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The Gross-Pitaevskii-type equation is solved for the charge Bose liquid in an external magnetic field at zero
temperature. There is a vortex lattice with locally broken charge neutrality. Remarkably, there is no upper
critical field at zero temperature, so the density of single flux-quantum vortices monotonously increases with
the magnetic field up toB=` and no indication of a phase transition. The size of each vortex core decreases
at aboutB−1/2 keeping the system globally charge neutral. If bosons are composed of two fermions, a phase
transition to a spin-polarized Fermi liquid at some magnetic field larger than the pair-breaking field is
predicted.
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Charged Bose liquidssCBLsd have been solely of aca-
demic interest for a long time.1–8 Notwithstanding, experi-
mental realization of the Bose-Einstein condensationsBECd
of trapped ultracold atoms9–14 made it possible to create ul-
tracold plasmas15 by using lasers to trap and cool neutral
atoms to temperatures of 1 mK or lower. Another laser then
ionizes the atoms by giving each of the outermost electrons
just enough energy to escape the electrical attraction of its
parent ion. The ions retain the milli-Kelvin temperatures of
the neutral atoms, so they may bose condense, if their spin
is an integer. There is also growing experimental evidence
for preformed 2e-charged bosons in high-temperature cu-
prate superconductors, such as normal state pseudogaps, un-
usual upper critical fields, small normal-state Lorentz num-
bers, etc.16 Similar charged boson physics is expected in a
lattice of mesoscale superconducting dots, if parameters are
chosen such that single-electron tunneling is suppressed and
only Cooper-pair charges tunnel between the domains via
Josephson tunneling.17 It is also possible to describe the uni-
versal features of the superconductor-insulator transition as a
function of disorder in quasi-two-dimensional systems in
terms of boson physics.18,19 In order to model the transition
in terms of bosons, one has to include the Coulomb repul-
sion, otherwise all bosons would collapse into the lowest
lying highly localized state.

These developments have renewed interest in CBL as a
fundamental reference system. Anoninteracting gas of
charged bosons cannot bose condense at any finite magnetic
field because of a one-dimensional character of motion in the
lowest Landau band.1 However, interacting charged bosons
condense below somesupperd critical field BøHc2sTd since
their collisions remove the one-dimensional singularity of
the density of states.20 The BEC field diverges with decreas-
ing temperature,20,21 so thatHc2sTd=` at absolute zero. A
single vortex in CBL has a charged core and an electric field
inside,22 while its magnetic field is virtually identical to the
Abrikosov vortex.23

Here we present the ground state of CBL in an arbitrary
magnetic field solving numerically the Gross-Pitaevskii-type
equations with the long-range Coulomb interaction between
bosons. We find a lattice of charged vortices, which does not

disappear at any finite magnetic field. The density of vortices
monotonously increases and their core size decreases with
the magnetic field up toB=`. The size of vortices also de-
pends on the thickness of CBL films different from the con-
ventional superconducting films. When bosons are composed
of two fermions, there is a phase transition to a spin-
polarized Fermi liquid at some magnetic field.

The Hamiltonian of charged bosons on a compensating
homogeneous backgroundsto ensure global charge neutral-
ityd in the external magnetic field with the vector potential
Asr d is given by

H =E dr c†sr dF−
s" = − ieA/cd2

2m
− mGcsr d

+
1

2
E dr E dr 8Vsr − r 8d

3fc†sr dc†sr 8dcsr 8dcsr d − 2nc†sr dcsr dg, s1d

wherem, e, n, m are the mass, charge, average density and
chemical potential of bosons, respectively, andVsr d=e2/ ur u
is their Coulomb repulsion.24

The equation of motion for the Heisenberg field operator,
csr ,td, is derived using this Hamiltonian. If the density is
relatively high, so that the dimensionless Coulomb repulsion
rs=me2/"2s4pn/3d1/3 is not large, one can expect that the
occupation numbers of one-particle states are not very much
different from those in the ideal Bose gas. In particular, one
state remains macroscopically occupied atT=0 K. Then,
following Bogoliubov25 one separates the large matrix ele-
mentc0 from c by treating the restc̃ as small fluctuations,
csr ,td=c0sr d+c̃sr ,td. The anomalous averagec0sr d
=kcsr ,tdl is approximately equal toÎn in a homogeneous
system atT=0. Substituting the Bogoliubov displacement
transformation into the equation of motion and collecting
c-numberterms ofc0, one obtains the equation for the mac-
roscopic condensate wave function as22

F s" = − ieA/cd2

2m
+ mGc0sr d

=E dr 8Vsr − r 8dfc0
*sr 8dc0sr 8d − ngc0sr d. s2d
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The integrodifferential equations2d is quite different from
original Ginzburg-LandausGLd26 and the Gross-Pitaevskii27

equations, describing the order parameter in the BCS and
neutral superfluids, respectively. As recognized by one of
us22 the coherence length in CBL is just the same as the
screening radius, so the core of a single vortex is charged.28

Indeed, introducing the dimensionless quantities,f
= uc0u /n1/2, r=r /l, h=ejl curl A /"c for the order param-
eter, length and magnetic field, respectively, one obtains the
coherence length about the same as the screening radius at
T=0 K5, j=s" /21/2mvpd1/2, where vp=s4pne2/md1/2 is
the zero-temperature plasma frequency.2 The London
penetration depth is conventional,l=smc2/4pne2d1/2, but
a new feature is an electric field potential,efsr d
=edr 8Vsr −r 8dfuc0sr 8du2−ng. Moreover, the chemical poten-
tial m is zero, as it should be in the globally neutral CBL in
the thermal equilibrium below the BEC critical temperature.

Any realistic CBL is an extreme type II with a very large
Ginzburg-Landau parameter,k=l /j@1.22 For example, the
coherence length and the electric field inside the vortex core
are about 1 nm or less and 10 mV, respectively, with the
material parameters typical for cupratessm=10me, n
=1021 cm−3 and e0*100d, and k is about 103 with these
parameters. Hence, the magnetic field is practically homoge-
neous, and the ground statec0sr d can be found by minimiz-
ing the energy functionalE with respect toc0sr d,

Esc0d =
1

2m
E dr us" = − ieA/cdc0sr du2

+
1

2
E dr E dr 8Vsr − r 8duc0sr du2suc0sr 8du2 − 2nd,

s3d

whereA =h0,Bx,0j. In numerical simulations we consider a
sample with the rectangular cross sectionL3L and the mag-
netic flux BL2=pF0, wherep is an integersF0 is the flux
quantumd. When the magnetic fieldB is applied along thez
direction, the order parameterc0sx,yd does not depend onz,
obeying the following translation symmetry:

c0sx + L,yd = exps− ieBLy/"cdc0sx,yd,

c0sx,y + Ld = c0sx,yd. s4d

These relations can be used as boundary conditions whenp
is an integer.

Because Eq.s3d does not contain the penetration depth, it
is convenient to introduce new dimensionless coordinates
x=r /j, the vector potential,a=s0,2pBxj2/F0,0d, and the
Coulomb energyvsxd=ef / svp

2m* j2d. As a result, the prob-
lem is reduced to minimization of the functional

Esfd =
"2nj

2m
E dxfus=− iadfsxdu2 + vsxdsufsxdu2 − 1dg,

s5d

where the Coulomb field satisfies the Poisson equation,

Dvsxd = 1 − ufsxdu2. s6d

To compare the CBL vortex state with the Abrikosov vortex
lattice we also minimize the conventional GL functional us-
ing the same dimensionless units,

EGLsfd =
"2nsj

2m
E dxFus=− iadfsxdu2 − ufsxdu2 +

1

2
ufsxdu4G ,

s7d

wherej="2/ s2muaud1/2, ns= uau /b and the order parameterf
is normalized byÎns. Here a and b are conventional GL
coefficients.26 We apply the standard discretization procedure
described in Ref. 29. Equations6d for the electrostatic poten-
tial is solved by the Fourier transform in the discrete form,
and the resulting energy is minimized with the conjugated
gradient algorithm.

Since both functionals depend only on the dimensionless
vector potentiala which is proportional to the productBj2,
simulations can be performed at fixedL andj by changingB
or at fixedL andB by changingj. Our numerical results are
shown in Figs. 1–4. At any value of the magnetic field we
find the triangular vortex lattice. While the field is small,
there are only a few vortices per sample cross section, Fig.
1sad. When vortices are far apart, their interaction yields only
a small contribution to the energy functional but even in that
case a triangular lattice of vortices is clearly seen in CBL,
Fig. 1.

Each vortex carries one flux quantum, as can be seen from
the phase profile in Fig. 1sbd. It has an unusual core, Fig. 2,
in agreement with Ref. 22, which differs qualitatively from

FIG. 1. A few vortices in a sample of the sizeL=22.4j sad. The
phase profile of the order parameter is shown insbd. The phase
changes by 2p around each core at any magnetic field.

FIG. 2. Single vortex in CBLsRef. 22d sad compared with the
Abrikosov vortexsbd.
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the Abrikosov vortex23 due to a local charge redistribution
caused by the magnetic field.

The breakdown of the local charge neutrality, Fig. 2, is
due to the absence of an equilibriumnormalstate solution in
CBL at T=0 with c0=0, as explained in Ref. 22.

Increasing the field first increases the vortex density with
about a constant size of the cores, as in conventional super-
conductors, Fig. 3 and Fig. 4. However, quite different from
the Abrikosov lattice, increasing the field further does not
lead to a superfluid to normal phase transition, but instead it
increases the density of vortices by decreasing the size of
every individual core, Figs. 3scd and 3sdd. Remarkably, each

vortex carries one flux quantum at any field. Keeping the
global charge neutrality, the charge heterogeneity depends on
the magnetic field, and the core diameters decrease with the
field, when the field is large,j2.2p"c/ seBd. Indeed, in this
regime the “bare” coherence lengthj becomes irrelevant, but
the only characteristic length is the distance between single
flux-quantum vortices, i.e.,r <Î2p"c/ seBd. As a result, the
amplitude real-space modulations of the order parameter in-
crease with the magnetic field in CBL, while they decrease in
conventional superconductors, where the order parameter
vanishes at and above the finiteHc2=F0/ s2pj2d fFigs. 4scd
and 4sddg.

There is another difference between CBL and conven-
tional vortex matter in the case of thin films. If we assume
that the film thicknessd is small, d!j, then the left hand
side of Eq.s6d takes the form(1−ufsxdu2)ddszd /j. The di-
mension analysis readily shows that the true coherence
length,j2D depends on the thickness asj2D=sj4/dd1/3 in that
case. As a result the size of vortex cores depends on the
thickness of CBL films different from the conventional films.

There is also an important consequence of the infinite
sorbitald upper critical field at absolute zero in such CBLs,
where singlet bosons are formed of two fermions.16 In this
case sufficiently large magnetic field can break bound pairs
via a spin flip of one of two fermions, if triplets are unstable,
because the singlet binding energyD decreases with the field
as DsBd=D−2mBB fmB=e" / s2med is the electron Bohr
magnetong.30 A spin-polarized Fermi liquid appears atB
ùHp, whereHp=D / s2mBd is the pair-breaking field. In this
estimate we neglect the orbitalsLandaud diamagnetism of
bosons and fermions, and the Coulomb energy of the
charged-modulated vortex lattice. The latter is of the order of
efcnj2B/F0 per unit volume, wherefc,"2/ semj2d is the
characteristic electrostatic potential inside vortex cores. The
Coulomb energy is small compared with the spinsPaulid
contribution ifme/m!1, which we assume to be the case, so
diamagnetic contributions are also small. However, bound
pairs still survive up to a higher fieldH* = Hp+n/ sNmBd
.Hp due to the Pauli exclusion principle, which prevents
any further decay of pairs, if the number of fermions
<NuDsBdu remains smaller than 2n sN is the fermion density
of statesd. There is a boson-fermion mixture, ifHp,B
,H*, with the fermion density modulated in real space be-
cause of charged vortices. Normal fermionssas well as nor-
mal bosons pushed up from the condensate by temperatured
are distributed inhomogeneously across the sample with the
maximum density in the vortex cores, where their potential
energy is at minimum. The excess density of normal carriers
inside the cores screens the electric field caused by the inho-
mogeneous condensate density. If the screening length due to
normal fermions becomes smaller than the coherence length
j, one can expect a nontrivial field dependence of the size of
vortices, which disappear atB=H*.

In conclusion, we have found the triangular lattice of
single-flux-quantum charged vortices in CBL which cannot
be destroyed by any magnetic field at zero temperature. The
vortex density monotonously increases and their core size
decreases with the magnetic field up toB=` with no indica-
tion of a phase transition. The core size depends on the thick-

FIG. 3. The vortex lattice in CBL for 30 flux quantums per cross
section, sad L /j=33.67, sbd L /j=25.25, scd L /j=14.43, sdd L /j
=10.1 One can see from the scale near each figure that the order
parameter remains large outside the cores,f .1, at anyj sor at any
magnetic fieldd.

FIG. 4. The Abrikosov vortex lattice for 30 flux quantum per
cross sectionsad L /j=33.67, sbd L /j=25.25, scd L /j=14.43, and
for sdd L /j=13.87, which corresponds toB close to Hc2

=F0/ s2pj2d. The order parameter decreases whenB approaches the
conventional upper critical field.
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ness of CBL films. At finite temperaturesHc2sTd is finite.20,21

Nevertheless, unusually large charge modulations with the
scale depending on the magnetic field should persist at finite
temperatures as well. The phase transition to the spin-
polarized Fermi liquid at some magnetic field larger than the
pair-breaking field has been predicted for preformed bosonic
pairs. These results are relevant for real charged Bose liquids
in ultracold plasmas and in the superconducting cuprates,
and for superconducting quantum dots and superconductor-

insulator phase transitions described by a similar boson
physics. There is also a close analogy between the vortex
structure in CBL and the Josephson vortices. Since the nor-
mal phase is not defined belowTc, there is no “normal”
vortex core in CBL, and there is no “normal” core in the
Josephson vortex either. One can define the lower critical
field Hc1 when a first vortex penetrates into CBL22 and into
the Josephson junction,31 but the upper critical field is absent
in both cases atT=0 K.
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