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Exciton wave function properties probed by diamagnetic shift in disordered quantum wells

M. Grochol¥ F. Grosse, and R. Zimmermann
Institut fir Physik der Humboldt-Universitat zu Berlin, Newtonstrasse 15, 12489 Berlin, Germany
(Received 30 November 2004; published 31 March 2005

Absorption spectra and wave functions of optically active exciton states in disordered quantum wells are
calculated. The interplay between the relative and center-of-mass part of the total exciton wave function is
investigated using a perpendicular magnetic field. The diamagnetic shift varies strongly in correspondence with
the wave function localization. The full solution reveals failures of the simple factorization in relative and
center-of-mass coordinates even for weak global disorder.

DOI: 10.1103/PhysRevB.71.125339 PACS nun®er78.20.Bh, 78.67.De, 71.35.Cc, 74.35.Ji

I. INTRODUCTION Furthermore, the combined effect of a perpendicular mag-

Semiconductor quantum structures have been a subject 8tic field and alloy disorder was also of interest. The shift of
intensive study for many years. Their unique properties enthe maximum of the photoluminescen@®l) peak towards
able applications in communication and information technol-higher energies was calculated together with a modification
ogy. However, reduction in size of active layers in theseof the line shape. The calculation was based on the factor-
structures leads to strong influence of imperfections. Theyzation scheme, but c.m. WF's were treated phenomeno-
cannot be avoided even with state-of-the-art growth techogically.!* The spectroscopic methods with high spectral and
niques. ) ) _ spatial resolution enable to follow localized states with mag-
_ Excitons determine the near band-edge optical propertiegetic field: As demonstrated in the well-known near-field op-
in semiconductors. Their binding energy grows with quan-;cg experiment by Hest al? and recently in micro-
tum confinemen(decreasing dimensionaljtyThe sensitivity >§)vhotoluminescence specifaon GaAlAs/GaAs quantum

of the excitonic properties to disorder gives us the possibilit ells the diamagnetic shift differs between localized exci-

to Ir:;eﬁ;ﬂ\g/jvatl? ttrr:e 3ngﬁ:lly'nrﬁn?tr#;turz’ng'gl'l’ n d'i[her(;:arsif ons. Even negative diamagnetic shifts or spin splitted trip-
guantu ells the domina erace a’loy CISOrder. =Xjat5 were observed. The spin splitted doublets were taken as
perimentally, its influence on excitons was studied by meth- vidence of localized excitorfsAlso recent PL measure-
ods enabling high spatial and spectral resolution such a8

microphotoluminescencde® scanning near-field optical mhenti revealflnr:ergitmg fkeatr:Jres W'tg n;]qf?n?tﬁ fleld,.rrl%?umely
spectroscop$,and cathodoluminescenédhe exciton local-  tN€ change of the PL peak shape and shiit of the maxirnum.

ization was observed in effective quantum dots formed dud "€ calculation explaining the experimental observations
to interface disorder. was performed with a rather simplified theory assuming a

Theoretically, the disorder effect on excitons in quantumCOmplete localization of holes in the GaAsSbN/GaAs struc-

wells was investigated using potentials obtained on the bastsire under study.
of simple growth simulation$.The approximation using an  In this paper a theory for excitons in disordered quantum
undisturbed exciton relative motion in a simple factorizationwells under application of a perpendicular magnetic field is
ansatz for the total wave functigiwVF) was tested. A good developed. Special emphasis is given to single localized ex-
agreement for a single absorption spectrum was found. Theiton states. The relation between the energetic shift and lo-
WF properties were not compared. Within this simple factor-calization is investigated by a numerical solution without
ization scheme, the statistics of the oscillator strength wa#actorizing the exciton relative and c.m. motion. The quality
studied with two distinct regimes where Anderson localizedof a factorized ansatz is discussed. The paper is organized as
states or Lifshitz tail states are dominamtlso quantum me- follows. The theoretical treatment is explained in Sec. Il. In
chanical level repulsion was demonstrated, revealing goo&ec. lll, first, the results of the simple factorization approach
agreement between theory and experinfent. and the full solution are compared for uncorrelated disorder.
The influence of a perpendicular magnetic field on theSecond, the correlation between the WF properties and the
exciton inideal quantum structures has gained theoreticaldiamagnetic shift is investigated. The conclusions are fol-
interest recently. The exciton diamagnetic shift was calculowed by an appendix describing numerical details.
lated in idealized quantum structur®l. has been shown to
give additional information about the interplay between Cou-
lomb interaction and transversal confinement. The influence
of a perpendicular magnetic field on the dispersion relation
of the exciton was investigated, too: The transition from a
hydrogenlike exciton towards the magnetoexcifaiith in- The exciton in a disordered quantum well is described
creased electron-hole separation proportional to center-ofvithin the envelope function formalishapplying the effec-
mass(c.m,) momentum and 18] was predicted leading to tive mass approximation. Including a perpendicular magnetic
the increase of the total mass of the excitén. field the Hamiltonian takes the following form:

II. THEORY
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+Wy(raz) | — , = =, (1) th(y&x—xay)+Mlh(yax—xayﬂve R+ﬁr
Amege\(re—rn)"+ (Ze—z,)

+Vh<R—n—]er> = Ve(r), (5)
where ‘a” denotes either electrofe) or hole(h), m,; (m, ;) M
is the in-planeg(growth direction carrier effective mas§| is where V. is the averaged Coulomb potential
dropped in the following U,(z,) is the confinement poten-

tial in the growth directionWy(r ,,z,) is the disorder poten- _ 2 2
tial, e is the static dielectric constant of the well material, and Velr) = f U202 Ux(Ze) Ui Z0)
r, denotes in-plane coordinates whigis the coordinate in

the growth direction. A Coulomb gauge in relative coordi-2Nd Va(ra) is the in-plane disorder, which is in detail de-
nates for the magnetic field is chosen scribed in the Appendix. The eigenenergies are solutions of

the stationary Schrdodinger equation

, (6
4rreger? + (2o~ 2,)° ©

HexdV o(r,R;B) = E,(B)W (r,R;B), (7)

B
A= E[Ye_yha_(xe_xh)ro]a An=-A. (2)

at a given magnetic fiel®. Zero of energy is taken at the
quantum well gap plus electron and hole confinement energy.
In the Hamiltonian Eq(5) there are three magnetic field
This gauge induces oscillating terms in the WF of typedependent terms: The first olie B?) gives rise to the well-
exd~ieA(r)-r/#], but these are restricted to the WF exten-gnown quadratic diamagnetic shift. This term gives always a
sion in relative space, which is of the order of the eXCitonpositive contribution to the energy. The second témB) is
Bohr radius. Other gauges with a dependence of the vectQfroportional to the angular momentum in the growth direc-
potential on the c.m. coordinates would lead to oscillatingon, without disorder, this term is zero for optically active

features across the entire sample, which is not suitable for gates(s states. The last term describes tH dependent

numerical solution using a finite grid size. _mixing of relative and c¢.m. motion. The second and the third
The spin degrees of freedom would contribute a term linterm together contribute negatively to the ground state en-
ear in magnetic fieldneglecting spin-orbit coupling’ ergy for small magnetic fields, which follows simply from

first and second order perturbation theory.
. X For our purposes a state dependdintnagnetic shifj\ , is
HP"= > g uBo?, (3)  defined

a=eh

A,(B) =E,(B) — EL(0). (8

The numerical treatment, which is described in detail in the
appendix, is equivalent to compute the eigenenergjgs)
and the oscillator strengthd ,(B)

Whereg; are effectiveg factors for electron and holeg is

the Bohr magneton, and?* is the Pauli spin matrix. In the

excitonic case the total angular momentdmL +o of the

Bloch function has to be considered in the first approxima- 1

tion (L is the orbital angular momentynOnly excitons with M,(B)=— f dRV ,(O,R;B), (9

J=+1 are optically active. Since electron and hole have dif- Q

ferentg factors, the spin term does not vanish for the excitonyhich allows us to construct the optical density absorp-

Hamiltonian®® By neglecting the spin dependent péZee-  tion) as

man splitting our theory applies therefore for the average of

the spin splitted energies. D(w;B) = >, mM2(B)8(hw — E,(B)). (10)
Assuming narrow quantum wells, a separation of the WF @

for in-p_lane_ and growth direction is takesingle sublevel Our calculations are performed for a 4 nm wide GaAs quan-

approximatiod, tum well embedded in GaAlysAs barriers with 65% band

offset for electrons. GaAs material parameters have been

taken as m,, =(0.3774+0.1059m,, m,, =(0.06657

+0.057%)m, (x stands for Al concentration my

=0.2331,® m,;=0.0665M,, €=12.5. Electron and hole

whereuy(z,) are confinement WF’s. Relativie=r,~r, and ~ confinement energies add up to 128.2 meV.
c.m. coordinate® =(mgr .+ myr,)/M with total exciton mass
M=m,+m, and reduced exciton mags=m.,m,/M were in-

troduced. The Hamiltonian can be rewritten in the following  Here the standard simple factorization ansatz is briefly
way: described. For weak disorder an unperturbed relative motion

q)a(re’rh’ze’Zh;B) = ‘I’a(r,R,B)ue(ze)Uh(Zh), (4)

A. Simple factorization
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(state independent, exact for no-disojdean be assumed, 1T T 17T 7T 77" T 7V T 7 7117
thus factorizing the total WF into relative and c.m. fart ~_ [* a EX,O_ Full Solution ]
j72] . -
W,(r,R;B) = 1 ;B) (R B), 1y Er -- Factorization -
_ _ | B { 6,=05E, —
where ¢,4(r;B) is the solution of the relative motion st ' -
Schrédinger equation without disorder, 85— 0 ! —]
A
o @B, sl _
- A+ Ve(n) -E(B) |4,(riB)=0.  (12) .§
“ 8u e -
As mentioned before, the term linearBnis zero fors states. § ? ¢ E ] __
Proceeding furthétthe c.m. equation reads <L ':}' d ]
: i
h B l l h T
- —Ag+V(R;B) |¢(R:B)=E(B)(R;B) (13 L L I
( om RtV )>"’ RE=EEWRE 139 g 14 -12 -10 -8 6 4
with the disorder potential averaged by the relative WF Energy (meV)
V(R;B) = dr 822 Balfa—R);BIVA(r), (14 e r e Tt
( ) azze,h aﬂa¢ls|::8a( a ) ] a( a) ( ) s b EX 0_ Full SOhlthl’l N
[72) 4 . .
whereB,=M/m, and 8,=M/m,. Within the factorization an- = [ -- Factorization
satz the oscillator strength E(P) reduces to g o, =1.0E; —
, 8 :
MZ(B) = 5¢1S(O;B) f dR¢,(R;B). (15 % | -
o) . —
The state dependent diamagnetic shift B).takes the fol- ‘é - l ~
lowing form: S 1 {1 ]
CE.(B)— _ S0 0 TR i
A,B)=Ew(B) ~En(0)+E,(B)-E©0). (16 <[ 0 ¢ Rl | —
1 |
The first partE;(B) —E;4(0) is state independent and propor- [ 1 ,"' l 1 IAM‘],\ L“ " \ ,‘LL o ol s g ]
tional to B2 for small B. The second parE,(B)-E,(0) is -18 -16 -14 -12 -10 -8 -6 -4

state dependent and also proportionalB® for small B. Energy (meV)

SinceB tends to shrink the Wkpy4(r ; B), averaging is less

effective: Potential minima become deeper, and have greater FIG. 1. Calculated absorption spectra for two different strengths
curvature. The c.m. potential change is quadratic for sBall of the disordefop=0.5Eg (a) andop=1.0Eg (b)]. The full solu-

as can be easily checked by inserting a WF from the seconiibn (solid) and factorization(dashegl are plotted. Two optically

order perturbation theorg~B?) into Eq. (14). active states for each calculation are markeith 0’, 1’ for factor-
ization in (b)]. Corresponding wave functions are shown in Fig. 2.

B. Analysis of the WF

2.
The complicated behavior of the four coordinate WF can Pu= w (19
be better investigated by focusing on the projections of the ¢15(0;0)
WF, where ¢2(0;0)=0.00582 nri?. The larger the valug,, the
smaller is the relative projection extension ELj7). The c.m.
2(r;B) :f dR¥?(r,R;B), (17)  projections Eq.(18) are plotted using contour plots with 6
lines between maximum and minimum of each WF. The lo-

calization of the WF can be visualized in this way.

wi(R;B)=feri(r,R;B). (18)
IIl. RESULTS AND DISCUSSION

The projected relative WRp%(r;B) does not vary much A. Comparison between full solution and factorization
qualitatively between different local ground states: It is node-
less and rather isotropic due to the strength of the Coulomb
interaction. Therefore, the valug’(0;B) is sufficient to Absorption spectra calculated with and without factoriza-

characterizeﬁi(r ;B) and gives information about the exten- tion are compared for a single disorder realization in Fig. 1.

sion of the relative WF. We define a relative measure relatebood agreement is expected in the case of weak disorder
to the no-disorder and zem® field case by where the factorization assumption of unperturbed relative

1. No magnetic field
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state 0 05E state 1 disorder strength modifies the potential statistics. A relatively
Op=Y-9 Ee shallow minimum, which is highly probable in case of weak
@ b disorder, is less likely in a case with stronger disorder, where

more deeper minima with strong curvatures exist. The disor-
der strength determinemly the probabilityof highly local-
ized states which are not well described by a simple factor-

0,=1.03 0,=1.03 ization ansatz since the effective compression of the relative
c 3 part is neglected. The stronger the global disorder, the higher
the probability that the factorization fails.

Next, we concentrate on the WF properties. The c.m. pro-
jection Eq.(18) and the relative WF measupg are shown in
o

Full

Fact

Fig. 2 for the same disorder realization used in Fig. 1. Sev-
eral interesting features turn up. The valuepp¥ary in the
-=1.0 E; full solution between states: The most localized c.m. states
f have also the most compressed relative pantsatest values

p.). This is physically understandable since a stronger local-
ization of electron and hole leads to an effectively stronger
Coulomb interaction, which is then state dependent.

0=1.27 0,=1.22 Another appealing feature is tHeis)agreement of c.m.

30 parts in the full solution and the factorization. The projec-
tions Eq.(17) and Eq.(18) play a different role: The relative
part averages the disorder potential for the c.m. motion. This
means that a small alteration in the relative part leads to a
small alteration in the effective c.m. disorder potential and
further in the c.m. localizatiofFig. 2). This simple picture is
300 not valid in the case of stronger disorddfig. 1(b)]. The
X (nm) ideal relative WF¢,((r;B) averages so that some minima
can become too shalloyer even disappegarsince ¢4(r ; B)
is more extended in size compared with the full solution. The
energetic position can be shifted and the c.m. WF can be
changed see specifically Figs.(® and Zh)].

Using the WF projections Eq17) and Eq.(18) we com-
pare the localization of the c.m. projection in Fig. 2 and the
oscillator strength of these states plotted in Fig. 1. The cor-
respondence is found for the two plotted states: the most
localized c.m. projection has the smallest oscillator strength.
motion is almost valid. Indeed, this is found in Figial, ~ The contribution of the relative projection grows with the
seeminglyapproving the factorization. However, the ground compression unlike the c¢.m. contribution which decreases
state energy in the full solution is lower than in the factor-With localization. This Implles that the oscillator Strength is
ization, which is consistent with variational arguments.ThePredominantly determined by c.m. localization for local
different effective(numerical averaging in the full solution ground states?
and factorization also contributes to the 0.2 meV rigid shift
of all states in Fig. (a). Our calculations have shown that
these shifts are magnetic field independent. The spectrum So far only the disorder effect on the exciton was dis-
agreement worsens above the ideal exciton posifiQn cussed. Now we include the perpendicular magnetic field in
(line in Fig. 1: Exo=—Eg=-11.4 meV where states mix our comparison between the full solution and the factoriza-
with the ideal 3 state. Due to orthogonality, these states areion.
modified by different local ground states, even if their rela- We focus again on the WF projections E47) and Eq.
tive parts in the full solution and factorization were similar. (18) for a deeper understanding: The relative projection is
In the case of stronger disordgfig. 1(b)] even the qualita- affected proportional to its extensidn-(r%). Since in the
tive agreement is lost. A correspondence between WF's mafactorization the ideal relative Wkpy((r;B) is used, it
be expected only for the first few tail states since they arehanges more with magnetic field than in the full solution,
local ground states in deep minima. which is already shrunk due to localization as discussed

For a better understanding it is important to distinguishabove. This is schematically depicted in Fig&a)3and 3b).
between the local potential shape relevant for the localized’he effective averaged c.m. potential minimum is then more
exciton state and the global disorder given by the variatiorshallow in the factorization, and the bound state has a higher
op. The local potential is characterized by a limited numberenergy[Figs. 3c) and 3d)]. The magnetic field has a greater
of parameters, e.g., discrete values on grid points close to thmpact on the effective c.m. potential in the factorization
position of the localized exciton. The change of tgiobal [Fig. 3(e)] than in the full solutionFig. 3f)]. In the factor-

Full

«
o

&
@

-30

FIG. 2. (Color onling The probability densities of the c.m. part
(projection of the total wave functions Eq(18) calculated for
states(0, 1) of Fig. 1 as contour plotéRef. 17. Full solution[(a),
(b), (e), (f)] and factorization[(c), (d), (g), (h)] for op=0.5Eg
(a<(d) and op=1.0 Eg (e)—(h). The valuesp,, Eq. (19) are shown
for each wave function in the full solutiofin the factorizatiorp,,
=1.00 per definition Total simulation size is 168 160 nnf with a
grid step of 4 nm.

2. Magnetic field
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Factorization Full solution T T T T F 11" T T 1T T ]
[ a Exo — B=0T ]
a B>0T b .
gl ° 2L - B=5T
5 o :
s -
o = |- Ll .
2 S R ]
3 = L T n
S : —
H 1
S| -
= ¢ EF | : -
(== < - n & Ak —
fl R 1i ! Sl : L3 £ W
m | ] P AALYL VY PALT IV Yoy,
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FIG. 3. Schematic drawing of the exciton relative wave function __ < ) i
[factorization(a) and full solution(b)] and original(solid) and av- P N N T N T B AR R T
eraged potentialdashedl as a functions of magnetic field. Energy  -24 -20 -16 -12 -8 -4 0
levels are also depicted. The arrows indicate the negative c.m. col Energy (meV)
tribution to the diamagnetic shift; the positive contribution from the
relative motion is not shown. FIG. 4. Absorption spectra calculated for two different magnetic

fields (solid O T, dashed 5 JTand for a single disorder realization

ization both contributions to the diamagnetic shift are over{(® (Gauss broadening of single line=0.1 meV) and averaged
estimated: The relative one proportionaktd) (not shownin  OVer 12 realizations of disordéh) (Gauss broadening of single line
Fig. 3 and the downshift of the c.m. energy. If full solution “~*° meV). Disorder strength in both cases =1.5 Eg.

and factorization agree without magnetic field, then also the ) _ N ) )
diamagnetic shift agrees. In other cagespending on local Here, the occupation of states enters in addition. Since higher

disordey, agreement is not to be expected. UnfortunatelyStates have lower occupation, the effect is weaker with re-
looking at the potential landscape it is not clear from theSPect to absorption spectra. Our simulations predict the wid-

beginning, to which extent the factorization and the full so-€Ning with magnetic field in accordance with experimént.
lution agree. The influence of the magnetic field on the WF’s can be

seen in Fig. 5. The correlation between c.m. and relative
) o o projection is observed again. A new feature is the correlation
B. Full solution: Localization and magnetic field between the diamagnetic shift and WF extension. The dia-
The change of the absorption spectra with magnetic fieldnagnetic shift for the three states is given in Figo)5As
is shown in Fig. 4. The first few localized states can bementioned above the relative part is affected proportionally
recognized unambiguously, and the diamagnetic shift can bt its extension{r2)), which is illustrated by the change of
read off easily from Fig. @). The changes of the oscillator p, values in Fig. 5, where the smallest change with magnetic
strengthM ,(B) with magnetic field can be extracted, too, but field is found for the ground state. In general, the diamag-
are marginal. The effects of the magnetic field on averagedetic shiftA , is inversely correlated to the relative measure
(over several disorder realizatiorepectrg Fig. 4(b)] are the  p,. The positive relative contribution(r?) is dominant. The
shift of the maximum and a widening since the diamagnetic.m. contribution is negative but not necessarily small in
shift A,(B) increases in average with energy(0). This av-  absolute value. Minor modifications of the relative part may
erage increase can also explain the changes in PL spectiaduce substantial modifications of the c.m. energy.
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40— T T T 2
0=1.61 @
20 0 =1.28 - 1.5
> 1
€ of - 2
N E
=1.34
¢ < 05
& -
0 O
Full 6,=1.5 E, B=0T R ~ O .
-40 1 1 1 ) -
-40 -20 X 0 20 40 0 1 | ! | ! | 1 | ] |
(nm) X3 28 24 20 -6 12
40 : : : Energy (meV)
b
@ FIG. 6. (Color onling The distribution of the diamagnetic shifts
i 0,~1.34 i at B=5 T calculated with the full solutiofifull symbolg and fac-
20 0,=1.66 torization (open symbolsfor different strengths of disorder.
4,=0.43
E ok ] diamagnetic shift be negative at all? We have not found a
> 0=1.41 rigorous answer yet.
A,=0.63
IV. CONCLUSIONS AND OUTLOOK
= & -
Exciton states in disordered quantum wells under the
Full =15 BosT presence of a perpendicular magnetic field are studied. The
-49¢ 2 2.:) ? 1 L WEF behavior is discussed in detail: The relative part of the

X(ﬂm) 20 40 WF is state dependent and shrunk in contrast to the state
independent picture in the factorization scheme. This shrink-
FIG. 5. (Color onling The probability densities of the center-of- age leads in turn to a more localized c.m. part. Therefore, the
mass projection of the total wave functions Eg8) calculated for  correct description of the diamagnetic shift requires to go
the energetically lowest three states of the full solution g  beyond the simple factorization ansatz.
=15Eg [(@ B=0T, (b) B=5 T] as contour plot¢Ref. 17. A grid The diamagnetic shift varies strongly among different lo-
step ofA=2 nm is used. The valugg, Eq. (19) are shown for each  calized states but a general trend exists. The WF properties
wave function. The diamagnetic shift,(B) in meV is given, also  are determined by the local potential only. The most local-
(without disorderp;s=1.123 andA;5=1.08 meV. ized states show the smallest diamagnetic shift. This correla-
tion allows an experimental investigation of the statistics of

Taking calculations for different realizations and disorderthe WF localization.

strengths, a statistics of the diamagnetic shift can be obtained From the application side a very important question
as shown in Fig. 6. The analysis is always performed onlyeVvolves: Is it possible to reconstruct local potential properties
for the first few tail states. The increase of the average diafrom the diamagnetic shift? The correlation between the dia-
magnetic shift with eigenenergy is obvious. The no-disordemagnetic shift and localization could be a way to access
case is marked as a star, and is properly positioned on tHgformation about the local potential landscape and therefore
trend line. The existence of the trend line for the diamagneti¢he underlying quantum structure. A clear statement makes
shift going through several disorder strengths is nontrivial. Inadditional investigations necessary, particularly with respect
the present case, value and shape of minima are mainly fixd@ long range potential correlations.

by the eigenenergy and depend much less on the global dis-
order strength. ACKNOWLEDGMENTS

Finally, we shortly comment on the differences between e acknowledge support from the DFG Graduiertenkol-
the full solution and the factorization regarding the d|amag-|eg 1025: “Grundlagen und Funktionalitit von gréRen- und

netic shift. The deviations increase with decreasing eige”erljrenzflachenbestimmten Materialien: Spin- und Optoelek-
ergy. This is well understood since highly localized states ar€qnik” and discussions with C. Ropers.

not properly described in the factorization. The state inde-

pendent relative WF in the factorization may even lead to APPENDIX: NUMERICS
negative diamagnetic shifts in very deep potential minima,
which is never observed in the full solution. Experimentally,
negative diamagnetic shifts have been observed only The linear optical susceptibilitjin the frequency domain
exceptionally* In theory, the basic question arises: Can theis considered at first

1. Method
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—— B=0T 1
--+- B=5T

X(@) = (ul[H = fiw+i0] ), (A1) B E

N 1s 5T

d
(rlw) =" 8lre=ri), (A2)

b. units)

T

where |u) represents an electron-hole excitation state fromS,
the semiconductor vacuum with interband dipole matrix ele- g

mentd,, and the simulation are@. The optical densitP(w) -g
Eq. (10) is defined as the imaginary part of the susceptibility £+ 1
2 10 15 20
D(w) = Im x(w). (3 & r(nm)
The efficient calculation of the eigenvalues and eigenfunc | 240K
tions of the full electron-hole Hamiltonian E) goes be- ST Y

yond the capability of any direct eigenvalue solver, even if -14  -12 -10 -8 -6 -4 -2 0

only the first few eigenstates are needed: Our standard ce Energy (meV)
culation is performed for 30 or 40 grid points for every co- . ) ) )
ordinate, which gives in totaN=30*=810.000 orN=40" FIG. 7. (Color onling Absorption spectra without disorder cal-

=2.560.000 pointgN being the matrix dimension Instead culated using the exact solution taking E#2) for all stateqsolid).

the susceptibility can be calculated using the time evolutior ©F the full solution, two simulation sizes are usdt: 30" (dotted
of the wave function andN=40* (dasheglwith a grid step of 4 nm. Inset: The probability

densities of the relative part of the total wave function ELB)

d . calculated for the 4 state of the full solutior(crosses and calcu-
iﬁd—t|\P(t)> =H|P(t), [¥(0)=|w), (A4)  lated exactly(line) for 0 T and 5 T(units in 10° nm2).
and performing the Fourier transformation with the projec- . (ot
tion of the wave functiodW(t)) onto |u) (r.R[W,) ~ | dr,R[W(t)eE e ™" (A10)
L In this way, however, only WF's of energetically well sepa-
xw) = gfo dte™ (W (1) ). (AS) " rated eigenstates can be obtained.

The quick and efficient implementation of the time evolution .

Eq. (A4) by the Leapfrog method proposed in Ref. 20 was 2. Implementation and tests

adopted. In order to handle the effects of finite time integra- The electron and hole confinement WEig(z,) Eq. (4)

tion in the Fourier transformation a small Gauss damping isyithout disorder are calculated numerically. Then, the Cou-

introduced* lomb averaging Eq.6) is performed and the factorized
. Schrédinger equatiofil2) is numerically solved! The WF
D(w) = Re} f dte—iwte—(at/ﬁ)2<q,(t)| ). (A6) ¢14(r ; B) obtained in this way is used twice: in the factoriza-
) tion approach and to generate the discretized Coulomb po-

tential for the full solution using the identity
The expansion of¥ (1)) into the eigenfunctiong¥',) of the

. . ﬁZ
Hamiltonian Eq.(5) (2—Ar)¢1s(f;0)
- iE Ve(r) = ————— + EJ(0), All
W0 =3 W) e, (A7) = o ‘EsO.  (ALD
as introduced by Glutscht al?® This method also handles
the Coulomb singularity at the origin. Two values of the grid

HexdW o) = Eo W) (A8) step were used: 4 nm and 2 nm. The Hamiltonian &gin
gives a Gauss broadened optical density @@) electron and hole coordinates is given by
1 (hw - E,)? H ——ﬁ—ZA —h—zA +ﬁ(r =Tp)?+ Ve(re) + Vi(ry)
D(w) = X M, == eXp(- e ) T oame am T B S T e
@ \N2mo 20° eB
= Ve(n) + ﬁiﬁ[(ye = Yn)dx, = (Xe = Xp)dy,|
Mo =(W ). (A9) 5
S~
Given the eigenenergy, the corresponding eigenfunction can + %'ﬁ[(ye_Yh)ﬂxh_ (Xe‘xh)ﬁyh]* (A12)
be extracted integrating over the time dependent WF in a n
second run which is implemented instead of E(p). The choice of elec-
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tron and hole coordinates is advantageous for a possible implotted in the inset of Fig. 7 demonstrate the good agreement
clusion of disorder from growth simulatiofis. as well.
The factorization ansatz Eq11) holds precisely in the
no-disorder case, which is used to test the full solution. The
only optically active state has a constant c.m. gdeiocal- 3. Disorder potential
ized). The absorption spectra plotted in Fig. 7 full and exact

. . o No explicit averaging of an underlying atomistic disorder
solution. Due to a combined effect of boundary conditions ' ; : :
and finite simulation size, the exact spectrum is not fuIIyby confinement WF'SRef. § is carried out. Instead Gauss-

reconstructed in the full solution. There is a small energ)}an distributed and spatially uncorrelated fluctuations of the

shift of the dominant peak and additional small peaks appeag.apv are generated, thus neglecting long range correlations:

Increasing the simulation size the satellite peaks move to- (V)=0, (V)= 5”(7%’ (A13)
wards the main peak.

In the presence of disorder the c.m. projection of the WF o : _ :
is localized and far less sensitive to the boundary conditions. Vei =0.6%, - Vi =035, (AL4)
Therefore, our implementation is suited for the disorder casevhere V; is a potential value on théh point of the two
(localized states dimensional grid. Electron and hole disorder is fully corre-

An important feature is the almost correct reconstructionated on the same site since it depends on the same local
in the full solution of the & exciton statdthe second eigen- quantum well width. We use here the same band offsets as
value E,¢ of Eq. (12) with eigenfunctione,(r)] since the for the quantum well potential barrier. Doing so, we neglect
potential is constructed only with thes WF. The diamag- the (mass dependentveraging by the confinement wave
netic shifts of the & and & excitons are also obtained cor- functions® This would lead to minor changes in the band
rectly with less than 3% error. The relative parts of WF's offsets(0.72 electrohand consequently in the results.
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