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Critical behavior of the three-dimensional compressible Ising antiferromagnet
at constant volume: A Monte Carlo study
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Extensive Monte Carlo simulations in the semi-grand-canonical ensemble are used to study the critical
behavior of a three-dimensional compressible Ising model with antiferromagnetic interactions under constant
volume conditions. Elastic forces between spins are introduced by the Stillinger-Weber potential and energy
parameters are chosen in such a way that antiparallel spin ordering is favored, analogous to the antiferromag-
netic coupling in the rigid Ising Hamiltonian. All the quantities analyzed strongly indicate that the system
remains in the universality class of the standaidid) three-dimensional Ising model, in contrast with theo-
retical predictions.
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[. INTRODUCTION Rice!? predicted that if an Ising system with divergent spe-
cific heat is put on a deformable lattice at constant pressure,
The Ising model, proposed by Lenz in 1925 as a micro4; yndergoes a first-order transition. A number of calculations
scopical model for ferromagnetism, hagcanstantinterac-  5pneared laté?-15all of which led to the conclusion that a
tion J included only between the nearest-neighbors spins ofs¢_grder transition was expected to occur. All these studies
a (rigid) lattice. Despite itgformal) simplicity an analytical Cssume that a “pure” Ising singularity happens at constant

Sr‘:cl)l:jté?sn i?]a;e?geg;Ol:lgﬂcoggpéfzgmﬁé iﬂ(rjetevi/gi-r?]gipos#;?a olume. In 1968, Fishé? changed the situation drastically
9 with his “hidden variable” theory, assuming that the “pure”

Ising model only approximate solutions are availafiiey, phase transition occurs at fixdédtensivevariable, i.e., at

series expansiorfs, renormalization-group _calculatiords, fixed pressure. As a result of this hypothesis a second-order
e expansion$, Monte Carlo renormalization-group calcu- P : yp

lations® and Monte Carlo(MC) simulation&], although transit?qn was found with Fisher-r_e_normali_zed ex_p_onents, if
quite precise results have been found. the _c_rltlcal gxppnept of_ the specific heatis positive. A

It was clear, a few years after its introduction, that theSignificant highlight in this controversy was the work of Lar-
Ising model could be employed to describe other phase trark}” and Pikinl” who considered a Hamiltonian V\_nth fluctua-
sitions. For instance, phase separation in binary alloys can gtons of both the order parameter and the elastic modes, and
studied by an Ising model in which “up” and “down” spins Pointed out the special role of the macroscopic méaeae
are replaced with sites occupied by aA™* or “B’-type  (in Fourier spack As a result a first-order transition is found
atom, respectively. The chemical potential plays the role ofit constant pressure and quadratic coupling of the order pa-
the magnetic field, the density of the magnetization, etc.fameter and the strain tensor, alsaxit0. It was later rec-
and the appropriate statistical ensemble is theognized that this result is only valid at low pressure, whereas
semi-grand-canonicél,instead of the canonical. With the at high pressure the critical behavior seems to be much more
above-mentioned analogy in mind, in the present work wecomplex®1° A different approach was used by Baker and
will use the languages of magnetism and alloys interchangeEssant® who mapped an Ising model onto a compressible
ably. lattice, including the coupling between magnetic and elastic

In a real magnetic crystal, however, atoms interact withdegrees of freedom, onto a standard Idiog a rigid lattice,
each other through a combination of elastic and magnetibut with parameters which depend on the elastic degrees of
forces. The next step in realism is, therefore, the explicifreedom. Both at constant volume and constant pressure, the
introduction of elastic degrees of freedom in the traditionallymodel exhibited identical critical behavior as the underlying
rigid system. The resulting model is termedmpressible rigid system, but with Fisher-renormalized exponents. This
Ising (CIM). Several empirical potentials have been pro-model, as well as others of the same type, however, considers
posed and employed to mimic the elastic force, from thea negligible shear modulus. This somewhat unphysical as-
simple Lennard-Jones to the more specific Ter¥off, sumption was soon recognized to be the reason of the disap-
Keatingi® Stillinger-Weber! and others(these last three pearance of the first-order transition. Further vi&rk® with
have been introduced, mainly to reproduce the interactiomore elaborate schemes did not change the result: a first-
between silicon and germanium atoms in the study oforder transition was always predicted at constant pressure,
Si,_Ge,, viewed as Ising binary alloy modegls and a second-order transition with Fisher-renormalized expo-

The issue of how the presence of elastic interactions afrents at constant volume. Finally, we cite the long and com-
fects the critical behavior of the Ising model has been intenplicated work by Bergman and HalpeAhjn which a cubic
sively studied. In 1954, using thermodynamic considerationsanisotropy in the elastic forces was introduced. In the isotro-
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pic case the same, already established result was obtaingtie simulations. The diamond network is decomposed into
i.e., a first-order transition at constant pressur@>0, and a  eight interpenetrating simple cubic sublattices of linear size
second-order transition with renormalized exponents at con:, so there arél=8L° atoms(siteg. Each atom in the system
stant volume. However, this last condition is realized only ifhas four degrees of freedom: the three spatial coordinmates
the atoms at the surface are fixed, otherwise the system hasd its specie§, which is defined to b&=1 if the atom is an

still enough degrees of freedom to develop a macroscopié, or S=-1 if it is a B type. The total number of atoni¢ is
instability. In the anisotropic case, however, a so-called mikept constant during the simulation, while the relative con-
croscopic instability was found at constant volume, and thicentration ofA andB particles can vary and is controlled by

is interpreted as a first-order transition. In his habilitationthe chemical potential. The corresponding appropriate statis-
thesis Dunwe®f pointed out that the elementary approachtical ensemble is termed semi-grand-canonical. The Hamil-
taken by Larkin and Pikin is essentially sufficient to under-tonian is given by

stand most of the theoretical results. Starting from the

Landau-Ginzburg-Wilson Hamiltonian he was able to show H=- }(:U’A - 1) > S +Hsw (1)

that the CIM under constant pressure exhibits mean-field 2 i

critical behaviof” in agreement with simulatiorf§:>° At , ,

constant volume he predicted two first-order lines ending ifVNerexa, g are the chemical potentials 8fandB, respec-
critical points, which are likely to belong to the mean-field tVely; andHswis the Stillinger-WebefSW) potential given
universality class. If the magnetic interactions argiferro- y

mggnetic(AFM) instead of ferromagnetit®,a quadratic cou- How= Hapg + Hang. (2)

pling between the order parameter and the elastic deforma-

tion should be expected. In this case the predictions(@ra: ~ The SW potential contains a two-body interactidfyg in-
second-order phase transition with Fisher-renormalized ex¢olving nearest neighbors and a three-body interadtigg
ponents in the case of constant VO|Lﬁ1f(ehiS is in agreement that includes next-nearest neighbors as well. This last term is
with the e-expansion work of Bergman and Halpéfin (i) a essential to stabilizing a diamondlike structure. The two-
first-order phase transition in the case of antiferromagneti®ody interaction is given by

interactions and constarizerg pressuré? As pressure in-

creases, the first-order line in pressure-temperature space HZbd:Z €(S.§)FAr/o(S.9)], )
should split into two first-order lines at a triple point. The o
theoretical prediction in the case of FM interactions at conwhere

stant volume has been checked by Tavaezal3® by MC

simulations. In disagreement with theory, they found a closed 1[% - 1} e?Y ify<b
first-order line which separates ordered and disordered Faly) = yP (4)
phases. 0 otherwise,

This result raises the intriguing question of whether or not .
theory will be correct for the case of AFM interactions and WhereCi, Cz, p, b are positive constantor the values see

- / . . .
constant volume. This will be the topic of the study that weRef- 29, 0(S,§)=2""R,, Ry being the ideal distance of the
report here. atoms,r;; is the distance between siteand j, ande is the

covalent binding energy. For a binary alloy of silicon and
germanium (Si=A, Ge=B) it has been estimated(1,1)
=2.17 eV, e(-1,-1)=1.93 eV, ande(1,-1)=2.0427 e\2°
and these values were used for elastic ferromagnet
We use the same model as considered previously in Refsimulations?®33In the present work we increased the value
29 and 33. We consider a binary alloy AfandB atoms on  for the A-B binding energy by 0.3 eV to favor alternate or-
the nodes of a distortable diamond lattice, free to move orslering of A-B particles analogous to the antiferromagnetic
condition that the diamond fourfold coordination is pre- ordering in magnets, specifically(1,-1)=2.3427 eV. The
served, and that the atomic species on each node mdyehavior for this value is expected to be typical of that in the
change. The coordination requirement speeds up consideAF regime, but a much larger value could conceivably pro-
ably the simulations as the list of the nearest neighbors of duce unanticipated effects. A systematic study of the depen-
given atom, which enter the Hamiltoniaisee below, is  dence upon the value ef1,-1) is beyond the scope of this
known from the very beginning and does not change duringaper. The three-body part of the Hamiltonian is given by

II. MODEL AND SIMULATION TECHNIQUES

2
H3bd = 2 ){ G(S,%)1/26(3’S()llzc(s!S!SK)F3[rij/RO(SIS)!rjk/RO(S!S.()](COS gijk + é) }! (5)

(K
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where cosf=rij - il |1ij| |1 l; X = N(M*2) = (Jm* ) /kgT, (9)
dl2ly;b12Uy,-b)] g yi<b, andy, <b wherekg is the Boltzmann constant affdthe absolute tem-
Fa(y1Ys) = _ o= 2 perature; the staggered susceptibility is
0 otherwise;

X" = N((M?) = (m*)?)/kgT. (10

We also determined the average concentration oBtlspe-
L=[NSINMS)NSITY4, with N(+1)=21.0 and\(-1)=31.0  cies
(see Ref. 28 The sum in Eq(5) is performed over all trip-
lets(i,j,k) with the vertex at sitg, i andk are nearest neigh- Cy= 1(”5% (12)
bors ofj. Note thatH;,4 contains an angular term which is a N
sort of angular stiffness essential to stabilizing the diamon
lattice (in fact, assigning the bond’s length alone is not suf
ficient, because the lattice ha® 3ranslational degrees of
freedom, and the bond length only imposé$ énstraints (m*4
A single MC step(MCS) is performed in the following man- Uy=1- 3(m+2)2;
ner: an atom of specie§ at positionr; is randomly chosen -
and a transition to the statg, S is attempted. The change in the specific heat
energy is then calculated and the move is accepted or re- C W20/ 2
jected according to the standard Metropolis criterion. Note C, = KA(ED ~(®IN, (13
that not necessarily botf andS' have to be different from wherekE is the total energy, anki=1/kgT. In our analysis we
the initial valuesr;, S. We simulated systems of sizés considered, in addition, the logarithmic derivativesréfand
=4 (N=512, 6(N=1728, 8 (N=4096, 10(N=8000, of U, with respect tol. To calculate them we used the rela-
12 (N=13829, 14(N=21952, and 18(N=46 656. Peri- tion
odic boundary conditions were used. A number ranging from .
5x 10* MCS for the smallest systems toGL0° MCS were — In(|m*|" = {|m"|"E) -(E), n=1,2,.... (14
discarded to thermalize the system. The typical number of K (Im*[™)

MC steps for sampling ranges from<LC° to 6 10F. For Moreover, the derivatives of a thermodynamic quanity

gach_system size we performed 10-50 mdependent runs, Ugs, respect tol were calculated using its cross correlation
ing different random number sequences to achieve a satisf jith the energy, i.e

tory statistical error on the averages of the sampled quanti-
ties. During a simulation the volume is kept constant at a (X

value corresponding to the lattice constagtof the ferro- TIK =(IXIE) = (XIXE). (15
magnet, for consistency to the simulations of Refs. 29 and

33. Simulations were performed at a fixed chemical potential

Mg = o Varying the temperatur€, as well as at fixed =T,

varying ug (see Sec. Il In this study we deal with antifer- Ill. MONTE CARLO RESULTS

romagnetic ordering and consider atoms sitting on an “even”
site to belong to a sublattice $land those sitting on an
“odd” site to belong to a different sublattice SlDuring the We started the present study with a rough determination
simulations we sampled the SW energy, and the fractioh of of the phase diagram in th@ug,T) plane. We performed
and B particles in Sk and SbL. Using these quantities as simulations at different values of ranging from 0.05 to
input, we calculated all the thermodynamic quantities needed.35 eV At fixed T we swept the chemical potentialg

(6)

Q/vhere ng is the number ofB particles in the system; the
“reduced fourth-order cumulant of the order parameter

(12)

A. Phase diagram

by employing the histogram reweighting methid. from O to 4 eV at intervals of 0.1 eV, whilg,, was kept
The order parametéV! is defined by the absolute value of constant at 1 eV. For each value ®fwe determined the
the staggered magnetizationf, i.e., value of ug at which the maximum value of occurs[see
Fig. 1(@)]. The behavior of concentratiary as the chemical
L1 potential is swept, is shown in Fig(ld). The solid dots in-
m = ﬁ(E §-2 S), (7) dicate the locations of the peaks in the finite lattice ordering
S Sk susceptibility. The resulting phase boundary is plotted in Fig.
2(a), whereas Fig. ) shows the phase diagram in the
and (cg,T) plane. Note that this procedure gives only an approxi-
mate phase diagram, which does not take into account ex-
M =(|m")), (8)  trapolation to the thermodynamic limit. It is, however, very

useful as it provides us with information on where to focus in
where the first and second sums in E@) are performed the(ug,T) plane with higher-resolution simulations and with
over spins belonging to the $land Sl, sublattices, respec- finite-size scaling analysis. A transition point from the disor-
tively. The finite lattice staggered susceptibility of the orderdered to the ordered phase is estimateggt=1.42 eV and
parameter is T=0.34 eV. We decided, therefore, to kegp fixed at the
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FIG. 2. Phase diagram of the AF compressible Ising model at
constant volume in théug,T) plane(a), and in the(cg,T) plane
) s [V B p B p

(b). The second-order line separates the ordered-disordered phases.

Estimates are foL.=4. Note the slight asymmetry of the curve
FIG. 1. Typical data used to determine the critical poitgs.  which reflects the asymmetry of our model. The error bars, if not

Plot of x7, vs ug. (b) Concentration of th® species vig. The bold  visible, are smaller than the size of symbols.

circles show the location of the transitioris=4 and the tempera-

ture isT=0.1 eV in both plots. The error bars are smaller than the ... - .
: critical temperaturel,, or at any other point in the critical
size of symbols.

region, apart from higher-order corrections, scales with sys-
tem size as.’*.3% The same scaling behavior is exhibited by
the logarithmic derivative of any power of the staggered
magnetization. We calculated the derivativeldy, of In M

and of Inm*2) with respect toT, using Eq.(14). Figure 3
displays a log-log plot of the maximum of these derivatives
. L o2 SfersusL. As expected, they show a linear behavior and they
obtained by moving in the orthogonal direction. Note theare to a very good approximation parallel. No indication of

slight asymmetry of the curves in Fig. 2, which is a conseactions to scaling is evident. The slopes found after a

quence of the three-body interactions. The phase boundaw]ear fit to the data are 1.579+0.056 1.619+0.031

shows no hysteresis, and a finite-size scaling analgids 1 17,0 028, respectively. The average of these values,
scribed in the next sectigrindicates that the transition is weighted with the respective errors, gives0.620+0.008,
second order. which, within the error bars, is in reasonable agreement with
the Ising value 0.6295+0.0009 found by MC simulatiétis,
but is quite different from the theoretically expected Fisher
The critical exponeni can be determined independently renormalizedy’ =v/(1-a)=0.702.
of any other critical quantity, and therefore more accurately. Various thermodynamic quantities exhibit an extreme at a
It can be shown that the slope of the cumulaht at the  certain temperaturd (L), which depends strongly on that

above value and to run simulations in a neighbor Tof
=0.34 eV. This corresponds to moving along thaxis, i.e.,
perpendicularly to the phase boundary of Fi¢p)2We also
performed simulations at constafit=0.1 eV, varying ug.

B. Critical behavior
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FIG. 3. Determination of the critical exponentfrom the size -
dependence of the extrema of thermodynamic response functions. .
From top to bottom: #In{m*3/JK (D2), —-dIn M/JK (D1), oa - AN
dU4l K (DU,). The error bars are smaller than the size of symbols. ’ '11
guantity and on the system size. In the asymptotic regime of o3 L
large systems the following scaling law holds: \
M(T.)
Tc(l—) ~ T+ Axl—_l/vy (16)
where the subscript indicates that the prefact@x depends 02
on the quantity considered. Oneeis determined, Eq(16)
enables us to extrapolafe(L) to the thermodynamic limit
L—-ce. In Fig. 4 we have plotted,(L) of the various quan- ool L
tities examined againgt™*’”, with »=0.620. The data follow 3 10 3C
very closely the linear behavior expected, except the two (b) L

smaller lattice sizet =4,6 for which corrections to scaling

are required. We have therefore excluded those data from the FIG. 5. Determination of the critical exponents by finite scaling
relations.(a) Linear fit of x*(T,) [Eq. (17)], which providesy/v. (b)

Linear fit of M(T;) [Eq. (18)], which providesg/v. Full lines are

fits, dotted lines are just extensions of the full ones. The error bars,
0.35 — “"‘ if not visible, are smaller than the size of symbols.
T ="

N g A extrapolations. The full lines in Fig. 4 are linear fits that
[eV] R RS account for both the errors onandy coordinates. The in-
0.345 SRS - tercepts on thd axis (L=c) are very close to each other;

........ oL however, to account for the slight deviations, we have con-
"""" U sidered the weighted average of these values. The final esti-
) mation isT.=0.344 04+0.000 06 eV.
034 |- e W bl The critical exponenty/v and 8/ v can be directly deter-
s mined from the finite scaling of* and M, respectively, at
T.. In the asymptotic regime these quantities scale as
| | X(LT) ~ L7, 17
0 0.05 0.1
L7 M(L,T) ~ LA, (18)

FIG. 4. Extrapolations of the finite system “critical temperature” Figure 5 shows |09'!09 p_Iots of the data. If, again, we ex-
to the thermodynamic limit fopg=1.42 eV. From top to bottom clude the lowest lattice size, the data are found to follow a

the extreme ofdU,/ oK, —d In{(m*™2) /oK, 9 In M/dK, x, —dM /K,

straight line very well. From a linear fit to the susceptibility

andC,. Full lines are fits of Eqs(16) to the corresponding data. We gety/»=2.017+0.041. Using the value previously found
Dotted lines are just extensions of the full ones. The error bars, ifor v, we gety=1.25+0.04, which, within the errors, is in

not visible, are smaller than the size of symbols.

agreement with the Ising valugsing=1.2390+0.0071 deter-
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FIG. 6. Plot of the fourth-order cumulatt, vs T for different #%*o
system sized.. The horizontal dotted line indicates the crossing- ﬂgﬁ’g
point value of the rigid Ising model. The full lines are just a guide 1
for the eyes. The error bars, if not visible, are smaller than the size Dagws © &
of symbols. ML o L=4
0 L=6
mined by e expansiorf, and 1.237+0.002 by MC A L=8
simulations®” Analogously, we find3/v»=0.491+0.057, or f t:g !&%ﬁ
B=0.305%0.039, which, within the errors, agrees with the 107" - a L=14 ++
Ising valuepising=0.3270+0.001%Ref. 4 as well. Note that
the error bars ony* andM include both the statistical error | | |
on these quantities and the uncertaintyTin In fact, this 107° 1072 10" 1 10
latter turns out to be the major contribution to the overall ) IT/T,—11L"Y
error bars. We have also tried to determine the critical expo-
nent of the specific heai. This is however, more difficult to FIG. 7. Data collapsing of the rescaled susceptibjfify(a), and

measure because of the presence of an additional fitting paf the order parameteM (b) vs rescaled temperature=|T

rameter. The specific heat is, indeed, expected to scdlg at —T¢|/Tc, with T.=0.344 04 eV. The error bars, if not visible, are
as smaller than the size of symbols. Data refer to above and b&low

C, ~ By +BL". (19 tion at the Ising value. The value obtained for the critical
temperature using this method is 0.3441+0.0001, which is
consistent with the value previously determined.

For a d-dimensional system for which the hyperscaling
;elationdv:Z—a is valid, the following finite-size laws hold
in the vicinity of the critical point

The fit of By, B,, and «/v, not shown here, gives/v
=0.28+0.09, orw=0.17+0.06, which is in reasonable agree-
ment with the Ising valuerng=0.110+0.002:3" Note that
the above procedure provided us with the determination o
the critical exponents, 8, and « not directly, but only via
the ratiosy/v, B/v, anda/v. These ratios are the same for
Fisher-renormalized exponents. xn(L,T) = LY f(tL), (20)

The fourth-order cumulart, is an important quantity to
determine the kind of a phase transition and also to provide
an independent determination of the critical temperature. The _ By i
curvesUy  (T) plotted for differentL versusT for largeL all M(L.T) = L™, 29
cross atT..%6 Moreover, the valudJ,(T,) strongly depends
on the kind of transition. It has been found thet,  wheret=1-T/T.. In a scaling plot ofy;;L™"" (resp.ML#")
=0.270 52 for the mean-field universality cl#€d),=0.47  versus1-T/TJLY” one should, therefore, observe a collaps-
for the three-dimensional Ising modelnd U,=0.5 for a ing of the data. This is exactly what we found, as Fig. 7
first-order transitior?? If the asymptotic regime has not yet demonstrates, and is further evidence of the consistency of
entered, however, curves with differdntvill cross at differ-  the critical exponents andl, previously determined. Note
ent points. Nevertheless, it is still possible to extrapolate thalso that since the data plotted are for above and bdlgw
crossing point td_—oc. The procedure is described in Ref. the critical amplitudes corresponding to the two branches in
6. Figure 6 displays the behavior bf, for our system. For Fig. 7 are thus the same, unlike those for the true
L =8 the different curves cross with very good approxima-susceptibility?*°
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IV. CONCLUSIONS keeping in mind the finiteness of the systems used in the

We have performed Monte Carlo simulations of the com-Simulations. It is, therefore, clear that, on the basis .of these
pressible Ising modefbinary alloy with antiferromagnetic  data, the occurrence of @low) crossover toward Fisher-
interactions under constant volume conditions, in the semit€normalized exponents cannot be completely ruled out. A
grand-canonical ensemble. Elastic forces are included by tHé€eper investigation of this issue would require simulations
Stillinger-Weber potential. The behavior of all critical quan- @0 much larger system sizes, which is, basically, unfeasible
tities analyzed strongly indicated the presence of a close$ith the present computer power. It would be, however, very
second-order line with the critical exponents of tigid) mtere.stlng to |_n.vest|gate the critical behavior under stronger
Ising model. This is in contrast with theories as they predic€UPling conditions.
the occurrence of Fisher-renormalized exponents. Disagree-
ment was al§o found in the. si_mulatio_ns of exactly the same ACKNOWLEDGMENTS
model but with ferromagnetic interactioAsThe reasons for
these disagreements are not clear and should be further in- We thank B. Diinweg, F. Tavazza, and X. Zhu for helpful
vestigated. Needless to say, however, that our conclusiom®mments and discussions. The support of NSF Grant No.
should be viewed within the context of any numerical work, DMR-0341874 is gratefully acknowledged.
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