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Structural coherent control is used to design open semiconductor heterostructures whose intersubband ab-
sorption displays either single-slit or double-slit quantum interference. In this theoretical study we show that in
the “double-slit” structure, optical intersubband absorption of a light pulse can be modified by adjustment of
the phase of a control field. By careful choice of the steady-state subband population via charge transport
through the heterostructure, an incident pump pulse can either be amplified or attenuated. This coherent control
mechanism is absent in the “single-slit” structure. Our results and physical interpretation are based on a
microscopic self-consistent semiclassical theory of the light-matter interaction in semiconductors and the use of
a gauge which allows direct physical interpretation of the electron kinetic equations.
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I. INTRODUCTION

Over the past 25 years, design of semiconductor nano-
structures has been exploited for the benefit of a better physi-
cal understanding of mesoscopic effects in solids, on the one
hand, and technological advances on the other hand. Ex-
amples for the former are the physics associated with the
quasi-two-dimensionals2Dd electron gas, such as the frac-
tional quantum-Hall effect, or the properties of quantum
dots.1 Semiconductor nanostructures have been implemented
in semiconductor-basedsopto-d electronic devices. Some of
the show cases here are the families of quantum cascade and
quantum-dot based lasers.2 Thus the physics of nanostruc-
tured semiconductors has not only provided us with new
phenomena and a better understanding of matter but has also
rewarded us with new technology.

Since structural design on the nanoscale utilizes the wave
nature of the electron and resulting quantum-mechanical
confinement effects, it may be viewed as structural coherent
control. In parallel to this approach, electromagnetic coher-
ent control of semiconductors has been developed and dem-
onstrated. Originally applied to atomic and molecular sys-
tems, this form of coherent control is based on quantum
interference effects which are imposed on the quantum dy-
namics of a system by external electromagnetic fields.3 This
field has lead to a number of intriguing coherent control
phenomena, such as coherent slowing of light in a medium
and electromagnetically induced transparencysboth based on
the STIRAP principled, or coherent control of photocurrent
and exciton formation.4–8 Utilizing light polarization as an
additional degree of freedom, coherent control of spin-
polarized electric current has been proposed and demon-
strated in experiment.9 More recently, coherent control has
been demonstrated on quantum dots.10,11 It is well known,
that the ability of coherent manipulation of simple quantum
systems is one of the main prerequisites for quantum com-
putation and quantum information processing.12

The aim of the present paper is to analyze theoretically
the potential of using quantum interference effects to control
optical gain in semiconductor heterostructures. The micro-

scopic theoretical model, detailed in Sec. II, is based on
semiconductor Bloch equations which account for the
electron-electron interaction, the electron-phonon interac-
tion, charge transportstunnelingd between contacts and the
heterostructure, and the presence of external electromagnetic
fields. The latter are coupled to the charge carriers within the
dipole approximation and are treated self-consistently via
a simplified version of the slowly varying Maxwell
equations.13

The heterostructures considered here resemble the origi-
nal quantum cascade laser structures.2 and are open
GaAs/AlGaAs double well systems. By “structural engineer-
ing,” based on envelope-function calculations, the semicon-
ductor analogy to an optic single- and double-slit, respec-
tively, is designed, as is detailed in Sec. III.

In Sec. III A, the main part of this paper, we consider a
GaAs-AlGaAs-based open biased semiconductor double well
which is in contact with an emitter and a collector. It pro-
vides a three electron subband system which is subjected to
two external light fields. The “control” field resonantly
couples the two lower subbands, while a second light field,
the “probe” or “pump” field, couples this suband doublet to a
higher-lying electron subband. It will be shown that one can
manipulate absorption of the probe pulse in the “double-slit”
heterostructure by variation of the phase of the control field
and holding the time of arrival of the probe constant or,
alternatively, by shifting the time of arrival of the probe
pulse and holding the phase of the control field fixed. More-
over, charge transfer between the system and the contacts
may be used to achieve an initial population of the electronic
subbands such that electromagnetic gain is changed into loss
by changing the phase of the control field byp. This effect,
which is absent in the “single-slit” heterostructure which is
discussed in Sec. III B, can be explained as a quantum inter-
ference effect between pump and control field, mediated by
the charge carriers in the heterostructure. In Sec. IV, we pro-
vide a summary and discussion of our results.

II. THEORETICAL APPROACH

We use a semiclassical microscopic model to study the
self-consistent electromagnetic response of semiconductor
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nanostructures, wherein the electron dynamics is treated
quantum-mechanically and the electromagnetic field is
treated classically. The kinetic equations for the electrons in
the nanostructures, based on earlier work and now applied to
electronic intersubband transitions, and the equations for the
electromagnetic field are solved self-consistently. The ap-
proach is presented in three parts: the electronic structure
model for the heterostructure, the treatment of conduction
electrons in the presence of an external electromagnetic field,
and the treatment of the electromagnetic field.

A. Electronic structure within the envelope function approach

The electronic structure of GaAs-AlGaAs heterostructures
near the main band-gap is well accounted for within the en-
velope function approach.14 Our electronic structure calcula-
tion for a heterostructure, such as the GaAs-AlGaAs struc-
ture sketched in Fig. 1, is based on an envelope-function
approach which we developed to study Fano resonances in
multiple-quantum wells.15 It is based on the use of eight
“near” subbands and remote band effects.16 Since here we
are primarily interested in electronic subbands of the conduc-
tion band, heavy-, light-hole, and split-off bands are subse-
quently treated as remote bands.17 This leads to an effective
one-band model which accounts for the main nonparabolicity
effects in the lower conduction subbands, as well as a static
external electric field, when present. The effective
Schrödinger equation for conduction band electrons is of the
form

F d

dz
Saszd +

Pszd
Elszd − E

+
Pszd

2fEsszd − EgD d

dz
+ Ecszd − EGxszd

= 0.

z denotes the growth direction of the structure,a denotes
contributions to the inverse effective mass from remote
bands,Pszd is proportional to the momentum matrix element
betweens- andp-states,17 andEsszd ,Elszd, andEcszd are the
effective split-off, light-hole, and conduction band edge, re-
spectively. For the calculation of eigenvalues and eigenfunc-
tions sbound and scattering statesd, the heterostructure is
placed into a larger box beyond which the potential is as-

sumed to be constant. For given transversek-vector, we
evaluate the bound state eigenvalues of the system from the
characteristic polynomial. Bound state wave functions are
then calculated via a fourth-order Runge-Kutta method using
the previously computed eigenvalues. The latter are im-
proved iteratively so that bound-state wave functions show
the proper asymptotic behavior for largeuzu. In addition, scat-
tering states may be computed upon demand. Electronic
wave functions are used to compute the electric dipole mo-
ments which enter in the interaction Hamiltonian between
light and matter, as well as the induced electric polarization.

In the present paper we consider asymmetric double
wells, which we taylor so that one obtains, in the conduction
band, a subband singlet above a subband doublet. A sche-
matic representation of the system is given in Fig. 1. The
doublet consists of a lowers−d and an upper subbands+d
separated by typically 10 to 15 meV. With a typical singlet-
doublet splitting ofø150 meV, but larger than the optic pho-
non energy, nonparabolicity effects in the GaAs/AlGaAs
structure are weak and we may separate in-plane motion
from motion perpendicular to the interfaces by approximat-
ing the electron wave function as

Cknsr d =
1

2p
exphik · rjxnszd,

where k ,r, and xnszd denote the in-planek-vector, the in-
plane position vectorsx,yd, and the subband wave function,
respectively. Structural details of multiple heterointerfaces
which lead to such an electronic structure and desirable val-
ues of dipole matrix elements are given in Sec. III.

For the representation of matrix elements which charac-
terize the electron-electronse-ed and electron-phononse-pd
interaction it turns out that it is useful to transform between
the unl= u−l / u+l eigenstate basis and the left-right-well basis
uLl / uRl associated with the doublet subband of the double
well. Hence we also compute the ground state wave function
for each individual wellL andR, respectively, and compute
the overlaps between thehu+l , u−lj and huLl , uRlj basis.

B. Coherent carrier dynamics

The Hamiltonian which governs the electron dynamics in
the heterostructure,

H = Ho + HI + H8std,

consists of three main parts.Ho=oaeaskdbak
† bak is the free

particle Hamiltonian. Its eigenvalueseaskd are computed
within an envelope function approach, as detailed above.bak

†

andbbk denote one-electron creation and annihilation opera-
tors.HI is the particle-particle interaction Hamiltonian which
accounts for the electron-electron interaction,

Hc =
1

2 o
abgd

o
qkk8

vabgd
scd sqdbak+q

† bbk8−q
† bdk8bgk , s1d

and electron-phonon Coulomb interaction,

FIG. 1. sColor onlined Sketch of the open double-well hetero-
structure. Effective potential profile of the heterostructure is indi-
cated by the dashed line. Solid horizontal lines indicate position of
subband minima of the subband doubletsu± ld and singletsuSld.
Vertical arrows indicate control and pump fields.
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Hep= o
akbqs

fab
ssdsqdbak+q

† bbk

= o
akbqsm

Mab
ssmdsqdbak+q

† bbkscsq + css−qd
† d . s2d

csq
† and csq denote the single phonon operators. Single-

particle labelssa ,kd ,ss ,qd account for discrete as well as
continuous quantum numbers, allowing the description of
homogeneous multiband systems.m denotes the type of cou-
pling between lattice ions and valence electrons. We only
consider the polar-optic coupling mode which dominates on
the short time scale in which we are interested here. Our
treatment of the polar-optic electron-phonon coupling
Mab

ssmdsqd is based on a model developed by Ridley and co-
workers for semiconductor heterostructures.18 In the result-
ing scattering rates, which were obtained within second order
in the electron-phonon coupling, we neglect pure polariza-
tion scattering between doublet and singlet states, but include
polarization scattering within the doublet, to account for the
possibility of strong electromagnetic driving between the two
doublet subbands. We work in the left-right-basis of the dou-
blet subbands.

H8std is the Hamiltonian for the coupling to the external
fields. Here, the external electric field is treated as a classical
field, with details given in the next section. Hence, bothHo
and H8 are single-electron Hamiltonians andHI contains
many-body contributions.

There are a number of theoretical approaches, such as the
density matrix formalism, the nonequilibrium Green’s func-
tion approach, and the projection operator method, to derive
kinetic electron equations for a subsytem, such as the semi-
conductor electrons in the present case.19–21 Usually one
makes approximations when dealing with two-particle inter-
actions to simplify this complex many-body problem. As we
have shown in earlier work, the kinetic equations used for
this study may be derived either within the Keldysh nonequi-
librium Green’s function approach or within the density ma-
trix approach.22,23

Within the one-particle density matrix approach, the time-
evolution of the density matrix elements,

fabstd ; kba
†stdbbstdl,

with k¯l denoting the equilibrium ensemble average, is ob-
tained from repeated application of Heisenberg’s equation of
motion and a truncation scheme based on the theory of
cumulants.24,25Here, the direct contributions ofHo andH8 to
the kinetic equations are treated exactly. The electron-
electron and electron-phonon interaction are treated within
second order and a Markov approximation.22,26The electron-
electron interaction contributes both mean-field corrections
to the single-particle energies, as well as scattering terms.
Since we deal with low carrier densities and moderately
short time scales, we use simple staticsDebye-Hückeld
screening. The electron-phonon interaction gives rise to ad-
ditional scattering terms in which we neglect coherent pho-
non effects settingkcsql=0. Upon demand, more sophisti-
cated models may readily be developed within this approach.

For a recent review of the density matrix approach in the
present context see, for example, Ref.19.

Equivalently, the kinetic equations used here may be de-
rived within the Keldysh formalism, as detailed elsewhere.22

Starting from the Dyson equation for the single-electron
ssingle-particled Green’s function with time-ordering opera-
tor T,

Gst,t8d ;
1

i"
kTbastdbb

†st8dl,

one employs the standard gradient expansion in time for con-
tributions from the many-body interactions, uses a general-
ized Kadanoff-Baym Ansatz to make contact to density ma-
trix elements,27 and uses thesscreenedd Hartree-Fock
approximation to self-energy contributions from many-body
interactions. This approach is particularly suited for more
sophisticated approximation schemes and has been used
widely in the recent literature.21,28

Avoiding all details of the derivation we simply state that
the resulting kinetic equations used for the present study
have a Boltzmann-Bloch-type structure. They represent a set
of Markovian first-order nonlinear differential equations in
the one-particle density matrix elements which have the
structure

d

dt
fabstd = Fabshfgdstdjd.

Nonlinearity arises from the many-body interactions, as
well as a self-consistent treatment of the electromagnetic
field. In the low to moderate density limit, terms of up to
third order in fgd enter in these equations. They capture the
main effects of coherent dynamics on an intermediate time-
scale where scattering and screening processes may be con-
sidered essentially as complete but coherence is still present
on the effective one-particle level.

The key feature displayed by the kinetic equations is the
fact that, unlike in the classical regimeslong-time limitd,
neither the state of the system nor its dynamics are deter-
mined by the population of selected “pointer states” repre-
sented by diagonal elements of the density matrix, alone, but
also by interband polarizations. These interband polariza-
tions, represented by off-diagonal density matrix elements in
some pointer-state basis can have equal importance com-
pared to the diagonal density matrix elements in the presence
of strong external perturbations. This is the key to coherent
manipulation of transition rates by quantum interference.
Thus, a physical system prepared and driven in the quantum-
coherent regime offers significantly more “control knobs” for
manipulation than when a system is driven in the classical
regime. In the latter case, state and response of the system is
determined by the diagonal elements of the density matrix
when using a suitable basis. Whether an open electronic sys-
tem is in its classical or quantum regime depends on the
time-scale of operation, as well as the perturbations applied.
Clearly, for predominantly quantum behavior one needs to
operate on a time scale at or below characteristic decay times
for off-diagonal density matrix elementssassociated with so-
called “cat states”d, whereby off-diagonal again refers to a
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basis of pointer states, i.e., stationary states into which the
system is driven through its interaction with the environ-
ment, such as a phonon system or contact leads, as in the
present situation.29

In the present work we consider open double-well struc-
tures similar to the ones used in quantum-cascade laser
structures.2 We treat electron tunneling between the outer
barriers and the two contact regions, emitter and collector,
within rate equations of the structure30

dfa,ask,td
dt

=
1

ta

sfa,ask,td − fCsk,tdd.

fCsk,td denotes the Fermi-Dirac distribution function as-
sociated with reservoirC, here a “contact” in form of an
emitter to the left of the double well and a collector to the
right of the double well. The characteristic tunnel times
for the subbands a= + ,−,S are given by ta

−1

=s2/"2gC−aduMC−au2, whereMC−a is the hopping matrix el-
ement between contactC and subbanda. gC−a is the rate of
“memory loss” associated with contactC used in the Markov
approximation. Tunnel times are treated as adjustable param-
eters. Their values are given in Table I.

The amount ofssteady-stated electric current through the
system is determined by the barrier propertiesstunnelling
rated, density of states in thesideal Ohmicd contacts, the po-
sition of the two quasi-Fermi levels, and the intrinsic prop-
erties of the heterostructure, in particular its phonon intersub-
band scattering rates. All this, of course, has been utilized
extensively in the design of quantum cascade lasers, demon-
strating that a high level of structural design capabilities has
been obtained.

C. Self-consistent treatment of and coupling to classical
electromagnetic fields

A self-consistent treatment of the light-matter interaction
requires that the dynamics of the electromagnetic field is
solved in parallel to the kinetic equations which govern the
time evolution of the electrons. Here we choose a classical
description of the light field, i.e., we start from Maxwell’s
macroscopic equations, which, in the absence of free charges
may be written as inhomogeneous wave equations.31 For the
electric field one obtains

S− ¹2 +
me

c2

]2

]2t
DE +

4pm

c2

]

]t
j = −

4pm

c2

]2

]2t
P + 4p ¹ S¹

P

e
D .

The electric polarization

P = qkr l = q Trhrr j = qo
a,b

kaur ublfba,

describes the macroscopic response of the medium to the
applied electric field and acts as a driving term in the elec-
tromagnetic equations. It provides the link to the electrons.
The Ohmic loss term containing the current densityj will be
neglected below.

Since we are concerned with laser light with distinctly
different characteristic center frequencies, we make the
slowly varying envelope approximation for each such com-
ponent of center frequencyv sRef. 13d,

Esr ,td = Esr ,td+ + Esr ,td−,

where

Esr ,td± =
1

2
ê ·Eosr ,tde7iFsr ,tde±iskr −vtd,

whereEosr ,td andFsr ,td are real functions, slowly varying
in position and time. The unit vectorê determines the state of
polarization.P is given the same treatment, however, its en-
velopePosr ,td will, in general, be complex, accounting for a
phase difference between electric field and polarization.

The slowly varying Maxwell equations may be cast in the
form

Ssk̂ · ¹ d +
1

c

]

]t
DEo = −

k

2eeo
ImhPoj

and

EoSsk̂ · ¹ d +
1

c

]

]t
DF = −

k

2eeo
RehPoj,

where k̂ denotes the unit vector in the direction of wave
propagation. Here we have neglected spatial variations of
both electric field and polarization in the transverse direction,
i.e., we ignore details in the mode structure due to the pres-
ence of the heterostructure since we are primarily interested
in an account of the frequency response of the heterostruc-
ture. Some aspects of electromagnetic modes in heterostruc-
tures have been discussed in the literature.32

The electromagnetic fields enter in the electron Hamilton
operator via electromagnetic potentialsAsR ,td and fsR ,td
and the minimum coupling procedure

HosP,Rd → H = HoSP −
q

c
AsR,tdD + qfsR,td.

Here, we start out using the transverse gauge¹ ·A =0,
which in the absence of free charges givesf=0. Further-

TABLE I. Properties of the “single- and double-slit” heterostructures.«−,«+, and«s are the position of subband minima.t± andts are the
tunneling times.d−s,d+s, andd−+, are dipole matrix elements.Imw is the average microwave intensity.emw is the central photon energy of the
control field.

Structure «− «+ «s t± ts d−s/e d+s/e d−+/e Imw emw

“Single slit” −6 meV 6 meV 70 meV 1 ps 1 ps −0.06 nm −3.5 nm −5.2 nm<1 kW/cm−2 13 meV

“Double slit” −6 meV 6 meV 87 meV 1 ps 1 ps 2.0 nm −1.8 nm −3.4 nm<1 kW/cm−2 12 meV
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more, the dipole approximationfk ·kRl!1g is well justified
for the present study. In lowest order one hasAsR ,td
<Astd sandB<0d, which we use here since we neglect the
coupling to magnetic fields. The electric field is given by

EsR,td = −
1

c

]AsR,td
]t

< −
1

c

]Astd
]t

,

We choose the Göppert-Mayer gauge transformation,33

LsR ,td=−R ·Astd, such that we obtain

H → H8 =
P2

2m
+

q

c
R · Ȧ =

P2

2m
− d ·Estd.

The advantages of this gauge for the present kinetic equa-
tions are discussed in the Appendix. In summary and com-
pared to the original form of the electron Hamiltonian, they

are thatA =0,f=s1/cdR ·Ȧ, the kinetic momentum is equal
to the canonical momentum, anysrestrictedd gauge transfor-
mation L=Lstd is global, and density matrix equations be-
come gauge-independent since

F ]Lstd
]t

,rG = 0.

Furthermore,r8=r , fa,b8 = fa,b= fa8,b8
8 , where prime de-

notes gauge transformed quantities. Furthermore,A2-terms
are included. Since in this gaugeHo eigenstates are eigen-
states of a gauge-invariant Hamiltonian, density matrix ele-
ments in this basis can be given direct physical interpreta-
tion. This feature is important here, since we need the
electron polarization to solve the slowly varying Maxwell
equations.

The interaction of the electrons in a semiconductor het-
erostructure with the total electric field arising from incident
laser light may now be cast in the form

He−g = o
a,b

Da,bba
†bb, s3d

with the matrix elements

Da,b = kaueRubl ·Estd.

Thus we do not invoke the rotating-wave approximation
and allow dipole coupling between any pairs of energy lev-
els. Dipole matrix elements are computed from the wave
functions obtained within thek·P electron structure model.
They may be chosen as real quantities. Since the heterostruc-
tures under investigation here do not display inversion sym-
metry, the electric field also leads to diagonal coupling con-
tributions in the form of static and dynamic Stark shifts. In a
classical treatment of light fields, as employed here, electro-
magnetic field operators contained linearly inEstd are re-
placed by expectation values

ak,s → kak,sl = Fk,se−ifk,s.

III. COHERENT MANIPULATION
OF OPTICAL GAIN

The physical situation addressed in this paper is sketched
in Fig. 1, showing an asymmetric double well which pro-

vides a conduction subband doublets±, where the minussign
denotes the lower and the plussign denotes the upper sub-
bandd and a higher-lying conduction subband singletsSd. The
doublet is driven resonantly by a control field in the micro-
wave smwd range. Electrons may enter or leave the double
well via tunneling into adjacent reservoirs. In particular, the
upper singlet subband couples exclusively to the left reser-
voir semitterd, the lower doublet couples to the right reser-
voir scollectord. This selection may be achieved by proper
design of the density of states in the contact regions.2 An
electric bias is applied to the device so that there is a small
net electric current through the double well so that, in the
steady state and in the presence of the mw field, the desired
population of subbands is achieved. In this steady state situ-
ation, a short pump pulse is sent into the structure. It couples
the doublet subbands to the singlet. We shall show that, for
fixed intensities of both mw and pump field, one can control
the degree of absorption of the pump by either changing the
phase of the control field and fixed time of arrival of the
pump pulse or, equivalently, by holding the phase of the
control field fixed and using the time of arrival of the probe
pulse as control knob. By proper design and biasing of the
structure, the relative phase between a control field and the
time of arrival of the pump pulse determine whether one
achieves net absorption or gain, as will be demonstrated be-
low. Hence, by changing the relative phase of the control
field one can switch between absorption and gain, i.e., con-
trol the electromagnetic properties of this semiconductor-
based “phaseonium.”34

The basic operation principle is quantum interference be-
tween absorption from subband − to the singlet subbandS
and subband + to singlet subbandS which arises from the
light-matter interaction, Eq.s3d. Within the density matrix
formalism, the time-evolution arising from this coupling is

ui" ḟ abue−gsk,td = o
a

fDbastdfaask,td − Daastdfabsk,tdg.

Here, a, b, and a denote single-particle subband states
and we use the dipole matrix elements, as well as electric
fields, as real quantities. Considering the rate of change of
the singlet subband stateS, one obtains

u ḟSSue−gsk,td =
2

"2o
ab
E

to

t

dt8fDSastdDbSst8dRehfbask,t8dj

3s1 − dabfSSsk,t8dd − DSastdDabst8d

3RehfSbsk,t8djs1 − dbSfaask,t8ddg, s4d

with the first and second contribution in this non-Markovian
relation accounting for absorption into and emission out
of the singlet subband. There are, for the present system,
three absorption contributions with the factors
DS−stdD−Sst8dRehf−−j ,DS+stdD+Sst8dRehf++j, and
2DS+stdD−Sst8dRehf−+j. In the absence of the probespumpd
field, the steady-state population of the doublet is determined
sself-consistentlyd by the charge transport through the system
and the action of the control field. Hence, the “control knob”
offered in these terms is the manipulation of Rehf−+j, which
is driven directly by the control field. Its effectiveness relies
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on two assumptions:sad that one has control over magnitude
and phase of Rehf−+j for the duration of the experiment and
sbd that DS− andDS+ are of comparable strength. The latter,
of course, is analogous to the condition of “identical slits” in
Young’s original optical version of the experiment.

Condition sad requires that the electromagnetic control
field can imprint its magnitude and phase uponf−+ and that
f−+ is of a magnitude comparable tof−− and f++. This can be
achieved by an electromagnetic field which is resonant to the
+−− subband splitting, has a well-defined phase relative to
some time of reference, such as the time of arrival of the
pump pulse, and must be sufficiently strong to overcome
decay of nonequilibrium interband polarizationf−+ induced
by many-body interactions. Here we propose the use of a dc
microwave smwd field which is ideal for this purpose be-
cause it maintains a periodic oscillation of the doublet polar-
ization f−+ without direct influence on the total population of
the subband. Interband oscillations can also be induced by
short pump pulses which couple valence subbands to the
conduction band doublet and induce coherent charge
oscillations.35 Disadvantages here are that the interband
pump pulse changes the doublet occupancy and that the in-
duced doublet polarizationf−+ decays due to many-body ef-
fects and structural dephasing. Nevertheless, this method has
been adopted with some success in a recent absorption
experiment.8 Related control schemes have been proposed
based on theoretical analysis.36

Condition sbd concerns structural properties of the nano-
structure. We have used the envelope-function-based elec-
tronic structure code which we summarized above, to design
an example of a double well which is the electron analogon
to a “single slit” in optics, as well as one which corresponds
to a double slit. The “single-slit” heterostructure, shown in
Fig. 2, consists of a Ga0.75Al0.25As barrier layer, followed by
a 12 nm GaAs layersleft welld, a 1.5 nm Ga0.076Al0.024As
barrier, a 8 nm GaAs layer forming the right well, and a
Ga0.75Al0.25As barrier. The “double-slit” heterostructure,

shown in Fig. 3, consists of a Ga0.75Al0.25As barrier region,
followed by a 10 nm GaAs layer, forming the bottom of the
left well, a 3.0 nm Ga0.086Al0.014As barrier, a 7 nm GaAs
layer, forming the bottom of the right well, and a
Ga0.75Al0.25As barrier region. The one-electron potential pro-
file, position of subband minima and the shape of transverse
wave functionsxn ,n=−, + ,S are depicted in Figs. 2 and 3.
The main additional characteristics of the two structures are
given in Table I. The key difference in the two structures is
that the dipole matrix elementsd−s and d+s are of similar
magnitude for structure IIs“double slit”d, while d−s!d+s for
structure Is“single slit”d.

Inspection of Eq.s4d also shows that control off−+ pro-
vides the most efficient means to control quantum interfer-
ence on the 100 fs time scale. For example, changing the
phase of the pump field, while holding its time of arrival and
the phase of the control field fixed, will not have a significant
influence on the absorption process, as defined by electro-
magnetically induced changes of the population of the sin-
glet subband. This is due to the rapid oscillations of thefS±
oscillations compared to pump pulse duration and control
field period. Therefore, the key parameters for coherent con-
trol on the 100 fs time scale are the phase of the control field
fc and the time of arrival of the pump pulse. Success of the
proposed control is therefore based on individual control
over these two physical quantities. Phase locking between
control and pump field is not critical. Furthermore, the pump
pulse duration should not coincide with an integer multiple
of the period of oscillation of the control field. Here, we will
consider pump pulse durations which are less than one-half
of the period off−+. However, pump pulse durations which
are close to odd multiples of one-half of thef−+ period lead
to similar effects.

For both structures we study the following system dynam-
ics. At t=−5 ps a control field which is resonant with the
doublet splitting is turned on, with a risetime of 50 fs to full

FIG. 2. sColor onlined Structure 1. Effective potential profile of
the “single-slit” heterostructure. Dashed horizontal lines indicate
position of subband minima of the subband doublet and singlet.
Also shown are the corresponding wave functionszaszd.

FIG. 3. sColor onlined Structure 2. Effective potential profile of
the “double-slit” heterostructure. Dashed horizontal lines indicate
position of subband minima of the subband doublet and singlet.
Also shown are the corresponding wave functionszaszd.
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intensity of about 1 kW/cm2 and the system is allowed to
relax into its new steady state in the presence of carrier tun-
neling, electron-electron, and electron- phonon interaction.
Tunnel rates and position of quasi-Fermi-levels are selected
to give the desired population of subbands. The background
temperature is set to 10 K. Its detailed value, however, has
little influence on our results regarding phase sensitivity.
Then, peaked att=0, a 100 fs pump pulse arrives and
couples subband doublet states to the singlet states. Here the
detuning is set half-way between the doublet subband and
the singlet. This situation is studied for different phases of
the control field and for both heterostructures.

A. The “double-slit” heterostructure

From the near equal size of the dipole matrix elementsd−s
and d+s and based on Eq.s4d we expect sensitivity of elec-
tromagnetic absorption of the pump pulse to the phase of the
control field. Figures 4 and 5 show the population of the left
well, the right well, subbandS, and the doublet subbands +
and − for control-field phasefc=0.75p and 1.75p for struc-
ture 2, respectively.

The figures show that the control field drives coherent
charge oscillations between left and right well, while popu-
lation of the subbands −,+, andS are almost constant, re-
spectively, at about 0.55Ã1010 cm−2,0.45Ã1010 cm−2, and
0.50Ã1010 cm−2. Based on this subband population one
would expect electromagnetic loss arising from the subband
− to subbandS transition and gain from the subband + to
subbandS transition if the two doublet subbands acted inde-
pendently sincoherentlyd from one another. However, the
control field establishes coherence between the two doublet
subbands. The steady-state subband population is not af-
fected by the phase of the control field. However, it can be
seen that the phase of the control field determines the phase
of f−+ oscillations. Upon arrival of the pump pulse and de-

pending on the control field phase, there is either a net charge
transfer from subbandS to the doublet or from the subband
doublet to S. Subsequently, the system relaxes back into
steady state. In the present situation,fc=fo<0.75p gives
optimum gain, andfc<1.75p=fo+p gives optimum ab-
sorption. These specific values forfo arise from the func-
tional form chosen for the control field, including its turn-on
time and intensity, and the time of arrival of the probe pulse.
Equally well one could consider a situation of fixed phase of
the control field and a variation of the time of arrival of the
pump pulse.

Figure 6 shows the magnitudes of intersubband polariza-
tions sper aread in the uLl , uRl, and uSl basis. It shows that,
while pump-pulse-induced intersubband polarizations in-

FIG. 4. sColor onlined Structure 2. Subband population versus
time. Relative phase between pump and control field,fc=0.75p.
NL, population of left well; NR, population of right well; NS, sin-
glet population;N+, population of subband +;N−, population of
subband −.

FIG. 5. sColor onlined Structure 2. Subband population versus
time. Relative phase between pump and control field,fc=1.75p.
NL, population of left well; NR, population of right well; NS, sin-
glet population;N+, population of subband +;N−, population of
subband −.

FIG. 6. sColor onlined Structure 2. Absolute value of the inter-
band polarizationsspd between subband statesL, R, andS for rela-
tive phasefc=0.75 and 1.75 versus time.
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volving subbandS decay on a time scale of a few picosec-
onds, theuLl− uRl intersubband polarization pLR is driven by
the control field and oscillates around an average value of
about 0.07Ã10 cm−2 with a period of about 400 fs. More-
over, the phase difference in the control field causes an equal
amount of phase shift in the integrated interband polarization
pLR. This phase shift, essentially, accounts for the observed
effect, as shown in Eq.s4d.

Further details regarding the dependence of absorption on
the phase of the control field can be obtained from Figs. 7
and 8, showing the singlet subband occupancy versus time.
Figure 7 displays this evolution accounting for all processes
and shows that in the intervalf<0.75,<0.75+pg one can

switch between strongest gain to strongest absorption. Figure
8 shows the singlet subband occupancy versus time purely
under the influence of the self-consistent electromagnetic
field, i. e., subtracting out the tunneling and scattering con-
tributions.

A complementary and more direct description of the ab-
sorption process is obtained by analysis of the induced elec-
tromagnetic field. Figure 9 shows the spectral composition
smagnituded of the induced electric field versus energy for
eight different values of the phase of the control field. We
have subjected the raw data to a Lorentzian broadening with
width w=3 meV, in an attempt to account for structural in-
homogeneities which are to be expected in real heterostruc-
tures. The two resonances, as well as their phase sensitivity
is clearly demonstrated in the light spectrum which may
serve for experimental verification of the effects under dis-
cussion. Further details of the electromagnetic properties of
heterostructure plus control fields“phaseonium”d can be ob-
tained in Figs. 10 and 11, displaying real and imaginary part
of the induced polarization versus energy for 0.75p and
1.75p, respectively. Since the spectrum of the 100 fs pump
pulse is relatively uniform over the energy regime displayed
here, this essentially corresponds to a display of the electric
susceptibility. Here we show the raw data obtained from our
calculation. Considering control field phasefc=0.75p, we
see that the transition between + andS subband displays an
ordinary antiresonancesnegative imaginary partd leading to
net gain in this frequency domain. It corresponds to the high
peak at around 83 meV in Fig. 9 for phasefc=0.75p. The −
to S transition displays an interference in form of a
resonance/antiresonance feature in which the imaginary part
of the polarization switches sign, similar to features in
atomic three-level systemss“atom-based phaseonium”d.34

For control field phasefc=1.75p the situation is reversed.
Here, the lower energy + toS intersubband transition shows
the interference feature and the − toS intersubband transition

FIG. 7. sColor onlined Structure 2. SubbandSpopulation versus
time for various values of the phase of the dc control fieldfc

between zero and 2p and fixed phase of the pump pulse.

FIG. 8. sColor onlined Structure 2. SubbandSpopulation versus
time due to the presence of the electromagnetic field for various
values of the phase of the controlsmwd field fc between zero and
2p and fixed phase of the pump pulse.

FIG. 9. sColor onlined Structure 2. Spectrum of the induced
electromagnetic field for various values of the phase of the control
smwd field fc between zero and 2p and fixed phase of the pump
pulse.
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shows an ordinary resonance, leading to the strong absorp-
tion peak at about 94 meV in Fig. 9 for phasefc=1.75p.

Due to the selected structure, decay of intersubband po-
larization is dominated by the electron-electron Coulomb in-
teraction. Moderate total carrier densities of about
1.5Ã1010 cm−2 and small tunneling rates into and out of the
structure minimize dissipative effects. However, the present
effect survives at total carrier densities of about
1.0Ã1011 cm−2. In the present configuration, the electron-
electronse-ed scattering between the doublet states is found
to be the main agent which hurts phase coherence. For the
present system,e-e scattering contributions reduce the am-
plitude of f−+ oscillations by less than 10% compared to a
puree-e mean-field calculation. The main difference to cal-
culations done within the mean-field approximation to the

e-e interactionsand all other parameters the samed is a some-
what different steady-state population of the subbands. It
arises, to a minor extent, from directe-e intersubband scat-
tering and, predominantly, frome-e intrasubband scattering
which, by washing out population peaks, leads to modified
electron-phonon scattering rates. The polar-optical electron-
phonon interaction, of course, has a strong influence on sub-
band population. Computed singlet to doublet transfer rates
are on the order of a picosecond. This interssubband transfer,
on average, is compensated by the applied bias and tunneling
to give the desired steady-state subband occupation. How-
ever, due to the small doublet splitting and low temperatures,
the latter prohibiting optical phonon absorption, the “control
knob” in form of the intersubband polarizationf−+ is not
affected on the time scale considered here.

B. The “single-slit” heterostructure

The “single-slit” heterostructuresstructure 1d is designed
to have unequal dipole moments,d−s=−0.06e-nm andd−s
=−3.5e-nm. Furthermore,d−+=−5.2 nm. Therefore, there is
essentially only one pathway from the doublet subband to the
upper singlet subband and thef−+ interference term is weak.
Based on Eq.s4d we do not expect significant phase sensi-
tivity in spite of the relatively large value ford−+.

Figures 12 and 13 show the population of the left well, the
right well, subbandS, and the doublet subbands + and − for
control-field phase 0.75p and 1.75p for structure 1, respec-
tively. In the steady state reached prior to the the arrival
of the pump pulse, population of the subbands −,+, andS,
respectively, are near constant at 0.57Ã1010 cm−2,
0.45Ã1010 cm−2, and 0.50Ã1010 cm−2. Figure 14 shows the
magnitude of intersubband polarizationssper aread in the
uLl , uRl, anduSl basis for structure 1. These figures show that,
while, the control field drives coherent charge oscillations
between left and right well just as in case of structure 2, there

FIG. 10. sColor onlined Structure 2. Real and imaginary part of
the induced electric polarization versus energy. Relative phasefc

between control field and pump pulse is 0.75p.

FIG. 11. sColor onlined Structure 2. Real and imaginary part of
the induced electric polarization versus energy. Relative phasefc

between control field and pump pulse is 1.75p.

FIG. 12. sColor onlined Structure 1. Subband population versus
time. Relative phase between pump and control field,fc=0.75p.
NL, population of left well; NR, population of right well; NS, sin-
glet population;N+, population of subband +;N−, population of
subband −.
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is net charge transfer from subbandS to the doublet, into the
+ subband, for both phases. Hence there is net gain in both
cases as one would expect from the initial steady state popu-
lation of the three subbands.

Similar to the case of structure 2, Fig. 14 shows that,
while intersubband polarizations involvingSdecay on a time
scale of a few picoseconds, theuLl− uRl intersubband polar-
ization pLR is driven by the control field and oscillates about
a value of about 0.07Ã10 cm−2 with a period of about 400
fs. Again, the phase difference in the control field causes an
equal amount of phase shift in pLR. However, in the present
case, this phase shift is rather ineffective in modifying the
absorption of the pump pulse. This is demonstrated in more
detail in Figs. 15 and 16, showing the singlet subband occu-

pancy versus time. Figure 15, displaying this evolution when
accounting for all interaction processes, shows merely slight
variation in subband population as the phase of the control
field is varied. Figure 16 shows the singlet subband occu-
pancy versus time, isolating the influence of thesself-
consistentd electromagnetic field.

Figure 17 shows the spectral decompositionsmagnituded
of the induced electric field versus energy for eight different
values of the phase of the control field for the “single-slit”
heterostructure. Again, we subjected the raw data of a
Lorentzian broadening of a width of 3 meV to qualitatively
account for structural inhomogeneities which may be present
in a real structure. The appearance of a single resonance, as
well as the modest dependence on the phase of the control
field is evident.

FIG. 13. sColor onlined Structure 2. Subband population versus
time. Relative phase between pump and control field,fc=1.75p.
NL, population of left well; NR, population of right well; NS, sin-
glet population;N+, population of subband +;N−, population of
subband −.

FIG. 14. sColor onlined Structure 2. Absolute value of the inter-
band polarizationsspd between subband statesL, R, andS for rela-
tive phasefc=0.75 and 1.75 versus time.

FIG. 15. sColor onlined Structure 1. SubbandS population ver-
sus time for various values of the phase of the dc control fieldfc

between zero and 2p and fixed phase of the pump pulse.

FIG. 16. sColor onlined Structure 1. SubbandS population ver-
sus time due to the presence of the electromagnetic field for various
values of the phase of the control fieldfc between zero and 2p and
fixed phase of the pump pulse.
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Further details of the electromagnetic properties of het-
erostructure plus control fields“phaseonium”d can be ob-
tained in Figs. 18 and 19, displaying the real and imaginary
part of the induced polarization versus energy for 0.75p and
1.75p, respectively. Again, we show the raw data for the
electromagnetic polarization. Both for phase 0.75p and
1.75p, we find that essentially only the transition between
the + andS subband contributes to the induced electric po-
larization, displaying an ordinary antiresonancesnegative
imaginary part of the electromagnetic polarizationd leading
to net electromagnetic gain.

IV. SUMMARY AND CONCLUSIONS

Using a microscopic model for the coherent electron dy-
namics in semiconductor heterostructures, in conjunction
with a semiclassical model for their electromagnetic re-
sponse, we have presented an analysis of two semiconductor
heterostructures which provide an analogon to an optical

double and single slit, respectively. On the basis of an enve-
lope calculation, we have shown that electronic structure and
electric dipole matrix elements of the electron subbands in
semiconductor double wells can be engineered to give the
desired realization, utilizing “structural coherent control” in
the design. In both cases, there is a lower subband doublet
and a distant doublet singlet which communicate with oppo-
site contact regions. Two electromagnetic fields, one control
field and one pump field, are then used to study “electromag-
netic coherent control.” The dc control field resonantly
couples the lower subband doublet of the structure which, in
turn is coupled resonantly to an upper singlet subband via a
pulsed pump field. In the “double-slit” heterostructuresstruc-
ture 2d, our calculations predict that the phase of the control
field srelative to the time of arrival of the pump pulsed pro-
vides an effective control mechanism for the absorption
properties of the heterostructure. In particular, we have
shown that, via a double-slit-like interference mechanism,
optical absorption can be switched to optical gain and vice
versa. Within the kinetic equations for the electrons, this ef-
fect is accounted for via a third transition channel between
the singlet subband and the two doublet subbands which is
opened when there is intersubband coherence within the dou-
blet. It provides a channel in addition to the direct transition
channels between the two doublet and the singlet subbands.
It is effective, when the dipole momentsd−s and d+s are of
the same order of magnitude, as is the case for structure 2.
Moreover, magnitude and phase of the control field allows
control over this channel. It determines the resonance struc-
ture of the induced electric polarization, in particular, the
location of a quantum-interference-induced double-
resonance feature. To confirm this interpretation of this co-
herent control mechanism, these findings were compared
with those for a “single-slit” heterostructuresstructure 1d, for
which d−s!d+s was designed and where those featured are
shown to be missing.

The microscopic interpretation via the kinetic equations
shows that the predicted effects are governed predominantly

FIG. 17. sColor onlined Structure 1. Spectrum of the induced
electromagnetic field for various values of the phase of the control
field fc between zero and 2p and fixed phase of the pump pulse.

FIG. 18. sColor onlined Structure 1. Real and imaginary part of
the induced electric polarization versus energy. Relative phasefc

between control field and pump pulse is 0.75p.

FIG. 19. sColor onlined Structure 2. Real and imaginary part of
the induced electric polarization versus energy. Relative phasefc

between control field and pump pulse is 1.75p.
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by the phase of the control field driving the intersubband
polarization f−+ and the time of arrival of the pump pulse.
The same effects can be achieved for fixed phase of the
control field by variation of the time of arrival of the pump
pulse. If one holds fixed the phase of the control field and the
time of arrival of the pump pulse but varies the phase of the
pump pulse, net absorption as measured, for example, by the
population change in the singlet subband is practically not
affected. The induced electric field, however, has been found
to vary in its spectral composition. Furthermore, the pump
pulse duration, which in the present study was about one-
quarter of the period of the induced oscillation off−+ is criti-
cal. For successful manipulation of net absorption, it should
be chosen to be close to a half-numbered multiple of this
period. As long as phase coherence can be maintained within
the doublet and the pump pulse couples to both doublet sub-
bands, switching from gain to loss can be achieved in the
“double-slit” structure. In the present study, this is achieved
by application of a dc control field which establishes a dy-
namic equilibrium between buildup and decay of subband
polarizationf−+.

Compared to earlier work of ours on coherent control of
electronic interssubdband transitions, the present study pro-
vides a more complete picture of the self-consistent interplay
between electronic structure, carrier dynamics, and the in-
ducted light field.37 This pertains to both the carrier dynam-
ics, in which we allow for nonresonant contributions of the
light-mattersdipoled interaction, a calculation of dipole mo-
ments, and other matrix elements from ak·P electronic
structure calculation, inclusion of the self-consistently com-
puted field, as well as to the dynamics of the electromagnetic
field itself, allowing an analysis of its spectral composition.

An interesting and related means of inducing quantum
interference effects in electron subbands has been explored
experimentally.8 In this work, short pump pulses were used
to promote electrons from the valence subbands into the
electron subband doublet of a closed double well, tempo-
rarily establishing Rabi oscillationssintersubband oscilla-
tionsd. The absorption of a second pump pulse which reso-
nantly couples the subband doublet to a higher-lying singlet
was probed by weak analyzer pulses. Slight variation of the
spectrum of the induced light field was observed, demon-
strating that experiments on coherent control of optical gain
are feasible. These observations agree qualitatively with our
calculations which were performed on this structure and, in
addition, reveal phase sensitivity to the pump pulse coupling
doublet to singlet.

The present ideas are readily applicable to quantum dot
structures.

The current study uses both structural design and control
fields which were chosen “by hand” and intuition. A more
effective way will be application of optimum control
schemes to taylor both structure and the properties of the
light field to achieve an optimization of desired coherent
control phenomena. Such work is currently in progress.38
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APPENDIX: GAUGE INVARIANCE AND THE DENSITY
MATRIX FORMALISM

Although gauge invariance in electrodynamics has been
in many textbooks and papers,30 it is worthwhile to summa-
rize some comments regarding gauge invariance and its im-
plications on the density matrix formalism. This is an impor-
tant issue here since we seek a self-consistent treatment of
the electromagnetic field and because electromagnetic fields
are present at initial and final time of the analysis.

Independent of gauge, in quantum mechanics position is
replaced by the position operator,r →R, and momentum by
the momentum operator,p→ s" / id¹, such that the canonical
commutation relations are fulfilled.30 In the context of elec-
tromagnetic fields, gauge transformationssG→G8d are local
and defined by the transformations

A8sR,td = AsR,td + ¹ LsR,td,

F8sR,td = FsR,td −
1

c

]LsR,td
]t

,

and

uc8l = Tucl ; expH iq

qc
LsR,tdJucl.

Based on the transformationT of the wave function under
gauge transformation, one defines the gauge transform of an
operator as

Õ = TOT†.

An operator is called gauge invariant when

O8 = Õ.

This implies that matrix elements of gauge invariant op-
erators are invariant, provided that the basis states are trans-
formed also, i.e.,

ka8uO8ub8l = kauOubl.

The Hamilton operator transforms like

H8 = H̃ −
q

c

]LsR,td
]t

.

This noninvariance ofH is closely linked to the gauge-
invariance of the time-dependent Schrödinger equation,

i"
d

dt
uc8l = H8uc8l = H̃uc8l −

q

c

]LsR,td
]t

uc8l.

In contrast toH the density operatorr=omgmumlkmu is
gauge invariant, and so

ka8ur8ub8l = kaurubl,

whereas the von Neumann equation, in general, is not,

i"ṙ8 = H8r8 − r8H8 = H̃r8 − r8H̃ −
q

c
F1

c

]LsR,td
]t

,r8G .

This implies that, for a fixed set of basis states, density
matrix equations depend on the choice of gauge. Moreover,
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even if the basis states are subjected to the gauge transfor-
mation, density matrix equations in general depend on
gauge.

Does it matter in which gauge density matrix equations
are formulated? Basically no, but one must be careful. The
key point here is that experimentally, one can only prepare or
find a system in an eigenstate of agauge-invariantsHermit-
iand operator Hence, while any complete basis of the Hilbert
space is admissible to define the density matrix, the density
matrix elements may not have direct physical meaning. In
fact, there are three points where one must be careful, the
initial conditions, the interpretation of density matrix ele-
ments during the time-evolution of the system, and the inter-
pretation of the final state of the system. Physical initial and
final states must be defined in terms of eigenstates of gauge
invariant operators. This is not a problem, if at initialsor
final timed the fields are zero. However, if at initial and/or
final time electromagnetic fields are present, as is the case in
this work, it must be remembered that the Hamiltonian, in
general, is not gauge invariant. Hence its eigenstates do not
represent physically accessible states, unless one works in
special gauges.

A well-known special case serves as an example. Con-
sider the situation of time-independent electromagnetic
fields. Here one maysbut does not have tod choose a gauge
in which the electromagnetic potentialsA =AsRd and F
=FsRd are time-independent also. In this special gauge,H
becomes gauge invariant and hence its eigenstates are “per-
missible” basis states. The advantage of this choice is that
the eigenkets ofH are physically “observable” states. Since
all srestrictedd gauge transformations are time-independent
also the density matrix equations become gauge-invariant.
Note that in this gauge,P eigenkets are not physically rel-
evant states ifA Þ0.

Certainly one may work in a gauge in whichH is not
invariant, however, to make contact with experiment, one
generally needs to transform to a basis of a gauge-invariant
operatorsotherwise, computed matrix elements have no di-
rect physical meaningd and one still must be careful with the
choice of initial and final conditions, since in such a gauge
eigenkets ofH may physically not be meaningful.

A second example directly pertains to the present
work.39,40 Consider electromagnetically induced transitions
in electronic system, such as an atom or a solid. Electromag-
netic fields enters via electromagnetic potentialsAsR ,td and
fsR ,td and

HosP,Rd → H = HoSP −
q

c
AsR,tdD + qfsR,td,

In the absence of free charges, the transverse gauge
¹ ·A =0 allows one to setf=0 and to express the electro-
magnetic fields in terms of the vector potentials only,

Esr ,td = −
1

c

]Asr ,td
]t

and Bsr ,td = ¹ Ã Asr ,td.

Consider a situation, wherek ·kRl!1 and the first few
terms of

kexphik ·Rjl < 1 + ik · kRl¯ sA1d

may be used.
There is still freedom in how to proceed. For example, for

weak to moderate fields, one maysad neglect theA2 term in
the Hamilton operator and work with theP·A term only.
Alternatively sbd, one may make the Göppert-Mayer trans-
formation usingLsr ,td=−r ·As0,td.33

In lowest ordersdipole approximationd AsR ,td<AstdsB
<0d and one obtains

H → H8 <
P2

2m
+

q

c
R · Ȧ =

P2

2m
− d ·Estd,

allowing a new interpretation of electromagnetic potentials,
A8sr ,td=0,f8sr ,td=r ·Es0,td In this approximation and
gauge,p=P and L=Lstd only. Hence, any gauge transfor-
mation rendersT to be aglobal phase factor only. Conse-
quently, the free-particle HamiltoniansHod is gauge-
invariant, Ho eigenstates provide physical initial,
intermediate, and final states, and the density matrix equa-
tions and matrix elements are gauge-independent.

In contrast, for choicesad, Ho is not gauge invariant. Con-
sequently,Ho eigenstates may not provide physically valid
initial and final states, and are certainly not valid intermedi-
ate statesfwhenAsr ,tdÞ0g. In this gauge, one needs the use
eigenstates of the energy operator involvingp ,sp2/2md
+Usr d, whereU accounts for an intrinsic single-particle po-
tential, such as the multibarrier potential of the present study.

One final comment should be made. Invoking Maxwell’s
equations, as well as the relation between electromagnetic
fields and potentials, inclusion of higher-order terms in the
expansion Eq.sA1d within version sbd leads to a multipole
expansion inEsr ,td andBsr ,td in H.41
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