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The analysis of the high-TC superconductor parent compound La2CuO4 phase diagram shows that in the
tetragonal phase of this system spontaneous magnetization at any finite temperature equals zero, whereas in the
orthorhombic phase long-range order exists up to a certain temperature greater than zero. In this paper, such
behavior is demonstrated exactly for the spin model which describes this compound, by making use of the
Bogoliubov’s inequality. We may therefore conclude that the results of Mermin and Wagner can also be
extended to some 3d-isotropic magnetic lattices. The situation for the YBa2Cu3O6-type model is also
discussed.
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I. INTRODUCTION

The exact relations, either equalities or inequalities are
rather rare, yet invaluable tools in theoretical physics, since
they represent an important test of correctness of any ap-
proximate approach. Among them, Mermin-Wagner theorem
sMWTd1 with its broad applicability has been used in statis-
tical physics for almost 40 years to test the results concern-
ing the phase transitions in various magnetic systems. Based
on the so-called Bogoliubov’s inequality, it relates the pos-
sible existence of the spontaneous magnetization to the di-
mensionality of the system. It is still the subject of detailed
analysis.2–4

During our study5 of the magnetism in the spin model
describing high-TC superconductor parent compound
La2CuO4 sFigs. 3 and 6 in Ref. 5d, we had come to some
interesting results concerning the existence of the spontane-
ous magnetization in that system. Namely, though in general
the three-dimensional systems have finite Néel temperature
fdue to the convergency of the integral in Eq.s12d in Ref. 1g,
we obtained that in the isotropic tetragonal La2CuO4 Néel
temperature vanishes. At first, we inferred it to be most likely
the consequence of the application of Tyablikov’s
decoupling6 of the system of equations for Green’s functions.
Similar conclusion was also drawn by Ref. 7. Nevertheless,
we found out later that these conclusions can be proven di-
rectly susing Bogoliubov’s inequalityd for this type of struc-
ture and we intend to present our results here, since some
previous attempts to extend MWT results to more complex
three-dimensional magnetic lattices seem to be inconclu-
sive.8 For that reason, we offer a somewhat extended deriva-
tion of our results.

II. BOGOLIUBOV’S INEQUALITY AND SPONTANEOUS
MAGNETIZATION IN La 2CuO4

The Hamiltonian describing the spin interactions in the
La2CuO4-type structures is

Ĥ = 1
2 o

p,nWa,mW b

a,b=a,b

JsnWa − mW bdSWp,nWa

sad SWp,mW b

sbd

+ J'
s1d o

p,nWa,dW'
ab

a,b=a,b; aÞb

SWp,nWa

sad SW sp,nWad+dW
'
ab

sbd

+ J'
s2d o

p,nWa,dW'
aa

a=a,b

SWp,nWa

sad SW sp,nWad+dW
'
aa

sad
− h o

p,nWa

a=a,b

Ŝp,nWa

zsade−iQW sp,nWad. s1d

Here,p denotes the plane,a ,b=a,b refer to the two sub-
lattices,nWa/b ,mW a/b specify the position of the spin within the

plane, dW'
aa/ab connects the two ferro/antiferromagnetically

coupled spins in the neighboring planes,h=gmBH, whereH

signifies the external magnetic field,QW is taken in such a way

that e−iQW ·nW =1 whennW connects sites in the same sublattice,
and −1 when it connects sites in different sublattices.

In order to be more specific, we emphasize that in the
orthorhombic phaseJ

'

s1d;J'
abÞJ

'

s2d;J'
aa, whereas the sym-

metry of the tetragonal phase imposesJ'
ab=J'

aa=J'. It should
be stressed that our model takes into account the experimen-
tal fact that the interactions between the nearest neighbors in
the adjacent planes are antiferromagneticfJ

'

sid.0, i =1,2g.
However, the ordering of spins is dictated predominantly by
the much stronger nearest neighbor interaction in the plane.
Since J'!J we take into account only the interaction be-
tween the two neighboring planes. On the other hand, we
include all the interactions among the spins within the same
plane. Some examples of those interactions are given in
Fig. 1.

The initial point of our calculation is the Bogoliubov’s
inequality9

1/2khÂ,Â†jlkffĈ,Ĥg,Ĉ†gl ù kBTukfĈ,Âglu2. s2d

Here,f¯g denotes the commutator,h¯j anticommutator,

Ĥ is the Hamiltonian of the system,k¯l signifies the average

over the canonical ensemble with the HamiltonianH, andÂ

and Ĉ are two arbitrary operators chosen such that given
ensemble averages exist. It is the careful choice of these
operators that yields MWT.

Our choice will be
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ĈskWd = ŜkW
+sad + ŜkW

+sbd; ÂskWd = Ŝ−kW
−sad − Ŝ−kW

−sbd. s3d

Introducings=kŜp,nWa

zsad l=k−Ŝp,nWb

zsbd l, we arrive at

kfĈ,Âgl = 2Ns, s4d

whereN denotes the total number of magnetic ions.fSince
relations4d is valid at anykW, thekW dependance in notation is
henceforth neglected.g

The above expressions lead to the following form of the
Bogoliubov’s inequality:

khÂ,Â†jl ù
8kBTN2s2

kffĈ,Ĥg,Ĉ†glskWd
. s5d

A rather simple calculation gives the following expression

for hÂ,Â†j:

hÂ,Â†j = o
p,nWa,mW a

a=a,b

e−ikWsnWa−mW adhŜnWa

−sad,ŜmW a

+sadj

− o
p,nWa,nWb

a,b=a,b, aÞb

e−ikWsnWa−nWbdhŜnWb

−sbd,ŜnWa

+sadj. s6d

Summing overkW, averaging and taking into account thatnWa
ÞnWb, yields the expression

o
kW

khÂ,Â†jl =
N

2 o
p,nWa,

a=a,b

khŜnWa

−sad,ŜnWa

+sadjl

= 2No
p,nWa

kSsS+ 1d − sŜnWa

zsadd2l ø 2N2SsS+ 1d.

s7d
The above equality is standard property of angular moment
operatorfEq. s3.15.bd in Ref. 10g.

We confront the greatest complexity of the calculation
during the evaluation of the average of the double commu-

tator and its majorization. A rather lengthy algebraic proce-
dure leads to

k†fĈ,Ĥg,Ĉ†
‡l = o

rWab

a,b=a,b

JsrWabdse−ikWsrWabd − 1d

3o
p,nWa

ks2Ŝp,nWa

zsad Ŝsp,nWad+rWab

zsbd + Ŝp,nWa

−sadŜsp,nWad+rWab

+sbd dl

+ J'
s1d o

dW'
ab

a,b=a,b, aÞb

seikWdW'
ab

− 1d

3o
p,nWa

ks2Ŝp,nWa

zsad Ŝsp,nWad+dW
'
ab

zsbd
+ Ŝp,nWa

−sadŜsp,nWad+dW
'
ab

+sbd dl

+ J'
s2d o

dW'
aa

a=a,b

seikWdW'
aa

− 1do
p,nWa

ks2Ŝp,nWa

zsad Ŝsp,nWad+dW
'
aa

zsad

+ Ŝp,nWa

+sadŜsp,nWad+dW
'
aa

−sad dl + 2hSo
p,nWa

ŜnWa

zsad − o
p,nWb

ŜnWb

zsbdD ,

s8d

whererWab=nWa−nWb.
We must perform the majorization of this expression very

carefully for the following reason: the partial sums of spin
correlation functions have to be majorized in different man-
ner depending on whether the spins belong to the same or
different sublattices. This is the essential difference compar-
ing to the original MW approach. Let us look at the general
expression for this partial sum

o
p,nWa

ks2Ŝp,nWa

zsad Ŝsp,nWad+dW
'
ab

+sbd
+ Ŝp,nWa

−sadŜsp,nWad+dW
'
ab

+sbd dl

=
8

N2 o
p,nWa

o
kW1,kW2

ksŜkW1

zsadŜkW2

zsbd + 1
4hŜkW1

+sad,ŜkW2

−sbdjdl
3eiskW1+kW2dsp,nWad+ikW2dW'

ab

=
4

N
o
kW

ksŜkW
zsadŜ−kW

zsbd + 1
4hŜkW

+sad,Ŝ−kW
−sbdjdle−ikWdW'

ab
. s9d

If a=b, following the reasoning of MW, we obtain

4

N
o
kW

ksŜkW
zsadŜ−kW

zsad + 1
4hŜkW

+sad,Ŝ−kW
−sadjdle−ikWdW'

aa

ø
4

N
o
kW

ksŜ−kW
zsadŜ−kW

zsad + 1
4hŜkW

+sad,Ŝ−kW
−sadjdl

=
4

N
o
p,nWa

ksŜp,nWa

zsad Ŝp,nWa

zsad + 1
4hŜp,nWa

+sad,Ŝp,nWa

−sadjdlo
kW

e−ikWsnWa−nWad

= 2o
p,nWa

ksŜp,nWa

zsad Ŝp,nWa

zsad + 1
4hŜp,nWa

+sad,Ŝp,nWa

−sadjdl . s10d

However, for aÞb, assuming that the last term ins9d is
positive, we proceed in similar manner, yet in this case the
sum overkW vanishes, leading to the essential conclusion

FIG. 1. Unit cell of the La2CuO4 in sad tetragonal andsbd ortho-
rhombic phase with exchange interactions labeledsRef. 11d. Only
Cu2+ ions are shown. Two different orientations of spins are de-
noted bys andP.
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o
p,nWa

ks2Ŝp,nWa

zsad Ŝsp,nWad+dW
'
ab

zsbd
+ Ŝp,nWa

−sadŜsp,nWad+dW
'
ab

+sbd dl ø 0. s11d

In order to demonstrate the plausibility of these results, let
us first consider the case of the simple three-dimensional
s3Dd two-sublattice antiferromagnetic, in the nearest neigh-
bor approximation. In that case,

k†fĈ,Ĥg,Ĉ†
‡l = o

lWab

Jse−ikWlWab − 1do
nWa

k2Ŝp,nWa

zsad Ŝsp,nWad+lWab

zsbd

+ Ŝp,nWa

−sadŜsp,nWad+lWab

+sbd l. s12d

It is known that this expression should be positive due to the
properties of Bogoliubov’s inner product, yet forJ.0 this is
fulfilled only if the sum of correlation functions is negative.

Let us now analyze the expressions8d. The first term con-
tains the interactions between the spins within the same
plane. The leading interaction will be the one between the
nearest neighbors, with negative partial sum of correlation
functionsfaccording tos11dg. Since the whole sum has to be
positive, it can be majorized as the sum of absolute values
sin MW mannerd.

However, for the second term, we shall not perform any
majorization, but just regroup the terms:

KJ'
s1d o

p,nWa,dW'
ab

aÞb

seikWdW'
ab

− 1ds2Ŝp,nWa

zsad Ŝsp,nWad+dW
'
ab

zsbd

+ Ŝp,nWa

−sadŜsp,nWad+dW
'
ab

+sbd dL
= 2J'

s1d o
dW'

ab

aÞb

s1 − eikWdW'
ab

dUo
p,nWa

skŜp,nWa

zsad Ŝsp,nWad+dW
'
ab

zsbd l

+ 1
4khŜsp,nWad+dW

'
ab

+sbd
,Ŝp,nWa

−sadjldU , s13d

where we have made use ofs11d. Also for the third term, we
use the fact that these neighbors belong to the same sublat-
tice, so the sum of correlation functions is positive. All these
considerations can be summarized in

k†fĈ,Ĥg,Ĉ†
‡lskWd

ø 2 o
rWab

a,b=a,b

JsrWabds1 − e−ikWrWabdo
p,nWa

uskŜp,nWa

zsad Ŝsp,nWad+rWab

zsbd l

+ 1
4khŜp,nWa

+sad,Ŝsp,nWad+rWab

−sbd jldu + 2J'
s1d o

dW'
ab

saÞbd

s1 − e−ikWdW'
ab

d

3Uo
p,nWa

skŜp,nWa

zsad Ŝsp,nWad+dW
'
ab

zsbd l + 1
4khŜp,nWa

+sad,Ŝsp,nWad+dW
'
ab

−sbd jldU
+ 2J'

s2do
dW'

aa

se−ikWdW'
aa

− 1do
p,nWa

skŜp,nWa

zsad Ŝsp,nWad+dW
'
aa

zsad l

+ 1
4khŜp,nWa

+sad,Ŝsp,nWad+dW
'
aa

−sad jld + 2Nhs. s14d

In order to perform the majorization to the sums appear-
ing in the previous expression, we use the relation

ksŜp,nWa

i ± Ŝp,mW b

i d2lù0, i =x,y,z and the fact that the two sub-

lattices are equivalentksŜp,nWa

i d2l=ksŜp,mW b

i d2l, which yields

ukŜp,nWa

i Ŝp,mW a/b

i lu ø ksŜp,nWa

i d2l. s15d

Taking into account Eq.s15d and the fact thatksŜp,nWa

i d2l
øSsS+1d, we conclude that all the partial sums of the cor-
relation functions in Eq.s14d are equal or less thanNSsS
+1d, whereby Eq.s14d becomes

k†fĈ,Ĥg,Ĉ†
‡lskWd ø 2NSsS+ 1d 3 Fo

rWab

uJsrWabdus1 − e−ikWrWabd

+ J'
s1do

dW'
ab

s1 − e−ikWdW'
ab

d + J'
s2do

dW'
aa

se−ikWdW'
aa

− 1dG + 2Nhs

= 2NSsS+ 1dFo
rWab

uJsrWabdus1 − coskWirWabd + J'
s1do

dW'
ab

s1

− coskWdW'
abd + J'

s2do
dW'

aa

scoskWdW'
aa − 1dG + 2Nhs. s16d

The next important question we confront is how to apply
the majorization to this expression. According to Mermin
and Wagner,1 one should take 1−cosxø

1
2x2, which is proper

since it is essential to look for the terms that make the inte-
gral in Eq.s12d in Ref. 1 diverge in the vicinity ofukWu<0.

In our case, we have

1 − coskWirWab ø
1
2ki

2rWab
2 ; 1 − coskWdW'

ab ø
1
2k2sdW'

abd2 s17d

within the CuO2 plane and between the two planes, respec-
tively.

After this majorization, Eq.s16d takes the form

k†fĈ,Ĥg,Ĉ†
‡lskWd ø 2NSsS+ 1d 3 HForWab

uJsrWabdurab
2 Gki

2/2

+ FJ'
s1do

dW'
ab

sd'
abd2 − J'

s2do
dW'

aa

sd'
aad2Gk2/2J

+ 2Nhs, s18d

which is valid for the orthorhombic phase of La2CuO4.

In the tetragonalphase of the system,Js1d=Js2d and udW'
abu

= udW'
aau, so Eq.s15d is reduced to

k†fĈ,Ĥg,Ĉ†
‡lskWd ø 2NSsS+ 1dFo

rWab

uJsrWabdurab
2 Gki

2/2 + 2Nhs

= NSsS+ 1dFo
rW

uJsrWdur2Gki
2 + 2Nhs

= NSsS+ 1dAki
2 + 2Nhs, s19d

where the quantityA is obviously given byA=orWuJsrWdur2.
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Summing Eq.s5d over kW and making use of the Eqs.s7d
and s19d, and, we arrive at the following expression:

2N2SsS+ 1d ù 2kBT4s2N2 1

N
o
kW

1

ASsS+ 1dki
2 + 2Nhs

. s20d

We now transform the sum into the integral and observe that
the function under the integral does not depend onkz. There-
fore, after the integration overkz, the integration overkW re-
duces to two dimensions, where we obtain

s2 ø
SsS+ 1d

4kBT H a2

s2pd2E
I BZ

d2kW
1

aki
2 + 2NhsJ−1

, s21d

wherea denotes the lattice constant within the plane anda
=ASsS+1d.

If we ssimilar to MW procedured1 integrate only over a
sphere of radiusk0 contained in the first Brillouin zone, then
an elementary integration shows that the value of the brack-
eted factor is

a2

s2pd2E
I BZ

d2kW
1

aki
2 + 2Nhs

=
a2

4pa
lnS1 +

ak0
2

2Nhs
D , s22d

and we obtain the following expression for the spontaneous
magnetization in the tetragonal phase of the system:

s2 ø
SsS+ 1d

kBT

pa

a2 HlnS1 +
ak0

2

2Nhs
DJ−1

. s23d

In the limit h→0, s2ø0, hence, we infer thats=0, i.e.,
the long-range order does not exist at any finite temperature
TÞ0.

Quite contrary, in theorthorhombic phase the second
bracketed factor in Eq.s18d differs from zero, so Eq.s19d
becomes

k†fĈ,Ĥg,Ĉ†
‡lskWd ø NSsS+ 1dfAki

2 + Bk2g + 2Nhs, s24d

whereB=J
'

s1dod
'
absd'

abd2− uJ
'

s2duod
'
aasd'

aad2. The main difference
with respect to the procedure performed for the tetragonal
phase is that the integration cannot be reduced here to the
two-dimensionals2Dd case, which leads to the convergency
of the integral analogous to the one in Eq.s21d and, hence, to
the finite spontaneous magnetization, up to a certain tem-
peraturesNéel temperatured.

III. CONCLUSION

In this paper we present results which show that the con-
clusions of Mermin and Wagner1 concerning the nonexist-
ence of the spontaneous magnetization in isotropic one-
dimensional s1Dd and 2D systems with finite range
interactions can be also extended to some 3D isotropic sys-
tems.

Namely, we analyze the two phasesstetragonal and ortho-
rhombicd of the spin model describing high-TC supercon-
ductor parent compound La2CuO4 and, taking into account
only the interaction between the two neighboring planes, we
infer that in the tetragonal phase the spontaneous magnetiza-
tion at any finite temperature equals zero, contrary to the
orthorhombic phase in which long-range order exists up to a
certain temperaturesNéel temperatured, which agrees with
the experiment. These results are obtained exactly, by mak-
ing use of Bogoliubov’s inequality.

It is important to emphasize that these results are strictly
valid only in the case of this specific spin model where only
the interaction of nearest neighbors in the adjacent planes is
taken into account. This is justified by the experimental re-
sults according to which the interaction of those first neigh-
bors is several orders of magnitudes10−5d times smaller than
the in-plane interaction of the nearest neighbors. Formally,
the interaction of the next neighbors would definitely change
the result.

In the case of YBa2Cu3O6,
11 there appears a bilayer mo-

tive, so that in the direction orthogonal to the bilayer there
occur two types of interaction: intrabilayer and interbilayer.
However, the nearest neighbor interaction occurs always be-
tween antiferromagnetically ordered spins, contrary to the
lanthanide case, where the competition between ferro- and
antiferromagnetically ordered spins leads to the two dimen-
sionality of the integrals21d. Consequently, in the case of the
YBa2Cu3O6-type compound spin model, the integration
which would follow from the equation analogous tos16d,
would possess the three-dimensional character, yielding the
long-range order up to the Néel temperature.

The analysis presented in this paper suggests that the do-
main of the applicability of Bogoliubov’s inequality in study-
ing the presence of the long-range order in various groups of
systems seems to be very wide. All the possibilities of usage
of this rigorous relation have not yet been exhausted and are
about to be examined.
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