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Recently we identified and classified a class of solids as kinking nonlinear elasticsKNEd because they
deform by the formation of kink bands. KNE solids represent a large family that include, among others, layered
ternary carbides and nitrides, layered oxides and semiconductors, zinc, cadmium, graphite, ice, and the layered
silicates, such as mica, present in nonlinear mesoscopic elastic solids. Herein we present a microscale model
that accounts for the mechanical response of KNE solids to compressive stresses and apply it to two very
different solids: Ti3SiC2 and graphite. Building on the Frank and Stroh model put forth in the 1950’s for the
formation of kink bands, we developed a comprehensive theory that accounts for the contributions of incipient
kink bandssIKBsd and dislocations pile-ups produced by normal glide processes to the nonlinear strains and
stored strain energies. The theory provides estimates for the densities of IKBs, the dislocation densities, both
from the IKBs and dislocation pileups, as well as the energy dissipated by the motion of the dislocations.
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I. INTRODUCTION

In recent papers,1–4 we have shown that theMAX phases,
mica, graphite, hexagonal BN and most probably ice, can be
classified as kinking nonlinear elasticsKNEd solids. The
MAX phases are a new class of layered, machinable, ternary
carbides, and nitrides, with the chemical formulaMn+1AXn,
whereM is an early transition metal,A is an A-group ele-
ment smostly IIIA and IVAd and X is C or N. A prime ex-
ample of theMAX phases is Ti3SiC2, the properties of which
have been extensively studied.1,2,5–17 We also believe that
many of the so-called nonlinear mesoscopic elasticsNMEd
solids discussed in the geological literature18–23 are in fact
KNE solids.3 All KNE solids deform primarily by kinking
and the formation of kink bandssKBsd. We have shown that
kinking—a mechanism first reported by Orowan24 in single
crystals of Cd loaded parallel to the basal planes—is the
physical origin of the hysteretic, nonlinear elastic, behavior
exhibited by these solids.3

The loading-unloading stress-strain curves of KNE solids
in the elastic regime outline nonlinear, fully reversible, re-
producible, closed hysteresis loops whose shape and extent
of energy dissipated are strongly influenced by grain size,
with the energy dissipated being significantly larger in the
coarse-grained material.1 The response is nonlinear and hys-
tereticsFig. 1d. In prior studies,1–4 we attributed these unique
characteristics to the formation and annihilation of incipient
kink bandssIKBsd. Incipient and regular KBs have also been
held responsible for the fully reversible and hardening be-
havior of KNE solids as diverse as graphite and mica in-
dented with spherical indenter at the nanolength scales.2–4

KNE solids are characterized by a marked anisotropy in
their plastic properties at the single crystal level. They do not
twin, but deform by kinking. We thus postulated that a suf-
ficient, but not necessary, condition for a solid to be a KNE is
a high c/a ratio3. If c/a is not high then, the solid should
have a lowc44. In recent papers1–4 it has been emphasized
that the formation of IKBs must precede the production of
regular KBs. IKBs are made up of near parallel walls of
opposite sign dislocations that are undissociated, i.e., still

attracted to each other at the endsfFigs. 2sad and 2sbdg. They
annihilate when the load is removed. When IKBs dissociate,
they produce mobile dislocation wallssMDWsd, and hence
irreversible or permanent deformationfFig. 2scdg and dam-
age in the form of delaminations. It is the coalescence of
mobile walls that eventually produces the kink boundaries
that result in KBsfFig. 2sddg that have been documented
extensively in the literature.5–8,21–26

In this paper, we present our efforts to develop a micros-
cale model for the mechanical response of KNE solids. We
applied the model to Ti3SiC2 and graphite, two vastly differ-
ently bonded solids.

II. MICROSCALE CONSIDERATIONS

The total strain«tot can be additively decomposed into a
linear elastic strain and a nonlinear strain«NL:

«tot =
s

E
+ «NL =

s

E
+ «IKB + «DP, s1d

wheres /E represents the linear elastic component, whereE
denotes the Young’s modulus of the material ands the
uniaxial applied stress. In the most general case, and in the
absence of phase transitions and/or microcracking, the non-
linear fully reversible strain«NL is comprised of two compo-
nents. The first«IKB is due to IKBs and the second—due to
basal slip that leads to dislocation pileupssDPsd—is denoted
as«DP. Note here that because of the layered nature of KNEs
both strains are fully reversible. In what follows each will be
dealt with separately.

At this juncture it is worth noting that in general the re-
sponse of KNE solids to cyclic stress is one of two types.
Type I is one in which the first and all subsequent cycles to
the same stress are fully reversiblefFig. 1sadg. Type II re-
sponse is one in which the first cycle is slightly open—i.e.,
results in a permanent deformation—but all subsequent
cycles to the same stress are fully reversiblefFig. 1sbdg. The
response of theMAX phases is of type I; that of graphite and
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hexagonal BN for example, is of type II. The reason for the
differences in response is unclear at this time, but may be
related to the ease of delaminations and/or weak grain
boundaries in type II solids. This comment notwithstanding
more work is needed to understand the differences. These
distinctions, however, are not important to this work for two
reasons: We only model thefully reversibleresponse, and the
permanent strains recorded in the first cycles are usually
quite small.

Herein we seek to establish a relationship between«IKB
and«DP and their contributions to the stored nonlinear strain
energy per unit volumeUNL. The totalstoredstrain energyU
is defined as thetotal mechanical energy input into the sys-
tem during aloading sequence minus the energy dissipated
due to internal friction as a result of dislocation motion. For
a monotonic loading segment, it follows that

U = W−
Wd

2
= ULE + UIKB + UDP,

where W represents the total mechanical energy input into
the system stotal area under the measured stress-strain
curved, Wd is the energy dissipated in a complete loading-
unloading cycle,ULE is the stored energy component from

linear elasticity, arising from stretching of atomic bonds, and
UIKB andUDP are the stored energy components from IKBs
and DPs, respectively.sHereWd represents the energy dissi-
pated in a complete loading-unloading cycle, consistent with
our earlier papers.1 The rationale for dividingWd by two is
that approximately half the energy dissipation occurs during
loading and half during unloading.d Referring to Fig. 3, it
follows that the hatched area representsUNL, where

UNL = UIKB + UDP.

Note thatWd corresponds to the area enclosed by the hyster-
esis loops, and is distinct from the definition ofUNL. Also
note that

UNL = 1/2s«NL. s2d

At this juncture it is useful to separate the discussion and
address the contributions of the IKBs and the DPs separately.
To carry out some of the calculations outlined below, a num-
ber of material properties, listed in Table I, are required. The
rationale and references for the choices made can be found in
the Appendix.

A. Nonlinear elastic strain from IKBs

Frank and Stroh25 sFSd proposed a model in which pairs
of dislocations of opposite sign nucleate and grow as a thin

FIG. 1. sColor onlined Typical stress-strain curves of KNE sol-
ids, sad Ti3SiC2 which is of type I andsbd graphite, which is of type
II.

FIG. 2. sColor onlined Schematic description of the formation of
a kink band.sad A thin elliptical subcritical kink nucleus is formed
with 2a@2b. The boundaries are comprised of dislocation walls
sshown in redd of opposite sign, and a uniform spacing ofD. sbd
Formation of an IKB in hardsredd grains adjacent to softsblued
grains. The lines in the grains denote basal planes. An IKB is fully
reversible upon the removal of the load.scd Mobile dislocation
walls formed by the sundering of IKBs. Solid inclined lines denote
walls that have separated from the source and are moving away
from it. This only happens at higher temperatures and/or high
stresses.sdd Same asscd but after removal of stress, emphasizing
formation of permanent kink boundaries that are indistinguishable
from grain boundaries. These KBs, in effect, reduce the domain size
and result in hardening.
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elliptical kink with dimensions 2a and 2b, such that 2a
@2b fFig. 2sadg. It has been postulated that a subcritical kink
can grow by producing new dislocation pairs at its edges, or
conversely shrink by annihilation of dislocation pairs. Spe-
cifically, FS derived the following condition for the unstable
growth of kinks:

gc =
b

D
<

3Î3s1 − vdtloc

2G
, s3d

whereD is the distance between dislocations along 2a fFig.
2sadg; gc is the critical kinking anglesor shear straind; G and
v are the shear modulus and Poisson’s ratio, respectively.tloc
is the local shear stress needed to form a dislocation pair; in
metals it is usually assumed to be<G/30. If the same as-
sumption is made here,gc is small; it is <0.07 for Ti3SiC2
and<0.065 for graphite.

The remote shear stress,t, needed to render a kink
nucleus unstable and grow depends on 2a and is given by25

t . tc <
sc

2
<Î2bG2gc

ap2 lnS b

rgc
D , s4d

where tc and sc are the critical shear and axial stresses,
respectively.r is related to the core energy of the dislocation
and is of the same order as the Burgers vectorb.25 Through-
out this paper we assumet<s /2. FS modeled pure edge
dislocations, which introduces as1−vd term in the denomi-
nator of Eq. s4d. This term was omitted here, and in the
reminder of this paper, because in Ti3SiC2 the dislocations,

while perfect, are mixed and self-organize in walls such that
the screw components alternate, hence reducing their
energy.6 In graphite the dislocations split into partials, also
reducing their energy.27

Equations4d suggests that the stress for kinking decreases
with increasing 2a. In reality, 2a is constrained by the thick-
nesses of the individual grains, or domains in which the kink
are being producedssee belowd. Therefore, once a kink
nucleus is formed and the condition for unstable growth is
met fEq. s4dg the kink will grow rapidly until it meets a grain
boundary. If the kink remains undissociated at this juncture,
we refer to it as an IKB1 fFig. 2sbdg. IKBs are fully
reversible.1

The width of the band, 2b is given by25

2b <
2as1 − vd

2Ggc
s. s5d

Assuming the IKBs to be cylinders with radiib the total
energyUIKB needed to createNk kinks per unit volume is
given by25

UIKB = s2pbNkd
Gbagc

p
lnS b

rgc
D , s6d

where sGbagc/pdlnsb/ rgcd represents the energy per unit
length of dislocation line needed to create a kinked region of
length 2a.25 In Eq. s6d, for reasons discussed earlier, the
s1−vd term in the denominator was omitted.

The strain produced by these kinks is

«IKB =
2pab2gcNk

k
, s7d

wherek represents a factor that relates the IKB shear strain at
the grain level to the macroscale uniaxial strain. This factor
would depend on various microstructural parameters that
would control the orientations of the IKBs with respect to the
loading axis, e.g., the crystallographic texture in the sample.
Here we assumek is equal to 1.

At low stresses, it is reasonable to assume that the internal
stress is constant and equal to that given by Eq.s4d. Thus
combining Eqs.s4d–s7d yields

UIKB =Î G2bgc

2as1 − vd2lnS b

rgc
D«IKB . s8d

Note that the term under the square root is essentiallysc
given by Eq.s4d. It follows that as long as the applied stress

FIG. 3. Schematic of stress-strain curve upon loading. The
shaded area representsUNL =W−s2/2E−Wd/2, whereW is the to-
tal area under the curve andWd is the energy dissipated per cycle
per unit volume. Also shown are the linear«EL and nonlinear«NL

contributions to the total strain. Note thatUNL =1/2s«NL.

TABLE I. Summary of material constants and some values calculated herein. See the Appendix for
rationale and references.N is the number of loops per IKB.

G sGPad v b sÅd r /b gc sradd l sµmd 2a sµmd sc sMPad st sMPad N

FG 144 0.20 3 11 0.07 8±4 3±1.5 250 216 700

CG 42±39 20±16 130 50 4670

Graphite 4.5 0.25 1.4 11 0.065 0.024a 0.023 57 23 10

aThis value was estimated from the intercept of the line labeled graphite along thex axis and Eq.s11d.
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is low, thens<sc, and Eq.s8d can be used to calculatedr, if
a is known.

If that assumption is not made, then combining Eqs.s2d,
s5d, ands7d results in

UIKB =Î G2gc

2ps1 − vd2Nka
3«IKB

1.5 , s9d

This relationship—which is valid over the entire loading do-
main as long as the total nonlinear strain is assumed to be
due to IKBs alone—can be used to calculateNk, again as-
suming 2a is known. Interestingly at high stresses and/or for
very fine-grained solidsNka

3 should be of the order of unity,
a fact borne out by the results shown below.

B. Nonlinear elastic strain from dislocation pile-ups

The number of dislocations in a pileup on a single slip
plane is given by28

n <
plt

Gb
,

where l is the length of the pileup. The presence ofNDP
pileups per unit volume, will result in a strain of

«DP = nNDPl2b. s10d

Using this equation and assuming the energy required to pro-
duce one dislocation loop per unit length of dislocation line
is <Gb2/2 it follows that

UDP =
pGb

2l
«DP. s11d

In deriving this equation the length of the average dislocation
loop was assumed to be 2pl /2. In this paper,l is the grain
diameterfFig. 2sbdg.

Combining Eqs.s8d and s11d the following relationship,
only valid at lower stresses, is obtained:

UNL =
pGb

2l
«DP +Î G2bgc

2as1 − vd2lnS b

rgc
D«IKB . s12d

Similarly combining Eqs.s9d and s11d one obtains the rela-
tionship

UNL <
pGb

2l
«DP +Î G2gc

2ps1 − vd2Nka
3«IKB

1.5 s13d

that should be valid over theentire stress regime. As dis-
cussed below, for most KNE solids with grain sizes greater
than <1 mm, the first term can be ignored relative to the
second term and Eq.s13d can then be rewritten as

UNL <Î G2gc

2ps1 − vd2Nka
3s«NL − «DPd1.5. s14d

C. Experimental data and analysis

From our experiments1,4 we can readily measureUNL, as a
function of «NL. The results for graphite, fine-grained and

coarse-grained Ti3SiC2 are shown in Fig. 4sad.
Given that KNE solids possess less than the five indepen-

dent slip systems needed for ductility, initially upon loading
DPs occur in grains oriented favorably for basal slip, the
so-called soft grains. With increasing stress, there is a
buildup of large internal stresses10,14,17,29and kinking is ini-
tiated in the hard grains. To simplify the discussion, we as-
sume these mechanisms occur sequentially and consider two
regimes; a lows regime where Eq.s12d is valid, and a sec-
ond regime where Eq.s13d is. Each is treated separately be-
low.

1. Low stress regime

The dashed lines in Fig. 4sbd represent the first term in
Eq. s12d based on the values listed in Table I, i.e., assuming
l, to be the average grain diameter. In the case of Ti3SiC2 it
is obvious that the contribution of the dislocation pileups to

FIG. 4. sColor onlined sad Plot of UNL versus«NL for the three
materials tested herein. The prefactors and strain shifts, presumably
due to DPs, needed to obtain the best agreement between theory and
experiment are shown in the form of an equation, where the expo-
nent on the strain term was fixed at 1.5.sbd Same assad, but em-
phasis on low strain corner. Dashed lines represent the first term on
the right hand side of Eq.s12d, assumingl is the grain diameter.
Solid lines are least squares fits of the low stress results from which
r is calculated for the FG microstructurefviz. from second term of
Eq. s12dg.

BARSOUM et al. PHYSICAL REVIEW B 71, 134101s2005d

134101-4



UNL in both microstructures is quite small. It follows that the
main effect of the DPs is to shift the solid lines to the right.
Said otherwise, at least for Ti3SiC2, the intercept along thex
axis is a measure of DP activity. This conclusion should be
valid for most KNE solids that tend to crystallize as thin
plates for whichl.2a insuring that the coefficient of the
first term in Eq.s12d is always much smaller than that of the
second term. Even in the case of the submicron-grained
graphites0.023µm, see Table Id tested here, the«DP prefactor
in Eq. s12d is an order of magnitude smaller than the«IKB
prefactor. Needless to add, larger grain diameters, reduce the
contribution of DPs toUNL even further.

The solid lines in Fig. 4sbd are plots of the second term in
Eq. s12d shifted to the right. These lines were generated as
follows: First the slope of the line shown in Fig. 4sbd for FG
Ti3SiC2 was used to calculater, assuming 2a to be the value
measured from image analysis, viz. 3µm sTable Id. Oncer is
determined, the slope of the CG Ti3SiC2 line is used to cal-
culate the 2a in that microstructure. The value calculated, 11
µm, is in good agreement with the value of 2a determined
from image analysis, i.e., 20±16mm sTable Id.

For graphite the slope of the line is used to calculater,
assuming 2a to be that determined from XRD peak broad-
eningssee the Appendixd. It is gratifying that the values ofr
determined herein for both Ti3SiC2 and graphites<11bd are
quite reasonable, and in the case of Ti3SiC2 bolstered by
direct high-resolution TEM micrographs.16 Needless to add,

the results obtained are a weak function ofr, and if better
values ofr are available in the future, they would have to be
radically different than those chosen here to alter any of our
conclusions. Along the same lines, the range ofr values is
limited; r can vary from a minimum ofb to a maximum of
b/gc. Higher values ofr would result in imaginary energies
fsee Eq.s12d, for exampleg.

Oncer and 2a were determined, 2b andNK are calculated
from Eqs. s5d and s7d, respectively. These resulting values
are listed in Table II as a function of stress. The average
distanced between IKBsslast column in Table IId was esti-
mated assumingd=s1/Nkd1/3, i.e., we assume the IKBs to be
uniformly distributed. In all casesd was found to be.2b.

2. High stress regime

Figure 4sad plots Eq.s14d by fixing the strain exponent to
1.5 and varying the prefactor. The excellent agreement be-
tween theorysdashed linesd and experiment for all three sol-
ids over the entire stress range is gratifying and implies that
the experimental results are consistent with our model. From
the prefactors shown in Fig. 4sad and Eq.s14d, we calculate
Nka

3=3 for FG Ti3SiC2, 22 for CG Ti3SiC2, and 0.5 for
graphite. These values are quite reasonable and hover around
1 for the FG Ti3SiC2 and very fine-grained graphite samples.
Assuming 2a for the FG, CG and graphite are, respectively,
3, 11, and 0.023µm, the respectiveNk’s are 931017,1.3
31017 and 331023 m−3. These numbers are in excellent

TABLE II. Summary of experimental results and calculations. Note in these calculations the 2a values
used for the FG and CG Ti3SiC2 were 3 and 11µm, respectively.NIKB was calculated from Eq.s7d, assuming
b is given by Eq.s5d. The average distance between IKBs,dIKB <sNIKBd−1/3, is listed in the last column.

Solid
s

sMPad
2b

sµmd «IKB

U
sMJ/m3d

Wd

sMJ/m3d
NK

smmd−3
d

sµmd

Ti3SiC2

FG
105 0.012 0.00024 0.007 0.0023 9.3a <1 assuming

NIKB =131018 m−3

260 0.03 0.0005 0.053 0.021 3.2a

365 0.043 0.0006 0.112 0.055 1.9

470 0.056 0.0008 0.20 0.12 1.5

625 0.074 0.0013 0.49 0.24 1.4

845 0.10 0.0022 1.12 0.47 1.3

915 0.11 0.0023 1.33 0.47 1.2

985 0.12 0.0026 1.65 0.56 1.1

Ti3SiC2

CG
50 0.02 0.00056 0.014 0.002 1.9a <1.5 assuming

NIKB =0.331018 m−3

100 0.04 0.001 0.047 0.008 0.9a

165 0.07 0.0011 0.078 0.02 0.3

200 0.09 0.0015 0.134 0.04 0.3

246 0.1 0.0016 0.18 0.067 0.2

Graphite 36 0.0012 0.0017 0.048 0.01 9.33105a <0.01 assuming
NIKB =531023 m−3

50 0.002 0.0024 0.091 0.025 4.73105

63 0.0021 0.00345 0.161 0.041 6.23105

75 0.0025 0.0046 0.256 0.065 5.83105

aThese values are too high and must be due to the uncertainties in the calculation of«IKB at the low stresses.
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agreement with the same values obtained from Fig. 4sbd and
listed in the last column in Table II.

To summarize, upon initial loading DPs in the soft grains
result in an initial strain; the energy needed to form the pile-
ups, however, is negligible compared to that needed to form
the IKBs. It follows that thex axes intercepts of plots such as
the ones shown in Fig. 4, yield information about dislocation
pileups. The slopes of the lines, on the other hand, are related
to IKB formation. Remarkably, therefore, an almost com-
plete picture of the dislocation distributions, density, shapes,
interactions, etc., can be determined from a single KNE solid
stress-strain curve.

D. Dissipated energy

The energy dissipated per unit volume per cycleWd which
arises from the energy dissipated or friction due to disloca-
tion motion is another important clue to what is occurring. If
we assume that a dislocation loop sweeping an areapb2,
dissipates an energy per unit area,V, then in one cycle

Wd = 2Nkpb22a

D
V. s15d

The factor of 2 comes because of the opening and closing of
the IKB loops, i.e., loading and unloading that we assume
are equal; the number of dislocation loops per IKB is 2a /D.
Eliminating b using Eq.s5d yields

Wd =
pVNka

3

G2bgc
ss2 − st

2d, s16d

wherest is a threshold stress below which no kinking oc-
curs. It follows that ifa3Nk is a weak function of stress, then
a plot of Wd versuss2 should yield a straight line with a
slope proportional toV and an intercept equal tos2

t. The
excellent linear relationship shown in Fig. 5sad, indirectly
confirms that to be the case. Note that ifa3Nk were a func-
tion of stress, the exponent on the latter would be.2.

Multiplying the square of Eq.s9d by Eq. s16d yields

V =
2bs1 − vd2UNL

2 Wd

s«NL − «DPd3ss2 − st
2d

for s . st. s17d

This is a powerful expression because it allows us to calcu-
late V without knowing the atomistic details of the IKBs,
i.e., Nk,a or b. It is important to note that this relationship
assumes thatWd results from IKBs alone, which is a good
assumption as long as the first term on the right-hand side of
Eq. s13d is significantly smaller than the second. Figure 5sbd
plots a log-log of the right-hand side of Eq.s17d as a function
of applied stress for both Ti3SiC2 and graphite. The results
show thatV is a function ofs. As a first approximation it is
not unreasonable to equateV /b to the critical resolved shear
stress for dislocations gliding on the basal planes. This com-
ment notwithstanding, it is hereby acknowledged that more

work is needed to understand the relationship ofV to other
material properties and its dependence on the state of applied
stress and microstructural variables. This work is ongoing.

Assuming V for graphite, FG and CG Ti3SiC2 to be
<0.001, 0.02, and 0.01, respectivelyfFig. 5sbdg, Nka

3 can be
calculated from Eq.s16d and the slopes of the lines shown in
Fig. 5sad. At 16, 5, and 0.7, respectively, these values are in
excellent agreement with the values calculated from Fig. 4sad
ssee previous sectiond. This independent check on the values
of Nka

3 in the different solids lends even more credence to
our model.

In principle, for an ideal system with monosized grains,
st<sc. One way to measurest is from plots such as those
shown in Fig. 5sad. Least squares analysis of these plots,
results inst’s for graphite, CG and FG Ti3SiC2 of 23, 50,
and 216 MPa, respectively. The corresponding values ofsc
calculated from Eq.s4d are 57, 130, and 250 MPa. This
agreement has to be considered excellent given the many
simplifying assumptions made and in view of the fact thatsc
is calculated using the average grain size, whilest is more
dependent on the size of the largest grains in the distribution.
Consistent with this notion is the fact that the agreement
betweenst for the FG material is better than the one for the
CG with its wider grain size distribution. Note that the value

FIG. 5. sColor onlined sad Plot of Wd versuss2. The intercept of
the lines with thex axis is equal to the threshold stress squared.sbd
log-log plot of V vs maximum applied stress in each cycle.
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of 2a used to calculatest for the CG samples was 11µm
fi.e., that determined from the results shown in Fig. 4sbdg. If
instead the 2a used is the one determined from the
microstructure—which would be more relevant for calculat-
ing st—the latter would be<100 MPa and thus in better
agreement with experiment.

Two other factors can play an important role in reducing
st. First, the presence of potent nucleation sites for IKB for-
mation. In the FS model the local stress required to nucleate
a dislocation dipole isG/30. The presence of flaws and in-
clusions, for example, could act as potent stress concentra-
tors that in principle should reducest.

Second is the loss of constraint. Since the formation of
IKBs is essentially a buckling phenomenon, it is greatly en-
hanced when the grains are not constrained or confined. For
example, KBs form preferentially at the corners of cubes,8

and the mechanical properties are strong functions of the
state of stress.11,17Similarly, the thresholds for the formation
of IKBs under spherical nanoindentations are several times
higher than the compressive strengths of the material.2 We
have also recently shown that porous Ti3SiC2 samples can
dissipate more energy, on an absolute scale, than fully dense
ones.30 Given that the graphite tested here in<20 vol. %
porous, the lowst value measured is not too surprising.

The excellent agreement between the widths of the grains
obtained from Fig. 4sad and the actual average width is quite
gratifying and lends great credence to the FS model. The
agreement observed between theory and experiment shown
in Fig. 4sad over the entire stress regime, with essentially no
fitting parameters is even more remarkable considering the
wide range—over three orders of magnitude—of grain sizes
examined and the huge differences in bonding between
Ti3SiC2 and graphite. In the former the bonds are a combi-
nation of covalent, metallic, and ionic,31,32 in the latter the
bonding between the basal planes is van der Waals.27 More-
over, graphite is elastically hugely anisotropic, while Ti3SiC2
is quite isotropic.2

It is important to put the numbers calculated in Table II in
perspective. Based on these results the total dislocation den-

sities in the various samples are weak functions of stress.
The response of the two Ti3SiC2 microstructures to stress are
also different; the density of IKBs are between 4 and 5 times
higher in the FG material. The IKBs in the FG material,
however, are<3 times slimmer than in the CG samples and
the main effect of increasing the stress is to increaseb.

In Ti3SiC2 the spacing between dislocationsD in a wall is
43 Å. The number of dislocation loops per IKB in the FG
and CG samples is, respectively, 700 and 4670. Thus the
total dislocation densities, in the FG and CG Ti3SiC2 micro-
structures, are<431014 m−2 and <931014 m−2, respec-
tively. These values are quite reasonable and fall in between
those of well-annealed metal crystals and heavily cold-rolled
ones.28 Note these numbers do not include the DPs. They are
also in good agreement with the value of 231014 m−2 deter-
mined from transmission electron microscope micrographs
of bent areas in mica.33

In graphite, D<21 Å and the average number of dis-
locations per IKB is 20, for a total dislocation density
of <131017 m−2; a value that is roughly 20 times higher
than typical values in heavily cold-rolled metals.28 At this
point it is not clear whether this result is plausible because of
the nature of graphite, or is a reflection that some of the
strain measured is a result of the fact that the samples were
porous, i.e., due to sample compliance. We believe it is most
likely a combination of both. Clearly more work is needed
here.

Some final comments: We would like to point out that the
fully reversible nature of the IKBs permits us to contemplate
a heretofore impossible task: the development of a thermo-
dynamic model that explicitly includes dislocations. We be-
lieve this paper is a first, but important step, in that direction.
Furthermore as noted above, we postulated that a sufficient
condition for a solid to be a KNE is solid is a highc/a ratio
and/or a lowc44. Figure 6 plots the latter values for a number
of solids, some of which are known to kink and others that
are not. Based on this map it would appear that KNE solids
lie to the right of the inclined vertical line and hence consti-
tute a huge class of solids.

ACKNOWLEDGMENT

This work was supported by the Army Research Office
sGrant No. DAAD19-03-1-0213d.

APPENDIX

The room-temperature Young’s, shear, and Poisson’s ra-
tios of Ti3SiC2 have been measured several times and it is
now fairly well established that these values are, respec-
tively, 340 GPa, 144 GPa, and 0.2.34 The dislocations are
perfect and mixed with a Burgers vector is 3.02 Å.6,35 The
dislocations arrange themselves in walls with alternating
screw components.6,35

Typically the grains in Ti3SiC2 grow as thin hexagonal
plates.9,12 Given that the IKBs grow with their long dimen-
sion 2a parallel to thec axis, the relevant microstructural
parameter is thewidth of the grains and not their length. Two
Ti3SiC2 microstructures were tested; one in which the grains

FIG. 6. sColor onlined Plot of c44 versusc/a for non-KNEssolid
squaresd and currently known, or suspected KNE solidsssolid
circlesd. Solids that fall to the right of the near vertical line should
be KNE solids.

MICROSCALE MODELING OF KINKING NONLINEAR… PHYSICAL REVIEW B 71, 134101s2005d

134101-7



were fine, equiaxed with an average thickness of 3±1.5mm
and a narrow grain size distribution.15 The average diameter
of the grainsl was 8±4mm.15 The second was coarse-
grained with a wide grain size distribution. The average grain
width was 20±16mm;15 the average diameter,l was
42±39mm.15 The details of how these samples were made
and their microstructures can be found elsewhere.15

In both cases,gc was calculated using Eq.s3d assuming
tloc wasG/30. b was calculated from Eq.s5d. Note that the
maximum value ofr is b/gc or <15b, before the term under
the square root in Eqs.s4d and s8d becomes negative.

The graphite used was commercially availablesGrade
ISO-36, Toyo Tanso, USA, Troutdale, ORd. The average
grain, or crystallite size, determined from x-ray diffraction
line broadening was 0.023µm. Its density was 1.83 Mg/m3,
which implies it was<20 vol.% porous.

Partials exist in graphite and their Burgers vector is 1.42
Å.27 Young’s modulus for polycrystalline graphite 10 GPa
was determined from the slopes of the initial unloading por-
tions of the stress/strain curvesfFig. 1sbdg. This value is typi-
cal for the polycrystalline graphite used here. The shear
modulus was taken to be equal toc44 or <4.5 GPa.27
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