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We consider a pair of weakly coupled long Josephson junctions and investigate the conditions under which
an external microwave field may phase-lock a single shuttling fluxon in each junction, and subsequently
collapse the mutually repulsive fluxons into a phase-locked bunched state. Based on the coupled sine-Gordon
model and the collective coordinate perturbation approach, we develop specific conditions for the physical
parameters necessary to ensure the bunching of two fluxons in different junctions. The perturbation results are
verified by direct numerical simulations.
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Coupled Josephson junctions have been extensively in-
vestigated both theoretically and experimentally in part be-
cause of the prospect of phase locking and mutual synchro-
nization. One reason for the interest in phase locking is that
an array of synchronized oscillators can dramatically en-
hance the emitted power and simultaneously retain a small
linewidth of the resulting output signal.1,2 One synchroniza-
tion mechanism is a coupling through the boundaries such
that phase locking may occur due to, e.g., reflecting
fluxons.1,3,4 Another is a spatially distributed coupling be-
tween neighboring long junctions2,5–8 through which, e.g.,
fluxon dynamics is mutually coordinated between the junc-
tions. The latter case may significantly change the basic
properties of each junction as has been shown theoretically
for short-range inductive5–7 and long-range magnetic8 cou-
pling between long Josephson junctions. These studies have
identified that a system of two coupled junctions will exhibit
mode-dependent characteristic velocities in the dispersion re-
lation, corresponding to characteristic voltages or frequen-
cies in a physical system.5,7 In a system of two coupled junc-
tions, these modes, one faster and one slower than the usual
characteristic velocity of a single junction, represent the
asymptotic velocities for the superposition field and the dif-
ference field of the two junctions, respectively. Thus, syn-
chronized modes of two coupled junctions have different
properties according to whether they are in or out of phase.
One particular example is when two coupled junctions each
are operated in the single-fluxon mode. In this case, the in-
phase mode is energetically unstable, while the out-of-phase
fluxon mode is energetically stable. Nevertheless, the in-
phase mode, once formed, has been shown to be stable be-
cause of the Cherenkov radiation arising from the incom-
mensurate characteristic velocities of the coupled system.9

Despite the existence and stability of the fast-moving
bunched fluxon mode it is not clear how to experimentally
obtain such a state, since fluxons of equal polarity in differ-
ent junctions are mutually repulsive and experiments are
usually initiated at low-fluxon velocity. In fact, while several
other types of excitations have been shown to exhibit both
branches of in-phase and out-of-phase modes,10,11 the repul-
sive fluxon mode is not easily observed.

This paper investigates how the in-phase bunched fluxon
mode, which has an energy formation barrier when the sys-
tem is initiated in an energetically favorable state, can be
obtained by experimentally controllable parameters. By ap-

plying a microwave magnetic field, which can phase lock a
shuttling fluxon,12,14 to two inductively and capacitively
coupled junctions, we demonstrate how the system can go
from the antiphase mode, with two mutually repulsive flux-
ons, to the in-phase mode, and we develop explicit expres-
sions for experimental parameters such that this may happen
in weakly coupled systems.

The normalized equations of motion for a model system
of two coupled Josephson junctions is6,7,15

fxx − ftt − sinf + D1cxx + D2ctt = aft − h s1d

cxx − ctt − sinc + D1fxx + D2ftt = act − h, s2d

where f and c are the gauge-invariant phase differences
between the quantum-mechanical wave functions of the two
superconducters defining the two junctions, respectively. See
Refs. 6 and 15 for details on parameters and normalization.
The applied boundary conditions are

fxs0d = cxs0d = fxsLd = cxsLd = G sinsVtd, s3d

modeling a system with normalized lengthL embedded in a
magnetic field with normalized amplitudeG and frequency
V.13

The corresponding normalized energy of the system is
defined by15 H=Hf+Hc+HI where

Hf =E
0

L

sft
2 + fx

2 + 1 − cosfddx, s4d

HI =E
0

L

sD1fxcx − D2ftctddx, s5d

andHc is defined similar toHf.
Since we are interested in single fluxon modes and their

interaction with an external magnetic field acting through the
junction boundaries, we will consider the solutions to the
semi-infinitesL→`d system7 describing two single fluxons
moving with asymptotic speedu and distancer =uut1−t2u,
where t1 and t2 are the boundary collision times for the
fluxons off andc, respectively:
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fs = 4sftan−11 cs

u

sinhS t − t1

Î1 + sD1

ugsu/csdD
coshS x

Î1 + sD1

gsu/csdD 2 s6d

with cs being defined similarly,sf= ±1, sc= ±1, and

cs =Î1 + sD1

1 − sD2
, gsud =

1
Î1 − u2

, s = ± 1. s7d

These functions are exact solutions to the left hand side of
Eqs.s1d ands2d for L→`, t1=t2, andG=0 whenf=sc and
s=sfsc. Inserting the above ansatz into the expression for
the total energy clearly reveals that thes=sfsc=1 solution
is energetically unstable and thats=sfsc=−1 provides a
stable state fort1=t2.

We will adopt the above ansatz for the perturbed problem
such that the solutions fors=−1 is used for all cases, where
fÞc; thus, we will generally assumesfsc=1, regardless of
s. Since we investigate if phase locking to an external mag-
netic field can forcet1=t2, we will first explore the phase
locking of the system by adapting the wave profilesfEq. s6dg
to the phase-locking analysis.14

To phase lock, a fluxon must travel a half period in the
time it takes the external ac magnetic field to completeN
quarter periods, leading to14

cs

u
sinhS pNugsu/csd

2VÎ1 + sD1
D = coshS Lgsu/csd

2Î1 + sD1
D , s8d

from which the asymptotic velocityu can be determined for
a given set of parameters. In addition to this condition, the
energy change averaged over one period of steady-state mo-
tion DH must be zero. Following the perturbation analysis
for phase locking, a single junction to an external field14 with
the ansatzs6d, we obtain

DH = hI − aE E
t0−spN/2Vd

t0+spN/2Vd

sft
2 + ct

2ddtdx− DHB, s9d

where the spatial integration is understood to be over the
system. The first term on the right hand side represents the
energy absorption from the dc bias current,I being given by

sinhS Igsu/csd
8pÎ1 + sD1

D =
cs

u
sinhS pNugsu/csd

2VÎ1 + sD1
D , s10d

the second term is the energy loss, and the third term is the
energy exchange with the external magnetic field,

DHB = 2kG sinsVt0dcosSV
dt

2
D , s11d

wheret0= 1
2st1+t2d, dt=t2−t1, and

k = 4ps1 + D1d
coshFVÎ1 + sD1

2ugsu/csd
cos−1S2

u2

cs
2 − 1DG

coshSpVÎ1 + sD1

2ugsu/csd
D . s12d

For a given asymptotic distance,r =udt, between the flux-
ons, they can be phase locked if the biash satisfies

uh − h0u ø 2G
k

I
cosSV

dt

2
D ;

1

2
Dh, s13d

h0 ;
a

I
E E

0

pN/V

sft
2 + ct

2ddtdx. s14d

To investigate if the phase-locked state will collapse into a
bunched,r =dt=0, state, we must evaluate

F =
− V

Np
SVkG sinsVt0dsinSVr

2u
D +E

0

Np/V ]HI

]r
dtD s15d

for s=−1. SinceF is an expression of the effective force
between the two fluxons, steady-state dynamics must imply
that F=0 for a given steady-state distancer. A simple trav-
eling wave solution, which is valid when the fluxons are far
from the boundaries, yields the expression16

HI
` =

8sfscg2su/csdr
sinhfgsu/csdr/Î1 + sD1g

D1 − D2u
2

1 + sD1
. s16d

Note that we are using this expression as a repulsive inter-
actionssfsc=1d regardless of the value ofs. Assuming that
the time the fluxons interact with the boundary is small com-
pared to a half period of motion, we will proceed using
eHIdt<eHI

`dt. Then,F=0 implies

kG cossVt0dsinSV
r

2u
D

=
− 8sfscpug2su/csd

V sinhS gsu/csdr
Î1 + sD1

D
311 −

gsu/csdr coshS gsu/csdr
Î1 + sD1

D
Î1 + sD1 sinhS gsu/csdr

Î1 + sD1
D2D1 − D2u

2

Î1 + sD1

. s17d

The maximum value ofG cosst0Vd, necessary to ensurer
→0, is found forr =0 sfor s=−1d.

Expanding Eq.s17d for small r, we obtain forr =0 the
critical valueGc of the ac-amplitude of the ac magnetic field
beyond which two phase-locked, mutually repulsive fluxons
will collapse into a bunched state

Gc =
16sfscpu2g3su/csd

3kV2 cossVt0d
D1 − D2u

2

1 + sD1
. s18d

This result shows that the ac-magnetic-field-induced bunch-
ing of fluxons is most effective at the center of a phase-
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locked step in the current-voltage characteristicssh<h0d
sincet0=0.

To induce bunching through phase locking, the resulting
bunched state must fulfill the phase-locking conditions for
s=1 with the parameters used to phase lock and collapse the
s=−1 fluxons. This can be investigated directly by inserting
s=1 anddt=0 into Eqs.s13d and s14d and determining the
threshold valueGb of the magnetic field. Thus, magnetic-
field-induced bunching requires thatGùGc and GùGb. We
have found that for most relevant casesGùGc results inG
ùGb; only for relatively high values of the damping param-
eter have we observed this not always to be the case.

Direct numerical simulations of Eqs.s1d and s2d have
been conducted, using a second-order central-difference ap-
proximation to the spatial derivatives with spatial discretiza-
tion dx=0.025 and temporal discretizationdt&dx. The ini-
tial condition has in all cases been an antiphase configuration
of the two fluxons. Transient evolution of.100 periods of
motion is conducted before the relative position between the
fluxons is determined. Because of the physical relevance of
the inductive couplingD1 for Josephson junctions, all simu-
lations are conducted forD2=0, and we will limit the study
further toh<h0

s=−1, since the anticipated effect is most pro-
found at the center of the phase-locked step.

Figure 1 shows the steady-state distance between two
fluxons of different junctions, both phase locked to a mag-
netic field with frequencyV=2.5/L, as a function of the
magnetic-field amplitudeG. Solid curves represent the per-
turbation resultfEq. s18d ss=−1dg, where t0<0 and u is
given by Eq.s8d. Markers are the results of numerical simu-
lations, wherer =udt is determined from numerically mea-
suring dt and evaluating the asymptotic velocity from Eq.
s8d. The figure clearly shows how the steady-state distance
between the fluxons decreases monotonically with increasing
magnetic-field amplitude until a bunched statesr =0d is ob-
tained atG=Gc, whereafter the state remains bunched. It is
clear from the figure that the agreement between the simple
perturbation treatment and the simulations results is very
good for all three system lengths. It is also noticeable that the
agreement is best for the longer junction. This is in agree-
ment with the assumptions made in the analytical treatment.

One assumption is that the ansatzfEq. s6dg represent a half
period of motion during a reflection at a boundary. Another is
that the mutual repulsion between the fluxons due to the
inductive coupling can be well described without the bound-
ary effects. Both these assumptions are poor for a very short
system. Nevertheless, the figure shows very convincing
agreement between analytical and numerical results.

The value of magnetic-field amplitudeGc, for which the
mutual fluxon distancer becomes zero, was studied in detail
and the results shown in Fig. 2. Here, the two upper continu-
ous curves show the critical-field amplitudeGc as given by
Eq. s18d, for two values of applied frequency, as a function
of the inductive-coupling constantD1. The two lower con-
tinuous curves represent the critical valueGb necessary for
sustaining phase locking of the bunched statess=1d. All
results are obtained fora=0.1, and the three plots represent
three different system lengths,L=2.5,5,10. Markers indicate
the results of numerical simulations. As in Fig. 1, we find
very consistent and good agreement between the analytical
results of the perturbation method and the direct numerical
simulations over a wide range of parameters. And again, we
find that the shorter systems are generally showing less good
agreement than the longer systems. These consistent discrep-
ancies observed in Figs. 2,L=2.5 andL=5 sslow modesd,
are most likely due to a poor determination ofh0

s=−1, result-
ing in a factor ofscosVt0d−1 in Gc, which is consistent with
the observed discrepancies in Figs. 2sad and 2sbd. We note
that in spite of these discrepancies, the agreement is consis-
tently good and the perturbation results have predictive ca-
pabilities.

We have determined a method for manipulating a system
of coupled-overlap and open-ended Josephson junctions,
each with a single shuttling fluxon such that an initial state of
repulsive, out-of-phase fluxons will collapse into the ener-
getically unfavorable bunched state. The results show that
applying an external ac field, to which the fluxon motions
may phase lock, acts as an effective restoring force between
the fluxons, thereby countering the mutual repulsion from the
coupling. The method has been explained analytically
through a standard perturbation method, and the results veri-
fied through direct numerical simulations. We point out that
although the results have demonstrated a method to bunch
fluxons in inductively and capacitively coupled systems, they
also show that this method is relevant only to weakly
coupled systems, since the necessary magnetic-field ampli-
tudeGc for bunching grows super-linearly with the coupling
constant. It is clear from the results that shorter systems will
be more easily manipulated by this method than longer sys-
tems because the relative contact time between the fluxons
and the microwave field increases with decreasingL.

We will finally comment on the experimental task of ob-
taining a bunched state, after the microwave signal has been
turned off. Since the repulsive force is increasing withu, the
fluxon velocity must be kept relatively small to also keepG
small. Unfortunately, without microwaves, the bunched state
is only stable abovec−1,

9 so all the numerical solutions
shown may decay to the nonbunched state when the micro-
waves are turned off. Thus, to ensure a stable bunched state

FIG. 1. Distance,r, between two phase-locked fluxons as a
function of magnetic-field amplitudeG. Continuous curves are ob-
tained from Eq.s17d and markers represent the corresponding re-
sults of numerical simulations. Parameters area=0.1, h<h0

s=−1,
V=2.5/L, D1=0.015, andD2=0.
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after microwaves are turned off one should increase the fre-
quency of the microwaves, while keeping the system in the
locking range given by Eqs.s13d and s14d with s=1 until u
is abovec−1. Then, the bunched mode will be stable without
microwaves.
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FIG. 2. Critical magnetic-field amplitudeGc for which phase-locked, mutually repulsive fluxons are forced to bunch. Continuous curves
represent the perturbation resultfEq. s18dg for two different applied microwave frequenciessupper curvesd, and two lower curves represent
the magnetic-field amplitudeGb, necessary for phase locking the resulting buncheds=1 state. Markers represent the results of numerical
simulations. Parameters areD2=0, a=0.1, andh<h0

s=−1.
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