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Coherent resonant tunneling time and velocity in finite periodic systems

C. Pacher, W. Boxleitner, and E. Gornik
Institut fir Festkorperelektronik, Technische Universitat Wien, A-1040 Wien, Austria
and ARC Seibersdorf Research GmbH, Donau-City Stral3e 1/4, A-1220 Wien, Austria
(Received 19 July 2004; published 16 March 2D05

The velocityv,es 0f resonant tunneling electrons in finite periodic structures is analytically calculated in two
ways. The first method is based on the fact that a transmission of unity leads to a coincidence of all still-
competing tunneling time definitions. Thus, having an indisputable resonant tunneling.tinvee apply the
natural definitionvs=L/7es t0 calculate the velocity. For the second method, we combine Bloch’s theorem
with the transfer matrix approach to decompose the wave function into two Bloch waves. The expectation
value of the velocity is then calculated. Both approaches lead to the same result, showing their physical
equivalence. The obtained resonant tunneling velagityis smaller than or equal to the group velocity times
the magnitude of the complex transmission amplitude of the unit cell. Only at energies at whiahitthell
of the periodic structure has a transmission of unity dgggequal the group velocity. Numerical calculations
for a GaAs/AlGaAs superlattice are performed. For typical parameters, the resonant velocity is below one-
third of the group velocity.
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I. INTRODUCTION The obtained results are not restricted to a tight-binding
model, but are exact as long as only coherent transport is
There has been an ongoing debate about the time an elegonsidered.

tron spends when it passes through a classically forbidden
region(e.g., a rectangular barrjeior many decades. Despite II. TUNNELING TIMES
a number of review articlég and many papers, there still
exist different definitions of tunneling time. In contrast to  Most of the tunneling time studies have been performed
tunneling through single barriers, periodic systems have i one of the following frameworks:(i) wave packet
transmission probability of unity below the barrier potential analysist->-8(ii) dynamic paths including Feynman path¥}
at the individual transmission resonances, which form al{iii) physical clocks?™*® (iv) flux-flux correlation
lowed energy bands. Stimulated by comments in Ref. 2 anéunctions?® (v) theory of weak measuremerftsand (vi)
recent results from the theory of finite periodic systérs, combinations of the formée?.
here we study the tunneling time and the velocity of elec- The real phase or delay time
trons thattunnel resonantly with zero reflectidhrough finite
periodic systemgFPS. As will be shown, for the case of TonasbE) = d arg(E) :ﬁaarg(E)’ (1)
zero reflection, the ambiguity of the tunneling time definition dw JE

vanishes. Therefore, it can be used to define a resonant Ui o et(E) is the complex transmission coefficient as a func-
neling velocity. Our second velocity calculation is basedtion of energy, ands is the angular frequency, arises from a

strictly on evaluating the expeptation value of the Veloc.itystationary—phase argument for the transmitted wave packet.
operator. We do not study the time-dependent wave functlquIany of the approacheii) to (vi) result at first in complex

The Paper Is organlzeq as follows. The ngxt SeCt.'o.n.g'Ve?ransmission tunneling times, given by one of the following
a brief summary of the different tunneling time definitions. expressions:

In Sec. lll the transfer matrix approach is introduced, which
is used in Sec. IV to calculate the resonant tunneling time __dInt(E) _dInt(B)|
and the corresponding velocity. In Sec. V Bloch’s theorem is 7JTE(E) =~ 'ﬁT = TphaséE) — 'ﬁTv
used together with the transfer matrix to decompose the

wave function inside théFPS into two Bloch waves. It is 3 1nt(E)

shown that the velocity operator must have real expectation T\T/(E) =ih ,

values at transmission resonances. The velocity expectation N

value is then explicitly calculated. In Sec. VI we note that

both velocity approaches lead to the same result and derive N __SInt(E) _r(E)+r'(E)
an upper bound for the velocity. Further, the special case in T (BE)=ih SV(x) = ’E(E) ~ih AE ' (4)
which resonant tunneling velocity and group velocity are

identical is discussed. The analytical results are applied to whered/ 6V(x) denotes the functional derivative with respect
semiconductor superlattice and are illustrated with a compito the potentialV(x), andr(E) andr’(E) are the reflection
lation of graphs in Sec. VII. Finally, we discuss the obtainedamplitudes for particles coming from the left and right sides,
results and possible extensions. respectively. The corresponding reflection timsg§E) are

(2)

3
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given by the substitution dfE) by r(E) in the left equalities

in Egs.(2) and(4). In the framework of physical clockg;1°

the resulting times have been the real or imaginary part or
the absolute value of one of the times in E(®.and (3).

On the other hand, it was shown that the simultaneous
process of(a) the determination whether a particle is trans-
mitted and(b) if so, how long it took to traverse the barrier,
corresponds to two noncommuting observaBfeBhere was
also some direct evidence that the imaginary part of the tun- 0 d 2d 3d 4dL=5d
neling time results from the back action on the particle due to n
the measurement process.

In contrast, the time an electron spends under the barrier, FIG. 1. Periodic potentialdrawn for five periods embedded
either finally reflected by or transmitted through the barrier Petween two infinite half-spaces. Arrows denote the wave function
is consistently given by the dwell tinfé,also called sojourn (Plane waves
time, which is defined as the ratio of the number of particles
Withil’; the barrier(extending froma to b) to the incident B. Group velocity
flux:t

(n)

potential

=)

At first view, a similiar approach to the phase time is the
concept of the group velocity

1 (b
w(E)=—| [¥dx. (5)
UinJa Jw
Ug= &1 (8)
A Hermitian sojourn time operator existdywhich shows that
this time is measurable. which is the velocity of the envelope of a propagating wave
Again, there has been no general agreement whether gacket in a medium. Here is the angular frequency arkds
relation of the following form must hold: the wave number. The functioma(k) is normally referred to
as dispersion. The solutions of the Schrédinger equation for a
7o(E) = [t(E)|*m(E) + |r (E)|*7(E). (6)  periodic potential also yield éband dispersion relation be-

) o tween the Bloch wave numberand the angular frequency
Based on the argument that reflection and transmission aig ysing E=%w, the group velocity then reads

mutually exclusive events, which exhaust all possibilities in
the sense of Feynman, this relation served as a point of focus aq\ 7t
in an early review. The complex tunneling timeas‘?f’R fulfill Ug= (ﬁﬁ)

Eq. (6).° Nevertheless, the arguments for Ef) have also

been criticized, arguing that the approach used goes beyong Ref. 2, the following relation between the tunneling time

(9)

Feynman’s original interpretatich. and the group velocity was givetfor the tight-binding
limit), neglecting terms due to the matching of the wave
A. Tunneling times in the case of the transmission functions at the ends of the system:

equal to unity

. _ _ _ vy = L/| 7. (10

Given that|t|=1, for a certain energy, it was shown that

phase time and dwell time are identical, not only for theHerel is the length of the periodic system. Recent numerical

single barrier(at energies higher than the potential energy ofcalculations for FPS embedded in regions of constant poten-

the barriey,'3 but also for arbitrary structurés. The tunnel-  tial showed that the equality in Eq10), does not holdn

ing times 7, 7, and7}", [Egs.(2) and(4)], also simplify to  generaf” At first glance, it might seem paradoxical that the

the phase timerynase [EQ. (1)], for [t|=1 in any arbitrary group velocity and the phase delay time, which are both

structure. Thus, we have based on a wave packet approach, lead to conflicting results.

Our analytical calculations will on one hand, show that

[t(E)| =10 7pnasdE') = 1o(E) = H(E') = 7(E") = 7'(E').  Eq.(10) taken from Ref. 2 gives indeed a wrong estimation

(7)  when the unit cell transmission amplitude is small and will,
on the other hand, resolve the mentioned paradox.

In accordance with the real character of the phase time, the

aforementioned problem of noncommuting observables van- IIl. FINITE PERIODIC SYSTEMS

ishes in the cas&(E’)|=1, since all particles tunnel finally

through the structure; there is neither reflection nor interfer- Our one-dimensional model system consists ohénld

ence between reflected and transmitted particles. periodic structure, extending from=0 tox=L=nd (d is the

Due to Eq.(7) we can choose any time definitigiEqs.  length of the unit ce)l embedded between two semi-infinite

(1)—(5)] to calculate the tunneling time at resonance. We willhalf-spaces with zero potentiéFig. 1).

use the phase delay tinj&qg. (1)], and make use of the Assuming a plane wave, efigx), traveling from the left

results obtained in Refs. 4 and 26. towards the FPS, the wave function is given by
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exp(ikx) + r™ exp(- ikx), X<0 TW=1 - Rela}=cogjn/n)Cla| =1, (18)
W(x) = Vi), O0<x=<L=nd wherej e{1,... n—1}. For the case Ra}=cogj=/n), the
t™ exdik(x - L)], x=L corresponding Bloch wave vectorq%eS are given by the con-
(11) dition Rela}=cogyd:
wherek=v2mE/# is the electron wave vector in the semi- C 1...n-1 (19)
. .« . n) (ﬂ) qJ - 1 J L N
infinite half-spaces, and™ andt™ are the complex reflec- nd

tion and transmission coefficients of thefold periodic

structure, respectively. Inserting R¢a}=cogjw/n) into Eq.(15), we obtain at these

We start by briefly reviewing some important propertiesresonances:
of one-dimensional FP%! The wave functions at the left (N)(~TeS) — +(n)(~fes, i
a(gi) =t"(q™ =(-1). 20
and right interfaces of a certain regio#; and Vg, respec- @ ) (@ 1= 20
tively, are related by the transfer matiiz througlt® Additional transmission resonances Wil'=1 occur if|al
. . =|t|"*=1; i.e., when the transmission probability of the unit
(AL) iy (AR) cell equals unity.
A Ar)’
Where IV. VELOCITY FROM TUNNELING TIME
. )Recently, the phase time for a system withperiods,
AR - (™ has been calculated with the help of E 13), and
Y r=(1 1)( [R) =Ag+ALR Z'Ege)ls 20 p of EMS, (13),
Neglecting spin, the time reversal invariance and the conser- ) _,—| (.. Re@
vation of the probability density current lead to the Tohase™ AT n 2 Uzn-1(Refa))
structuré® of the transfer matrixvi
v Im{a} JRe€a} ~ EU (Re{a})ﬁlm{a}
M _(a b) (12) 1-Réfa} £ 2 JE |
b &)’ (21)

where additionally déf =1 holds(x" denotes the complex where T™ is the transmission probability of the periodic
conjugate ofx). In terms of the transmission and reflection structure given by Eq(17). Here we are only interested in
coefficientst andr, the transfer matrix can be written®38s  the phase time at resonance energies of the transmission. For
. energies at whicA™=1, the phase time is equal to the tun-
— (M rit ) (13) neling time as we discussed in Sec. I. In both cases of Eq.
rit ) (18), Eq.(21) can be reduced to the in-resonance phasettime

. . ) or resonant tunneling time:
Since by construction the transfer matrix of a sequence of
Im{a} o Refa}

layers is the product of the transfer matrices of each layer,

i al consisting wfperiods | A= tn
the transfer matrix of a potential consisting mfperiods is 1-ReXa} JE
the nth power of the transfer matrix of one period:

(22)

Clearly, Tiglis proportional to the number of periodsUsing

o (a™ ™ the natural definition
- b(n)* a(n)* (14)
Ures™ L/Tﬁg)s’ (23
(n) (n)
Forn=2, a® andb® can be expanded tb we get the following resonant tunneling velocity:
a™ =aU, ;(Refa}) - Uy »(Refa}), (15 1-Ré&{al( JRea}\™
Ures= 1 'd - JE )

(24)
- Im{a}
b™ =bU,_;(Re{a}), (16)

which does not depend on the number of perindEor the
whereU,(x) denote the Chebyshev polynomials of the sec-sake of completeness, we give the result in terms of the

ond kind. The transmissio™ of any (field-free n-fold transmission amplitude=1/a of the unit cell:
periodic structure is given By-30:32.33
|t[* - Rez{t}( d Re{t})‘1

Im{t} JE

Ues=h 71 (25)

T =|a™[2=[1 +|b|2U2_,(Re{a})] ™. (17)
Resonances withT™=1 occur if and only if b®™ Now it is interesting to compare this tunneling velocity

=bU,-1(Refa})=0. This leads to the following independent to the group velocityvg. From the dispersion relation
conditions of transmission resonant&s Re{a}=coqqd), we obtain
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g\t . ——5— JRea}\*? Therefore, the two linear independent solutions of
vg = (ho?_E) =7Vl - Ré{a}(— —— | - (200 schrédinger’s equation for the one-dimensional periodic po-
. _ . tential in a finite domain are given byg and (¥g)"(x)
Using Eqs(24)—(26), the resonant tunneling velocity and the =5 (x). Having clarified this, we use the following wave

group velocity are related by function in any one-dimensional-fold periodic system in-
1-Réa \"m side an allowed band:
Ures= — _ Im{al Ug= Imit} Ug- (27) \I’,(:r}géX) — agn)uq(X)eXdiC]X)
Note that the equations for the resonant tunneling time and + a(_'gu;(x)exp(— igx), 0<x=nd, (30

the resonant velocity are only meaningful if they are evalu-
ated at energies at which the FPS has a transmission prob- _ xoo
ability of unity. Uglx + &) = Ug(x), - Ug(x) = Ug(X).
See also Ref. 37Chap. 8, Sec. 1.1, Sec. 1.Bor another
rigorous justification. The dimensionless coefficiem{s and
o are determined by inital value conditions; i.e., ¥y0)
In the following, we calculate the expectation value of theand ¥’ (0). In the following, we choose they(x) to be nor-
velocity operator applied to the exact wave function insidemalized:

V. EXPECTATION VALUE OF VELOCITY OPERATOR

the FPS. .
J dX U(X)ug(x) = d/(2m). (31)
A. Decomposition of W into two Bloch waves 0
In 1929, Bloch calculated the eigenfunctions of the
SChr('jdinger equation for Crystal |att|C§SHe modeled the B. The ve|ocity operator has real expectation values
lattice by a periodic potential that spans the whole space. at transmission resonances

Using group theory together with periodi¢Born—von , ) )

Karman boundary conditions, he proved that the base solu- ~NY Physical state is represented by a wave function that

tions of the Schrodinger equation for a lattice potertia!., IS an elementzof ghe Hilbert space of the square integrable

V(X)=V(x+R,), whereR; is any lattice vectds are of the functions H=L4(R?). The Hermiticity of the velocity(and

form the momenturhoperator comes from the fact that the nor-
malization(¥ |¥)=1 leads to¥(x)=0 as|x|— .

\Ifﬁ(x) = Ug(x)expliq - x). (298 The states we considgEq. (11)] are scattering states that
do not belong td_?(R3). Therefore, we cannot expect that the
velocity operator applied to any finite subdomain is Hermit-
uq(x) = uq(X +R)) (29 ian. Nevertheless, we show that the expectation values of the

. ) . . . . velocity operator inside the periodic structure are real for
is a lattice periodic function. This fact is well known as (o5onant tunneling states.

Bloch'’s theorem. Actually, in the mathematical literature, the The calculation is restricted to the one-dimensional region

same theorem for linear differential equations with periodicyatweerx=0 andx=L inside the FPS. The expectation value
coefficients was proved by Flogdetmuch earlier. Since o the velocity of any state|W) is given by (0)

Bloch derived the theorem originally for an infinite domain, =(V[o|¥)/{¥|P¥). In our case the numerator can be denoted
this infinite domain is sometimes considered as necessary. () (A2 ™ .~ o
Therefore, we will start by briefly showing that Bloch’s aS{¥gp UPFPé\I’FPS?’ wherePepsis the projection operator
theorem gives also the exact wave functions in finite sysonto the space region of the FPS:
tems. L
Mathematically spoken, for the case of the infinite peri- P :f dxx)(x 32
odic potentiaV: R3— R considered by Bloch, the domain of Sl b (32)
the Schrodinger differential equation and its solutidnsis
D=R3. If we reduce the domain of the periodic potential Partial integration(assuming a constant effective electron
(and thus of the Schrédinger equatido any finite subdo- massm) leads to
main D C R® and choose an arbitrary potential in the domain in
1:3\D, the base solutions of the differential equation indide (WO JoPepd Wy = (—') (W2 + (W5 Pepd WY
are not changed. The physical consequence is that despite the m
loss of the global translation invariance of the Hamiltonian in (33
a finite system, the wave functions are stiactlygiven by ) ) ) ) ™ ®
superpositions of Bloch wavd&q. (28)]. (r!)Equanon(ll) yields immediately that¥-p{0)=1+r'",
If we neglect spin, the time inversion symmetry of YipdL)=t™. Thus, when|t™|=1 r™=0 holds, we have
the Hamiltonian leads to Kramers degeneracy; iEq) \I](F”g?(O):l and (W (L)|=1, and the term|W{D L)

=E(-q). -[¥® (0)[? vanishes. Therefore, we obtain

Hereq is in modern terms a reciprocal lattice vector and
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[t = 100 (W Pepd Wilkg = (W5 Pepd Wiiky, =1y (390
(34) s obtained.

i.e., the velocity has a real value at resonances {tfith=1. ‘As stated above, the remaining coefﬂcmﬁ_ﬁ;_ is deter-

In this derivation, we did not use the periodicity of the Mined by the initial valuesl'(0) and"P'(0), obtained from
potential nor that of the base solutions; thus, it holds forthe continuity of the wave function and the probability cur-
arbitrary potentials ift|=1 (strictly speaking, it holds if and rent density across the boundaryat0. To simplify the
only if [1+r|=|t]). e}lgebra, we make use of the fact that these continuity .condl—

Note that in the calculation of eigenstates boundedions are inherently incorporated in the transfer matrix ap-
by infinite barriers on both sides, a different relation, i.e.,proach. Therefore, to determiad!, we use the continuity of
¥ (0)=w"(L)=0, holds, which leads to a velocity ex- the wave function ak=0 and two different representations
pectation value of zero. of ‘PFPS at x=d. This way, the derivative of the wave func-

tion is not needed in an explicit forAt.The continuity of the
wave function(11) at x=0 leads to
C. Expectation value of the velocity at resonance

() =7 ~ (ny*
The expectation value of the velocity in threperiodic 1417 =T(0) + agly(0). (40)
system at resonance is given by With Eq. (393, the periodicity of theli,(x) gives the wave
an function atx=d:
@(FnF)’ - <‘I’f:n;gslUPFP§‘Pf:n|% . (35) .
(W IPepd W) VR d) =Ty(O)expliqd) + aTg(0)exp(~iqd).  (41)
With the help of Eqs(30) and(31), the numerator is given On the other hand}yl(:“g,s(d) can be obtained through the
by transfer matrix(12) of the unit cell:
P L
|5 M\ = = (|, M2_1, M2 1 .
(VEpdoPepd Wipg = 27T(|aq | |a—q| Jug(@).  (36) quan),S(d) =(1 DM_l(r(”)) =a -b +rMa-b). (42
The denominator of E(Q.35) is given b . o -
439 is g y Again, we note that the continuity of the probability current
A L density is fully incorporated in this treatment in the reflection
(n) My - _= (1,02 (2
(VEpdPepd Wipg = 277(|“qn| +lagl). (37)  coefficientr™. Equations(40) and (41), together with(42),
) o ) o ) form two nonlinear equations i,(0) and"d(_'g. The solution
A detailed derivation of both equations is given in Appen-¢or 2™ is g
. . ; - given by
dixes A and B, respectively. From Eq85)—(37) we obtain q
the velocity expectation value at resonance: o a-b-é+rMa-b-¢
N P e R P Tab-gr@p-p
<U§:nF)> :| ((qn)|2+| (r%|2vg: 1+] (r%/ ?n)|zvg (38) _ o
Aq Qg gl g where é=exp(iqd) is introduced. From Eqs13)—(16), we
An interpretation of this formula will be given in the next obtain
section. B bU- (R
p() = - n1(Refa}) (44)

a™ "~ au,y(Refa}) - U, o(Refa}h)’

Inserting into Eq.(43), we obtain after some algebra,

D. Determination of Bloch coefficients

Next we have to determine the ratjia™/a!"]. For the

calculation of the expectation value, it would be sufficient to a-b-ga™ a-b-gth

consider only the wave function at resonance; nevertheless, aﬁ'g = T o (45)
we will derive a more general result that is valid for amy a-b-¢ a a-b-¢&t

value. Consistent with Eq.(39d, &7=1/a")" is fulfilled.

We rewrite the ansatz for the wave functi¢80) in a

In A dix C, Eq.(45) i d t Iculatéi d
reduced form n Appendix g.(45 is used to calculatéiy(x) an

\P(F”F),s(x). Further, we prove in ApperxliD 1 the interesting
WRAX) =Ty(x)expliox) + & iy ()exp(—igx), (39a  identity
Dq(x):aé”)uq(x), (39b) (VR0 Prpd TR = jinl, (46)

=) = (" wherej;, is the incident probability current. Equati¢46) is

azg = agl(ag’) . (399 | ;sed for the calculation sz(_rg and ag”) in Appendix D 3.
By formally replacingq with —q and taking the complex As a consequence of E@5), the absolute value ci(_rg
conjugate in Eq(390), does not depend om:
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[ = a—b-¢ (47)  pand R&{a}<1 holds. Therefore, &1-Re{a}<Imal.
Now, making use of the simple inequality/y< (x+2z)/(y
This shows that the ratio of the amplitude of the left- and+z), which holds for <x<y and 0<z, we obtain

right-going Bloch wave does not depend on the number of

a-b —g‘ We use thatlal?=|t|">=1. Additionally, inside an allowed

periods and is a property of the unit cell only. 1-Ré&{a} _ 1 _ |t|2 (54
Using Rea}=cogqd), [a]*~[b?=1, and¢=expliqd), the Im*a}  Im*a}+Refa}
absolute value squared Bfg inside a band can be simplified _. .
to Finally, this proves
_Im{a} + V1 - ReX{a} Vres< [t||vgl- (55)

~(n)|2
|a—r21| (48) In both formulas, the equality holds for R¢=0, i.e., for
g=m/2d, which is in the middle of the band ig space.

Taking [a|=|a")/ o] into consideration, inserting Eq. Equation(55) shows that the resonant tunneling velocity can

~Im{al-V1-R&a}

(49) into Eq.(39) gives be much smaller than the group velocity, given a sufficiently
~ ()2 — small transmission amplitude of the unit cell. Furthermore,
oWy = 1- |“—q| D= vi- Ré{a}v (49) towards the band edges where{&eapproaches +1, the ratio
PO 1+[@0R 0 ~imfa C vred vy Vanishes[see Eq.(49)]. Comparing with Eq.(10),

taken from Ref. 2, we conclude that the matching of the

However, this result is not true for the off-resonant Cas§,qve functions at the ends of the system can reduce the
when the first equality does not hold. Nevertheless, the bev

i ~() X k X velocity considerably.
havior of (09 as a continuous function dt or q is of
interest, since any rational multiple af/d can be obtained . .
as(es DY choosing proper values fgrandn [see Eq(19)]. B. Special case: Identity between,es and |vg

For the sake of completeness,(n)in the resonant case, in From the outer equality in E¢49), we can conclude that
which gresis given by Eq.(19), andt™=+1 holds, Eq(45)  the equality betweem,qs and |v?| holds if and only if|a|

can be simplified to =|t|*=1, i.e., at energieE’ with [t(E’)|=1 of the unit cellof
a-p - the periodic system:
an =270 °¢ (50) (e e
s a-b-¢ vred E') = |vg(E')| = [H(E")[=1. (56)

In the second resonant case, in whitik|a|*=1, either the A unit cell that is formed by a symmetric double-barrier
numerator or the denominator of the right-hand side of Eqresonant tunneling structii&® possesses the property
(48) vanishes; i.e., [t(E")|=1 at each transmission resonance en&gyE,. For
this unit cell type, the resonant tunneling veloaity equals

— (n — (n) —
t=10 @-q=0Lag"=0. (52) the magnitude of the group velocity, at all energie&,,. For
energies different from th&,, v, is smaller thadvg|. The
VI IDENTITY OF TUNNELING TIME APPROACH only unit cell wherev,s equalsv, for all energies is the
AND VELOCITY EXPECTATION VALUE APPROACH trivial unit cell with V(x)=0, for 0s=x=d, since it has
Comparing Eqs(27) and(49), we get the important iden- [t((E)|=1 for al energies. .
; Further, we can derive conditions from E@9) for the
tity o . -
identity betweerw s and [vy|, in terms of the coefficients
<{}E:ng§ = Ures: (52 agn) ) a(_rg:
Consequently, the tunneling time approach and the velocity Ures= Vg = aﬂ’g =0, (57)

expectation value approach are physically equivalent at reso-
nance. We use the termgs as the electron velocity in reso- =1 o =0 (58)
nant tunneling through a FPS in the following. From the first res v a '
identity in Eqg. (49), it follows that the electron velocity is The resonant tunneling velocity equals the magnitude of the
bounded above by the group velocity. group velocity if and only if the wave function has only one
Bloch component.
Ures< [vg- (53) Considering Eq(56), this can also be written as
Here the absolute value occurs, since the group velocity can
also take negative values for positigee.g., for bands where
the energy maximum is a=0, while the resonant velocity yielding that the wave function inside a finite periodic poten-
is always positive. tial consists of only one Bloch wave if and only if the trans-
mission of the unit cell reaches unity. Therefore, we obtain
the picture that the Bloch wave moving into the left direction
In fact, by squaring the outer equality in EG9), an  is built up by a coherent superposition of the reflected parts
improved inequality compared to E¢3) can be derived. of waves moving into the right direction.

agn)=0|]a(_rg=0@ lt|=1, (59

A. Upper bound for the resonant tunneling velocity
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This also solves the puzzle we mentioned in Sec. I;

namely, that the phase delay time and the group velocity both v L L”_L’” |
originate from a wave packet analysis, but lead to different b
results. Often the group velocity is used when, in good ap- S 1, Ba N

proximation, no reflection occurs inside the medium. In con- om
trast, here, in the case thigt+ 1, there is reflection in each
period. These reflections are the origin of the reduced veloc-

ity, compared to the group velocity. 0 -

0 d 2d 3d 4d bd L=6d
VIl. GaAs/AlGaAs SUPERLATTICE T

All results presented are valid for arbitrary unit cells un- ~ FIG. 2. Schematic potential of a SL of the for(BA)". The
less otherwise noted. In this section the results are applied ta#mber of periods: is chosen to be 6.
a periodic semiconductor heterostructure. Due to its wide-
spread use, we choose a GaAs/AlGaAs superlatiBlg.  choosem=0.072n,, wherem, is the free electron mass. The
Denoting the barriersAlGaAs) with B and the well regions conduction band offset i¥,=288 meV.
(GaAs with A, we can give a short notation for the potential  Because of the strong interdependencies between the dis-
with n periods:(BA)". Assuming a stepwise constant poten- persion relation, transmission probability, group and resonant
tial function in each layer, the transfer matrix elements canunneling velocity, and the ratio of the amplitudes of the +
be calculated analytically. To keep the focus on the mairand -q Bloch waves, all are shown together in Fig. 3. All
topic, we will use the following simplificationgi) the effec-  variables are plotted on the left as a function of the en&rgy
tive massm is approximated to be the same in GaAs and inand on the right as a function of the Bloch wave vedor
AlGaAs, and(ii) the effective mass does not depend on the For the first miniband the resonance energies are given by
energy. These simplifications can be avoided, but this is lefthe smallest solutions; of Egs.(18) and(60a), i.e., by solv-
for future work. We present results for the lowest miniband.ing the transcendental equation
The analogous calculations for higher minibands will be dis-
cussed elsewhere. . . .

For a SL of the form(BA)", we obtain the following ex- cogjm/n) = cosfixLy)codkLy) ~ ¢ sinh(kLp)sin(kLy).

pressions for the matrix elements of the unit ¢&k):* (61)

Re{ag,} = costixL,)cogkL,) — C, sinh(xLy)sin(kL,,), The diamonds in Fig. 3 mark the values at the resonance
60 energies for the system with=6 periods. Changing the
(603 number of periods results in values that lie on the lines
which connect the diamonds. In the linmt- %, one would

Im{ag,} = = coshixLy)sin(kLy) = ¢, sinh(«xLp)cogKLy), also obtain the continuous lines.
(60b) Figure 3a) showsq(E), and Fig. 3b) shows its inverse,
the dispersion relatioiE(q). The dispersion relation is ob-
b, = ic; sinh(kLy)exp(kLy,). (60¢  tained from Réag }=cogqd), where Réag,} is given by Eq.
(603.
Herel, andL,, are the thicknesses of the barrier and the | Figs. 3c) and 3d), the transmission probability®
well layers, respectively: [Eq. (17)] is plotted.
K=k 2mVy - B2 k=#hL(2mEL2 From the plots oE(q) and T®(q) the equidistant behav-

ior of the resonant levels, E419), in q space can be seen
are the decaying electron wave vector in the barrier layer angdicely. Of course, due to the nonlinear dispersifa), this
the electron wave vector in the well layer, respectively, andbehavior is lost in energy space.

Next, in Figs. 3e) and 3f), the magnitude of the ampli-
tude ratio of the ¢ and g Bloch waves,|"o}(_’g| [Eq.(47)]is
The energy and the conduction band offset between GaAshown. Towards the miniband edges this ratio approaches
and AlGaAs are denoted &andV,, respectively. unity, and it drops to a minimum around the middle of the

The following SL parameters are chosen to be identical ominiband.
nearly identical to systems that were studied experimentally Figs. 3g) and 3h) show the group velocity, [Eq. (26)]
and theoretically in the pa$g’.344! (solid line), and the resonant tunneling velocity,s [EQ.

For the barrier and the well width, we choodg,  (24)] (dashed ling For then=6 case, the group velocity
=2.5 nm andL,,=6.5 nm, respectively. The barriers consist reaches its maximum in the fourth resonance, while the reso-
of Al sGa, -As, the wells of GaAs. The number of periods is nant tunneling velocity reaches its maximum in the third
n=6. A schematic of the resulting conduction band is drawnresonance. This shows again the fundamental difference be-
in Fig. 2. The calculations are performed for tRevalley of ~ tween both velocities. It is interesting to note that the slope
the conduction band for a temperature of 4 K. As the effecof v{Q) is zero aig=0,#/d, while the slope ob4(q) has its
tive electron masses in both, GaAs and, #a,,As, we maximum value there.

C1 0= %(kK_l + Kk_l) .
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FIG. 3. Shown are relevant physical properties of superlattices. In the left column, all functions are plotted v&Eeaadyin the right
column vs Bloch wave vectay. Diamonds mark the positions of the resonant levelsnfo6 periods(band structure given in Fig.)2By
changing the number of periods the lines connecting the diamonds are formed. The dispersion retfiorand E(q), the transmission
probability T®, the normalized coefficient of the backwards propagating Bloch \/1/?&&2# the group velocity, the resonant tunneling
velocity v,es and the ratio of resonant tunneling and group velocity of the periodic system together with the magnitude of the unit cell
transmission amplitudg| are shown.

In Figs. 3i) and 3j), the ratiov,.J/vy and the magnitude VIII. DISCUSSION
of the unit cell transmission amplitudg are plotted. The
velocity ratio is always smaller than the single-cell transmis- The group velocity is often used as the speed of the elec-
sion, except foq=/2d when both are equaitee Eq(55)].  trons inside a SL. Strictly speaking, the group velocity is the
For the given parameters, the velocity ratio is below one-expectation value of the velocity operator applied to only a
third. single Bloch wave. We showed that the solution of the
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Schrédinger equation, which fulfills the boundary conditionstogether with either Eq(47) or Eq. (48). After proving that
of the open system, is not given by a single Bloch wavethe velocity operator is real at resonance, we calculated its
Instead, the solution is given by a superposition of two Blochexpectation valu¢Eq. (49)] as the second method.
waves traveling in opposite directions. This inevitalde- Both results are completely identical, showing the physi-
cept for singular energies at whi¢ti=1 holds for the unit cal equivalence of the two approaches. The resonant tunnel-
cell) second Bloch wave is the reason that the physicallying velocity is in any case smaller or equal to the group
significant expectation value of the velocity of the composedvelocity. In addition, the resonant tunneling velocity is
wave function is reduced compared to the velocity of thesmaller than or equal to the product of the group velocity and
single Bloch wave; i.e., the group velocity. The velocity of athe magnitude of the transmission amplitude of the unit cell.
single Bloch wave is not a directly observable entity in pe-Thus for unit cells with a small transmission amplitude both
riodic systemgexcept again foft|=1), but can be used as an velocities can differ considerably. We discussed that the
upper bound for the resonant tunneling velocity. The preBloch wave moving in the opposite direction of the incident
sented results support the numerical findings of Ref. 27.  electrons is due to reflections inside all unit cells. These re-
In this context, the often used relation “mean free pathflections are the reason for the reduced velocity compared to
equals group velocity times scattering time” seems questiorthe group velocity. At energies, where the unit cell has a
able. We suggest that in open mesoscopic structseg transmission of unity, only one Bloch wave remains. Conse-
Fig. 1 and Fig. 2 where the mean free path exceeds thequently, the resonant tunneling velocity equals the group ve-
length of the periodic structure, it should be replaced byocity.
“mean free path equals resonant tunneling velocity multi- We intentionally avoided studying the problem of the tun-
plied by scattering timé neling time and velocity for nonzero reflection. However, as
The commutator of the observable that measures the evestated above, certain wave packet analysis might help to
of transmission and the tunneling time operator does notomplete the picture. We believe that the identity of the tun-
vanish?® as already mentioned. We showed that the expectaaeling time and velocity expectation value approach will
tion value of the velocity is in general complex for nonzerohold also for nonperiodic systems with zero reflection. This
reflection. Thus, in some sense, we presented a different atepic is considered for future investigation.
gumentation that this problem is not well defined and that Electron waves have been used throughout this paper. In
asking for the velocity of théransmitted electrons is only a analogy the main results hold for the propagation of light
valid question if the transmission probability of the periodic waves, of phonons waves, and so on, in periodic structures.
system,|t™|?, is unity. Therefore, we restricted our calcula-
tions to this case.
In calculating the velocity expectation value we obtained ACKNOWLEDGMENTS
the average over a set of identical velocity measurements but .
no information of the time-dependent behavior of the pro-__ !t IS @ pleasure to thank A. Wacker, J. Burgddrfer, and R.
cess. The solutions of the time-dependent Schradinger equif! for interesting discussions and valuable comments, and
tion can be studied in addition. Nevertheless, it has beefP acknowledge financial support by the Austrian Science
pointed out that arriving wave packet peaks do not turn intd Und (FWF) Grant No. Z24.
transmitted peaks among other difficulfiel the wave
packet approach. Despite that, in the light of our results, we R
suggest the analysis of periodic wave packets composed of a APPENDIX A: EVALUATION OF <‘P(FrBSJﬁPFPs|‘1’(Fng)

discrete set of resonant states. In contrast to any tunneling First, we consider the case in whigfeq,., Expanding
) res

wave packet simulation we are aware of, tiedlection is : .
exactly zerofor these packets. Therefore, we would expectthe integral with the help of Eq£30) and (31) leads to

some new insights. <‘1’(FnF)>515PFP§‘I’(FnF)>
— | .(N2/a/BI7~ B B (N[2/A1,B |12 B B
IX. CONCLUSIONS - |aq | <\I,q|UPFPEJ\Pq> + |a'—q| <\I,—q|UPFP§\P—q>
H L
We calculated the resonant tunneling electron velocity in _in agma(_fg*f dx Lh(X)eiqxi[uq(X)ein] fC.Cr.
finite periodic structures embedded in regions of constant m 0 28
potential in two different ways and proved their identity. (A1)

The first method was based on the fact th&t=1 leads
to a coincidence of all tunneling time definitions, turning up If the Bloch wave vector is given by Eq.(19), i.e., o
in the literature. We used the phase timgas=fdargt/dE  =j/L, the last integral vanishes:
and the natural definition=L/7 to calculate the velocity in L P 1 L
terms of thg gnlt cell t'ransfer matrlx' elemgnts_ and the unit f dX U, (X)€% —[uy(x) €] = [_ug(x)eIZQX] =0,
cell transmission amplitude, respectively, yielding E@s? 0 X 2 0
and(25). (A2)
Bloch’s theorem was combined with the transfer matrix
approach to separate the wave function into two Blochdue to the periodicity of both, they(x) and the complex
waves, which propagate in opposite directidis). (399]  exponential function. Using the féétthat
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B |a| B )/(‘PB |\I’B - vg(iq) - ivg(q), (A3) APPENDIX D: DERIVATION OF AN IDENTITY

o ' AND CALCULATION OF a{” AND o7
the normalization(31) leads finally to Eq(36).

For the second case, i.6t|=1, we use Eq(51). This 1. Identity—first method
means that there is only one Bloch wave and ei or From Egs.(52), (35), and(23),
a_’g is zero. EquationfA3) and the normalizatiori31) then P05 .
give Eq.(36) directly. L _me VEpdoPepd Wipg o)

ey <n>4pppgw<n>
) M 1B (n)
APPENDIX B: EVALUATION OF (WD JPepd W) and Eqs/(5) and (7).

First, we consider again the case in whighq,es EX-

panding the integral with the help of Eq80) and(31) leads A= —<‘I’<Fn3§ Perd U0, (D2)

to in

\P(anélstéw(an _ Ia(”)|2<‘1’3lﬁ’pp§‘l’§> we derive the interesting identity, valid at resonance,

R 1
+ [ WE Prpd W) L= r(‘l’(n)év Perd U129, (D3)
n
L
_,_(a((qn)a(_rg*J dx Lﬁ(x)ei2qx+ c_c_)_ where the incoming probability current is given by,
0 =hk/m.
(B1)

o 2. ldentity—second method

Due to the periodicity ofu,(x) and considering thatj

—jm/nd, the last integral vanishes: This equation can also be derived directly from the con-

servation of electrical charge in the form

nd n-1 d
f dx Lf(x)e2™ = (E exp(|2qld))f U (X)€% dx £|\If(x,t)|2 + ij(x,t) -0, (D4)
0 0 ot X
”El[ (2l )]IJ 2( )82k = 0 wherej is the one-dimensional probability current given by
= expi2j/n x)e'“Pdx =0,

cord w2
(B2) J(x,t)—Re{‘If( max)\l’]. (D5)

where the last identity is due to the vanishing of the geometSince in our caseV|?> andj do not depend on time, E¢D4)
ric sum. Together with the normalizatidi31), we end up simplifies to
with Eq. (37). .
For the second case, i.dtj=1, we use Eq(51). This j(x,t) = const. (D6)
means that there is only one Bloch wave and eim?r or  Now we integrate the constant probability current density

af’g is zero. The normalizatiorf31) then gives Eq.(37) [Eg. (D5)], first for the wave function to the left, i.e.,

directly. W, (x)=expikx), and second for the wave function at reso-
nance inside the FPS, i.eI{(F“F),s(x), both over the interval
APPENDIX C: SIMPLIFIED CALCULATION [0,L]. Equations(D6) and(34) then yield identity(D3).

OF THE WAVE FUNCTION IN THE FPS
40 3. Calculation of « (”) and a(")
As a supplementary result, onée_ is calculated from
q -
Eq. (45), the values owl(:”ggx) in one period e.g., obtained Making use Of Eqs(36), (DS) and(399, we can calcu

(n)
with the transfer matrix approach, allows us to calculate thd?t€ % a9 anda - Choosing thearbitrary phase Ofa
periodic functionliy(x). Solving Eq.(39a for Ty(x) we ob-  thatag " is real and positive, we obtain

tain 1/2
2
ViBd®) - ARV () “‘(*n):{ |ij|2>v } ’ 7
Tg(x) = - |~(n)| exp(—igx). (C1) g
“a o™ =7 M (D8)
Using Egs.(39a and (45), the wave function in thentire -4~ %q%
FPScan be obtained easily. wherea is given by Eq.(45).
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