
Exciton wave function properties probed by diamagnetic shift in disordered quantum wells

M. Grochol,* F. Grosse, and R. Zimmermann
Institut für Physik der Humboldt-Universität zu Berlin, Newtonstrasse 15, 12489 Berlin, Germany

sReceived 30 November 2004; published 31 March 2005d

Absorption spectra and wave functions of optically active exciton states in disordered quantum wells are
calculated. The interplay between the relative and center-of-mass part of the total exciton wave function is
investigated using a perpendicular magnetic field. The diamagnetic shift varies strongly in correspondence with
the wave function localization. The full solution reveals failures of the simple factorization in relative and
center-of-mass coordinates even for weak global disorder.

DOI: 10.1103/PhysRevB.71.125339 PACS numberssd: 78.20.Bh, 78.67.De, 71.35.Cc, 74.35.Ji

I. INTRODUCTION

Semiconductor quantum structures have been a subject of
intensive study for many years. Their unique properties en-
able applications in communication and information technol-
ogy. However, reduction in size of active layers in these
structures leads to strong influence of imperfections. They
cannot be avoided even with state-of-the-art growth tech-
niques.

Excitons determine the near band-edge optical properties
in semiconductors. Their binding energy grows with quan-
tum confinementsdecreasing dimensionalityd. The sensitivity
of the excitonic properties to disorder gives us the possibility
to investigate the underlying structure, e.g., in the case of
quantum wells the dominant interface and alloy disorder. Ex-
perimentally, its influence on excitons was studied by meth-
ods enabling high spatial and spectral resolution such as
microphotoluminescence,1–3 scanning near-field optical
spectroscopy,4 and cathodoluminescence.5 The exciton local-
ization was observed in effective quantum dots formed due
to interface disorder.

Theoretically, the disorder effect on excitons in quantum
wells was investigated using potentials obtained on the basis
of simple growth simulations.6 The approximation using an
undisturbed exciton relative motion in a simple factorization
ansatz for the total wave functionsWFd was tested. A good
agreement for a single absorption spectrum was found. The
WF properties were not compared. Within this simple factor-
ization scheme, the statistics of the oscillator strength was
studied with two distinct regimes where Anderson localized
states or Lifshitz tail states are dominant.7 Also quantum me-
chanical level repulsion was demonstrated, revealing good
agreement between theory and experiment.8

The influence of a perpendicular magnetic field on the
exciton in ideal quantum structures has gained theoretical
interest recently. The exciton diamagnetic shift was calcu-
lated in idealized quantum structures.9 It has been shown to
give additional information about the interplay between Cou-
lomb interaction and transversal confinement. The influence
of a perpendicular magnetic field on the dispersion relation
of the exciton was investigated, too: The transition from a
hydrogenlike exciton towards the magnetoexcitonfwith in-
creased electron-hole separation proportional to center-of-
masssc.m.d momentum and 1/Bg was predicted leading to
the increase of the total mass of the exciton.10

Furthermore, the combined effect of a perpendicular mag-
netic field and alloy disorder was also of interest. The shift of
the maximum of the photoluminescencesPLd peak towards
higher energies was calculated together with a modification
of the line shape. The calculation was based on the factor-
ization scheme, but c.m. WF’s were treated phenomeno-
logically.11 The spectroscopic methods with high spectral and
spatial resolution enable to follow localized states with mag-
netic field: As demonstrated in the well-known near-field op-
tical experiment by Hesset al.4 and recently in micro-
photoluminescence spectra12 on GaAlAs/GaAs quantum
wells the diamagnetic shift differs between localized exci-
tons. Even negative diamagnetic shifts or spin splitted trip-
lets were observed. The spin splitted doublets were taken as
evidence of localized excitons.4 Also recent PL measure-
ments reveal interesting features with magnetic field, namely
the change of the PL peak shape and shift of the maximum.13

The calculation explaining the experimental observations
was performed with a rather simplified theory assuming a
complete localization of holes in the GaAsSbN/GaAs struc-
ture under study.

In this paper a theory for excitons in disordered quantum
wells under application of a perpendicular magnetic field is
developed. Special emphasis is given to single localized ex-
citon states. The relation between the energetic shift and lo-
calization is investigated by a numerical solution without
factorizing the exciton relative and c.m. motion. The quality
of a factorized ansatz is discussed. The paper is organized as
follows. The theoretical treatment is explained in Sec. II. In
Sec. III, first, the results of the simple factorization approach
and the full solution are compared for uncorrelated disorder.
Second, the correlation between the WF properties and the
diamagnetic shift is investigated. The conclusions are fol-
lowed by an appendix describing numerical details.

II. THEORY

The exciton in a disordered quantum well is described
within the envelope function formalism6 applying the effec-
tive mass approximation. Including a perpendicular magnetic
field the Hamiltonian takes the following form:
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Ĥ = o
a=e,h

S 1

2ma,i
sp̂a − eAad2 +

1

2ma,'
p̂za

2 + Uaszad

+ Wasr a,zadD −
e2

4pe0eÎsr e − r hd2 + sze − zhd2
, s1d

where “a” denotes either electronsed or holeshd, ma,i sma,'d
is the in-planesgrowth directiond carrier effective masssi is
dropped in the followingd, Uaszad is the confinement poten-
tial in the growth direction,Wasr a,zad is the disorder poten-
tial, e is the static dielectric constant of the well material, and
r a denotes in-plane coordinates whileza is the coordinate in
the growth direction. A Coulomb gauge in relative coordi-
nates for the magnetic field is chosen

Ae =
B

2
fye − yh,− sxe − xhd,0g, Ah = − Ae. s2d

This gauge induces oscillating terms in the WF of type
expf−ieAsr d ·r /"g, but these are restricted to the WF exten-
sion in relative space, which is of the order of the exciton
Bohr radius. Other gauges with a dependence of the vector
potential on the c.m. coordinates would lead to oscillating
features across the entire sample, which is not suitable for a
numerical solution using a finite grid size.

The spin degrees of freedom would contribute a term lin-
ear in magnetic fieldsneglecting spin-orbit couplingd14

Ĥspin= o
a=e,h

ga
*mBBsa

z, s3d

wherega
* are effectiveg factors for electron and hole,mB is

the Bohr magneton, andsz is the Pauli spin matrix. In the
excitonic case the total angular momentumJ=L+s of the
Bloch function has to be considered in the first approxima-
tion sL is the orbital angular momentumd. Only excitons with
J= ±1 are optically active. Since electron and hole have dif-
ferentg factors, the spin term does not vanish for the exciton
Hamiltonian.15 By neglecting the spin dependent partsZee-
man splittingd our theory applies therefore for the average of
the spin splitted energies.

Assuming narrow quantum wells, a separation of the WF
for in-plane and growth direction is takenssingle sublevel
approximationd,

Fasr e,r h,ze,zh;Bd = Casr ,R;Bdueszeduhszhd, s4d

whereuaszad are confinement WF’s. Relativer =r e−r h and
c.m. coordinatesR=smer e+mhr hd /M with total exciton mass
M =me+mh and reduced exciton massm=memh/M were in-
troduced. The Hamiltonian can be rewritten in the following
way:

Ĥexc= −
"2

2m
Dr −

"2

2M
DR +

e2B2

8m
r2 +

eB

2
S 1

me
−

1

mh
D

3i"sy]x − x]yd +
eB

M
i"sy]X − x]Yd + VeSR +

mh

M
rD

+ VhSR −
me

M
rD − VCsrd, s5d

whereVC is the averaged Coulomb potential

VCsr d =E dzedzhue
2szeduh

2szhd
e2

4pe0eÎr 2 + sze − zhd2
, s6d

and Vasr ad is the in-plane disorder, which is in detail de-
scribed in the Appendix. The eigenenergies are solutions of
the stationary Schrödinger equation

ĤexcCasr ,R;Bd = EasBdCasr ,R;Bd, s7d

at a given magnetic fieldB. Zero of energy is taken at the
quantum well gap plus electron and hole confinement energy.

In the Hamiltonian Eq.s5d there are three magnetic field
dependent terms: The first ones,B2d gives rise to the well-
known quadratic diamagnetic shift. This term gives always a
positive contribution to the energy. The second terms,Bd is
proportional to the angular momentum in the growth direc-
tion. Without disorder, this term is zero for optically active
statesss statesd. The last term describes theB dependent
mixing of relative and c.m. motion. The second and the third
term together contribute negatively to the ground state en-
ergy for small magnetic fields, which follows simply from
first and second order perturbation theory.

For our purposes a state dependentdiamagnetic shiftDa is
defined

DasBd = EasBd − Eas0d. s8d

The numerical treatment, which is described in detail in the
appendix, is equivalent to compute the eigenenergiesEasBd
and the oscillator strengthsMasBd

MasBd =
1

V
E dRCas0,R;Bd, s9d

which allows us to construct the optical densitysor absorp-
tiond as

Dsv;Bd = o
a

pMa
2sBdd„"v − EasBd…. s10d

Our calculations are performed for a 4 nm wide GaAs quan-
tum well embedded in Ga0.7Al0.3As barriers with 65% band
offset for electrons. GaAs material parameters have been
taken as mh,'=s0.3774+0.1053xdm0, me,'=s0.06657
+0.0575xdm0 sx stands for Al concentrationd, mh,i

=0.233m0,
16 me,i=0.06657m0, e=12.5. Electron and hole

confinement energies add up to 128.2 meV.

A. Simple factorization

Here the standard simple factorization ansatz is briefly
described. For weak disorder an unperturbed relative motion
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sstate independent, exact for no-disorderd can be assumed,
thus factorizing the total WF into relative and c.m. part6

Casr ,R;Bd = f1ssr ;BdcasR;Bd, s11d

where f1ssr ;Bd is the solution of the relative motion
Schrödinger equation without disorder,

S−
"2

2m
Dr +

e2B2

8m
r2 − VCsrd − E1ssBdDf1ssr ;Bd = 0. s12d

As mentioned before, the term linear inB is zero fors states.
Proceeding further,6 the c.m. equation reads

S−
"2

2M
DR + VsR;BdDcasR;Bd = EasBdcasR;Bd s13d

with the disorder potential averaged by the relative WF

VsR;Bd = o
a=e,h

E dr aba
2f1s

2 fbasr a − Rd;BgVasr ad, s14d

wherebe=M /mh andbh=M /me. Within the factorization an-
satz the oscillator strength Eq.s9d reduces to

Ma
factsBd =

1

V
f1ss0;Bd E dRcasR;Bd. s15d

The state dependent diamagnetic shift Eq.s8d takes the fol-
lowing form:

DasBd = E1ssBd − E1ss0d + EasBd − Eas0d. s16d

The first partE1ssBd−E1ss0d is state independent and propor-
tional to B2 for small B. The second partEasBd−Eas0d is
state dependent and also proportional toB2 for small B.
SinceB tends to shrink the WFf1ssr ;Bd, averaging is less
effective: Potential minima become deeper, and have greater
curvature. The c.m. potential change is quadratic for smallB
as can be easily checked by inserting a WF from the second
order perturbation theorys,B2d into Eq. s14d.

B. Analysis of the WF

The complicated behavior of the four coordinate WF can
be better investigated by focusing on the projections of the
WF,

fa
2sr ;Bd =E dRCa

2sr ,R;Bd, s17d

ca
2sR;Bd =E drCa

2sr ,R;Bd. s18d

The projected relative WFfa
2sr ;Bd does not vary much

qualitatively between different local ground states: It is node-
less and rather isotropic due to the strength of the Coulomb
interaction. Therefore, the valuefa

2s0;Bd is sufficient to
characterizefa

2sr ;Bd and gives information about the exten-
sion of the relative WF. We define a relative measure related
to the no-disorder and zeroB field case by

ra =
fa

2s0;Bd
f1s

2 s0;0d
, s19d

wheref1s
2 s0;0d=0.00582 nm−2. The larger the valuera, the

smaller is the relative projection extension Eq.s17d. The c.m.
projections Eq.s18d are plotted using contour plots with 6
lines between maximum and minimum of each WF. The lo-
calization of the WF can be visualized in this way.

III. RESULTS AND DISCUSSION

A. Comparison between full solution and factorization

1. No magnetic field

Absorption spectra calculated with and without factoriza-
tion are compared for a single disorder realization in Fig. 1.
Good agreement is expected in the case of weak disorder
where the factorization assumption of unperturbed relative

FIG. 1. Calculated absorption spectra for two different strengths
of the disorderfsD=0.5 EB sad andsD=1.0 EB sbdg. The full solu-
tion ssolidd and factorizationsdashedd are plotted. Two optically
active states for each calculation are markedfwith 08, 18 for factor-
ization in sbdg. Corresponding wave functions are shown in Fig. 2.

EXCITON WAVE FUNCTION PROPERTIES PROBED BY… PHYSICAL REVIEW B 71, 125339s2005d

125339-3



motion is almost valid. Indeed, this is found in Fig. 1sad,
seeminglyapproving the factorization. However, the ground
state energy in the full solution is lower than in the factor-
ization, which is consistent with variational arguments.The
different effectivesnumericald averaging in the full solution
and factorization also contributes to the 0.2 meV rigid shift
of all states in Fig. 1sad. Our calculations have shown that
these shifts are magnetic field independent. The spectrum
agreement worsens above the ideal exciton positionEX,0
sline in Fig. 1: EX,0=−EB=−11.4 meVd where states mix
with the ideal 2s state. Due to orthogonality, these states are
modified by different local ground states, even if their rela-
tive parts in the full solution and factorization were similar.
In the case of stronger disorderfFig. 1sbdg even the qualita-
tive agreement is lost. A correspondence between WF’s may
be expected only for the first few tail states since they are
local ground states in deep minima.

For a better understanding it is important to distinguish
between the local potential shape relevant for the localized
exciton state and the global disorder given by the variation
sD. The local potential is characterized by a limited number
of parameters, e.g., discrete values on grid points close to the
position of the localized exciton. The change of thesglobald

disorder strength modifies the potential statistics. A relatively
shallow minimum, which is highly probable in case of weak
disorder, is less likely in a case with stronger disorder, where
more deeper minima with strong curvatures exist. The disor-
der strength determinesonly the probabilityof highly local-
ized states which are not well described by a simple factor-
ization ansatz since the effective compression of the relative
part is neglected. The stronger the global disorder, the higher
the probability that the factorization fails.

Next, we concentrate on the WF properties. The c.m. pro-
jection Eq.s18d and the relative WF measurera are shown in
Fig. 2 for the same disorder realization used in Fig. 1. Sev-
eral interesting features turn up. The values ofra vary in the
full solution between states: The most localized c.m. states
have also the most compressed relative partssgreatest values
rad. This is physically understandable since a stronger local-
ization of electron and hole leads to an effectively stronger
Coulomb interaction, which is then state dependent.

Another appealing feature is thesdisdagreement of c.m.
parts in the full solution and the factorization. The projec-
tions Eq.s17d and Eq.s18d play a different role: The relative
part averages the disorder potential for the c.m. motion. This
means that a small alteration in the relative part leads to a
small alteration in the effective c.m. disorder potential and
further in the c.m. localizationsFig. 2d. This simple picture is
not valid in the case of stronger disorderfFig. 1sbdg. The
ideal relative WFf1ssr ;Bd averages so that some minima
can become too shallowsor even disappeard, sincef1ssr ;Bd
is more extended in size compared with the full solution. The
energetic position can be shifted and the c.m. WF can be
changedfsee specifically Figs. 2sfd and 2shdg.

Using the WF projections Eq.s17d and Eq.s18d we com-
pare the localization of the c.m. projection in Fig. 2 and the
oscillator strength of these states plotted in Fig. 1. The cor-
respondence is found for the two plotted states: the most
localized c.m. projection has the smallest oscillator strength.
The contribution of the relative projection grows with the
compression unlike the c.m. contribution which decreases
with localization. This implies that the oscillator strength is
predominantly determined by c.m. localization for local
ground states.18

2. Magnetic field

So far only the disorder effect on the exciton was dis-
cussed. Now we include the perpendicular magnetic field in
our comparison between the full solution and the factoriza-
tion.

We focus again on the WF projections Eq.s17d and Eq.
s18d for a deeper understanding: The relative projection is
affected proportional to its extensions,kr2ld. Since in the
factorization the ideal relative WFf1ssr ;Bd is used, it
changes more with magnetic field than in the full solution,
which is already shrunk due to localization as discussed
above. This is schematically depicted in Figs. 3sad and 3sbd.
The effective averaged c.m. potential minimum is then more
shallow in the factorization, and the bound state has a higher
energyfFigs. 3scd and 3sddg. The magnetic field has a greater
impact on the effective c.m. potential in the factorization
fFig. 3sedg than in the full solutionfFig. 3sfdg. In the factor-

FIG. 2. sColor onlined The probability densities of the c.m. part
sprojectiond of the total wave functions Eq.s18d calculated for
statess0, 1d of Fig. 1 as contour plotssRef. 17d. Full solutionfsad,
sbd, sed, sfdg and factorizationfscd, sdd, sgd, shdg for sD=0.5 EB

sad–sdd and sD=1.0 EB sed–shd. The valuesra Eq. s19d are shown
for each wave function in the full solutionsin the factorizationra

;1.00 per definitiond. Total simulation size is 1603160 nm2 with a
grid step of 4 nm.
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ization both contributions to the diamagnetic shift are over-
estimated: The relative one proportional tokr2l snot shown in
Fig. 3d and the downshift of the c.m. energy. If full solution
and factorization agree without magnetic field, then also the
diamagnetic shift agrees. In other casessdepending on local
disorderd, agreement is not to be expected. Unfortunately,
looking at the potential landscape it is not clear from the
beginning, to which extent the factorization and the full so-
lution agree.

B. Full solution: Localization and magnetic field

The change of the absorption spectra with magnetic field
is shown in Fig. 4. The first few localized states can be
recognized unambiguously, and the diamagnetic shift can be
read off easily from Fig. 4sad. The changes of the oscillator
strengthMasBd with magnetic field can be extracted, too, but
are marginal. The effects of the magnetic field on averaged
sover several disorder realizationsd spectrafFig. 4sbdg are the
shift of the maximum and a widening since the diamagnetic
shift DasBd increases in average with energyEas0d. This av-
erage increase can also explain the changes in PL spectra.

Here, the occupation of states enters in addition. Since higher
states have lower occupation, the effect is weaker with re-
spect to absorption spectra. Our simulations predict the wid-
ening with magnetic field in accordance with experiment.13

The influence of the magnetic field on the WF’s can be
seen in Fig. 5. The correlation between c.m. and relative
projection is observed again. A new feature is the correlation
between the diamagnetic shift and WF extension. The dia-
magnetic shift for the three states is given in Fig. 5sbd. As
mentioned above the relative part is affected proportionally
to its extensionskr2ld, which is illustrated by the change of
ra values in Fig. 5, where the smallest change with magnetic
field is found for the ground state. In general, the diamag-
netic shiftDa is inversely correlated to the relative measure
ra. The positive relative contribution,kr2l is dominant. The
c.m. contribution is negative but not necessarily small in
absolute value. Minor modifications of the relative part may
induce substantial modifications of the c.m. energy.

FIG. 3. Schematic drawing of the exciton relative wave function
ffactorizationsad and full solutionsbdg and originalssolidd and av-
eraged potentialsdashedd as a functions of magnetic field. Energy
levels are also depicted. The arrows indicate the negative c.m. con-
tribution to the diamagnetic shift; the positive contribution from the
relative motion is not shown. FIG. 4. Absorption spectra calculated for two different magnetic

fields ssolid 0 T, dashed 5 Td and for a single disorder realization
sad sGauss broadening of single lines=0.1 meVd and averaged
over 12 realizations of disordersbd sGauss broadening of single line
s=1.0 meVd. Disorder strength in both casessD=1.5 EB.
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Taking calculations for different realizations and disorder
strengths, a statistics of the diamagnetic shift can be obtained
as shown in Fig. 6. The analysis is always performed only
for the first few tail states. The increase of the average dia-
magnetic shift with eigenenergy is obvious. The no-disorder
case is marked as a star, and is properly positioned on the
trend line. The existence of the trend line for the diamagnetic
shift going through several disorder strengths is nontrivial. In
the present case, value and shape of minima are mainly fixed
by the eigenenergy and depend much less on the global dis-
order strength.

Finally, we shortly comment on the differences between
the full solution and the factorization regarding the diamag-
netic shift. The deviations increase with decreasing eigenen-
ergy. This is well understood since highly localized states are
not properly described in the factorization. The state inde-
pendent relative WF in the factorization may even lead to
negative diamagnetic shifts in very deep potential minima,
which is never observed in the full solution. Experimentally,
negative diamagnetic shifts have been observed only
exceptionally.4 In theory, the basic question arises: Can the

diamagnetic shift be negative at all? We have not found a
rigorous answer yet.

IV. CONCLUSIONS AND OUTLOOK

Exciton states in disordered quantum wells under the
presence of a perpendicular magnetic field are studied. The
WF behavior is discussed in detail: The relative part of the
WF is state dependent and shrunk in contrast to the state
independent picture in the factorization scheme. This shrink-
age leads in turn to a more localized c.m. part. Therefore, the
correct description of the diamagnetic shift requires to go
beyond the simple factorization ansatz.

The diamagnetic shift varies strongly among different lo-
calized states but a general trend exists. The WF properties
are determined by the local potential only. The most local-
ized states show the smallest diamagnetic shift. This correla-
tion allows an experimental investigation of the statistics of
the WF localization.

From the application side a very important question
evolves: Is it possible to reconstruct local potential properties
from the diamagnetic shift? The correlation between the dia-
magnetic shift and localization could be a way to access
information about the local potential landscape and therefore
the underlying quantum structure. A clear statement makes
additional investigations necessary, particularly with respect
to long range potential correlations.
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APPENDIX: NUMERICS

1. Method

The linear optical susceptibility19 in the frequency domain
is considered at first

FIG. 5. sColor onlined The probability densities of the center-of-
mass projection of the total wave functions Eq.s18d calculated for
the energetically lowest three states of the full solution forsD

=1.5 EB fsad B=0 T, sbd B=5 Tg as contour plotssRef. 17d. A grid
step ofD=2 nm is used. The valuesra Eq. s19d are shown for each
wave function. The diamagnetic shiftDasBd in meV is given, also
swithout disorder,r1s=1.123 andD1s=1.08 meVd.

FIG. 6. sColor onlined The distribution of the diamagnetic shifts
at B=5 T calculated with the full solutionsfull symbolsd and fac-
torization sopen symbolsd for different strengths of disorder.
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xsvd = kmufĤ − "v + i0g−1uml, sA1d

kr uml =
dcv

V
dsr e − r hd, sA2d

where uml represents an electron-hole excitation state from
the semiconductor vacuum with interband dipole matrix ele-
mentdcv and the simulation areaV. The optical densityDsvd
Eq. s10d is defined as the imaginary part of the susceptibility

Dsvd = Im xsvd. sA3d

The efficient calculation of the eigenvalues and eigenfunc-
tions of the full electron-hole Hamiltonian Eq.s5d goes be-
yond the capability of any direct eigenvalue solver, even if
only the first few eigenstates are needed: Our standard cal-
culation is performed for 30 or 40 grid points for every co-
ordinate, which gives in totalN=304=810.000 orN=404

=2.560.000 pointssN being the matrix dimensiond. Instead
the susceptibility can be calculated using the time evolution
of the wave function

i"
d

dt
uCstdl = ĤuCstdl, uCs0dl = uml, sA4d

and performing the Fourier transformation with the projec-
tion of the wave functionuCstdl onto uml

xsvd =
i

"
E

0

`

dte−ivtkCstduml. sA5d

The quick and efficient implementation of the time evolution
Eq. sA4d by the Leapfrog method proposed in Ref. 20 was
adopted. In order to handle the effects of finite time integra-
tion in the Fourier transformation a small Gauss damping is
introduced21

Dsvd = Re
1

"
E

0

`

dte−ivte−sst/"d2kCstduml. sA6d

The expansion ofuCstdl into the eigenfunctionsuCal of the
Hamiltonian Eq.s5d

uCstdl = o
a

uCalkCaumle−iEat/", sA7d

ĤexcuCal = EauCal sA8d

gives a Gauss broadened optical density Eq.s10d

Dsvd = o
a

puMau2
1

Î2ps
expS−

s"v − Ead2

2s2 D ,

Ma = kCauml. sA9d

Given the eigenenergy, the corresponding eigenfunction can
be extracted integrating over the time dependent WF in a
second run

kr ,RuCal , E dtkr ,RuCstdleiEat/"e−sst/"d2. sA10d

In this way, however, only WF’s of energetically well sepa-
rated eigenstates can be obtained.

2. Implementation and tests

The electron and hole confinement WF’suaszad Eq. s4d
without disorder are calculated numerically. Then, the Cou-
lomb averaging Eq.s6d is performed and the factorized
Schrödinger equations12d is numerically solved.21 The WF
f1ssr ;Bd obtained in this way is used twice: in the factoriza-
tion approach and to generate the discretized Coulomb po-
tential for the full solution using the identity

VCsrd =
S "2

2m
DrDf1ssr ;0d

f1ssr ;0d
+ E1ss0d, sA11d

as introduced by Glutschet al.20 This method also handles
the Coulomb singularity at the origin. Two values of the grid
step were used: 4 nm and 2 nm. The Hamiltonian Eq.s5d in
electron and hole coordinates is given by

Ĥexc= −
"2

2me
Dr e

−
"2

2mh
Dr h

+
e2B2

8m
sr e − r hd2 + Vesr ed + Vhsr hd

− VCsrd +
eB

2me
i"fsye − yhd]xe

− sxe − xhd]ye
g

+
eB

2mh
i"fsye − yhd]xh

− sxe − xhd]yh
g, sA12d

which is implemented instead of Eq.s5d. The choice of elec-

FIG. 7. sColor onlined Absorption spectra without disorder cal-
culated using the exact solution taking Eq.s12d for all statesssolidd.
For the full solution, two simulation sizes are used:N=304 sdottedd
andN=404 sdashedd with a grid step of 4 nm. Inset: The probability
densities of the relative part of the total wave function Eq.s18d
calculated for the 1s state of the full solutionscrossesd and calcu-
lated exactlyslined for 0 T and 5 Tsunits in 10−3 nm−2d.
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tron and hole coordinates is advantageous for a possible in-
clusion of disorder from growth simulations.6

The factorization ansatz Eq.s11d holds precisely in the
no-disorder case, which is used to test the full solution. The
only optically active state has a constant c.m. partsdelocal-
izedd. The absorption spectra plotted in Fig. 7 full and exact
solution. Due to a combined effect of boundary conditions
and finite simulation size, the exact spectrum is not fully
reconstructed in the full solution. There is a small energy
shift of the dominant peak and additional small peaks appear.
Increasing the simulation size the satellite peaks move to-
wards the main peak.

In the presence of disorder the c.m. projection of the WF
is localized and far less sensitive to the boundary conditions.
Therefore, our implementation is suited for the disorder case
slocalized statesd.

An important feature is the almost correct reconstruction
in the full solution of the 2s exciton statefthe second eigen-
value E2s of Eq. s12d with eigenfunctionf2ssr dg since the
potential is constructed only with the 1s WF. The diamag-
netic shifts of the 1s and 2s excitons are also obtained cor-
rectly with less than 3% error. The relative parts of WF’s

plotted in the inset of Fig. 7 demonstrate the good agreement
as well.

3. Disorder potential

No explicit averaging of an underlying atomistic disorder
by confinement WF’ssRef. 6d is carried out. Instead Gauss-
ian distributed and spatially uncorrelated fluctuations of the
gapV are generated, thus neglecting long range correlations:

kVil = 0, kViVjl = di jsD
2 , sA13d

Ve,i = 0.65Vi, Vh,i = 0.35Vi , sA14d

where Vi is a potential value on theith point of the two
dimensional grid. Electron and hole disorder is fully corre-
lated on the same site since it depends on the same local
quantum well width. We use here the same band offsets as
for the quantum well potential barrier. Doing so, we neglect
the smass dependentd averaging by the confinement wave
functions.6 This would lead to minor changes in the band
offsetss0.72 electrond and consequently in the results.
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