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The velocityvres of resonant tunneling electrons in finite periodic structures is analytically calculated in two
ways. The first method is based on the fact that a transmission of unity leads to a coincidence of all still-
competing tunneling time definitions. Thus, having an indisputable resonant tunneling timetres, we apply the
natural definitionvres=L /tres to calculate the velocity. For the second method, we combine Bloch’s theorem
with the transfer matrix approach to decompose the wave function into two Bloch waves. The expectation
value of the velocity is then calculated. Both approaches lead to the same result, showing their physical
equivalence. The obtained resonant tunneling velocityvres is smaller than or equal to the group velocity times
the magnitude of the complex transmission amplitude of the unit cell. Only at energies at which theunit cell
of the periodic structure has a transmission of unity doesvres equal the group velocity. Numerical calculations
for a GaAs/AlGaAs superlattice are performed. For typical parameters, the resonant velocity is below one-
third of the group velocity.
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I. INTRODUCTION

There has been an ongoing debate about the time an elec-
tron spends when it passes through a classically forbidden
regionse.g., a rectangular barrierd for many decades. Despite
a number of review articles1,2 and many papers, there still
exist different definitions of tunneling time. In contrast to
tunneling through single barriers, periodic systems have a
transmission probability of unity below the barrier potential
at the individual transmission resonances, which form al-
lowed energy bands. Stimulated by comments in Ref. 2 and
recent results from the theory of finite periodic systems,3,4

here we study the tunneling time and the velocity of elec-
trons thattunnel resonantly with zero reflectionthrough finite
periodic systemssFPSd. As will be shown, for the case of
zero reflection, the ambiguity of the tunneling time definition
vanishes. Therefore, it can be used to define a resonant tun-
neling velocity. Our second velocity calculation is based
strictly on evaluating the expectation value of the velocity
operator. We do not study the time-dependent wave function.

The paper is organized as follows. The next section gives
a brief summary of the different tunneling time definitions.
In Sec. III the transfer matrix approach is introduced, which
is used in Sec. IV to calculate the resonant tunneling time
and the corresponding velocity. In Sec. V Bloch’s theorem is
used together with the transfer matrix to decompose the
wave function inside thesFPSd into two Bloch waves. It is
shown that the velocity operator must have real expectation
values at transmission resonances. The velocity expectation
value is then explicitly calculated. In Sec. VI we note that
both velocity approaches lead to the same result and derive
an upper bound for the velocity. Further, the special case in
which resonant tunneling velocity and group velocity are
identical is discussed. The analytical results are applied to a
semiconductor superlattice and are illustrated with a compi-
lation of graphs in Sec. VII. Finally, we discuss the obtained
results and possible extensions.

The obtained results are not restricted to a tight-binding
model, but are exact as long as only coherent transport is
considered.

II. TUNNELING TIMES

Most of the tunneling time studies have been performed
in one of the following frameworks:sid wave packet
analysis,1,5–8sii d dynamic paths including Feynman paths,9–11

siii d physical clocks,12–19 sivd flux-flux correlation
functions,20 svd theory of weak measurements,21 and svid
combinations of the former.22

The real phase or delay time

tphasesEd =
] argtsEd

]v
= "

] argtsEd
]E

, s1d

wheretsEd is the complex transmission coefficient as a func-
tion of energy, andv is the angular frequency, arises from a
stationary-phase argument for the transmitted wave packet.
Many of the approachessii d to svid result at first in complex
transmission tunneling times, given by one of the following
expressions:

tT
EsEd = − i"

] lntsEd
]E

= tphasesEd − i"
] lnutsEdu

]E
, s2d

tT
VsEd = i"

] lntsEd
]V

, s3d

tT
dVsEd = i"

d lntsEd
dVsxd

= tT
EsEd − i"

rsEd + r8sEd
4E

, s4d

whered /dVsxd denotes the functional derivative with respect
to the potentialVsxd, and rsEd and r8sEd are the reflection
amplitudes for particles coming from the left and right sides,
respectively. The corresponding reflection timestR

XsEd are
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given by the substitution oftsEd by rsEd in the left equalities
in Eqs.s2d ands4d. In the framework of physical clocks,12–19

the resulting times have been the real or imaginary part or
the absolute value of one of the times in Eqs.s2d and s3d.

On the other hand, it was shown that the simultaneous
process ofsad the determination whether a particle is trans-
mitted andsbd if so, how long it took to traverse the barrier,
corresponds to two noncommuting observables.23 There was
also some direct evidence that the imaginary part of the tun-
neling time results from the back action on the particle due to
the measurement process.21

In contrast, the time an electron spends under the barrier,
either finally reflected by or transmitted through the barrier,
is consistently given by the dwell time,24 also called sojourn
time, which is defined as the ratio of the number of particles
within the barriersextending froma to bd to the incident
flux:13

tDsEd =
1

vin
E

a

b

uCu2dx. s5d

A Hermitian sojourn time operator exists,25 which shows that
this time is measurable.

Again, there has been no general agreement whether a
relation of the following form must hold:

tDsEd = utsEdu2tTsEd + ursEdu2tRsEd. s6d

Based on the argument that reflection and transmission are
mutually exclusive events, which exhaust all possibilities in
the sense of Feynman, this relation served as a point of focus
in an early review.1 The complex tunneling timestT,R

dV fulfill
Eq. s6d.9 Nevertheless, the arguments for Eq.s6d have also
been criticized, arguing that the approach used goes beyond
Feynman’s original interpretation.2

A. Tunneling times in the case of the transmission
equal to unity

Given thatutu=1, for a certain energy, it was shown that
phase time and dwell time are identical, not only for the
single barriersat energies higher than the potential energy of
the barrierd,13 but also for arbitrary structures.1,7 The tunnel-
ing timestT

E, tT
V, andtT

dV, fEqs.s2d ands4dg, also simplify to
the phase timetphase, fEq. s1dg, for utu=1 in any arbitrary
structure. Thus, we have

utsE8du = 1 ⇒ tphasesE8d = tDsE8d = tT
EsE8d = tT

VsE8d = tT
dVsE8d.

s7d

In accordance with the real character of the phase time, the
aforementioned problem of noncommuting observables van-
ishes in the caseutsE8du=1, since all particles tunnel finally
through the structure; there is neither reflection nor interfer-
ence between reflected and transmitted particles.

Due to Eq.s7d we can choose any time definitionfEqs.
s1d–s5dg to calculate the tunneling time at resonance. We will
use the phase delay timefEq. s1dg, and make use of the
results obtained in Refs. 4 and 26.

B. Group velocity

At first view, a similiar approach to the phase time is the
concept of the group velocity

vg =
]v

]k
, s8d

which is the velocity of the envelope of a propagating wave
packet in a medium. Herev is the angular frequency andk is
the wave number. The functionvskd is normally referred to
as dispersion. The solutions of the Schrödinger equation for a
periodic potential also yield asbandd dispersion relation be-
tween the Bloch wave numberq and the angular frequency
v. UsingE="v, the group velocity then reads

vg = S"
]q

]E
D−1

. s9d

In Ref. 2, the following relation between the tunneling time
and the group velocity was givensfor the tight-binding
limit d, neglecting terms due to the matching of the wave
functions at the ends of the system:

vg > L/utT
Eu. s10d

HereL is the length of the periodic system. Recent numerical
calculations for FPS embedded in regions of constant poten-
tial showed that the equality in Eq.s10d, does not holdin
general.27 At first glance, it might seem paradoxical that the
group velocity and the phase delay time, which are both
based on a wave packet approach, lead to conflicting results.

Our analytical calculations will on one hand, show that
Eq. s10d taken from Ref. 2 gives indeed a wrong estimation
when the unit cell transmission amplitude is small and will,
on the other hand, resolve the mentioned paradox.

III. FINITE PERIODIC SYSTEMS

Our one-dimensional model system consists of ann-fold
periodic structure, extending fromx=0 to x=L=nd sd is the
length of the unit celld, embedded between two semi-infinite
half-spaces with zero potentialsFig. 1d.

Assuming a plane wave, expsikxd, traveling from the left
towards the FPS, the wave function is given by

FIG. 1. Periodic potentialsdrawn for five periodsd embedded
between two infinite half-spaces. Arrows denote the wave function
splane wavesd.
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Csxd = 5expsikxd + r snd exps− ikxd, x ø 0

CFPS
snd sxd, 0 ø x ø L = nd

tsnd expfiksx − Ldg, x ù L

h

s11d

wherek=Î2mE/" is the electron wave vector in the semi-
infinite half-spaces, andr snd and tsnd are the complex reflec-
tion and transmission coefficients of then-fold periodic
structure, respectively.

We start by briefly reviewing some important properties
of one-dimensional FPS.3,4 The wave functions at the left
and right interfaces of a certain region,CL andCR, respec-
tively, are related by the transfer matrixM through28

SAL
+

AL
−D = MSAR

+

AR
− D ,

where

CL,R = s1 1dSAL,R
+

AL,R
− D = AL,R

+ + AL,R
− .

Neglecting spin, the time reversal invariance and the conser-
vation of the probability density current lead to the
structure29 of the transfer matrixM

M = S a b

b* a* D , s12d

where additionally detM =1 holds sx* denotes the complex
conjugate ofxd. In terms of the transmission and reflection
coefficientst and r, the transfer matrix can be written as30

M = S1/t r* /t*

r/t 1/t*
D . s13d

Since by construction the transfer matrix of a sequence of
layers is the product of the transfer matrices of each layer,
the transfer matrix of a potential consisting ofn periods is
the nth power of the transfer matrix of one period:

M n = S asnd bsnd

bsnd* asnd* D . s14d

For nù2, asnd andbsnd can be expanded to31

asnd = aUn−1sRehajd − Un−2sRehajd, s15d

bsnd = bUn−1sRehajd, s16d

whereUnsxd denote the Chebyshev polynomials of the sec-
ond kind. The transmissionTsnd of any sfield-freed n-fold
periodic structure is given by3,4,30,32,33

Tsnd = uasndu−2 = f1 + ubu2Un−1
2 sRehajdg−1. s17d

Resonances withTsnd=1 occur if and only if bsnd

=bUn−1sRehajd=0. This leads to the following independent
conditions of transmission resonances3,34

Tsnd = 1 ⇔ Rehaj = coss jp/nd∨uau = 1, s18d

where j P h1, . . . ,n−1j. For the case Rehaj=coss jp /nd, the
corresponding Bloch wave vectorsqj

res are given by the con-
dition Rehaj=cosqd:

qj
res= ±

jp

nd
, j = 1, . . . ,n − 1. s19d

Inserting Rehaj=coss jp /nd into Eq. s15d, we obtain at these
resonances:

asndsqj
resd = tsndsqj

resd = s− 1d j . s20d

Additional transmission resonances withTsnd=1 occur if uau
= utu−1=1; i.e., when the transmission probability of the unit
cell equals unity.

IV. VELOCITY FROM TUNNELING TIME

Recently, the phase time for a system withn periods,
tphase

snd , has been calculated with the help of Eqs.s1d, s13d, and
s15d:4,26

tphase
snd = "TsndFSn −

Rehaj
2

U2n−1sRehajdD
3

Imhaj
1 − Re2haj

] Rehaj
]E

−
1

2
U2n−1sRehajd

] Imhaj
]E

G ,

s21d

where Tsnd is the transmission probability of the periodic
structure given by Eq.s17d. Here we are only interested in
the phase time at resonance energies of the transmission. For
energies at whichTsnd=1, the phase time is equal to the tun-
neling time as we discussed in Sec. I. In both cases of Eq.
s18d, Eq.s21d can be reduced to the in-resonance phase time4

or resonant tunneling time:

tres
snd = "n

Imhaj
1 − Re2haj

] Rehaj
]E

. s22d

Clearly,tres
snd is proportional to the number of periodsn. Using

the natural definition

vres= L/tres
snd, s23d

we get the following resonant tunneling velocity:

vres= "−1d
1 − Re2haj
− Imhaj S−

] Rehaj
]E

D−1

, s24d

which does not depend on the number of periodsn. For the
sake of completeness, we give the result in terms of the
transmission amplitudet=1/a of the unit cell:

vres= "−1d
utu4 − Re2htj

Imhtj S−
] Rehtj

]E
D−1

. s25d

Now it is interesting to compare this tunneling velocityvres
to the group velocityvg. From the dispersion relation
Rehaj=cossqdd, we obtain
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vg = S"
]q

]E
D−1

= "−1dÎ1 − Re2hajS−
] Rehaj

]E
D−1

. s26d

Using Eqs.s24d–s26d, the resonant tunneling velocity and the
group velocity are related by

vres=
Î1 − Re2haj

− Imhaj
vg =

Îutu4 − Re2htj
Imhtj

vg. s27d

Note that the equations for the resonant tunneling time and
the resonant velocity are only meaningful if they are evalu-
ated at energies at which the FPS has a transmission prob-
ability of unity.

V. EXPECTATION VALUE OF VELOCITY OPERATOR

In the following, we calculate the expectation value of the
velocity operator applied to the exact wave function inside
the FPS.

A. Decomposition ofC into two Bloch waves

In 1929, Bloch calculated the eigenfunctions of the
Schrödinger equation for crystal lattices.35 He modeled the
lattice by a periodic potential that spans the whole space.
Using group theory together with periodicsBorn–von
Kármánd boundary conditions, he proved that the base solu-
tions of the Schrödinger equation for a lattice potentialfi.e.,
Vsxd=Vsx+Rid, whereRi is any lattice vectorg, are of the
form

Cq
Bsxd = uqsxdexpsiq ·xd. s28d

Hereq is in modern terms a reciprocal lattice vector and

uqsxd = uqsx + Rid s29d

is a lattice periodic function. This fact is well known as
Bloch’s theorem. Actually, in the mathematical literature, the
same theorem for linear differential equations with periodic
coefficients was proved by Floquet36 much earlier. Since
Bloch derived the theorem originally for an infinite domain,
this infinite domain is sometimes considered as necessary.

Therefore, we will start by briefly showing that Bloch’s
theorem gives also the exact wave functions in finite sys-
tems.

Mathematically spoken, for the case of the infinite peri-
odic potentialV:R3→R considered by Bloch, the domain of
the Schrödinger differential equation and its solutionsCq

B is
D=R3. If we reduce the domain of the periodic potential
sand thus of the Schrödinger equationd to any finite subdo-

main D̃,R3 and choose an arbitrary potential in the domain

R3\ D̃, the base solutions of the differential equation insideD̃
are not changed. The physical consequence is that despite the
loss of the global translation invariance of the Hamiltonian in
a finite system, the wave functions are stillexactlygiven by
superpositions of Bloch wavesfEq. s28dg.

If we neglect spin, the time inversion symmetry of
the Hamiltonian leads to Kramers degeneracy; i.e.,Esqd
=Es−qd.

Therefore, the two linear independent solutions of
Schrödinger’s equation for the one-dimensional periodic po-
tential in a finite domain are given byCq

B and sCq
Bd*sxd

=C−q
B sxd. Having clarified this, we use the following wave

function in any one-dimensionaln-fold periodic system in-
side an allowed band:

CFPS
snd sxd = aq

snduqsxdexpsiqxd

+ a−q
snduq

*sxdexps− iqxd, 0 ø x ø nd, s30d

uqsx + dd = uqsxd, uq
*sxd = u−qsxd.

See also Ref. 37sChap. 8, Sec. 1.1, Sec. 1.2d for another
rigorous justification. The dimensionless coefficientsaq

snd and
a−q

snd are determined by inital value conditions; i.e., byCs0d
andC8s0d. In the following, we choose theuqsxd to be nor-
malized:

E
0

d

dx uq
*sxduqsxd = d/s2pd. s31d

B. The velocity operator has real expectation values
at transmission resonances

Any physical state is represented by a wave function that
is an element of the Hilbert space of the square integrable
functions H=L2sR3d. The Hermiticity of the velocitysand
the momentumd operator comes from the fact that the nor-
malizationkC uCl=1 leads toCsxd=0 asuxu→`.

The states we considerfEq. s11dg are scattering states that
do not belong toL2sR3d. Therefore, we cannot expect that the
velocity operator applied to any finite subdomain is Hermit-
ian. Nevertheless, we show that the expectation values of the
velocity operator inside the periodic structure are real for
resonant tunneling states.

The calculation is restricted to the one-dimensional region
betweenx=0 andx=L inside the FPS. The expectation value
of the velocity of any state uCl is given by kv̂l
=kCuv̂uCl / kC uCl. In our case the numerator can be denoted

as kCFPS
snd uv̂P̂FPSuCFPS

snd l, whereP̂FPS is the projection operator
onto the space region of the FPS:

P̂FPS=E
0

L

dxuxlkxu. s32d

Partial integrationsassuming a constant effective electron
massmd leads to

kCFPS
snd uv̂P̂FPSuCFPS

snd l = S− ih

m
DuuCFPS

snd u2u0
L + kCFPS

snd uv̂P̂FPSuCFPS
snd l* .

s33d

Equation s11d yields immediately thatCFPS
snd s0d=1+r snd,

CFPS
snd sLd= tsnd. Thus, whenutsndu=1⇔ r snd=0 holds, we have

CFPS
snd s0d=1 and uCFPS

snd sLdu=1, and the term uCFPS
snd sLdu2

− uCFPS
snd s0du2 vanishes. Therefore, we obtain
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utsndu = 1 ⇒ kCFPS
snd uv̂P̂FPSuCFPS

snd l = kCFPS
snd uv̂P̂FPSuCFPS

snd l* ,

s34d

i.e., the velocity has a real value at resonances withutsndu=1.
In this derivation, we did not use the periodicity of the

potential nor that of the base solutions; thus, it holds for
arbitrary potentials ifutu=1 sstrictly speaking, it holds if and
only if u1+r u= utud.

Note that in the calculation of eigenstates bounded
by infinite barriers on both sides, a different relation, i.e.,
CFPS

snd s0d=CFPS
snd sLd=0, holds, which leads to a velocity ex-

pectation value of zero.

C. Expectation value of the velocity at resonance

The expectation value of the velocity in then-periodic
system at resonance is given by

kv̂FPS
snd l =

kCFPS
snd uv̂P̂FPSuCFPS

snd l

kCFPS
snd uP̂FPSuCFPS

snd l
. s35d

With the help of Eqs.s30d and s31d, the numerator is given
by

kCFPS
snd uv̂P̂FPSuCFPS

snd l =
L

2p
suaq

sndu2 − ua−q
sndu2dvgsqd. s36d

The denominator of Eq.s35d is given by

kCFPS
snd uP̂FPSuCFPS

snd l =
L

2p
suaq

sndu2 + ua−q
sndu2d. s37d

A detailed derivation of both equations is given in Appen-
dixes A and B, respectively. From Eqs.s35d–s37d we obtain
the velocity expectation value at resonance:

kv̂FPS
snd l =

uaq
sndu2 − ua−q

sndu2

uaq
sndu2 + ua−q

sndu2
vg =

1 − ua−q
snd/aq

sndu2

1 + ua−q
snd/aq

sndu2
vg. s38d

An interpretation of this formula will be given in the next
section.

D. Determination of Bloch coefficients

Next we have to determine the ratioua−q
snd /aq

sndu. For the
calculation of the expectation value, it would be sufficient to
consider only the wave function at resonance; nevertheless,
we will derive a more general result that is valid for anyq
value.

We rewrite the ansatz for the wave functions30d in a
reduced form

CFPS
snd sxd = ũqsxdexpsiqxd + ã−q

sndũq
*sxdexps− iqxd, s39ad

ũqsxd = aq
snduqsxd, s39bd

ã−q
snd = a−q

snd/saq
sndd* . s39cd

By formally replacingq with −q and taking the complex
conjugate in Eq.s39cd,

ã−q
snd = 1/sãq

sndd* s39dd

is obtained.
As stated above, the remaining coefficientã−q

snd is deter-
mined by the initial valuesCs0d and C8s0d, obtained from
the continuity of the wave function and the probability cur-
rent density across the boundary atx=0. To simplify the
algebra, we make use of the fact that these continuity condi-
tions are inherently incorporated in the transfer matrix ap-
proach. Therefore, to determineã−q

snd, we use the continuity of
the wave function atx=0 and two different representations
of CFPS

snd at x=d. This way, the derivative of the wave func-
tion is not needed in an explicit form.38 The continuity of the
wave functions11d at x=0 leads to

1 + r snd = ũqs0d + ã−q
sndũq

*s0d. s40d

With Eq. s39ad, the periodicity of theũqsxd gives the wave
function atx=d:

CFPS
snd sdd = ũqs0dexpsiqdd + ã−q

sndũq
*s0dexps− iqdd. s41d

On the other hand,CFPS
snd sdd can be obtained through the

transfer matrixs12d of the unit cell:

CFPS
snd sdd = s1 1dM −1S 1

r snd D = a* − b* + r sndsa − bd. s42d

Again, we note that the continuity of the probability current
density is fully incorporated in this treatment in the reflection
coefficientr snd. Equationss40d and s41d, together withs42d,
form two nonlinear equations inũqs0d andã−q

snd. The solution
for ã−q

snd is given by

ã−q
snd =

a* − b* − j + r sndsa − b − jd
a − b − j + r snd*sa* − b* − jd

, s43d

where j=expsiqdd is introduced. From Eqs.s13d–s16d, we
obtain

r snd =
bsnd*

asnd =
b*Un−1sRehajd

aUn−1sRehajd − Un−2sRehajd
. s44d

Inserting into Eq.s43d, we obtain after some algebra,

ã−q
snd =

a* − b* − j

a − b − j

asnd*

asnd =
a* − b* − j

a − b − j

tsnd

tsnd* . s45d

Consistent with Eq.s39dd, ã−q
snd=1/sãq

sndd* is fulfilled.
In Appendix C, Eq. s45d is used to calculateũqsxd and
CFPS

snd sxd. Further, we prove in Appendix D 1 the interesting
identity

kCFPS
snd uv̂P̂FPSuCFPS

snd l = j inL, s46d

where j in is the incident probability current. Equations46d is
used for the calculation ofa−q

snd andaq
snd in Appendix D 3.

As a consequence of Eq.s45d, the absolute value ofã−q
snd

does not depend onn:
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uã−q
sndu = Ua* − b* − j

a − b − j
U . s47d

This shows that the ratio of the amplitude of the left- and
right-going Bloch wave does not depend on the number of
periods and is a property of the unit cell only.

Using Rehaj=cossqdd, uau2− ubu2=1, andj=expsiqdd, the
absolute value squared ofã−q

snd inside a band can be simplified
to

uã−q
sndu2 =

Imhaj + Î1 − Re2haj

Imhaj − Î1 − Re2haj
. s48d

Taking uã−q
sndu= ua−q

snd /aq
sndu into consideration, inserting Eq.

s48d into Eq. s38d gives

kv̂FPS
snd l =

1 − uã−q
sndu2

1 + uã−q
sndu2

vg =
Î1 − Re2haj

− Imhaj
vg. s49d

However, this result is not true for the off-resonant case
when the first equality does not hold. Nevertheless, the be-
havior of kv̂FPS

snd l as a continuous function ofE or q is of
interest, since any rational multiple ofp /d can be obtained
asqres, by choosing proper values forj andn fsee Eq.s19dg.

For the sake of completeness, in the resonant case, in
which qres is given by Eq.s19d, andtsnd= ±1 holds, Eq.s45d
can be simplified to

ã−qres

snd =
a* − b* − j

a − b − j
. s50d

In the second resonant case, in whichutu= uau−1=1, either the
numerator or the denominator of the right-hand side of Eq.
s48d vanishes; i.e.,

utu = 1 ⇒ a−q
snd = 0 ∨ aq

snd = 0. s51d

VI. IDENTITY OF TUNNELING TIME APPROACH
AND VELOCITY EXPECTATION VALUE APPROACH

Comparing Eqs.s27d ands49d, we get the important iden-
tity

kv̂FPS
snd l = vres. s52d

Consequently, the tunneling time approach and the velocity
expectation value approach are physically equivalent at reso-
nance. We use the termvres as the electron velocity in reso-
nant tunneling through a FPS in the following. From the first
identity in Eq. s49d, it follows that the electron velocity is
bounded above by the group velocityvg:

vresø uvgu. s53d

Here the absolute value occurs, since the group velocity can
also take negative values for positiveq, e.g., for bands where
the energy maximum is atq=0, while the resonant velocity
is always positive.

A. Upper bound for the resonant tunneling velocity

In fact, by squaring the outer equality in Eq.s49d, an
improved inequality compared to Eq.s53d can be derived.

We use thatuau2= utu−2ù1. Additionally, inside an allowed
band Re2hajø1 holds. Therefore, 0ø1−Re2hajø Im2haj.
Now, making use of the simple inequalityx/yø sx+zd / sy
+zd, which holds for 0øxøy and 0øz, we obtain

1 − Re2haj
Im2haj

ø
1

Im2haj + Re2haj
= utu2. s54d

Finally, this proves

vresø utuuvgu. s55d

In both formulas, the equality holds for Rehaj=0, i.e., for
q=p /2d, which is in the middle of the band inq space.
Equations55d shows that the resonant tunneling velocity can
be much smaller than the group velocity, given a sufficiently
small transmission amplitude of the unit cell. Furthermore,
towards the band edges where Rehaj approaches ±1, the ratio
vres/vg vanishesfsee Eq.s49dg. Comparing with Eq.s10d,
taken from Ref. 2, we conclude that the matching of the
wave functions at the ends of the system can reduce the
velocity considerably.

B. Special case: Identity betweenvres and zvgz

From the outer equality in Eq.s49d, we can conclude that
the equality betweenvres and uvgu holds if and only if uau
= utu−1=1, i.e., at energiesE8 with utsE8du=1 of the unit cellof
the periodic system:

vressE8d = uvgsE8du ⇔ utsE8du = 1. s56d

A unit cell that is formed by a symmetric double-barrier
resonant tunneling structure39,40 possesses the property
utsE8du=1 at each transmission resonance energyE8=En. For
this unit cell type, the resonant tunneling velocityvres equals
the magnitude of the group velocityvg at all energiesEn. For
energies different from theEn, vres is smaller thanuvgu. The
only unit cell wherevres equalsvg for all energies is the
trivial unit cell with Vsxd=0, for 0øxød, since it has
utsEdu=1 for all energies.

Further, we can derive conditions from Eq.s49d for the
identity betweenvres and uvgu, in terms of the coefficients
aq

snd ,a−q
snd:

vres= vg ⇔ a−q
snd = 0, s57d

vres= − vg ⇔ aq
snd = 0. s58d

The resonant tunneling velocity equals the magnitude of the
group velocity if and only if the wave function has only one
Bloch component.

Considering Eq.s56d, this can also be written as

aq
snd = 0 ∨ a−q

snd = 0 ⇔ utu = 1, s59d

yielding that the wave function inside a finite periodic poten-
tial consists of only one Bloch wave if and only if the trans-
mission of the unit cell reaches unity. Therefore, we obtain
the picture that the Bloch wave moving into the left direction
is built up by a coherent superposition of the reflected parts
of waves moving into the right direction.
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This also solves the puzzle we mentioned in Sec. I;
namely, that the phase delay time and the group velocity both
originate from a wave packet analysis, but lead to different
results. Often the group velocity is used when, in good ap-
proximation, no reflection occurs inside the medium. In con-
trast, here, in the case thatutuÞ1, there is reflection in each
period. These reflections are the origin of the reduced veloc-
ity, compared to the group velocity.

VII. GaAs/AlGaAs SUPERLATTICE

All results presented are valid for arbitrary unit cells un-
less otherwise noted. In this section the results are applied to
a periodic semiconductor heterostructure. Due to its wide-
spread use, we choose a GaAs/AlGaAs superlatticesSLd.
Denoting the barrierssAlGaAsd with B and the well regions
sGaAsd with A, we can give a short notation for the potential
with n periods:sBAdn. Assuming a stepwise constant poten-
tial function in each layer, the transfer matrix elements can
be calculated analytically. To keep the focus on the main
topic, we will use the following simplifications:sid the effec-
tive massm is approximated to be the same in GaAs and in
AlGaAs, andsii d the effective mass does not depend on the
energy. These simplifications can be avoided, but this is left
for future work. We present results for the lowest miniband.
The analogous calculations for higher minibands will be dis-
cussed elsewhere.

For a SL of the formsBAdn, we obtain the following ex-
pressions for the matrix elements of the unit cellsBAd:4

RehaSLj = coshskLbdcosskLwd − c2 sinhskLbdsinskLwd,

s60ad

ImhaSLj = − coshskLbdsinskLwd − c2 sinhskLbdcosskLwd,

s60bd

bSL = ic1 sinhskLbdexpskLwd. s60cd

HereLb andLw are the thicknesses of the barrier and the
well layers, respectively:

k = "−1f2msVb − Edg1/2, k = "−1s2mEd1/2,

are the decaying electron wave vector in the barrier layer and
the electron wave vector in the well layer, respectively, and

c1,2= 1
2skk−1 ± kk−1d.

The energy and the conduction band offset between GaAs
and AlGaAs are denoted asE andVb, respectively.

The following SL parameters are chosen to be identical or
nearly identical to systems that were studied experimentally
and theoretically in the past.4,27,34,41

For the barrier and the well width, we chooseLb
=2.5 nm andLw=6.5 nm, respectively. The barriers consist
of Al0.3Ga0.7As, the wells of GaAs. The number of periods is
n=6. A schematic of the resulting conduction band is drawn
in Fig. 2. The calculations are performed for theG valley of
the conduction band for a temperature of 4 K. As the effec-
tive electron masses in both, GaAs and Al0.3Ga0.7As, we

choosem=0.072m0, wherem0 is the free electron mass. The
conduction band offset isVb=288 meV.

Because of the strong interdependencies between the dis-
persion relation, transmission probability, group and resonant
tunneling velocity, and the ratio of the amplitudes of the +q
and −q Bloch waves, all are shown together in Fig. 3. All
variables are plotted on the left as a function of the energyE
and on the right as a function of the Bloch wave vectorq.

For the first miniband the resonance energies are given by
the smallest solutionsEj of Eqs.s18d ands60ad, i.e., by solv-
ing the transcendental equation

coss jp/nd = coshskLbdcosskLwd − c2 sinhskLbdsinskLwd.

s61d

The diamonds in Fig. 3 mark the values at the resonance
energies for the system withn=6 periods. Changing the
number of periodsn results in values that lie on the lines
which connect the diamonds. In the limitn→`, one would
also obtain the continuous lines.

Figure 3sad showsqsEd, and Fig. 3sbd shows its inverse,
the dispersion relationEsqd. The dispersion relation is ob-
tained from RehaSLj=cossqdd, where RehaSLj is given by Eq.
s60ad.

In Figs. 3scd and 3sdd, the transmission probabilityTs6d

fEq. s17dg is plotted.
From the plots ofEsqd andTs6dsqd the equidistant behav-

ior of the resonant levels, Eq.s19d, in q space can be seen
nicely. Of course, due to the nonlinear dispersionEsqd, this
behavior is lost in energy space.

Next, in Figs. 3sed and 3sfd, the magnitude of the ampli-
tude ratio of the −q and +q Bloch waves,uã−q

sndu fEq. s47dg is
shown. Towards the miniband edges this ratio approaches
unity, and it drops to a minimum around the middle of the
miniband.

Figs. 3sgd and 3shd show the group velocityvg fEq. s26dg
ssolid lined, and the resonant tunneling velocityvres fEq.
s24dg sdashed lined. For the n=6 case, the group velocity
reaches its maximum in the fourth resonance, while the reso-
nant tunneling velocity reaches its maximum in the third
resonance. This shows again the fundamental difference be-
tween both velocities. It is interesting to note that the slope
of vressqd is zero atq=0,p /d, while the slope ofvgsqd has its
maximum value there.

FIG. 2. Schematic potential of a SL of the formsBAdn. The
number of periodsn is chosen to be 6.
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In Figs. 3sid and 3sjd, the ratiovres/vg and the magnitude
of the unit cell transmission amplitudeutu are plotted. The
velocity ratio is always smaller than the single-cell transmis-
sion, except forq=p /2d when both are equalfsee Eq.s55dg.
For the given parameters, the velocity ratio is below one-
third.

VIII. DISCUSSION

The group velocity is often used as the speed of the elec-
trons inside a SL. Strictly speaking, the group velocity is the
expectation value of the velocity operator applied to only a
single Bloch wave. We showed that the solution of the

FIG. 3. Shown are relevant physical properties of superlattices. In the left column, all functions are plotted vs energyE, and in the right
column vs Bloch wave vectorq. Diamonds mark the positions of the resonant levels forn=6 periodssband structure given in Fig. 2d. By
changing the number of periodsn, the lines connecting the diamonds are formed. The dispersion relationqsEd andEsqd, the transmission
probability Ts6d, the normalized coefficient of the backwards propagating Bloch waveuã−q

sndu, the group velocityvg, the resonant tunneling
velocity vres, and the ratio of resonant tunneling and group velocity of the periodic system together with the magnitude of the unit cell
transmission amplitudeutu are shown.
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Schrödinger equation, which fulfills the boundary conditions
of the open system, is not given by a single Bloch wave.
Instead, the solution is given by a superposition of two Bloch
waves traveling in opposite directions. This inevitablesex-
cept for singular energies at whichutu=1 holds for the unit
celld second Bloch wave is the reason that the physically
significant expectation value of the velocity of the composed
wave function is reduced compared to the velocity of the
single Bloch wave; i.e., the group velocity. The velocity of a
single Bloch wave is not a directly observable entity in pe-
riodic systemssexcept again forutu=1d, but can be used as an
upper bound for the resonant tunneling velocity. The pre-
sented results support the numerical findings of Ref. 27.

In this context, the often used relation “mean free path
equals group velocity times scattering time” seems question-
able. We suggest that in open mesoscopic structures,ssee
Fig. 1 and Fig. 2d where the mean free path exceeds the
length of the periodic structure, it should be replaced by
“mean free path equals resonant tunneling velocity multi-
plied by scattering time.”

The commutator of the observable that measures the event
of transmission and the tunneling time operator does not
vanish,23 as already mentioned. We showed that the expecta-
tion value of the velocity is in general complex for nonzero
reflection. Thus, in some sense, we presented a different ar-
gumentation that this problem is not well defined and that
asking for the velocity of thestransmittedd electrons is only a
valid question if the transmission probability of the periodic
system,utsndu2, is unity. Therefore, we restricted our calcula-
tions to this case.

In calculating the velocity expectation value we obtained
the average over a set of identical velocity measurements but
no information of the time-dependent behavior of the pro-
cess. The solutions of the time-dependent Schrödinger equa-
tion can be studied in addition. Nevertheless, it has been
pointed out that arriving wave packet peaks do not turn into
transmitted peaks among other difficulties2 in the wave
packet approach. Despite that, in the light of our results, we
suggest the analysis of periodic wave packets composed of a
discrete set of resonant states. In contrast to any tunneling
wave packet simulation we are aware of, thereflection is
exactly zerofor these packets. Therefore, we would expect
some new insights.

IX. CONCLUSIONS

We calculated the resonant tunneling electron velocity in
finite periodic structures embedded in regions of constant
potential in two different ways and proved their identity.

The first method was based on the fact thatutsndu=1 leads
to a coincidence of all tunneling time definitions, turning up
in the literature. We used the phase timetphase="] argt /]E
and the natural definitionv=L /t to calculate the velocity in
terms of the unit cell transfer matrix elements and the unit
cell transmission amplitude, respectively, yielding Eqs.s24d
and s25d.

Bloch’s theorem was combined with the transfer matrix
approach to separate the wave function into two Bloch
waves, which propagate in opposite directionsfEq. s39adg

together with either Eq.s47d or Eq. s48d. After proving that
the velocity operator is real at resonance, we calculated its
expectation valuefEq. s49dg as the second method.

Both results are completely identical, showing the physi-
cal equivalence of the two approaches. The resonant tunnel-
ing velocity is in any case smaller or equal to the group
velocity. In addition, the resonant tunneling velocity is
smaller than or equal to the product of the group velocity and
the magnitude of the transmission amplitude of the unit cell.
Thus for unit cells with a small transmission amplitude both
velocities can differ considerably. We discussed that the
Bloch wave moving in the opposite direction of the incident
electrons is due to reflections inside all unit cells. These re-
flections are the reason for the reduced velocity compared to
the group velocity. At energies, where the unit cell has a
transmission of unity, only one Bloch wave remains. Conse-
quently, the resonant tunneling velocity equals the group ve-
locity.

We intentionally avoided studying the problem of the tun-
neling time and velocity for nonzero reflection. However, as
stated above, certain wave packet analysis might help to
complete the picture. We believe that the identity of the tun-
neling time and velocity expectation value approach will
hold also for nonperiodic systems with zero reflection. This
topic is considered for future investigation.

Electron waves have been used throughout this paper. In
analogy the main results hold for the propagation of light
waves, of phonons waves, and so on, in periodic structures.
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APPENDIX A: EVALUATION OF ŠCFPS
„n… zv̂P̂FPSzCFPS

„n…
‹

First, we consider the case in whichq=qres. Expanding
the integral with the help of Eqs.s30d and s31d leads to

kCFPS
snd uv̂P̂FPSuCFPS

snd l

= uaq
sndu2kCq

Buv̂P̂FPSuCq
Bl + ua−q

sndu2kC−q
B uv̂P̂FPSuC−q

B l

−
i"

mHaq
snda−q

snd*E
0

L

dx uqsxdeiqx ]

]x
fuqsxdeiqxg + c.c.J .

sA1d

If the Bloch wave vectorq is given by Eq.s19d, i.e., qj
res

= jp /L, the last integral vanishes:

E
0

L

dx uqsxdeiqx ]

]x
fuqsxdeiqxg = F1

2
uq

2sxdei2qxG
0

L

= 0,

sA2d

due to the periodicity of both, theuqsxd and the complex
exponential function. Using the fact42 that

COHERENT RESONANT TUNNELING TIME AND… PHYSICAL REVIEW B 71, 125317s2005d

125317-9



kC±q
B uv̂uC±q

B l/kC±q
B uC±q

B l = vgs±qd = ± vgsqd, sA3d

the normalizations31d leads finally to Eq.s36d.
For the second case, i.e.,utu=1, we use Eq.s51d. This

means that there is only one Bloch wave and eitheraq
snd or

a−q
snd is zero. EquationsA3d and the normalizations31d then

give Eq.s36d directly.

APPENDIX B: EVALUATION OF ŠCFPS
„n… zP̂FPSzCFPS

„n…
‹

First, we consider again the case in whichq=qres. Ex-
panding the integral with the help of Eqs.s30d ands31d leads
to

kCFPS
snd uP̂FPSuCFPS

snd l = uaq
sndu2kCq

BuP̂FPSuCq
Bl

+ ua−q
sndu2kC−q

B uP̂FPSuC−q
B l

+ Saq
snda−q

snd*E
0

L

dx uq
2sxdei2qx + c.c.D .

sB1d

Due to the periodicity ofuqsxd and considering thatqj
res

= jp /nd, the last integral vanishes:

E
0

nd

dx uq
2sxdei2qx = So

l=0

n−1

expsi2qlddDE
0

d

uq
2sxdei2qxdx

= o
l=0

n−1

fexpsi2p j /ndglE
0

d

uq
2sxdei2qxdx= 0,

sB2d

where the last identity is due to the vanishing of the geomet-
ric sum. Together with the normalizations31d, we end up
with Eq. s37d.

For the second case, i.e.,utu=1, we use Eq.s51d. This
means that there is only one Bloch wave and eitheraq

snd or
a−q

snd is zero. The normalizations31d then gives Eq.s37d
directly.

APPENDIX C: SIMPLIFIED CALCULATION
OF THE WAVE FUNCTION IN THE FPS

As a supplementary result, onceã−q
snd is calculated from

Eq. s45d, the values ofCFPS
snd sxd in one period, e.g., obtained

with the transfer matrix approach, allows us to calculate the
periodic functionũqsxd. Solving Eq.s39ad for ũqsxd we ob-
tain

ũqsxd =
CFPS

snd sxd − ã−q
sndsCFPS

snd d*sxd
1 − uã−q

sndu2
exps− iqxd. sC1d

Using Eqs.s39ad and s45d, the wave function in theentire
FPScan be obtained easily.

APPENDIX D: DERIVATION OF AN IDENTITY
AND CALCULATION OF aq

„n… AND a−q
„n…

1. Identity—first method

From Eqs.s52d, s35d, ands23d,

L

tres
snd = vres

snd =
kCFPS

snd uv̂P̂FPSuCFPS
snd l

kCFPS
snd uP̂FPSuCFPS

snd l
, sD1d

and Eqs.s5d and s7d,

tres
snd =

1

j in
kCFPS

snd uP̂FPSuCFPS
snd l, sD2d

we derive the interesting identity, valid at resonance,

L =
1

j in
kCFPS

snd uv̂P̂FPSuCFPS
snd l, sD3d

where the incoming probability current is given byj in
="k/m.

2. Identity—second method

This equation can also be derived directly from the con-
servation of electrical charge in the form

]

]t
uCsx,tdu2 +

]

]x
jsx,td = 0, sD4d

where j is the one-dimensional probability current given by

jsx,td = ReFC*S−
i"

m

]

]x
DCG . sD5d

Since in our caseuCu2 and j do not depend on time, Eq.sD4d
simplifies to

jsx,td = const. sD6d

Now we integrate the constant probability current density
fEq. sD5dg, first for the wave function to the left, i.e.,
CLsxd=expsikxd, and second for the wave function at reso-
nance inside the FPS, i.e.,CFPS

snd sxd, both over the interval
f0,Lg. EquationssD6d and s34d then yield identitysD3d.

3. Calculation of aq
„n… and a−q

„n…

Making use of Eqs.s36d, sD3d, ands39ad, we can calcu-
late aq

snd and a−q
snd. Choosing thesarbitraryd phase ofaq

snd, so

that aq
snd is real and positive, we obtain

aq
snd = F 2p j in

s1 − uã−q
sndu2dvg

G1/2

, sD7d

a−q
snd = ã−q

sndaq
snd, sD8d

whereã−q
snd is given by Eq.s45d.
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