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Anisotropic disordered systems are studied in this work within the random barrier model. In such systems
the transition probabilities in different directions have different probability density functions. The frequency-
dependent conductivity at low temperatures is obtained using an effective medium approximation. It is shown
that the isotropic universal ac-conduction law,ũ=s̃ ln s̃, is recovered if properly scaled conductivityss̃d and
frequencysũd variables are used.
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I. INTRODUCTION

In the past years, ac-conduction in isotropic disordered
systems has been extensively studied.1–11 Several experi-
ments support the existence of a universal function govern-
ing the conductivity-frequency relation in a variety of mate-
rials, in either electronic5–7 or ionic5,6,8–11 systems. This
universality is also supported by several theoretical studies.6

One of the simplest models for studying conduction in dis-
ordered systems is the random barrier model, in which the
energy barriers joining sites of a given network are selected
at random from a given probability density functionsPDFd.
For this model the universality of ac-conduction at low tem-
peratures is well established. Dyre and co-workers studied
the isotropic random barrier model within the effective me-
dium approximationsEMAd.4–6,12They found that a univer-
sal function is arrived at in a low-temperature-small-
frequency expansion, which corresponds to the solution of
the equation

ũ = s̃ ln s̃, s1d

wheres̃=ssud /ss0d andũ=ub̃ ln b̃ /ss0d are scaled conduc-
tivity and frequency variables, respectivelyswith b̃~b
=1/kBT, see belowd. This equation is universal in the sense
that it does not depend on the characteristic disorder of the
system. The same equation had been previously arrived at
with other approximations, e.g., the macroscopic1–3 and hop-
ping models.13 In addition, other approaches such as the per-
colation path approximation, the diffusion cluster approxi-
mation and the velocity autocorrelation method, predict
universal functions which present a better data collapse.5–7

However, EMA offers a simple systematic tool to study ac-
conductivity of disordered systems analytically which, in ad-
dition, gives the expected universal behavior.

The conductivity properties of anisotropic disordered sys-
tems have also attracted attention in the last years.14–24Two
relevant examples of anisotropic disordered systems are the
superconductor cuprates and porous reservoir rocks. In the
first case, conductivity properties are strongly anisotropic,
with a remarkable difference between the conductivity in the
ab plane and along thec axis. In the second example, a
relation between permeability and electrical conductivity in
isotropic fluid-saturated porous media is well estab-

lished,25–27 and a universal behavior for the dynamical per-
meability, analogous to Eq.s1d, was observed numerical and
experimentally.28,29 Since anisotropy is a key characteristic
of porous media and fractured rock,30 the behavior of aniso-
tropic frequency-dependent conductivity in disordered media
and its relation with the permeability tensor27 is of key inter-
est.

In view of these and others examples of anisotropic dis-
ordered media, is necessary to find a relation between aniso-
tropic conductivity and frequency. The approach used here is
to use the ideas and concepts used in isotropic problems and
apply them to anisotropic systems. In this sense, the main
purpose of this work is to extend and generalize the universal
law, Eq. s1d, to anisotropic systems. An anisotropic random
barrier model in two dimensions is studied within an effec-
tive medium theory. The analytical procedure used by Dyre4

is closely followed in order to obtain a consistent low-
temperature-small-frequency expansion for the anisotropic
ac-conductivity. Here, from the analysis of the low tempera-
ture limit, the isotropic universal function is recovered for
properly scaled variables relating the conductivity in both
directions. The paper is organized as follows: In Sec. II the
anisotropic random barrier model is described and previous
zero-frequency results are summarized. Section III briefly
presents the main features of the anisotropic EMA and in
Sec. IV the low-temperature-small-frequency expansion is
performed. Finally, a summary is presented in Sec. V.

II. BACKGROUND

In the anisotropic random barrier model considered here,
equal energy minima form a square lattice with its four
nearest-neighbors separated by energy barriers, whose
heights are randomly selected from anisotropic PDFs. Let 1
and 2 be the main directions of the square lattice, and the
PDFs in each directionr1sE1d and r2sE2d. Once the energy
barrier Eab between two nearest-neighbor sitesa and b is
selected from the corresponding PDF, the transition rate be-
tween sitesa andb is given byvab=v0exps−bEabd, where
v0 is the constant jump rate andb=1/kBT is the inverse
temperature, withkB being the Boltzmann constant. Since
Eab=Eba, the forwardsa→bd and backwardsb→ad jumps
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have the same transition rate. The energy PDFs,r1sE1d and
r2sE2d, are related to the transition rate PDFs,n1sv1d and
n2sv2d, through the corresponding transformation of random
variables.

The zero-frequency conductivity of the anisotropic ran-
dom barrier model in two dimensions was recently studied
by using an anisotropic generalization of the EMA.24 The
low temperature conductivity in each direction was shown to
follow Arrhenius laws with the same activation energyEc,
which is determined by the anisotropic percolation properties
of the lattice. For the square lattice studied, the bond perco-
lation threshold is the critical surfacep1+p2−1=0,31 where
pi represents the probability of having a conducting link be-
tween two nearest-neighbor sites in thei direction. This im-
plies an activation energy given by24

E
0

Ec

r1sE1ddE1 +E
0

Ec

r2sE2ddE2 = 1. s2d

The zero-frequency conductivities,sisu=0d, in each direc-
tion are thus given by

s1s0d = g12v0a
2e−bEc, s2s0d = g21v0a

2e−bEc, s3d

wherea is the lattice constant and the prefactor

g12 = g21
−1 =

E
0

Ec

r1sE1ddE1

E
0

Ec

r2sE2ddE2

. s4d

Note that, at low temperatures, the anisotropic character of
the system reflects only in the prefactorsg12 andg21 of the
zero-frequency conductivity.

III. ANISOTROPIC EMA

The EMA consists in averaging the effects of disorder by
defining an effective medium with effective transition rates,
which depend on the Laplace variableu. These effective
transition rates are self-consistently determined by the re-
quirement that the difference between the propagator of the
impurity and homogeneous problems should average to
zero.32–40 In anisotropic problems, two effective transition
rates, one for each direction, are introduced. The effective
frequency-dependent conductivities of the disordered sys-
tem, s1sud ands2sud, are proportional to the effective tran-
sition rates.14,17A rationalizedunit system is used where all
the prefactors are absorbed in the definition of effective con-
ductivities, so that they are equivalent to effective transition
rates.4 These effective conductivities are then determined by
two self-consistent conditions,14,17

K s1 − v1

1 + 2ss1 − v1dfG1sud − G0sudgLn1sv1d
= 0,

K s2 − v2

1 + 2ss2 − v2dfG2sud − G0sudgLn2sv2d
= 0. s5d

Here, G1s2d and G0 represent the nonperturbed anisotropic
Greens functions related to the probabilities of moving from

the origin to one of its nearest neighbors in the 1s2d direction
and the return probability, respectively. The impure bond
connects two nearest neighbor sites of the lattice whose tran-
sition rates are equal tov1 if the impure bond lies in the 1
direction andv2 if the impure bond is in the other direction.
The angular brackets denote averaging over the correspond-
ing transition rate PDFs.

The real and imaginary parts of the frequency-dependent
conductivity are obtained considering that the Laplace fre-
quencyu is actually an imaginary frequency related to the
real frequency byu= is.4,38 However, the Laplace frequency
picture has proved to be a useful simplification for studying
frequency-dependent conductivity.4,6

IV. UNIVERSAL FREQUENCY-DEPENDENT
CONDUCTIVITY

In this section a low-temperature-small-frequency
expansion4 of the set of Eqs.s5d is performed. In the follow-
ing, the subscriptsi , j =1,2 areused to represent the two
different directions of the lattice, noting that one of the self-
consistent conditions in Eqs.s5d is obtained interchanging
the subscriptsi and j in the other equation. To the lowest
order inu, the difference between the Greens functions in the
i direction appearing in the denominator of Eqs.s5d may be
written as17

sG0 − Gidu→0 =
f ij

2si
+

ugij

2si
, s6d

with

f ij =
2

p
arctanÎsi

s j
, s7d

and

gij =
1

4pÎsis j

ln
64sis j

ussi + s jd
. s8d

Using this expansion for the Greens functions nearu=0, the
frequency-dependent self-consistent condition Eqs.s5d read

K vi − si

vi + fsf ij − ugijd−1 − 1gsi
L

nisvid
= 0. s9d

In order to emphasize the energy dependence of the transi-
tion rates, one may average over the energy distributions and
write, rearranging terms in the previous equation,

K 1

vi + fsf ij − ugijd−1 − 1gsi
L

risEid
=

f ij − ugij

si
. s10d

Two regimes may be identified for each direction:visEid
! fsf ij −ugijd−1−1gsi, andvisEid@ fsf ij −ugijd−1−1gsi.

24 The
energy separating these two cases,Ei

gsud, is defined by

vifEi
gsudg = fsf ij − ugijd−1 − 1gsi , s11d

which yields
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Ei
gsud = −

1

b
lnHfsf ij − ugijd−1 − 1g

si

v0
J . s12d

Using these different ranges of energy, separated byEi
g, and

the fact that transition rates and energies are related through
an Arrhenius law, the integral of the energy average in Eq.
s10d may be approximated, and the self-consistent condition,
Eq. s10d, then reads

E
Ei

gsud

` risEid
fsf ij − ugijd−1 − 1gsi

dEi =
f ij − ugij

si
, s13d

or, equivalently,

E
Ei

gsud

`

risEiddEi = 1 − f ij + ugij . s14d

In the zero-frequency case,Ei
g becomes the same for the

two directions,24 and is given by Eq.s2d with Ei
gsu=0d;Ec.

Noting that foru=0, f ij is given by

f ij =E
0

Ec

risEiddEi s15d

and inserting Eq.s15d into Eq. s14d one obtains

E
Ei

gsud

Ec

risEiddEi = ugij , s16d

which may be approximated by

E
Ei

gsud

Ec

risEiddEi . qifEi
gs0d − Ei

gsudg, s17d

with qi =rifEi
gs0dg=rifEcg. EvaluatingEi

gsud from Eq. s12d
and combining Eq.s16d with Eq. s17d one obtains, to the
lowest order inu,

ugij =
qi

b
ln

fsf ij − ugijd−1 − 1gsi

sf ij
−1 − 1dsis0d

.
qi

b
ln

si

sis0d
, s18d

wheresis0d is the zero-frequency conductivity in thei direc-
tion, and is given by Eq.s3d. Then, using the definition ofgij ,
Eq. s8d, the previous equation my be written as

ln
si

sis0d
= bĩ

u
Îsis j

ln
64sis j

ussi + s jd
, s19d

with bĩ =b / s4pqid. This last equation gives the general
frequency-dependent conductivity for all temperatures and in
the small frequency limit.

In order to obtain the low temperature limit for the
frequency-dependent conductivity, scaled conductivity and
frequency variables for each direction are introduced,
namely,

sĩ =
si

Îsis0ds js0d
, s20d

and

uĩ =
bĩ ln bĩ

Îsis0ds js0d
u. s21d

With this scaled variables Eq.s19d may be written as

ln sĩ +
1

2
ln

s js0d
sis0d

=
uĩ

Îsĩ s j̃ ln bĩ

Fln
64sĩ s j̃

uĩssĩ + s j̃ d
+ ln bĩ + lnsln bĩ dG .

s22d

By taking the low temperature limitb→` for fixed uĩ and

sĩ, the following set of coupled equations is arrived at for the
scaled conductivities as functions of the scaled frequencies

u1̃ = Îs1̃ s2̃sln s1̃ + ln g21d,

u2̃ = Îs2̃ s1̃sln s2̃ + ln g12d, s23d

where Eqs.s3d and s4d were used.
This set of equations represent the complex relation be-

tween the conductivity in each direction. Although they may
be regarded as universal equations for the scaled conductivi-
ties, the use of two different frequencies, one for each direc-
tion, is not suitable for a frequency-dependent description. In
addition, the terms containingg12 still depend on the specific
PDFs used. Still, Eqs.s23d are useful to obtain the
frequency-dependent conductivities: given the PDFs for each
direction,Ec andg12 are calculated through Eqs.s2d ands4d,
then through the definitions ofuĩ andbĩ the scaled conduc-
tivities in each direction may be calculated numerically by
solving the set of coupled equationss23d.

As the analytical derivation of Eqs.s23d closely follows
the previous derivation of Eq.s1d from EMA,4 the isotropic
result is obviously recovered by setting the same PDF,rsEd,
for the two directions, which impliess1̃=s2̃=s̃=ssud /ss0d
and u1̃=u2̃= ũ=ub̃ ln b̃ /ss0d, with b̃=b / f4prsEcdg. How-

ever, by adding the two Eqs.s23d and settingũ=s u1̃+u2̃d /2

and s̃=Îs1̃ s2̃, expressions1d is obtained again. This is a
nontrivial result and establish that although the anisotropic
conductivities are coupled through the complex relation
given by Eqs.s23d, the frequency dependence of the geomet-
ric mean conductivity,s̃, in the anisotropic problem is
simple given by Eq.s1d. This result given by the EMA
should be tested by more complex theories.

V. SUMMARY

In summary, by means of the frequency-dependent EMA,
conductivity in an anisotropic random barrier model has
been studied. It was shown that in a small-frequency expan-
sion, the low temperature limit is characterized by an univer-
sal law, i.e., independent of the anisotropic PDFs, relating
scaled conductivity and frequency variables. This scaled
quantities are obtained by a proper combination of the con-
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ductivities and energy properties in each direction. Although
the universal law is obtained for a two-dimensional system,
it is expected to hold in three dimensions for appropriately
scaled variables. Direct comparison with experiments on the
conductivity of superconductor cuprates is not possible at
present because the available data corresponds, to the best of
the author’s knowledge, to conductivity measurements in
only one of the anisotropic directions of the system. Unfor-
tunately, for a comparison with the scaling function, the con-
ductivity in both directions should be available. The results
presented can be of relevance for a complete theory of the
anisotropic permeability of porous reservoir rocks. Given the
relation between the anisotropic conductivity and permeabil-
ity tensors,27 the dynamical permeability in each relevant
direction can be obtained through Eqs.s23d. Finally, is worth

noting that a perfect agreement between the EMA universal
law and experimental or simulation data should not be ex-
pected, as this is the case even for isotropic problems.5,6

Other theoretical and simulation methods were shown to pre-
dict a better universal law, which collapses experimental data
from various disordered systems.5,6 However, EMA still pro-
vides a simple analytical tool for a first exploration of the
properties of ac-conduction. In the present work, a first in-
sight on the emergence of a universal law for anisotropic
disorder systems has been presented.
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