PHYSICAL REVIEW B 71, 132201(2005

Universality of ac conduction in anisotropic disordered systems:
An effective-medium-approximation study
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Anisotropic disordered systems are studied in this work within the random barrier model. In such systems
the transition probabilities in different directions have different probability density functions. The frequency-
dependent conductivity at low temperatures is obtained using an effective medium approximation. It is shown
that the isotropic universal ac-conduction law o In @, is recovered if properly scaled conductivify) and
frequency(ll) variables are used.
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I. INTRODUCTION lished?>-2" and a universal behavior for the dynamical per-

In the past years, ac-conduction in isotropic disordered"e2PIty, anal%gzgusf to Eq1), was observed numerical and
experimentally’®2° Since anisotropy is a key characteristic

systems has been extensively studidd.Several experi- f di d fractured rodkthe behavior of ani
ments support the existence of a universal function govern(-) porous media and Iractured ro € behavior of aniso-

ing the conductivity-frequency relation in a variety of mate- tropic frequgncy—dependent cond_u_ctlwty |n_d|sordergd media
rials, in either electronfc? or ionic58-1 systems. This and its relation with the permeability tendbis of key inter-

universality is also supported by several theoretical stLFdies.eSt'

One of the simplest models for studying conduction in dis- In view of these and others examples of anisotropic dis-

ordered systems is the random barrier model, in which th rdered media, is necessary to find a relation between aniso-
energy barriers joining sites of a given network are selecte?OIOIC conductivity and frequency. The approach used here is

at random from a given probability density functié®DP. 0 use the ideas a_nd concepts used in iso_tropic problems a_nd
For this model the universality of ac-conduction at low tem_apply them to anisotropic systems. In this sense, the main

peratures is well established. Dyre and co-workers studie urpose of this work is to extend and generalize the universal

the isotropic random barrier model within the effective me- aw,_Eq. (@), to anisotropic systems. An anisotropic random
barrier model in two dimensions is studied within an effec-

dium approximationEMA).*-612They found that a univer- . . .
sal function is arrived at in a low-temperature-small- tive lmed||unf1 }lheoné. The adr1aly:|cal t;))tro_cedure usgtt.'i b¥ Ili‘)yre
frequency expansion, which corresponds to the solution o closely followed in order to obtain a consistent low-
: emperature-small-frequency expansion for the anisotropic
the equation o .
ac-conductivity. Here, from the analysis of the low tempera-
u=olno, (1) ture limit, the isotropic universal function is recovered for
_ o~ o~ properly scaled variables relating the conductivity in both
whereo=a(u)/a(0) andu=uB In B/a(0) are scaled conduc- directions. The paper is organized as follows: In Sec. Il the
tivity and frequency variables, respectivelyith BB  anisotropic random barrier model is described and previous
=1/kgT, see below This equation is universal in the sense zero-frequency results are summarized. Section Il briefly
that it does not depend on the characteristic disorder of thgresents the main features of the anisotropic EMA and in
system. The same equation had been previously arrived &ec. IV the low-temperature-small-frequency expansion is

with other approximations, e.g., the macroscépiand hop-  performed. Finally, a summary is presented in Sec. V.
ping modelst® In addition, other approaches such as the per-

colation path approximation, the diffusion cluster approxi-

mation and the velocity autocorrelation method, predict Il. BACKGROUND

universal functions which present a better data coll@pse.

However, EMA offers a simple systematic tool to study ac- In the anisotropic random barrier model considered here,

conductivity of disordered systems analytically which, in ad-equal energy minima form a square lattice with its four

dition, gives the expected universal behavior. nearest-neighbors separated by energy barriers, whose
The conductivity properties of anisotropic disordered sysheights are randomly selected from anisotropic PDFs. Let 1

tems have also attracted attention in the last y¥aféTwo  and 2 be the main directions of the square lattice, and the

relevant examples of anisotropic disordered systems are tHeDFs in each directiop,(E;) and p,(E,). Once the energy

superconductor cuprates and porous reservoir rocks. In tHearrier E,; between two nearest-neighbor sitesand g is

first case, conductivity properties are strongly anisotropicselected from the corresponding PDF, the transition rate be-

with a remarkable difference between the conductivity in thetween sitesy and 8 is given by, z=weeXp(—BE,z), where

ab plane and along the axis. In the second example, a wq is the constant jump rate ang=1/kgT is the inverse

relation between permeability and electrical conductivity intemperature, withkg being the Boltzmann constant. Since

isotropic  fluid-saturated porous media is well estab-E,z=Eg,, the forward(a— B) and backwards— a) jumps
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have the same transition rate. The energy PIE,) and  the origin to one of its nearest neighbors in th2) Hirection
po(E,), are related to the transition rate PDRs(w;) and and the return probability, respectively. The impure bond
vo(w,), through the corresponding transformation of randomconnects two nearest neighbor sites of the lattice whose tran-
variables. sition rates are equal te, if the impure bond lies in the 1
The zero-frequency conductivity of the anisotropic ran-direction andw; if the impure bond is in the other direction.
dom barrier model in two dimensions was recently studiedlhe angular brackets denote averaging over the correspond-
by using an anisotropic generalization of the ENfAThe  ing transition rate PDFs.
low temperature conductivity in each direction was shown to  The real and imaginary parts of the frequency-dependent
follow Arrhenius laws with the same activation energy, ~ conductivity are obtained considering that the Laplace fre-
which is determined by the anisotropic percolation propertie§iuencyu is actually an imaginary frequency related to the
of the lattice. For the square lattice studied, the bond percoeal frequency byi=is.*3# However, the Laplace frequency
lation threshold is the critical surfaqg+p,—1=03! where picture has proved to be a useful simplification for studying
p; represents the probability of having a conducting link be-frequency-dependent conductivft§.
tween two nearest-neighbor sites in théirection. This im-

plies an activation energy given Hy IV. UNIVERSAL FREQUENCY-DEPENDENT
E, E, CONDUCTIVITY
f pi(EpdE; + f p2(Ex)dE, = 1. 2 . .
0 0 In this section a low-temperature-small-frequency

o ) ) expansiofi of the set of Eqs(5) is performed. In the follow-
The zero-frequency conductivities;(u=0), in each direc- ing, the subscripts,j=1,2 areused to represent the two

tion are thus given by different directions of the lattice, noting that one of the self-
01(0) = y1o0p8%€ PEe,  05(0) = vy wpa’e PEe, (3 consistent _conditions_ in Eq$5) is obtair_led interchanging
the subscripts andj in the other equation. To the lowest

wherea is the lattice constant and the prefactor order inu, the difference between the Greens functions in the
Ec i direction appearing in the denominator of E¢. may be
f p1(E1)dE; written ag’
0

-1
Y12= Y217 g : (4) fi  ug
c 0_ i - 4, =9

fo p2(Ex)dE, (G"-G)yo= 20 + 20, (6)

Note that, at low temperatures, the anisotropic character ayith
the system reflects only in the prefactors and y,, of the 5 o
fij=— arctan\/:,
(o

zero-frequency conductivity. (7)
Ill. ANISOTROPIC EMA :
The EMA consists in averaging the effects of disorder byand
defining an effective medium with effective transition rates, 1 6400,
which depend on the Laplace varialble These effective Gij = : (8)

transition rates are self-consistently determined by the re- 4m\ 00 u(o; + 0y)
quirement that the difference between the propagator of th?)sing this expansion for the Greens functions nea6, the

|mpu3r2|t3£0and homogeneous problems should average igeqency-dependent self-consistent condition Egjsread
zero><~*° In anisotropic problems, two effective transition

rates, one for each direction, are introduced. The effective < w; = 0 >
=0
wj+ [(flj v;(w;)

9)

frequency-dependent conductivities of the disordered sys-
tem, o4(u) and o,(u), are proportional to the effective tran-

sition rates'*!’ A rationalizedunit system is used where all |, 5rder to emphasize the energy dependence of the transi-

the prefactors are absorbed in the definition of effective CONgjop rates, one may average over the energy distributions and
ductivities, so that they are equivalent to effective transition i;q rearranging terms in the previous equation

rates? These effective conductivities are then determined by

—ug;) - 1o,

two self-consistent conditiorg;’ < 1 > fi —ug; 1o
< g1~ > 0 o +[(f; —ug)™ - 1o pi(Ei)_ o
_ 1 — =0 =0,
1+ 201~ 0)[GHW) =~ CHW]/ 1y Two regimes may be identified for each directian(E;)
<[(f;—ug)) - 1]o;, and w;(E) >[(f;—ug;) '~ 1]o;.2* The
< Oy~ ﬁ;z . > =0. (5) energy separating these two cade¥y), is defined by
1+ 20, G(u)-G"(u
(0'2 (1)2)[ ( ) ( )] vy(wy) wI[EIg(u)] — [(f” _ ugij)_l_ 1]0_“ (11)

Here, G2 and G° represent the nonperturbed anisotropic
Greens functions related to the probabilities of moving fromwhich yields
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1 ;i —_— ~ ~
Elw=-— In{[(fij - ug) - 1]_}- (12) u = —,—'8' InA u. (21)
B @o Vi(0);(0)

Using these different ranges of energy, separatehyand  \wjith this scaled variables Eq19) may be written as
the fact that transition rates and energies are related through

an Arrhenius law, the integral of the energy average in Eq. o I -(O
(10) may be approximated, and the self-consistent condition, no nt o oi(0)
Eq. (10), then reads .
N (E) = N800, In B +In(n B,)
Pi fij —ug; —_— = [ i
d , 13 (o i
f [(flj Ugu 1]0'| B= O (13 TV 0i Oj In Bi u'(U' + 9] )
(22
or, equivalently, —_
By taking the low temperature limjg— « for fixed u, and
J pi(E)dE =1 —f; +ug; (14) oy, the following set of coupled equations is arrived at for the
Bu L scaled conductivities as functions of the scaled frequencies
In the zero-frequency caskE} becomes the same for the U=V, oo(In oy + 10 ),
two directions?* and is given by Eq(2) with E}(u=0)=E,
Noting that foru=0, f;; is given by —_ —
! ; Uy =\ 05 1IN 0+ 1N 1), (23)
fi :f pi(E)dE, (15)  where Eqgs(3) and(4) were used.
0 This set of equations represent the complex relation be-

tween the conductivity in each direction. Although they may

and inserting Eq(19) into Eq. (14) one obtains be regarded as universal equations for the scaled conductivi-

E. ties, the use of two different frequencies, one for each direc-
f pi(E)dE = ug;, (16) tion, is not suitable for a frequency-dependent description. In
=) addition, the terms containing;, still depend on the specific

PDFs used. Still, Egs.(23) are useful to obtain the
frequency-dependent conductivities: given the PDFs for each
Ec direction,E. andy,, are calculated through Eg&) and(4),
J pi(E)dE = g[EP(0) - EXu)], (17) then through the definitions Ef, andﬁ the scaled conduc-
tivities in each direction may be calculated numerically by
with g;=p[EY(0)]=pi[E.]. EvaluatingE®(u) from Eq. (12)  solving the set of coupled equatio(®3).
and combining Eq(16) with Eq. (17) one obtains, to the As the analytical derivation of Eq$23) closely follows

which may be approximated by

El(w)

lowest order inu, the previous derivation of Eq1) from EMA,* the isotropic
result is obviously recovered by setting the same BDE),
ug; = 9 n [(F; 1U9u ~ 1oy _ 9\, i (1)  for the two directions, which implies,=o,=5=0(u)/o(0)

B (fij 1)0i(0) B ai0) and u;=u,=T=ugIn B/o(0), with ,~8=,8/[477p(E521. How-
whereo;(0) is the zero-frequency conductivity in thelirec-  ever, by adding the two Eq$23) and settingi=(u;+u,)/2
tion, and is given by Eq(3). Then, using the definition &;,  and 5=\'o, 0, expression1) is obtained again. This is a
Eq. (8), the previous equation my be written as nontrivial result and establish that although the anisotropic

640 conductivities are coupled through the complex relation
gi :"'i u_ i9] , (19) given by Eqs(23), the frequency dependence of the geomet-
0i(0) " Noyo;  Uloitoy) ric mean conductivity,o, in the anisotropic problem is
simple given by Eq.(1). This result given by the EMA

with B,=p/(4mq). This last equation gives the general should be tested by more complex theories.
frequency-dependent conductivity for all temperatures and in
the small frequency limit.

In order to obtain the low temperature limit for the V. SUMMARY
frequency-dependent conductivity, scaled conductivity and

frequency variables for each direction are introduced, Insummary, by means of the frequency-dependent EMA,
namely, conductivity in an anisotropic random barrier model has

been studied. It was shown that in a small-frequency expan-

In

—~ O; 20 sion, the low temperature limit is characterized by an univer-
o= 0)o:(0) (20) sal law, i.e., independent of the anisotropic PDFs, relating
\‘0-|( )U]( ) L. . .
scaled conductivity and frequency variables. This scaled
and guantities are obtained by a proper combination of the con-
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ductivities and energy properties in each direction. Althoughoting that a perfect agreement between the EMA universal
the universal law is obtained for a two-dimensional systemlaw and experimental or simulation data should not be ex-
it is expected to hold in three dimensions for appropriatelypected, as this is the case even for isotropic probffns.
scaled variables. Direct comparison with experiments on th©ther theoretical and simulation methods were shown to pre-
conductivity of superconductor cuprates is not possible atlict a better universal law, which collapses experimental data
present because the available data corresponds, to the bestflmim various disordered systerh& However, EMA still pro-

the author’s knowledge, to conductivity measurements irvides a simple analytical tool for a first exploration of the
only one of the anisotropic directions of the system. Unfor-properties of ac-conduction. In the present work, a first in-
tunately, for a comparison with the scaling function, the con-sight on the emergence of a universal law for anisotropic
ductivity in both directions should be available. The resultsdisorder systems has been presented.

presented can be of relevance for a complete theory of the
anisotropic permeability of porous reservoir rocks. Given the
relation between the anisotropic conductivity and permeabil-
ity tensorsy’ the dynamical permeability in each relevant  This work was financially supported by CONICET, Ar-
direction can be obtained through E¢@3). Finally, is worth  gentina.
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