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We have used density-functional theory to study the nonlinear screening properties of a two-dimensional
(2D) electron gas. In particular, we consider the screening of an external static point charge of magasude
a function of the distance of the charge from the plane of the gas. The self-consistent screening potentials are
then used to determine the 2D stopping power in the low-velocity limit based on the momentum transfer cross
section. Calculations as a function dfestablish the limits of validity of linear and quadratic response theory
calculations, and show that nonlinear screening theory already provides significant corrections in the case of
protons. In contrast to the 3D situation, we find that the nonlinearly screened potential supports a bound state
even in the high-density limit. This behavior is elucidated with the derivation of a high-density screening
theorem which proves that the screening charge can be calculated perturbatively in the high-density limit for
arbitrary dimensions. However, the theorem has particularly interesting implications in 2D where, contrary to
expectations, we find that perturbation theory remains valid even when the perturbing potential supports bound
states.
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I. INTRODUCTION lations of the screening charge density and the screened po-

The screening response is a fundamental property of e\H;m'arlé This was taken up later in a series of papers by
electron gas in arbitrary dimensions. The situation in twoYiNter for a Si inversion layer. This work is especially no-
dimensions is of particular interest because of the possiblfPI€ for its attempt to realistically account for the underlying
realization of quasi-two-dimensional systems in semiconduct andstructure of the semiconductor and the finite thickness

tor heterostructuresjmage and band-gap surface states af! the 2DEG. A detailed discussion of screening and bound
metal surfaces,electrons at the surface of liquid heliuin, state formation was presented for this particular heterostruc-

metallic overlayers on insulating substrates, and IayerecgJ re and the results were shown to be consistent with ob-

materials! Examples of problems in which an understanding erved impurity-limited mobilities.

. . i Also of interest is the dependence of screening on the
pf the. screening of an external charge IS Important InCIUd%iimensionality of the system. That important differences
impurity-limited electron transport in two-dimensional elec-

d : e -~ might arise is indicated by the well known fact that any
tron gases,the glectromc structure of intrinsic or photoin- purely attractive potential in 2D always has at least one
duced defects in semiconductor heterostructugesd dy-  phound staté? in sharp contrast with the situation in 3D. Ex-

namic interactions with mOVing Charg%g.ln each of these tending previous non”near Screening Calcu|aﬂ-6|fmm 3D
cases, the strong interaction of mobile electrons with theo 2D and exploring these possible differences is part of the
charged impurity leads to significant modifications of the lo-motivation for the work described in this paper. To do this
cal electronic structure. we perform self-consistent nonlinear screening calculations
One of the first attempts to deal with two-dimensionalfor an ideal 2DEG within the context of density-functional
(2D) screening was the work of Stern and Howawhich  theory. Our studies as a function of density reveal some in-
was motivated by measurements of electron mobilities in Steresting properties of the screening in 2D that had not been
inversion layers. To perform explicit calculations they con-appreciated before. The interpretation of these numerical re-
sidered a model in which the two-dimensional electron gasults is facilitated by the proof of a general theorem regard-
(2DEG) is represented as a sheet of zero thickness, the idealg the nature of screening in the high-density limit. A pre-
2D limit, with a charged impurity situated a distandtdrom  liminary account of some of this work was presented
the sheet. The screened impurity potential was then obtainesarlier!?
within a Thomas-Fermi approximation and was used to in- As a specific application of the results we consider the
vestigate the possibility of impurity bound states. Howeverlow-velocity stopping power for a heavy projectile moving
no attempt was made to perform fully self-consistent calcuparallel to the plane of the 2DEG. This problem has been
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treated previously in both linear and nonlinear response ap- Avei(r) = veydr) + Avg(r) + Av,(r). (2
proximations. Of the linear theories, we mention the early ) ) )
work of Fettet® using a hydrodynamic model which was The external potentiabe(r) in the plane of the gas is
followed by a calculation based on the random phase ap=Z/\d?+r? andAuvy(r) is the Hartree potential
proximation (RPA) by Horing et all* In this latter work a )
finite distanced between the projectile and the plane of the Avy(r) :f dzr/A”(r ) 3)

. . . . . H
gas was considered. The case of a projectile moving in the Ir—r’|
plane of the gas has also been studied, not only within the _ _
RPA15 but also with the inclusion of local field correctidis due to the electronic screening denslig(r)=n(r)—no. The
and for a gas at finite temperatufé<Of course the interac- change in the exchange-correlation potentiaby.(r)
tion cannot always be considered as weak and a fully non=vydn(r)]-vxdnol, is defined in the local-density approxi-
linear theory of the screening is in general necessary. Onmation(LDA) using the parametrization of the 2D exchange-
step in this direction is the RPA quadratic responsecorrelation energy given by Tanatar and Cepetfey.

formulatiort® which was used by Bergamt all® in 2D to The total screening density is given by

provide the lowest-order nonlinear correction to the stopping

power. Although this theory is perturbative and therefore An(r) = X5 [N 2+ X [|wa(n))2 = |42 2] (4)
limited in its range of validity, it has the merit that the non- b [

linear correction is determined for arbitrary projectile veloci-

ties where the first sum extends over all bound states of the ef-

fective potential, and the second extends over all occupied

The stopping power at low projectile velocities can also . .
be formulated in terms of the scattering of electrons from théontinuum states up to the Fermi Ie&i_ - We assume that
ach spatial orbital is doubly occupied for spin. The free-

screened potential. For qualitative purposes it is sometimeS3¢! . 0 : )
useful to consider model potenti#lsvhose arbitrariness can Particle solutionsy;(r) are obtained in the absence of the
be limited by imposing physical constraints such as the Frieexternal potential. Due to the cylindrical symmetry of the
del sum rule. This was the approach taken by Wang anét Ma pProblem, the solutions of Eq(1) have the form(r)

to determine proton and antiproton stopping powers in &= €M’R,(r) where the angular momentum quantum number
2DEG. A somewhat more fundamental approach based om takes on integral values anddistinguishes the different
the nonlinear screening theory of Sjolander and Btetas  radial solution$:?6 The continuum states behave asymptoti-
used by Krakovsky and Peréddor negatively charged pro- cally as Ryy(r)~r*2 cos(kr—%|m|7r—%q-r+ 7m Where k
jectiles. Their results for this case are consistent with the-\2E is the wave vector and;(k) is the 2D scattering

model potential results of Wang and MaNone of these phase shift. For the free-particle solutions,=0. These scat-

calculations, howev_er, are truly self-co_nsistent. Our resultsering phase shifts are related to the total screening density
based on self-consistent density-functional theory calculagccording to the 2D Friedel sum réléFSR

tions eliminate this source of uncertainty in the determina-

tion of 2D stopping powers. 2 <
Zesr=— 2 7n(Ep). (5)
Il. SELF-CONSISTENT SCREENING T m=—

The electrons of our ideal 2DEG are assumed to have aAt self-consistency, this quantity must equal the chatgd
isotropic effective massn and move in the presence of a the external impurity.
uniform neutralizing positive background. We also imagine The solutions of Eq(1) are obtained using standard nu-
the entire 2D system to be immersed in an extended dieleanerical techniques. The calculation &f(r), the only non-
tric with permittivity e as might occur in a semiconductor trivial step in determining the effective potential, is per-
heterostructure. Other dielectric arrangements can also be eformed by making use of a fast Fourier transform technique
visaged, for example the surface of liquid helium, but theseo go successively between real and wave vector space. De-
will not be considered here. All lengths will be expressed intails of the method are given in the Appendix.
units of the effective Bohr radiua,=¢A2/m'e?, and all en-
ergies in units of the effective Hartré¢=€?/ea,. The mean
density of the gasny, is characterized by the density param-

eterrg=1/ymmg. ) _ . Self-consistent calculations were performed for a range of
Our objective is to determine the nonlinear screening of gjensities and impurity chargés including negative values.

stationary point chargé located a distance from the plane  |n addition, calculations were done with and without

of the 2D gas. The methodology follows that used in earliefexchange-correlation effects included in order to compare

calculations for a three-dimensional §&&' and is suitable \yith earlier linear calculations which were performed within
for both positive and negative charges. This screening rethe random phase approximation.

sponse is determined by solving self-consistently the two-
dimensional Kohn-Sham equations

Ill. NUMERICAL RESULTS

A.Z=1,d=0
1
- EVZIM(Y) + Aver(r) i(r) = Eigs(r) (1) To begin we show results for a charge 1 in the plane of
the 2DEG(d=0). Figure 1 presents the self-consistent effec-
where the effective potential is given by tive potentialAv for rg values ranging between 1 and 10 in
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) ) ) ) FIG. 2. Screening density as a function of position for two
FIG. 1. Self-consistent effective potentialdeq(r) in Hartree 51 es. The dashed curve is the bound state contribution, the chain

units as a function of position. Each solid curve corresponds 10 @,re is the continuum state contribution, and the solid curve is the
differentr value, ranging from 1 for the lowest curve to 10 for the ;.-

highest curve, in steps of 1. The dashed curve is the Thomas-Fermi

screened potential. other words, th&=1 impurity with two bound electrons can

steps of 1. This range spans low to high densities and itve viewed as an Hion which sits at the center of a posi-

particular includes densities of experimental interest. Alsdively charged disk of radiuR=r4. Returning to Fig. 1, we

shown for comparison is the Thomas-Fer(fiF) screened can now understand the repulsive part of the potentials seen

potential which, as will be explained shortly, is the—0  for largers. The LDA potential of a 2D H ion itself has a

limit of the DFT calculations. As such, we see that the po-+1/r Coulomb tail arising from the Hartree potential. In the

tential forrg=1 is already quite close to the TF limit. 2DEG environment, this Hpotential is screened by the posi-
The variation withr is systematic, evolving with increas- tive background and as a result, the potential goes to zero at

ing rg into a potential with a strongly repulsive region be- approximatelyR=r

yondr=0.5 a.u. This behavior can be explained in terms of Another interesting quantity is the bound state energy

the underlying electronic structure of the screened impurityshown in Fig. 3 as a function af;. The solid curve is the

For all the densities shown, the screened potential supportesult of the full DFT calculation including exchange corre-

one bound state which is occupied by two electrons. Sincéation (xc), while the dashed curve is the corresponding re-

the total screening density must integrate to unity accordingult obtained whemuv,, is set to zero. We refer to the latter

to the FSR in Eq(5), the continuum states must themselvesas the Hartree approximation. The Hartree result is mono-

contribute a total charge of 1 in order to compensate for tonically decreasing with decreasingand goes to a limiting

the overscreening provided by the two bound electrons. Thigalue ofEy=-0.2862 atr =0 which, as we shall see, is the

is illustrated in Fig. 2 which shows the bound and continuumbinding energy for the TF screened potential. The xc result

densities for two representativevaluesr,=2 and 10. It can likewise decreases with decreasmgbut reaches a mininum

be seen that the bound state distribution is very similar de-

spite the very different background densities. This is consis- 0.0
tent with the similarity of the inner region of the potentials in
Fig. 1 which is primarily responsible for the shape of the —-0.1
bound state. At large distances from the impurity the densi- = 1
ties in Fig. 2 exhibit characteristic Friedel oscillations with ~ 02
wavelengthm/kg. & 1
The negative portion of the screening densities in Fig. 2 -0.8
corresponds to a local charge density which is positive and
provides the necessary compensation of the negative bound —-0.4 — T T 1
state electronic charge. However, the distribution in space of 0O 2 4 6 8 10
this compensating charge is quite different in the two cases r
and leads to the different behavior of thg=2 andr =10 s
potentials forr>0.5 a.u. The form of thes=10 continuum FIG. 3. Bound state eigenvalue in Hartree units ysThe solid

density is particularly intergsting. In the ranges<® curve is for the full nonlinear DFT calculation including exchange
=10 a.u.,Ang(r) has approximately a constant value of correlation, while the dashed curve is the corresponding result in
—-ng [hencerAng,,{r) behaves linearly as seen in Fig. .n  the Hartree approximation.
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FIG. 5. Normalized density as a function of position. The dif-
FIG. 4. Self-consistent effective potentials witkolid curve ferent curves are labeled by thevalue.

and without(dashed curveexchange correlation.

nearrs=0.5 and then increases to the same limiting value ateglects bound states entirely. We defer discussion of this
r<=0 as in the Hartree approximation. The more negative x@oint to the following section.

eigenvalue reflects the stronger binding due to the xc poten- The opposite limit,— « is also of interest. In the Hartree
tial which is attractive in the vicinity of the positive impurity approximation, the bound state eigenvalue approaches zero
as a result of the pileup of the electron screening density. Teearr,=8. Whether a very shallow bound state persists be-
illustrate this we compare the self-consistent potentials wit,ond this value could not be confirmed due to difficulties in
and without xc forrg=2 in Fig. 4. It can be seen from this optaining converged self-consistent solutions. This was less

figure thatAvey with xc is more attractive in the core region of 4 problem with the inclusion of exchange and correlation
which is important for the determination of the bound state;j,ce these additional interactions stabilize the bound state

Associated with this is a relative phase shift of the long ranggq|4tive to the Hartree calculation. In the range 8 <12

Friedel oscillations between the two cases. the bound state eigenvalue could be fitted approximately to

The decreasing trend in the xc eigenvalue is consisterﬁ,} . :
: ) P . . e expressiorEy=(0.023-0.7fyH. Extrapolation of the
with the behavior of the potentials in Fig. 1 but is opposite tonumerical data beyont.=12 suggests that the bound state

what is found in the analogous 3D calculatidhJhere the . -
eigenvalue goes to zero at some large, but finmeyalue.

bound state energyicreaseswith de'cre'asings,_that s, t'he However, it was not possible to confirm this since it was
bound state becomes shallower with increasing density. Thgifficult to obtain converged solutions for large values of

explanation for the 3D behavior is that the screening of thel_h W nnot state unequivocally what the lardeehay-
impurity potential is more effective with increasing density, . us we cannot state unequivocaily what the laigeena

and as a result, the bound state eventually ceases to exlSf 2|SD aqc:].': tﬁ?ﬂ%{l\arinwggtt:esr E;go%fg‘ tfrr;f t}l?gll-?'sc;[ﬁplse
beyond a certain critical density. This behavior is consistenﬁOt stzlvk;IeI ithin thé LDA ;mld o rWdata S estlthalt this
with the expected applicability of perturbation theory in the with . u! uggest iy
high-density limit when the Fermi enerds is much larger mlght. also be the case in 2D. This remains an interesting
than the magnitude of the screened poterjtial(r)|.2” If question to explore in the future. . :
one were to use the same reasoning in 2D, the screenin)g:AS a final comment about the eigenvalue obtained with

o . : , we note that the Hion is stabilized in the range studied
density in wave vector space would be given by the lineaj o e
) by the fact that it sits at the center of a positively charged
response resuliSec. IV provides further detajls

disk of radiusR=r.. The electrostatic potential due to this

_ charge has the valug(2/r)H at the center of the disk rela-
An(@) = xo(@Aver(@, © tive to infinity. The depletion of charge also gives rise to a
where xo(q) is the Fourier transform of the static noninter- shift in the xc potential of ,.(ny) which is positive and
acting density response function of the 2D gas. Within lineatherefore a destabilizing effect. For largg —v,(ny =
response theory, the screening density arises from the pertur{1.6/rgH which, when combined with the electrostatic
bation of the plane wave states of the uniform gas and thershift, gives a potential shift of about(6.4/rdH. It is clear
cannot be a bound state contribution. However, as we haviat this represents a significant contribution to the xc eigen-
just seen, bound states do persist in 2D even in the highvalue at the larger values we have considered. However
density limit. This is a peculiarity of 2D and is associatedthe existence of a bound state cannot be determined without
with the fact that a purelwttractive potential always has at a detailed knowledge of the self-consistent potential near the
least one bound state regardless of the strength of thienpurity. In the case of the Hartree approximation, the sta-
interaction® This effect is obviously missed by linear re- bilizing effect of the electrostatic potential of the positively
sponse theory and would seem to invalidate a perturbativeharged disk—(2/rgH] is clearly insufficient to compensate
approach. Nevertheless, it turns out that the results of linedor the destabilizing effect of the Hartree interaction between
response theory are indeed correct even though the theotlie two bound electrons in the largglimit.
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FIG. 6. Normalized density as a function of position fge10.  screened potentials fog=4 andZ=-1. The solid curve is the non-
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The solid curve is foZ=1 while the dashed curve is fa=-1. linearly screened potential including exchange correlatiog
+Avy+Av,g; the short-dashed curve is the Hartree potentigj
B.Z=-1.d=0 +Avy, calculated with the same screening density as used for the

solid curve ; the chain curve is the linearly screened potential within
We consider next the situation of a negatively chargedhe RPA (i.e., the Hartree approximatiinand the long-dashed
impurity such as an antiproton or acceptor state in aurve is the Hartree potentiale,+Avy, obtained with a linear
semiconductof? Figure 5 illustrates the variation of the screening density that includes local-field effete., exchange
screening density withg. The results found here in 2D are correlation).
similar to those found previously in 38.The negative im-

purity repels electrons from its vicinity and roughly speakingfield correctionLFCs) are included in the definition of the

exposes a positively charged disk of radRrs rs which neu-  dielectric function. Within the LDA, this is given by
tralizes the impurity. In other words, the impurity sits at the

center of a hole in the electron gas. The similarity to the
situation for a positive impurity is emphasized in Fig. 6 1 v(9)x0(Q)
where we superpose the screening densitieZfot andZ fFq) T 1+[u(g)+ Uxelxo(@)’ ©
=-1 atrg=10. TheZ=-1 screening density is in fact very X
similar to the continuum part of th=1 screening cloud.
Thus, at sufficiently larges, the H ion for Z=1 effectively  where v, (ng) =dv,.(ng)/dn, is the LDA local field correc-
acts as an externa=-1 impurity as far as the rest of the tion, i.e., in standard notatiom(q)G(q)=-v,(Nny). The po-
electron gas is concerned. This emphasizes that theoH-  tential v.7C is simply the Hartree potential obtained with a
figuration exists as a well-defined entity in this rangerof screening charge density that includes the effects of LFCs.
values. As can be seen in Fig. 7 fog=4, this potential has a large

In all cases we find that the screergd-1 potential does negative region in real space and supports a bound state for a
not support any bound states. We mention this since it hagnit negative test charge of one electron mass. The authors of
previously been claiméfithat the introduction of a negative Ref. 30 then argue that the potential also bindgctronin
test charge into a 2D gas could give rise to potentials whichhe 2DEG and that this binding may be a relevant pairing
would bind an electror(or rather, a second negative test mechanism. However this conclusion is invalid for several
charge. To make contact with this earlier work we compare reasons. First, the Hartree potential for thenlinearly
in Fig. 7 the nonlinearly screened potentials with those obscreened impurityfthe short-dashed curve in Fig) fias a
tained on the basis of linear response theory. One curvguch shallower attractive portion as compared to the corre-
shows the screened potential as obtained in the RPA. Th§pond|ng result of the linear Ca]cu|ati(jnng_dashed CUI’\)E

potential is defined in Fourier space as A similar result was found analytically for a point charged
screened by a uniformly charged d&kBut more impor-
vePA(Q) = :qu) = 5:/ 9 , (7)  tantly, an electron, as opposed to a negative test charge, also
PN €PN0) feels the effect of the induced xc potential. With this contri-

bution included, the full self-consistent nonlinear potential
Avg defined in Eq.(2) has a very shallow attractive part,
EPAQ) = 1 +0(q) xo(0). (8) a_md there is no tendency for bound state formation, as con-
firmed numerically. At a more fundamental level, the ques-
At this level of approximation, only Hartree interactions aretion of pairing involves the effective interaction between
relevant and the screened potential defined above is the ppairs of electrons at the Fermi level which typically have a
tential experienced by @=-1 test charge moving in the high relative velocity. From this point of view it is unclear to
vicinity of the impurity. A second curve shows the linearly what extent astatically screened potential for a test charge

screened potentialvchC:v(q)/eLFC, obtained when local can be used as an estimate of the pairing interaction.

where the RPA dielectric function is given 8y
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FIG. 8. Screening charge density as a function of position for. '.:lG' 10. Normallfed stop_plng power as a fupctlon .Of the pro-
Z=1 andr4=2 for different distanced of the charge from the plane jectile chargeZ, for rg=2 andd=0. The solid curve is obtained from

_ . : the nonlinear screening result including exchange correlation; the
(()(;‘;;?ezliitrr\%sd—o.&o (solid curve, 1.0 (chain curve, 2.0 dashed curve shows the corresponding result in the Hartree approxi-

mation (no exchange correlatignthe straight ling(chain curve is
the quadratic response res( +S,2)/v (Ref. 19.

C.Z=1,d#0

We next consider the effect of moving the impurity charge  Ajso shown in Fig. 9 is the screening density as deter-

out of the plane of the 2DEG. This is the situation corre-mineq by linear response theory. Despite the fact that the

sponding to an external charge incident on the 2DEG fronygjinear screening response has a bound state contribution,
the outside, or a remote ionized impurity in a semiconductokne |inear response result is seen to agree very well. The

5 . . . .
heterostructureé: reason for this agreement is not obvious and will be ex-

Figure 8 shows the screening density for a few values Of|ained in detail in Sec. IV. In addition, the density is already
d. It can be seen that the amplitude of the induced densﬂyamy close to the classical image theory res(di2)(r?

decreases rapidly with increasidgand the density becomes +d?)~%2 This expression fod=2a, gives a density at the
more spread out along the plane. The reason for this behavi%rr-

) . . ; . igin of 0.04 a.u. as compared to the nonlinear result of
IS th‘.':lt the_pot.enual loses its Coulomb singularity as soon 48,035 a.u. With further increases ihthe nonlinear density
the impurity is out of the plane, and therefore become

smoother and weaker. In Fig. 9 we show the nonIineaSrrapldly approaches the classical screening charge density.

screening density for the casg=2 andd=2 a.u. together

with the bound state and continuum contributions. The ) ) ]
bound state in this case is very shallow and extended, in fact As discussed in the Introduction, there have been a num-
more extended than the total density itself. This is possibl&er of calculations of 2D stopping powers. Our purpose here
since the continuum contribution to the density has a similafS to present results which are based on the full nonlinear
extent but is of opposite sign, so that there is a cancellatio§creening charge densities and potentials. Within the so-

D. Stopping power

of the densities in the asymptotic region. called kinetic theory framework, the stopping power at low
velocities for a projectile moving with velocity in the plane
0.04 of the 2DEG is given by the expressisn
/g 0.03 S=ngvroy(Er), (10
8 002 where o (Eg) is the momentum-transfer cross section de-
~ fined in terms of the scattering phase shift§ by
~ 0.01 o
§ o000 0(E) = =X S mn(ER) ~ 7ma(Ep)]. (1D)
UFm=0
-0.01 T T T T

To leading order in the velocity, it is sufficient to determine
o 2 4 6 8 10 the scattering phase shifts using the static nonlinearly
screened potentials calculated in the present paper.
r (a,) i . .
g. 10 we show the stopping power as a function of
FIG. 9. Screening charge density as a function of position forthe projectile charg& for d=0 andrs=2. For smallZ, Shas

7=1,r,=2, andd=2.0,. The chain curve is the bound state con- th€ expansiors=S,7%+$,7%+--- where the first two terms
tribution, the long-dashed curve is the continuum contribution, ancre the linear and quadratic response results, respectively. To
the solid curve is the total. The short-dashed curve almost coinci€mphasize the deviations from linear response, we present
dent with the solid curve is the linear response result includingthe results in the forn®/(vZ?). In this representation, the
exchange correlation. stopping power including the quadratic response correction
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However, the ratio also tends to unity flarge r, since as we
have seen, the Hconfiguration is effectively the same as an
external negative charge insofar as the scattering of con-
tinuum states is concernddee Fig. 6. In contrast, for an
assumed model potential, Wang and Ma find the ratio of
stopping powers to be close to 2 for gll This points to the
danger of using model potentials which do not properly ac-
count for the true nature of the electronic screening. Another
difficulty of the model potential approach is that differences
associated with different screening approximations are no
longer apparent. This is emphasized in Fig. 11 by the plot of
the stopping power in the Hartree approximation. The results
_ ) _ are qualitatively similar to those with xc, but there are im-
FIG. 11. Stopping power as a function of density paramefer ,rtant differences. Clearly additional input is needed in a
for Z:.—l. The solid curve shpws thg full nonlinear screenlng result,mode| potential approach to capture these differences.
|Cnocr|rl£ngnz?ncha:ngeltc_ortrﬁlalt_llont, while the _das;hed TC_EN? g'\t’ei the Finally, we compare with the results of Krakovsky and
P g resuft in the Hartree approximation. The NSt SNOWgo .33 for z=-1. As mentioned in the Introduction, they

the stopping power rati§(z=1)/S(z=~1) as a function of s obtain the screening charge density using the Sjélander-Stott

appears as a straight line with slofe/v. This correction integral equatioff which is a different way of introducing
was previously calculated within quadratic REAand is ~ €xchange and correlation. This induced density is shown in a
shown in Fig. 10 as the straight line. The fact that the line issécond papét and is qualitatively similar to our results in
tangent to the nonlinear Hartree curveZatO shows that the Fig. 5. They then use this density to construct an effective
dynamic quadratic response formulation is consistent wittfcattering potential for which the scattering phase shifts are
the kinetic theory approach for small valueszofnd for low determined. However, they give no details about how their
velocities. However, the validity of the quadratic responsePotential is constructed nor what interaction effects, such as
result is mainly limited to negative charges downzze-—1  exchange and correlation, are included. Nevertheless, the
and breaks down completely fa=1. It is thus apparent Stopping powers they obtain f@=-1 in 2D are similar to
that nonlinearities are generally very important. FurthermoreOur results. We find in fact that our Hartree and xc stopping
it can be seen that the inclusion of xc leads to a large enPowers bracket their results with deviations which are typi-
hancement of the stopping power in the rangeszi<1, cally less than 20%.
even to a greater extent than found in 3Drhis emphasizes
that properties associated with the scattering of continuum
states will be strongly affected by the xc part of the self-
consistent potential. We briefly commented earlier on the behavior of the
The behavior of the stopping power as a function of den-screening cloud in the high-density linflEg — o,rs—0). In
sity is also of interest and in Fig. 11 we shoy®/v vsrgfor  this section we investigate this question in more detail and in
Z=1. The quantityS/v has the physical interpretation of a particular, establish the connection between linear and non-
friction coefficient® and is actually a monotonically decreas- linear screening for a 2DEG. This problem in 3D was
ing function ofrg with a finite limiting value of7Z2 for rg  touched on in an early paper by Bufigwhich dealt with the
—0. This result follow$® from the 2D momentum-transfer possibility of positronium formation in metals. Using a
cross sectionoy(Eg) =Z(2m/v2)tanh(wZ/vg) which is ob-  square well model potential, it was shown that the total elec-
tained when scattering from a bare Coulomb potentidlr— tron density at the origin is an analytic function of the
is considered. This is the exact result in the high-densitystrength of the potential. This in fact is a special case of a
limit and simply reflects the fact that screening is not impor-more general result obtained by Kohn and Majumtiaon-
tant for high-energy scattering. As a result of this finite lim- cerning the analyticity of physical properties of the entire
iting value, the quantity S plotted in Fig. 11 shows a maxi- electron gas. Butler then used his result regarding the analy-
mum atrg=1 before going to zero forg— 0. ticity of the density to argue that the total density at the
The results obtained previously by Wang and?Meor  position of a positron in a metal could be obtained by per-
Z=1 are qualitatively similar to our results although there areturbation theory(to all orders even if the screened positron
some quantitative differences. We recall that they approxipotential had a bound state. This assertion was confirmed for
mated the screened potential by the linearized TF potentidhe specific example of the square well model where lowest
and adjusted a screening parameter in order to satisfy therder perturbation theory already provided a good estimate
FSR. This potential is everywhere attractive and misses thef the exact total density in the limit of high electron gas
repulsive region shown in Fig. 1 which is associated with H densities.
formation at low densities. These differences become more We shall now prove a theorem which demonstrates that
apparent when the stopping powers =1 and —1 are  some of Butler's conclusions have a much broader range of
compared. This is shown in the inset to Fig. 11 where thevalidity. It is unnecessary to specify either the form of the
ratio of these stopping powers is given. The ratio tends te@xternally imposed potential or the dimensionality of the sys-
unity for r,— 0 since linear response is valid in this limit. tem. The physical situation we consider isi@ninteracting

IV. HIGH-DENSITY LIMIT
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Fermi gas in the presence of an external potentidl). The JAN(r;\) 1 N , _
effect of electron-electron interactions will be dealt with T=‘7_Tf dr'V(r )f dEIM[G(r,r",E+ie)
later. The potential is assumed to be smooth and to approach ‘°°

zero sufficiently rapidly agr|—c. The parameteh is an XG(r',r,E+ie]. (20

arbitrary coupling constant whose physical value is unity.
The problem is to determine the induced densgity(r)

which is due to the introduction ofV(r). This quantity is

conveniently defined in terms of the Green’s operator

We note at this point that this quantity still depends implic-
ity on \ through the full Green’s functiofs(r ,r’,z).
We now make use of the spectral representation of the
Green’s function in Eq(13). The producﬁ//i(r)w;(r’) can be
- 1 1 treated as real since a complex wave function at the energy
G(2) = 7—H = Z—Ho = \V (12) E; must have a time-reversed pair which is its complex con-
0 jugate. Thus, we have
whereHj is the unperturbed Hamiltonian. In a spatial repre-

sentation, the Green’s function is given by W :f A VAE ) S ) () ) (1)
Gl 1 2= (el =3 * L ‘/" r)"”' (13) £
- X PE Ef dE[S(E-E) - SE-E)].
i~EjJ

where ;(r) is an energy eigenstate bf. From this we see
that (22)

1 This expression is formally exact and is the crucial step in
2 |<ﬁi(f)|25(E— E)=-—ImG(r,r,E+ie). (14) the argument needed to arrive at the final conclusion. It is
i ™ clear that the only terms which give a nonvanishing contri-
bution are those witl; <Eg andE;> Eg, or vice versa. Itis
these terms which give a finite result in tBe— oo limit. If
1 (F this limit is taken first for a giverti, j), the result izera In
nr)= > |u)P=- —f dEIm G(r,r,E+ie), other words, it is important to sum over all states before the
i(ocq T e Er — oo limit is taken. We also note that the j terms in Eq.
(15 (21) do not present any difficulty despite the appearance of

- _ . the energy denominator. From E@Q), these terms contrib-
where the upper limit of the energy integration is the Fermi ..

energyEr below which all states are occupied.

Thus the total density is given by

The change in density from the unperturbed situation is , B 1
clearly 2 () Plga(r I Im |lmf EEvic—E?
1 (5 . Er
An(r) =n(r) = ne(r) = - ;J dEIM[G(r,r,E+ie) == () (r )2 Im Iimf dE
-0 i e—0J —»
- Gy(r,r,E+ie], (16) d 1
——wE (g PSER - E),
where Gy(r,r,2) is the Green’s function fon=0. It is the JEE+ie O SEe
screening densityAn(r) that we wish to investigate in the (22)

high-density limit. Since the potential is multiplied by the _
coupling constant, the density as given by Eq16) de-  Wwhich is well defined. .
pends implicitly on this parameter. The variation of the in- The energy integral in Eg21) can be written alterna-

duced density with\, holding E fixed, is simply tively as
“ Er
AAN(r ;) 1 (Ff IG(E +i -E)-S&E-E
n(r;\) :__f Im(r| ( |6)|r>. 17) f_w dE[8(E-E) - SE-E))]
2N T 2N
By making use of the Dyson equation = —f dE[S(E-E) - SE-E)]. (23

Er

G(z A+ M) =G(zN) +G(ZN)AVG(Z A +6N), (18) Using this in Eq.(21), we find that Eq(20) is equivalent to

we find o
JAN(r;n) 1 .
. #:—Jdr’v(r’) dEIM[G(r,r",E+ie)
IG(ZN) - . 2 m Er
——=G(z,\)VG(z,\). (19 )
XG(r',r,E+ie]. (24)

Thus, the variation of the induced density can be expressethis is a more useful form for taking tHg-— ce limit since
in the form now the energy argument of the Green’s function is large. If
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E->|V(r)| everywhere (we assume here a bounded tion, and xy(q) is the static free-particle density response
potentiat’), the effect of the potential on the propagation of function,
the electron can be neglected and the Green’s fun@ican

be replaced by the free-particle propaga®gr We then have 2 f(Ey+ f(E)
p y p propagaty @)= 2P Ekg & 29)
JAN(r;N) 1 * K kg
#=—f dr'V(r’) lim J dEIM[G(r,r',E+ie) o . .
)N T Er—eJ Substitution of Eq(27) into Eq. (26) gives
XG(r',r,E+ie)]
An(r) == im =53 xol@Viae", (29

1 (7 , e lP g
=—| dr’'V(r’) lim dEIM[Gy(r,r',E+ie)
o Er—o
F B This is a rigorous statement that linear response gives the

XGy(r',r,E+ie)] correct induced density in the high-density limit in any di-
1 Er mension.
__J dr'V(r') lim f dE IM[Gy(r,r',E+ie) The static response functions in the various dimensions
™ Bp—d —w0 are given by the expressions
XGy(r',r,E+ie)], (25) o )_£| ‘ka+q‘
where we have simply reversed the earlier argument to Xo )= mq |2ke—ql’

change the limits of integration in the last line. Several com-
ments are in order. 1 1

(1) The replacement d& by G, is only valid if the energy  x2°(q) = = 0(2kg - q) + —[ 1 =1 - (2ke/0)2] 0(q - 2ke),
argument is large; these Green’s functions are certainly dif- ™ ™
ferent at low energies. In fact, the perturbed and unperturbed
systems have completely different state spectratdnday 20 kF o 2k:—q
contain bound states which do not appeatHiyn Neverthe- 0o (@=57 2712 a\m a2 e+ d
less, since Eq(20) can be written in the equivalent form q F F+d

(24), the replacement o6 by G in Eq. (25) is justified in | each case, thg— 0 limit of x,(q) is the density of states

the Ep—o limit. o g(Ep) at the Fermi level
(2) The final line in Eq.(25) is identical to the result

obtained by linear response theory. Since independentf

] . (30

2
\, it can be integrated from=0 to A=1 to give x52(0) = o
TR
1 Br
An(r)———f dr’'V(r’) lim J dEIM[Gy(r,r',E+ie)
Er—>J - 2D — l
XGy(r',r,E+ie)]. (26) i
(3) The final result in Eq(26) does not depend on the K
assumed dimensionality and is valid even when the potential X3P(q) = 7,_2 (31

V(r) supports bound states. These bound states of course do
not appear in the spectrum @, but are nevertheless in-
cluded inAn(r). The result given in Eq26) will be referred
to as thehigh-density screening theorem

As an application of Eq(26) we consider an ideal uni-
form gas inD dimensions. The use of the spectral represen-
tation for the Green’s function gives in this case

If the potential is smooth we can suppose tiéaf) is effec-
tively zero forq> qax With gmax<<Kg. In this case, Eq(29)
reduces to

An(r) == lim xo(0)V(r), (32
Ep—x

which is recognized as the linearized TF approximation for
the density.

It should be noted that 2D is special for a number of
[F(Ex) - F(EQ)] reasons. First, sincEg is proportional to the density, the

full TF approximation is itself linear. Second, the free-

particle response function has the constant valy&)
=1/ for all wave vectors up tok. Thus, the replacement
of xo(q) by xo(0) is in some sense a less restrictive approxi-
mation than it is in other dimensions. In particular, if the only
where the factor of 2 is for spin, is the size of the sample finite Fourier components &f(r) occur forq< 2kg (which is
in a given directionf(E) is the zero-temperature Fermi func- always the case whek— ), we have

1 (B¢
——f dEIM[Gy(r,r',E+ie)Gy(r',r,E+ie)]
m -0

— _E i(k'-k (r—r’)P 1
kk’ Ek' -

1 . ,
- FE &I xo(a) (27)
q
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r (a,) FIG. 13. Screening charge density foy=0.5 for the model
(]

potenial in Eq.(34): (a) Vp=-0.129, ro=5ay; (b) Vo=-0.2H,
FIG. 12. Screening charge density as a function of position forfo=530. The dashed curve is the bound state contribution, the chain
the model potential in Eq(34). The potential parameters awg ~ Curve is the continuum state contribution, and the solid curve is the

=0.125 andry=>5a. total.

1 the total density agrees very well with the result in E2B),
An(r)=-—V(r). (33)  even though the high density limit has only marginally been
77 reached. These examples confirm very nicely the behavior
The analogous result in 3D isn(r)=0 while the 1D result Stipulated by the high-density screening theorem.

does not have a finite limit. Thus the induced density only W& can now apply the theorem to explain some of the
has a nontrivial limiting value in 2D. results found in th&Z=1 calculations of Sec. Ill. Of course

The result for the 2D screening charge in E89) is all interactions were included there, but the Kohn-Sham system
the more remarkable if we note that the potenvél) can in O eguations correspond to a systemnehinteractingelec-
fact support bound states, as it must in 2D if the potential idrons moving in the total effective potential in ER). In
purely attractive. It is worth verifying this explicitly by I ourier space, we have
means of a numerical example. We consider the following Aver(Q) = Vel @) + (QAN(Q) + v (NYAN(Q).  (35)

model potential
We have here linearized the xc potential since, in the high-

[ 27 ity limi i i ity i -
VA sz(_), r<ro, density limit of interest, the induced density is small com

V(r) = ro (34) pared to the background density. Identifying«(q) as
0 F>r, given by Eq.(35) with V(q) in Eqg. (29), we have
which has no physical basis but is chosen simply to illustrate An(q) = = xo(a)Aver(a) (36)

the point. It is a repulsive double-barrigr potential M; which implies

>0 and an attractive double-well potential fgg<<0. With

this potential we calculate the induced density by solving the Xo(DvexdQ)
Schrédinger equation for all states bel@y. In Fig. 12 we Anlg)=- 1+[v(Q) + vy (N Ixo(a)
show results for a repulsive potential with=0.1254 and xclToRA0
ro=5 a.u. as a function of gas density. The screening chargéhis is simply the induced density obtained within linear
is due to continuum states in this case and it can be seen th&sponse theory, treating Hartree and xc interactions at the
by rs=0.5, the induced density is very close to the predictionmean-field level. An example of the linear response result
of Eq. (33). Similarly, if an attractive potential is placed in a was already given in Fig. 9 for the case oZa1 charge
gas withr,=0.5 (E-=4.0H), we obtain the bound and con- outside the plane of the 2DEG. The close agreement of this
tinuum charge densities shown in Fig. 13. Here, the magnidensity with the nonlinear screening density is confirmation
tude of|Vy| was adjusted to vary the number of bound statesof the high-density screening theorem.

Two cases were considereth) V,=-0.1234 for which a For high densitiesp,. is in fact dominated by the ex-
single m=0 bound state is found and) V,=-0.28, for ~ change potentialv,=-C,/rs and we have v (ny)=
which two m=0 bound states exist. The bound and con-—(#wC,/2)rs. Thus in the limitrs—0, the xc term can be
tinuum densities are quite different for these two cases, buiropped and the induced density is simply given by the result

(37
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FIG. 14. Screening charge density as a function of position for  FIG. 15. As in Fig. 14, but plotting the screening charge density
Z=1 andr¢=0.2. The dashed curve is the bound state contributionasrAn(r) vs r. The dashed curve is the limitings— 0) Thomas-
the chain curve is the continuum state contribution, and the soligcermi density.
curve is the total.

For completeness, we note that the result corresponding to

0 . [ i
An(g) = - Xo(0)vexd(Q) . 39) Eq. (40) in 3D is
1 +v(ad) xo(0) AnZ

The corresponding effective potential is Aves(a) == P+ (42)

A )= VexdQ) (39 with grg=14ke/ 7 the Thomas-Fermi wave vector. The real-

Veir(Q) = 1+v(Q)xo(0) ) space potential in this case is

The real-space quantities are obtained from these expressions Der(l) = Ze o (43)
by an inverse Fourier transform. ef ro’

We now consider the particular example of a point charge . = . . .
Z in the plane of the gas. With(q)=27/q in 2D, Eq.(39) %|th mcreas_mgk,:, the range of_the potential decreases. Thus
at some point the potential will no longer support a bound

becomes state, and all states in the presence of the external charge will
2u7 be continuum scattering states. As alluded to earlier, the
Aver(d) == . (40)  screening of the external potential becomes more effective

d with increasing density. This is in marked contrast to the
and in real space we obtain the TF poteftial situation in 2D where the screened potential has a density-
. q . s independent limit which continues to support bound states in

_ 4 - _ the high-density limit.
ore() = Zfo dqq + ZJO(qr) Zfo dX(x2+ r2)3/2: In summary, if a potentia¥(r) is introduced into a 2D gas

(41) and the induced density is constructed by summing up over
all eigenstates of the Hamiltonian (including all possible
It is a monotonic potential which behaves aZ/f for r bound states the induced density will be given exactly by
—0 and falls off as Z/4r® for r —. Being negative defi- Eq.(33) in the high-density limit. Remarkably, this density is
nite, it will support at least one bound state for any value ofthe same as what one would obtain by treating the potential
Z. For Z=1 the bound state energy is found to Bg= as a weak perturbation and applying perturbation theory.
—-0.286H which agrees with the value found by Stern and
Howard?® This is the limiting value of the bound state eigen-
value shown in Fig. 3. In this paper we have provided a detailed discussion of
We thus come to the conclusion that the- 0 limit of the  the nonlinear screening of an external point charge by a two-
Kohn-Sham effective potential is the TF potential in Eg.dimensional electron gas. Nonlinear effects are most evident
(41). To illustrate this we show in Fig. 14 the induced densitywhen the charge lies in the plane of the 2DEG but rapidly
for Z=1 and a very high density correspondingrte-0.2.  decrease in importance as the charge is moved out of the
Also shown are the bound and continuum components whicplane. As an application of the theory we have considered the
add to the total. The latter is also displayed As(r) in Fig.  problem of 2D stopping power and have compared our re-
15 together with the TF density as obtained from &§). It sults with earlier work. Quantitative differences point to the
can be seen that the DFT density simply oscillates about thignportance of performing self-consistent nonlinear screening
limiting value. With decreasing,, the amplitude of these calculations.
oscillations decrease and the DFT density uniformly ap- We also derive what we refer to as the high-density
proaches the TF density. screening theorem. In 2D, the theorem has the interesting

V. CONCLUSIONS

125323-11



ZAREMBA, NAGY, AND ECHENIQUE PHYSICAL REVIEW B71, 125323(2005

consequence that the st.:reened. potentigl ha; a density- A&(Q,Z) - A?ﬁ(q,z: 0)e 94 (A6)
independent limiting form in the high-density limit and that
the screening density is directly proportional to this potential with
Explicit calculations for model potentials confirm these con- 5
clusions and demonstrate the surprising fact that linear re- Ap(q,z=0) =~ T AR (A7)
sponse theory is valid even when the potential acting on the q
gas supports bound states. These nonintuitive results high-
light some of the peculiarities of electronic screening in twoThe screening potential in the plane of the gas is then ob-
dimensions. tained by taking the inverse 2D Fourier transform of this
equation.
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Paudp) = R (A8)
APPENDIX: EVALUATION OF HARTREE POTENTIAL p 0

ljn this z_apper:1d|x| we summarize the Im?tr;ods we ha\ée_ US€Gotential can be considered as being due to a point charge at
to determine the electrostatic potential of the screened impus _ 4 5 Afternatively, its 2D Fourier transform

rity charge. Due to the long-range nature of the Coulomb o~
interaction, this is the one nontrivial part of the calculation of
the total self-consistent potential.

A chargeZ at the positionR=dz above the plane of the

2DEG (z=0) is represented by the external charge density implies that the auxiliary charge density in tre0 plane has
the 2D Fourier transform

ﬁheredo is some fixed, nonzero parameter. Evidently, this

a’au)&Q) = %Tze—qdo (A9)

Nexi(T) =Z8(r = R) (A1)
which gives rise to the electrostatic potential Raud(Q) = Z€ 9%, (A10)
7 The corresponding real-space density is therefore
bexi(p) = PP (A2) z
- : o Nalp) = 55 23 (A11)
in the plane of the gas. Herg,s the radial distance from the 7 (p”+d)

origin. This potential induces the electronic screening densityhis density has a total charge @fand falls off asp™® as
An(r)=An(p) 8(z) which in turn gives rise to an electrostatic p—s 0,

potential that is determined by Poisson’s equation We now write the external potential as

V2A¢(r) = 4rAn(r). (A3) d’ext(p) = d’aw&P) + Ad’ext(p) (A12)

Although this equation determinésg in three-dimensional \here
space, only the behavior within the plane of the gas is re-
quired in Eq.(1). Adon(p) =2 1 _ 1
To solve Poisson’s equation, we make use of the 2D Fou- ext PP+ dY2 (pP+dd)2 |

rier transform pair . o .
The latter is treated explicitly in real space, while the effect

(A13)

~ o of ¢.ux IS accounted for by means of the following Poisson
AH(q,2) = f &p e IPAG(p,2), equation:
A ~
g .. ~ - PAd = - dmr(Tiyy— AT 8(2). Al4
Ad(p,2) = f (zque'q'%«zs(q,z). (A4) az AT AT ANAD. (ALY

. . ) This equation gives
Taking the Fourier transform of E¢A3), we obtain

~ 2 -
dZA'% - Ag(g,2=0) = — (N~ AN) (A15)
G2 ~aA¢=4mAnaR), (A5) q
which no longer has g=0 singularity since the combination
which has the solution Nax—AN is charge neutral. Thus, its inverse Fourier trans-
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form can be calculated readily using a fast Fourier transform ~+1) 20 =) a\~a
technique, and the addition of the result to E413) yields A¢"7(a.z=0) = E(ﬁaux_ AnY)+(1- 0 A¢"(q,2=0),
the total electrostatic potential.

The second problem concerns the convergence of the self- (A17)
consistent iterative procedure. This is dealt with by rewriting
Eq. (A14) in the form where Q?=¢?+ 2. It is evident that whem\ ¢V =A¢") at
5\~ convergence, this procedure yields
d"A¢ 2. 2N = 207
a2 (0°+ k)AP = = 4Ny — AN) 3(2) — KA.

~ 2
(A16) A¢(q,z=0) = Fﬂ-(ﬁaux_ A1), (A18)

This trivial change obviously does not change the solution of

the equation but we see that the left hand side corresponds wehich is the correct potential for the charge density,

a screenedCoulomb interaction with screening parameter —AN. The use of a screened Coulomb interaction has the
With this equation in mind, we adopt the following iterative important effect of stabilizing the iterative procedure re-
procedure® quired to achieve self-consistency.
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