
Physical mechanism for the mechanical reinforcement in nanotube-polymer composite materials

A. Wall, J. N. Coleman, and M. S. Ferreira
Physics Department, Trinity College Dublin, Dublin 2, Ireland

sReceived 16 August 2004; revised manuscript received 13 October 2004; published 25 March 2005d

The significant increase in the Young’s modulus of nanotube-polymer composites is often correlated with the
formation of a crystalline layer of polymers surrounding the nanotubes. Although the improved stress transfer
between the stiffer nanotube and the softer polymer matrix has been attributed to the presence of this well-
ordered polymeric layer, the actual mechanism for this stress transfer is still unclear. To clarify this matter, we
model the polymer-nanotube composite by harmonic chains interacting with a rigid periodic potential, an
extension of the so-called Frenkel-Kontorova model. We identify the origin of the reinforcement with the
occurrence of a templating transition, in which polymers are constrained by the periodic potential of the
underlying nanotube. The model is potentially capable of predicting the ideal combination of polymers and
nanotube diameters to maximally enhance the mechanical properties of composite structures.
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More than a decade after the discovery of carbon nano-
tubes, these nanoscale cylindrical structures are still the sub-
ject of intensive scientific research due to their superlative
physical properties. Mechanically very strong and good con-
ductors of thermal and electronic currents, it is not surprising
that nanotubes are excellent fillers in polymeric composite
materials and can substantially improve their mechanical,
electronic, and thermal responses.1–7 Concerning the me-
chanical properties, nanotube/polymer composites provide
order-of-magnitude increases in strength and stiffness of thin
films when compared to typical carbon-fiber/polymer com-
posites. In the form of fibers, these composite materials dis-
play strength and toughness superior to steel and Kevlar,
respectively.1 The fibers are easy to weave and sew and, due
to their high electronic capacitance, have promising
electronic-textile applications, the most remarkable being the
possibility of manufacturing mechanically resistant fabrics
with energy-storing capability.

Stress-strain measurements in nanotube-polymer compos-
ite films find that their Young’s modulus can be increased by
a factor 4 when less than 1% of nanotubes are added to the
polymer matrix.8 The appearance of large values of rein-
forcement with such a minute amount of nanotubes is di-
rectly correlated with the formation of a crystalline layer of
polymers surrounding the immediate vicinity of the nanotube
surface. Further evidence for this correlation is given by the
fact that similar nanotubes in the presence of noncrystalline
polymers display significantly lower levels of
reinforcement.2,3,8 Concerning the morphology of this crys-
talline layer, experimental observations at low coverage
show that polymers tend to coil at well-defined angles to the
nanotube axis. This is consistent with molecular dynamics
simulations9 and agrees with the mathematical concept that
strings constrained within a cylindrical geometry are opti-
mally packed in a helical orientation.10 In fact, a recent mac-
roscopic model describing the basic mechanisms for this
type of crystallization points to a range of preferential coiling
angles that polymers may follow when coating the walls of a
nanotube.11

Despite the experimental evidence, there is no convincing
theoretical support for the correlation between crystallinity

and mechanical reinforcement in polymer-nanotube compos-
ites. Based on purely macroscopic arguments, the physical
origin of the mechanical reinforcement is commonly attrib-
uted to the improved load transfer that results from the for-
mation of a crystalline coating surrounding the nanotubes.
This assumes that the rigidity of the embedded carbon nano-
tubes can only be probed in the composite structure when the
stress is efficiently transferred across the nanotube-polymer
interface. Although this is certainly a relevant factor, it is not
sufficient to provide a quantitative description of reinforce-
ment. This is confirmed by the fact that the so-called rule of
mixturessRMd, a traditional method for calculating the me-
chanical response of macroscopic composite structures, over-
estimates the Young’s modulus of nanotube-polymer com-
posites significantly when the known nanotube modulus is
used as an input parameter.2,12 This failure results from the
erroneous assumption of full stress transfer between the dif-
ferent constituent phases of the composite material. Without
a way of quantifying the stress transfer across the nanotube-
polymer interface we cannot reproduce the observed levels
of reinforcement in a reliable manner. This does not seem
possible in a simple macroscopic formalism and calls for an
alternative approach that involves the microscopic structure
of the component parts.

With such a motivation, in this paper we propose a simple
model that is able to bridge this gap between the microscopic
and macroscopic scales, elucidating the origin of the stress
transfer across the nanotube-polymer interface. As a result,
the physical mechanism for the enhanced mechanical re-
sponse in composite materials is clarified and more impor-
tantly, the model points to a nonmonotonic reinforcement
dependence on the nanotube diameter. Such a nonmonotonic
behavior is remarkable and indicates the possibility of pre-
dicting the adequate combination of materials to tailor and
optimize the mechanical reinforcement in such structures.
Our claims are given additional support by the reasonably
good agreement between our results and available experi-
mental data.

We start by modelling the polymer-coated nanotubes as
infinitely long cylinders of radiusr wrapped around by semi-
flexible strands. Since we are interested in the stress transfer
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across the polymer-nanotube interface, it is sufficient to
study this transfer for a single monolayer of polymer coating.
The polymer strands are represented by equally spaced
monomers separated by harmonic springs of natural length
,0 and lie on a cylindrical surface of radiusR=r +d, whered
is the van der Waals distance to the tube surface, hereafter
considered to be constantsd=3.5 Åd. Following experimen-
tal evidence,13 we assume that the polymers coil around the
nanotube surface at a well-defined angleu relative to the
axial direction, as schematically shown for a single strand in
Fig. 1. The atomic structure of the nanotube is depicted by
the hexagonal lattice both on the cylindrical wallfFig. 1sadg
and on the flat surface that results from unwrapping the
nanotubefFig. 1sbdg.

To address the issue of stress transfer in crystalline com-
posite materials, we must establish how the stretching of
nanotube-coated polymer strands compares with that of
nanotube-free polymers. Young’s modulus is the most repre-
sentative quantity to be studied and is defined as the slope of
the stress-strain curve. We must then find how the stress-
induced strain experienced by a polymer strand is affected by
the presence of the hexagonal potential produced by the un-
derlying nanotube lattice. A suitable model that accounts for
the effect of this potential is the so-called Frenkel–Kontorova
model, traditionally used to describe adsorbed monolayers
on atomically flat surfaces.14–18This one-dimensional model
consists of a linear chain of particles harmonically coupled
by springs of elastic constantk and natural length,0 subject
to an external sinusoidal potential of periodl and amplitude
U. The Hamiltonian for the particles is commonly written as

H = o
j
H k

2
sXj − Xj−1 − ,0d2 + VsXjdJ , s1d

whereXj represents the position of particlej and in the case
of the standard Frenkel-Kontorova modelVsxd=Uf1
−coss2px/ldg. The ground state features of this model have

been extensively studied in which the static equilibrium con-
figuration of the system results from the interplay of
the two characteristic length scaless,0 andld, the confining
potential and the resistance to stretching. It is obvious that
the natural monodisperse distribution of interparticle dis-
tances of an isolated chain is altered by the presence of the
external potential, but despite local fluctuations of these dis-
tances, the total length of the chain can be fully described by
the average interparticle separation, hereafter defined as
v=kXj −Xj−1l. This quantity can be evaluated by finding the
ground-state configuration of the system, for which we use
the method of effective potentials due to Griffiths and
Chou.18 This method provides a computationally efficient
way of obtaining the equilibrium positions for the particles
sXjd subjected to the external periodic potential, from which
the value ofv can be derived.

Since we are interested in the mechanical response of the
chain in the presence of the periodic potential, we need to
investigate how the value ofv depends on the stretching
force. The effect of this force can be mapped into an increase
of the natural bond length,0, which makes the function
vs,0d the relevant quantity to be investigated. Two distinct
scenarios are identified, depending on whether or not the
resulting particle distribution is commensurate with the peri-
odic potential. For the case of incommensurate distribution,
it has been shown that the ground state value forv can be
infinitesimally shifted by a gradual increase of the bond
length,0.

18 This means that despite small rearrangements of
the particles, the average particle distance increases linearly
with the length,0 and should reflect the intrinsic stiffness of
the atomic chain. In the commensurate case, on the other
hand, the particles are trapped by the minima of the external
potential. In this way, there is a range of values of,0 for
which the average separationv does not change. This corre-
sponds to the case in which the chain follows the same pe-
riodicity as the external potential and will be referred to as
being templated by the potential. This can be seen in Fig.
2sad where the average equilibrium interparticle distancev
of an atomic chain is plotted as a function of the bond length
,0 for the sinusoidal potential depicted in the inset. Plateaus
in the vs,0d curve corresponding to the commensurate re-
gime are surrounded by linearly varying regions that charac-
terize the incommensurate case. Also known as Devil’s
staircase,19 this diagram provides information about the tem-
plating capacity of the potential. Bearing in mind that the
chain ultimately represents a polymer strand and that the
potential is the result of the interaction with the nanotube
lattice, in the templated regime the strand displays not its
intrinsic elastic response but that associated with the under-
lying nanotube. In other words, the plateaus of the Devil’s
staircase represent the situation in which the polymers expe-
rience the significantly superior stiffness of the nanotube.
Therefore, by identifying the conditions for the appearance
of these plateaus in the corresponding Devil’s staircase, one
can in principle control the reinforcement levels in a com-
posite material. Although this argument was based on results
for one-dimensional chains in the presence of sinusoidal po-
tentials, it can be easily extended to the case of polymer
strands on the walls of a nanotube.

FIG. 1. sColor onlined sad Schematic representation of a single
polymer strand coiling along the nanotube axis at an angleu. The
strand is represented by monomers connected by elastic springs.sbd
In the two-dimensional depiction, the unwrapped tube is repre-
sented by a stripe of width 2pR and the coiling angleu defines a
unit cell of length 2pR/ tan u.
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In the case of polymer strands coiling around the nano-
tube walls, it is convenient to visualize the polymer strands
on top of the unwrapped nanotubes, as seen in Fig. 1sbd.
Depending on the coiling angle, rather than simple sinusoidal
potentials the interaction with the hexagonally symmetric
nanotube atoms generates periodic potentials with more than
one Fourier component, the amplitude of whichsU
=30 meVd is found in previously reported potential
corrugations.20 In this case, the effective potential experi-
enced by the polymer strands has more local minima within
a given periodl. Such a higher density of local minima is
likely to enhance the density of commensurate phases and
consequently the templating capacity of the potential. In fact,
this is confirmed by Fig. 2sbd, which shows two distinct Dev-
il’s staircases associated with their respective potentials
sshown in the insetd. Both the staircases and the potentials
have been displaced along the vertical axis for the sake of
distinction but each individual curve corresponds to a differ-
ent coiling angle. Since the appearance of plateaus indicate
that strands are being templated by the underlying periodic
potential, it is important to calculate the frequency with
which these plateaus appear for a given type of nanotube. By
averaging over all possible coiling angles, we define a tem-
plating fraction Tf that gives the percentage of polymer
strands experiencing the stiffness of the nanotube. In this
way, rather than assuming that all crystalline polymers sur-
rounding the nanotube display perfect stress transfer, as im-
plied by the standard rule-of-mixtures, we can quantify the

fraction of cases for which this optimal transfer takes place.
Besides the nanotube- and crystalline-polymer phases,

an additional region of amorphous polymer embeds the
other two in the composite material. When calculating the
elastic properties of these composites, one must account for
the contributions from all those three phases. For the Young’s
modulus, for instance, each phase will have both a volumet-
ric and a surface-area contribution, the former giving the
intrinsic modulus of the phase in question, and the latter
describing the interaction between neighboring phases. Bear-
ing in mind that we are mainly interested in the stress trans-
fer across the polymer-nanotube interface, we can disregard
the volumetric contribution from the crystalline phase and
focus only on the effect that a crystalline monolayer brings to
the interaction with the other two regions. Since the amor-
phous phase is entangled with polymers at the edge of the
crystalline layer we assume a perfect load transfer between
these two phases. Concerning the interaction with the nano-
tubes, the templating fractionTf gives the percentage of crys-
talline interfacial layers with optimal stress transfer. We can
then express the Young’s modulusYC of the composite as
YC=TfVfYNh+s1−VfdYP, whereYN andYP are the Young’s
modulus of the nanotube and the polymer, respectively,Vf is
the fractional volume taken by the nanotube and the coeffi-
cient h=3/8 accounts for the random distribution of nano-
tubes in the plane of the film.8 It is worth mentioning that the
only difference to the usual RM expression for the Young’s
modulus of composite structures is in the introduction of the
templating fractionTf in the first term on the right-hand side
of the equation forYC. It is evident from the expression
above that the larger the templating fraction, the larger the
Young’s modulus of the composite structure, which means
that a reliable way of calculating the templating fraction is
important to provide a good estimate for the mechanical re-
inforcement induced by nanotubes.

For a given polymer with a well-defined bond length,0,
the obvious way of calculatingTf consists of selecting a
large number of coiling anglesu, obtain the ground state
configuration for each individual angle and count the fraction
of cases for which the polymer lies inside a templating pla-
teaux. This so-called counting-by-inspection procedure is
slow and computationally intensive since reliable results for
Tf requires a large number of angles. It is evident from Fig.
2sbd that the occurrence of plateaus in the staircases corre-
lates with the existence of a high concentration of local
minima, which suggests that there might be a way of obtain-
ing the templating fraction by associating it with the distri-
bution of those minima. In fact, analysis of a number of
Devil’s staircase graphs yields a geometric interpretation that
simplifies the counting procedure. It consists of projecting
the hexagonal lattice of a nanotube of radiusr onto a cylin-
der of radiusr +d. Simple geometry shows that while dis-
tances in the axial direction are unchanged, projected dis-
tances in the circumferential direction are scaled by a factor
s1+d / rd. The plateaus do not occur randomly but are corre-
lated with the positions of the potential minima of this pro-
jected lattice. More precisely, the plateaus appear every time
a polymer atom lies in the proximity of a potential minimum,
that is, in the proximity of an edge of the projected lattice.
How close the polymer atoms must be to the local minima

FIG. 2. sad Average particle separationv as a function of the
natural bond length,0 displaying a typical Devil’s staircase found
in the Frenkel–Kontorova model. Both quantities are expressed in
similar arbitrary units. The commensurate phases represented by the
plateaus are surrounded by linearly varying sections characterizing
the incommensurate ones. The inset shows the sinusoidal potential
sin equivalent unitsd generating the staircase.sbd Similar Devil’s
staircasessnow expressed in Åd obtained for strands coiling around
a zigzag nanotubes5,0d slattice parametera=2.45 Åd at different
coiling anglessu=0° for the thick line andu=74° for the thin lined.
The inset shows the corresponding potentials. Thicksthind lines are
read on the leftsrightd vertical axis.
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depends on the width of the corresponding templating pla-
teaux. Therefore, by superimposing the polymer strandssat a
given bond length,0d to the projected hexagonal lattice one
can graphically check whether or not the former is templated
by the latter, a much simpler procedure than the counting-
by-inspection method. Despite the tremendous simplifica-
tion, the agreement between the two counting methods is
remarkable, as shown in Fig. 3sad, where the templating frac-
tion calculated by both methods is plotted as a function of
the bond length,0. Except for small fluctuations, the solid
line representing the counting-by-inspection method agrees
with the graphical method represented by the dashed line.
The figure shows that the templating fraction reaches peri-
odical maximum values, which indicates that the right choice
of polymer parameters might lead to increased levels of re-
inforcement. Unfortunately, such set of parameters cannot be
varied in a continuous fashion due to the limited number of
polymer types.

A more controllable quantity that can be continuously var-
ied is the nanotube diameter. By plotting the templating frac-
tion sobtained by the graphical methodd as a function of the
nanotube radius, we show in Fig. 3sbd that Tf also behaves
nonmonotonically. Maximum values of the templating frac-
tion at certain diameters predict that with an adequate selec-
tion of nanotubes one should be capable of optimizing the
level of mechanical reinforcement in polymer-nanotube com-
posites. The figure shows two different types of polymers
with distinct optimal diameters suggesting a general trend in
the diameter dependence of nanotube-induced reinforcement.
This trend indicates that for any given polymer showing

crystallinity in the presence of nanotubes, there is always a
suitable diameter that will optimize the mechanical proper-
ties of the corresponding composite. Such a nonmonotonic
behavior does not appear in a recent experimental study in
which the level of reinforcement is measured for a range of
nanotube diameters.21 However, it is worth stressing that the
reported results cover only a very narrow range of small
diameters and a slightly wider range of large diameters. The
nonmonotonic behavior here predicted lies in the intermedi-
ate range of diameters not covered by the aforementioned
experiment.

Finally, we can test our model by comparing the estimated
value ofYc with experimental data available in the literature.
It is important to stress that we have chosen a system with a
thin crystalline phase. Thicker crystalline coatings are ex-
pected to affect the degree of reinforcement but would re-
quire an extension of the present model to include the volu-
metric contribution of this phase. Figure 4 shows the
measured Young’s modulus of nanotube-polyvinilalcohol
composites as a function of the volume fractionVf of in-
serted nanotubes. Arc discharge multiwalled nanotubes
sdiameter 24 nmd were blended with polyvinylalcohol with
volume fractionVf ranging from 0% to 0.16%. The full line
is the standard RM expression and clearly overestimates the
observed levels of reinforcement represented by the points.
The dashed line representing our results with the calculated
templating fractionTf =0.20 for a nanotube of corresponding
diameterfobtained from Fig. 3sbdg displays significant im-
provement in the comparison with the measured values. The
disagreement between our results and the observed values
can be explained by the fact that a small but finite thickness
for the crystalline phase enhances the reinforcement of the
system.

In summary, we have presented a model describing how
the interaction of crystalline polymers surrounding the vicin-
ity of carbon nanotubes affects the mechanical properties of
nanotube-polymer composites. Rather than assuming full
stress transfer between the different phases of the composite,
the model suggests that only a fraction of the polymer layers
are templated to the underlying nanotube lattice. This frac-
tion of templated polymers experiences the significantly
larger stiffness of the nanotube and is responsible for the
enhancement of the mechanical response of the composite.

FIG. 3. sad Templating fraction Tf as a function of the
bond length,0 sin Åd. The full line diplays Tf calculated by
averaging over a large number of possible coiling angles and count-
ing the fraction of cases in which a given value of,0 lies inside
a plateaux. The dashed line is obtained by the graphical method
ssee textd. Despite small fluctuations, the agreement is evident.sbd
Templating fraction as a function of nanotube radiusszigzagd for
two different values of,0 s,0=2.45 Å for the full line and
,0=3.0 Å for the dashed lined. Elastic constant was chosen to be
k=21 eV/Å2, in accordance with estimated values for
polyvinylalcohol.

FIG. 4. Young’s modulus of a nanotube-polyvinylalcohol com-
posite as a function of the nanotube volume fraction. Points are
measured values, the solid line represents the standard RM and the
dashed line corresponds to the modified RM with the templating
fraction Tf =0.20, consistent with a nanotube of corresponding di-
ameter. Individual Young’s moduli are taken asYN=1 TPa,
YP=1.92 GPa.
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Furthermore, the model predicts that by tuning the nanotube
diameter one can optimize the templating fraction for each
type of polymeric material, thus maximally enhancing the
mechanical properties of the composite. In other words, de-
spite the simplicity of our model the results here presented
bring forward an important message, namely, that an appro-
priate set of polymers and nanotubes diameters can always
be combined to achieve maximum reinforcement. In addition

to clarifying the reinforcement mechanisms in nanotube-
polymer composite materials, we believe that our results can
stimulate further simulations with improved predictive
power, which in turn will guide the experimental search for
stronger light-weight composite materials.
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