows no hysteresis, and a finite-size scaling analysissde-
scribed in the next sectiond indicates that the transition is
second order.

B. Critical behavior

The critical exponentn can be determined independently
of any other critical quantity, and therefore more accurately.
It can be shown that the slope of the cumulantU4 at the

critical temperatureTc, or at any other point in the critical
region, apart from higher-order corrections, scales with sys-
tem size asL1/n.36 The same scaling behavior is exhibited by
the logarithmic derivative of any power of the staggered
magnetization. We calculated the derivative ofU4, of ln M
and of lnkm+2l with respect toT, using Eq.s14d. Figure 3
displays a log-log plot of the maximum of these derivatives
versusL. As expected, they show a linear behavior and they
are to a very good approximation parallel. No indication of
corrections to scaling is evident. The slopes found after a
linear fit to the data are 1.579±0.056, 1.619±0.031,
1.617±0.028, respectively. The average of these values,
weighted with the respective errors, givesn=0.620±0.008,
which, within the error bars, is in reasonable agreement with
the Ising value 0.6295±0.0009 found by MC simulations,6,7

but is quite different from the theoretically expected Fisher
renormalizedn8=n / s1−ad.0.702.

Various thermodynamic quantities exhibit an extreme at a
certain temperatureTcsLd, which depends strongly on that

FIG. 1. Typical data used to determine the critical points.sad
Plot of x f l

+ vs mB. sbd Concentration of theB species vsmB. The bold
circles show the location of the transitions.L=4 and the tempera-
ture isT=0.1 eV in both plots. The error bars are smaller than the
size of symbols.

FIG. 2. Phase diagram of the AF compressible Ising model at
constant volume in thesmB,Td plane sad, and in thescB,Td plane
sbd. The second-order line separates the ordered-disordered phases.
Estimates are forL=4. Note the slight asymmetry of the curve
which reflects the asymmetry of our model. The error bars, if not
visible, are smaller than the size of symbols.
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quantity and on the system size. In the asymptotic regime of
large systems the following scaling law holds:

TcsLd , Tc + AxL
−1/n, s16d

where the subscriptx indicates that the prefactorA depends
on the quantity considered. Oncen is determined, Eq.s16d
enables us to extrapolateTcsLd to the thermodynamic limit
L→`. In Fig. 4 we have plottedTcsLd of the various quan-
tities examined againstL−1/n, with n=0.620. The data follow
very closely the linear behavior expected, except the two
smaller lattice sizesL=4,6 for which corrections to scaling
are required. We have therefore excluded those data from the

extrapolations. The full lines in Fig. 4 are linear fits that
account for both the errors onx and y coordinates. The in-
tercepts on theT axis sL=`d are very close to each other;
however, to account for the slight deviations, we have con-
sidered the weighted average of these values. The final esti-
mation isTc=0.344 04±0.000 06 eV.

The critical exponentsg /n andb /n can be directly deter-
mined from the finite scaling ofx+ and M, respectively, at
Tc. In the asymptotic regime these quantities scale as

x+sL,Tcd , Lg/n, s17d

MsL,Tcd , L−b/n. s18d

Figure 5 shows log-log plots of the data. If, again, we ex-
clude the lowest lattice size, the data are found to follow a
straight line very well. From a linear fit to the susceptibility
we getg /n=2.017±0.041. Using the value previously found
for n, we getg=1.25±0.04, which, within the errors, is in
agreement with the Ising valuegIsing=1.2390±0.0071 deter-

FIG. 3. Determination of the critical exponentn from the size
dependence of the extrema of thermodynamic response functions.
From top to bottom: −] lnkm+2l /]K sD2d, −] ln M /]K sD1d,
]U4/]K sDU4d. The error bars are smaller than the size of symbols.

FIG. 4. Extrapolations of the finite system “critical temperature”
to the thermodynamic limit formB=1.42 eV. From top to bottom
the extreme of:]U4/]K, −] lnkm+2l /]K, ] ln M /]K, x, −]M /]K,
and Cv. Full lines are fits of Eqs.s16d to the corresponding data.
Dotted lines are just extensions of the full ones. The error bars, if
not visible, are smaller than the size of symbols.

FIG. 5. Determination of the critical exponents by finite scaling
relations.sad Linear fit of x+sTcd fEq. s17dg, which providesg /n. sbd
Linear fit of MsTcd fEq. s18dg, which providesb /n. Full lines are
fits, dotted lines are just extensions of the full ones. The error bars,
if not visible, are smaller than the size of symbols.

CRITICAL BEHAVIOR OF THE THREE-DIMENSIONAL… PHYSICAL REVIEW B 71, 134104s2005d

134104-5



mined by e expansion,4 and 1.237±0.002 by MC
simulations.6,7 Analogously, we findb /n=0.491±0.057, or
b=0.305±0.039, which, within the errors, agrees with the
Ising valuebIsing=0.3270±0.0015sRef. 4d as well. Note that
the error bars onx+ andM include both the statistical error
on these quantities and the uncertainty inTc. In fact, this
latter turns out to be the major contribution to the overall
error bars. We have also tried to determine the critical expo-
nent of the specific heata. This is however, more difficult to
measure because of the presence of an additional fitting pa-
rameter. The specific heat is, indeed, expected to scale atTc
as

Cv , B1 + B2L
a/n. s19d

The fit of B1, B2, and a /n, not shown here, givesa /n
=0.28±0.09, ora=0.17±0.06, which is in reasonable agree-
ment with the Ising valueaIsing=0.110±0.002.7,37 Note that
the above procedure provided us with the determination of
the critical exponentsg, b, anda not directly, but only via
the ratiosg /n, b /n, anda /n. These ratios are the same for
Fisher-renormalized exponents.

The fourth-order cumulantU4 is an important quantity to
determine the kind of a phase transition and also to provide
an independent determination of the critical temperature. The
curvesU4,LsTd plotted for differentL versusT for largeL all
cross atTc.

36 Moreover, the valueU4sTcd strongly depends
on the kind of transition. It has been found thatU4
.0.270 52 for the mean-field universality class,38 U4.0.47
for the three-dimensional Ising model,6 and U4.0.5 for a
first-order transition.39 If the asymptotic regime has not yet
entered, however, curves with differentL will cross at differ-
ent points. Nevertheless, it is still possible to extrapolate the
crossing point toL→`. The procedure is described in Ref.
6. Figure 6 displays the behavior ofU4 for our system. For
L*8 the different curves cross with very good approxima-

tion at the Ising value. The value obtained for the critical
temperature using this method is 0.3441±0.0001, which is
consistent with the value previously determined.

For a d-dimensional system for which the hyperscaling
relationdn=2−a is valid, the following finite-size laws hold
in the vicinity of the critical point

x f l
+sL,Td = Lg/vfstL1/vd, s20d

MsL,Td = L−b/ngstL1/nd, s21d

wheret=1−T/Tc. In a scaling plot ofx f l
+L−g/n sresp.MLb/nd

versusu1−T/TcuL1/n one should, therefore, observe a collaps-
ing of the data. This is exactly what we found, as Fig. 7
demonstrates, and is further evidence of the consistency of
the critical exponents andTc previously determined. Note
also that since the data plotted are for above and belowTc,
the critical amplitudes corresponding to the two branches in
Fig. 7 are thus the same, unlike those for the true
susceptibility.40

FIG. 6. Plot of the fourth-order cumulantU4 vs T for different
system sizesL. The horizontal dotted line indicates the crossing-
point value of the rigid Ising model. The full lines are just a guide
for the eyes. The error bars, if not visible, are smaller than the size
of symbols.

FIG. 7. Data collapsing of the rescaled susceptibilityx f l
+ sad, and

of the order parameterM sbd vs rescaled temperaturet= uT
−Tcu /Tc, with Tc=0.344 04 eV. The error bars, if not visible, are
smaller than the size of symbols. Data refer to above and belowTc.
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IV. CONCLUSIONS

We have performed Monte Carlo simulations of the com-
pressible Ising modelsbinary alloyd with antiferromagnetic
interactions under constant volume conditions, in the semi-
grand-canonical ensemble. Elastic forces are included by the
Stillinger-Weber potential. The behavior of all critical quan-
tities analyzed strongly indicated the presence of a closed
second-order line with the critical exponents of thesrigidd
Ising model. This is in contrast with theories as they predict
the occurrence of Fisher-renormalized exponents. Disagree-
ment was also found in the simulations of exactly the same
model but with ferromagnetic interactions.33 The reasons for
these disagreements are not clear and should be further in-
vestigated. Needless to say, however, that our conclusions
should be viewed within the context of any numerical work,

keeping in mind the finiteness of the systems used in the
simulations. It is, therefore, clear that, on the basis of these
data, the occurrence of asslowd crossover toward Fisher-
renormalized exponents cannot be completely ruled out. A
deeper investigation of this issue would require simulations
on much larger system sizes, which is, basically, unfeasible
with the present computer power. It would be, however, very
interesting to investigate the critical behavior under stronger
coupling conditions.
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