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We have investigated the validity of the semiclassical treatment to calculate the third-order nonlinear spectra
of cavity systems. Even if applied field is coherent, a quantized effect of a cavity-quasimode manifests itself in
the nonlinear spectra in the weak- and strong-coupling regimes, and thus the semiclassical treatment is found
to be invalid. One exception exists in the weak-coupling regime without a pure transverse damping.
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I. INTRODUCTION

Optical properties of resonant matter inside a cavity, have
been extensively studied because of its potential to achieve
large optical nonlinearity, which is necessary to realize opti-
cal devices such as the optical switching,1,2 the optical quan-
tum gates,3 and so on. At first, optical properties of the cavity
systems have been investigated for atoms passing through a
cavity, and the field of the cavity quantum electrodynamics
sQEDd has been explored.4 An impressive demonstration of
an enhanced nonlinear phase shift has been exhibited for Cs
atoms in the cavity.5 More recently, a semiconductor quan-
tum dot sQDd embedded in the cavity has been attracted
much attention because of its large oscillator strength and the
tractability for fabricating a built-in device.

When applied fields have the same polarization, it has
been predicted and measured that the QD can be treated as a
two-level system in the optical response.6–9 If the two-level
system is embedded in a lossless cavity, the energy levels
have the ladder structure according to the cavity QED, each
rung of which consists of two energy levelsE=n"v0±Îng,
where n is the photon number inside the cavity,v0 is the
resonant frequency of the two-level system and the cavity
mode, andg is the coupling constant of the two-level system
and the cavity mode. The schematic level structure is shown
in Fig. 1.

The energy splitting of the lowest excited rungsn=1d is
called the vacuum-Rabi splitting. The vacuum-Rabi splitting
can be found in the semiclassical treatment also, and the
resulting linear optical spectra agree with that calculated in
the cavity-QED treatment.4 On the other hand, the higher
excited rungs, which contribute to the nonlinear processes,
can not be derived from the semiclassical theory. Therefore,
it is expected that the cavity-QED treatment is necessary to
calculate the nonlinear spectra of the cavity systems. For
semiconducting nanostructures in the cavity, however, most
of theoretical studies on the nonlinear properties have been
performed in the semiclassical treatment.10–12

In this paper, we clarify the validity of the semiclassical
treatment of the third-order nonlinearity. We use the driven
Jaynes-CumingssJCd model to describe the interaction of the
QD and the cavity quasimode fed from the outside coherent
field. Both longitudinal- and pure transverse-damping effects

are included by employing the master equation. In general,
the semiclassical treatment is invalid to calculate the nonlin-
ear spectra except for the weak-coupling regime without the
pure transverse damping.

This paper is organized as follows: In Sec. II, the driven
JC Hamiltonian and the master equation are presented. The
procedure to calculate the third-order nonlinear field is de-
scribed in the cavity-QED treatment and its semiclassical
approximation. In Sec. III, we compare the spectra obtained
from the cavity-QED and semiclassical treatments in the
weak- and strong-coupling regimes. A summary is given in
Sec. IV.

II. THE TWO-LEVEL SYSTEM IN A CAVITY

Optical response of the two-level system in the cavity can
be well described by the driven JC model.4 The driven JC
model consists of cavity-quasimode creation and annihilation
operatorsa† and a connecting applied coherent fieldEe−ivt

with coupling constantÎG. The phenomenological descrip-
tion has been derived from a more fundamental
approach,13,14 in which electromagnetic fields extending in-
side and outside cavity are quantized.

Let us consider a two-side cavity, inside which the two-
level system interacts with the cavity-quasimode photons

FIG. 1. Energy level structures of the coupled modes of a two-
level system and a cavity mode. The vacuum-Rabi splitting appears
both in the semiclassical and cavity-QED treatments.
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with the coupling constantg. The cavity-quasimode energy
of interest is denoted by"vc, and the excitation energy of the
two-level system is denoted by"va. Then the driven JC
Hamiltonian is given by

H = 1
2"vasz + "vca

†a + i"gsa†s− − s+ad

+ i"ÎGEsaeivt − a†e−ivtd, s1d

wheres±, sz are pseudospin operators for the two-level sys-
tem.

Decay processes of the excited states are usually charac-
terized by the longitudinalsg1d and pure transversesg2d
damping constants. Photons inside the cavity decay to the
outside because of the imperfection of the cavity mirrors,
and the corresponding decay constant is given byG. The Q
factor of the cavity is related toG asQ=vc/2G. In the pres-
ence of these decay processes, a density matrixr for the
two-level system and the cavity quasimode satisfies the mas-
ter equation

dr

dt
=

1

i"
fH,rg +

g1

2
s2s−rs+ − s+s−r − rs+s−d

+
g2

2
sszrsz − rd + Gs2ara† − a†ar − ra†ad. s2d

The driven JC Hamiltonians1d and the master Eq.s2d
determine optical response of the two-level system embed-
ded in the two-side cavity. The response fieldE is calculated
from the input-output theory15 as

E = ÎGkal, s3d

with kal=Trsrad.

A. The cavity-QED treatment

Here, we present a quantum treatment of the cavity
quasimode in the perturbation with respect toE. In the
following calculations, we consider the degenerate case:
vc=va;v0. In the steady-state condition, the equations of
motion of kal, ks−l, kszl, andkaszl are given by

iAkal + gks−l − ÎGE = 0, s4d

iBks−l + gkaszl = 0, s5d

2gka†s−l + 2gks+al + g1kszl + g1 = 0, s6d

iCkaszl − 2gka†as−l − 2gkaas+l − gks−l − ÎGEkszl

− g1kal/2 = 0, s7d

respectively, with A=Dv+ iG, B=Dv+ isg1/2+g2d, and
C=Dv+ iG+ ig1 whereDv=v−v0.

The zeroth order solutionkszls0d=−1 is obtained from Eq.
s6d. The first-order solutions are calculated from Eqs.s4d,
s5d, ands7d as follows:

ks−ls1d =
− gÎG

AB− g2E, s8d

kals1d = − i
ÎGB

AB− g2E. s9d

It is noted that the solutionsAB−g2=0 provide the complex
vacuum-Rabi frequencies

l± = v0 −
i

4
s2G + g1 + 2g2d ± Îg2 − s2G − g1 − 2g2d2/16.

s10d

The real and imaginary parts ofl± correspond to the reso-
nant frequency and the spectral width of the linear transmis-
sion spectra, respectively. For 4gø2G−g1−2g2, we have
Refl+g=Refl−g=v0 sweak-coupling regimed. For 4g.2G
−g1−2g2, on the other hand, the real parts have different
values, which lead to the vacuum-Rabi splittingsstrong-
coupling regimed.

The equations of motion to obtain the second-order solu-
tions are written as

1
g1 2g 2g 0 0 0

g/2 − j 0 0 0 − g

g/2 0 − j 0 0 − g

0 0 0 iD − g 0

0 0 0 2g iE 0

0 g g 0 0 − 2G

21
kszls2d

ka†s−ls2d

kas+ls2d

kas−ls2d

kaals2d

ka†als2d
2

= ÎGE1
0

ks−ls1d

ks+ls1d

ks−ls1d

2kals1d

kals1d + ka†ls1d
2 , s11d

with D=2Dv+ iG+ isg1/2+g2d, E=2Dv+2iG, and j=G
+sg1/2+g2d.

A simultaneous equation providing the third-order solu-
tions is given by

1
iA g 0 0 0 0

0 iB g 0 0 0

− g1 − g iC − 2g − 2g 0

g/2 0 g/2 iF 0 − g

g 0 g 0 iF − g

0 0 0 2g g iG

21
kals3d

ks−ls3d

kaszls3d

ka†as−ls3d

kaas+ls3d

ka†aals3d
2

= ÎGE1
0

0

kszls2d

kas−ls2d + ka†s−ls2d

2kas+ls2d

kaals2d + 2ka†als2d
2 . s12d

with F=Dv+2iG+ isg1/2+g2d and G=Dv+3iG. The third-
order nonlinear responseEs3d=ÎGkals3d is calculated from the
simultaneous Eqs.s11d and s12d numerically.
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B. The semiclassical treatment

The semiclassical treatment corresponds to the approxi-
mation of the cavity-QED treatment, where the operatora is
replaced by its mean value, for instance,kaszl<kalkszl. Ap-
plying the approximation to Eqs.s4d–s6d, we obtain the equa-
tions of motion in a closed form

kal = i
g

A
ks−l − i

ÎG

A
E, s13d

ks−l = i
g

B
kalkszl, s14d

g1kszl = − g1 − 2gfka†lks−l + kalks+lg. s15d

The zeroth order ofkszl is given by kszls0d=−1 from Eq.
s15d. The calculatedkals1d andks−ls1d have the same form as
Eqs.s8d and s9d, respectively. Namely, the semiclassical ap-
proximation leads to the same result as that in the cavity-
QED treatment in the linear-response regime.4

To derive the third-order nonlinear spectra we have

kszls2d =
g1 + 2g2

g1

2g2G

uAB− g2u2
E2, s16d

by substituting Eqs.s8d and s9d into Eq. s15d. After getting
ks−ls3d, we have the third-order response fieldEs3d

Es3d = ÎGkals3d = i
g1 + 2g2

g1

2g4G2

AsAB− g2duAB− g2u2
E3. s17d

It has been demonstrated that the present semiclassical
approximation of the cavity-QED treatment agrees with the
conventional semiclassical approach on the basis of the Max-
well equations and boundary conditions at cavity mirrors.16

The analytic demonstration has been performed for a high-Q
cavity, in which the cavity quasimode is well defined, and the
phenomenological parameterG has been related to the trans-
mission coefficientt of the mirrors asÎG=−iÎc/2Lt whereL
is the length of the cavity.

Figure 2 shows the third-order nonlinearities calculated
from various approaches for a low-Q cavity. The parameters
in the following calculations are selected for the interface
GaAs QDs as the two-level system. The QDs have
large transition-dipole moment ranging from
50 to 100 D.17,18 The typical g2 of the interface QD at
T=12 K is g2<16−27meV.9 The parameters are selected as
v0=1.65 eV,19 g1=8 meV,19 andg2=16 meV. The coupling
constant is given by"g=PÎ4p"v0/SL, where P is a
transition-dipole moment andS is a cross section of the ap-
plied laser field. The energy of the lowest cavity quasimode
is adjusted to the excitation energy of the QD, i.e.,
v0=L /cp. Then the coupling constant is rewritten as
"g=2sP/ads"v0/Î"cd. When the Gaussian waistw0 of the
applied laser field is 10mm, the coupling energy becomes
0.07–0.14 meV forP=50–100 D, where I have used the
relation S=pw0

2/4.4 Here, the coupling constant is fixed at
g=0.1 meV.

The intensity is normalized by the maximum intensity
uE0

s3du for the QD without the cavity. Solid curves indicated by

“semi. conv.” show the results of the conventional semiclas-
sical approach on the basis of the Maxwell equations, and
dotted curves indicated by “semi. approx.” show the results
of Eq. s17d, namely, the semiclassical approximation of the
cavity QED. It is found from these results that the driven JC
Hamiltonian describes cavity systems relatively well even in
the low-Q regime. The dashed curves indicated by “cavity
QED” shows the results of the cavity-QED treatment.

III. COMPARISON OF THE CAVITY-QED AND THE
SEMICLASSICAL TREATMENTS

A. The weak-coupling regime

In the case of the weak-coupling regimesG@gd, the cav-
ity quasimode operatora can be eliminated adiabatically,20 in
which a is approximated as

a = i
g

A
s− − i

ÎG

A
E. s18d

In the adiabatic-elimination procedure, operatora is substi-
tuted into the equations of motion forks−l andkszl, and we
obtain the equations of motion of the pseudospin operators in
a closed form.

Substituting Eq.s18d into Eq. s5d, we have

ks−l =
gÎGE

AB− g2kszl. s19d

The kszls2d is calculated from Eqs.s18d and s6d

kszls2d = 2g2G
d + 2g2uAu2

duAB− g2u2
E2, s20d

with d=2g2G+g1uAu2. Thenks−ls3d is obtained from Eq.s19d,
and kals3d is calculated. Thus theEs3d is given by

FIG. 2. The third-order nonlinear spectrauEs3du for the two-level
system in the cavity withQ=50 and 10 as a function of the detun-
ing Dv. The intensity is normalized by the maximum oneuE0

s3du
without the cavity. They are calculated in the semiclassical ap-
proach on the basis of the Maxwell equationsssolid curvesd, the
semiclassical approximation of the cavity QEDsdotted curvesd, and
the cavity QED treatmentsdashed curvesd.
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Es3d = i
d + 2g2uAu2

d

2g4G2

AsAB− g2duAB− g2u2
E3. s21d

The expressions ofEs3d in the semiclassical approximation
s17d and the cavity-QED treatments21d, are different. For
extremely low-Q cavity, however, the cavity-QED treatment
should lead to the same result obtained in the semiclassical
approach. In fact, Eq.s21d is approximated as the semiclas-
sical results17d in the extremely weak-coupling regime sat-
isfying g1@g2/G.

In Fig. 2 of the previous section, we compare the third-
order nonlinear spectra calculated from the cavity QED
sdashed curvesd and semiclassical treatmentssdotted curvesd
for extremely low-Q cavity sQ=10 and 50d. The difference
between the two approaches becomes much smaller with de-
crease of theQ factor. Thus the cavity-QED effect disappears
in the extremely weak-coupling regime.

For g2=0 in the weak-coupling regime, the nonlinear
spectra obtained from the cavity-QED and semiclassical
treatments become in agreement with each other. In other
words, the semiclassical treatment gives the correct nonlinear
field in the weak-coupling regime provided that the pure
transverse damping is negligible.

Let us compare the results of the cavity-QED and semi-
classical treatments numerically. The results of the cavity-
QED are obtained by solving Eqs.s11d and s12d. The cou-
pling energy is fixed atg=0.1 meV, and the weak- and
strong-coupling regimes are attained by changing theQ fac-
tor. Figure 3 shows the intensity of the third-order nonlinear
spectra in the weak- and strong-coupling regimes. The cal-
culations are performed in the cavity-QED treatmentssolid
curvesd and the semiclassical approximationsdotted curvesd

given in Eq. s17d. The left column shows the results for
g2=0, in which the semiclassical treatment has been demon-
strated to be justified in the weak-coupling regime. In fact,
the semiclassical approximation provides the same result as
that in the cavity-QED treatment forQ=103 andg2=0 fsee
Fig. 3sadg. The right column shows the nonlinear spectra for
g2=16 meV. As is demonstrated, the semiclassical approxi-
mation is found to be invalid even in the weak-coupling
regime fsee Fig. 3sddg. The semiclassical approximation
overestimates the third-order nonlinearity considerably for
g2Þ0.

B. Strong-coupling regime

In the strong-coupling regime, intensity of the nonlinear
spectra in the semiclassical approximation is different from
that in the cavity-QED treatment both forg2=0 and 16meV
fsee Figs. 3sbd, 3scd, 3sed, and 3sfdg. In addition to the quan-
titative incorrectness, semiclassical treatment has some
qualitative errors in the strong-coupling regime. One of the
errors is the enhancement of optical nonlinearity due to the
pure dephasing forQ=104 fsee Figs. 1sbd and 1sedg; the in-
tensity of Es3d for g2=16 meV becomes larger than that for
g2=0. This tendency is not found in the cavity-QED treat-
ment at all. In the semiclassical result forg2Þ0, further-
more, there exists a peak structure atDv=0, and appreciable
nonlinear intensity appears between the Rabi-splitting peaks
in the extremely strong-coupling regimefsee Fig. 1sfdg. In
the cavity-QED treatment, the nonlinear intensity is quite
small between the Rabi-splitting peaks.

IV. SUMMARY AND CONCLUSION

In summary, the validity of the semiclassical approxima-
tion of the optical response, has been investigated for the

FIG. 3. Calculated spectra ofuEs3du as a func-
tion of the detuningDv for variousQ factors.
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two-level system embedded in the cavity, by comparing the
results of the cavity-QED treatment. Although there is no
difference between semiclassical and cavity-QED treatments
in the linear response, cavity-QED effect appears in the non-
linear response.

Except for the extremely weak-coupling regime with
g1@g2/G, the semiclassical approximation is invalid in the
nonlinear response of the cavity systems in the weak-swith
g2Þ0d and strong-coupling regimes. This fact can be ex-
pected easily in the strong-coupling regime because of the
well-defined excited rungs of the energy ladder structure in
the cavity QED. Except for the lowest excited rungsor
vacuum-Rabi splittingd, the energy ladder structure is not
found in the semiclassical approximation.

In the strong-coupling regime, the semiclassical approxi-
mation leads to incorrect results qualitatively and quantita-
tively. In some cases of the semiclassical treatment, the pure
transverse damping enhances the intensity of the third-order
nonlinear spectra considerablyfsee Figs. 3sbd and 3sedg. In
addition, appreciable intensity of the nonlinear spectra is
found between the Rabi-splitting peaks, which has a peak
structure atDv=0 fsee Fig. 3sfdg. These results are not found
in the cavity-QED treatment.

The vacuum-Rabi splitting disappears in the weak-
coupling regime. However, the discrepancy of the nonlinear
spectra between the semiclassical and cavity-QED treatments
is appreciable in the weak-coupling regime withg2Þ0. The
discrepancy has been analytically demonstrated and numeri-
cally shown in Fig. 3sdd. In the absence of the pure trans-
verse damping, however, the semiclassical approximation
has been demonstrated to be validfsee also Fig. 3sadg.

The validity of the optical nonlinearity of the cavity sys-
tems, has been studied in the two-level system. However, the
present results would be also applicable for other low-
dimensional systems such as quantum well.

ACKNOWLEDGMENTS

The author thanks Professor Cho, Professor Ishihara, and
Dr. Koshino for helpful discussion. This research was par-
tially supported by Japan Society for the Promotion of Sci-
ence, Grant-in-Aid for Scientific ResearchsCd, 16540287,
2004, Grant-in-Aid for Scientific ResearchsAds2d,
16204018, 2004, and by the Asahi Glass Foundation.

*Electronic address: ajiki@mp.es.osaka-u.ac.jp
1M. F. Yanik, S. Fan, and M. Solja�ć, Appl. Phys. Lett.83, 2739

s2003d.
2S. Tatsuura, T. Matsubara, M. Tian, H. Mitsu, I. Iwasa, Y. Sato,

and M. Furuki, Appl. Phys. Lett.85, 540 s2004d.
3M. A. Nielsen and I. L. Chuang,Quantum Computation and

Quantum InformationsCambridge University Press, Cambridge,
2000d.

4P. Bermann,Cavity Quantum Electrodynamics, Supplement 2 to
Advances in Atomic, Molecular, and Optical PhysicssAcademic,
San Diego, 1994d.

5Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J.
Kimble, Phys. Rev. Lett.75, 4710s1995d.

6S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla, Phys. Rev. B
35, 8113s1987d.

7T. Takagahara, Phys. Rev. B36, 9293s1987d.
8L. Banyai, Y. Z. Hu, M. Lindberg, and S. W. Koch, Phys. Rev. B

38, 8142s1988d.
9N. H. Bonadeo, G. Chen, D. Gammon, D. S. Katzer, D. Park, and

D. G. Steel, Phys. Rev. Lett.81, 2759s1998d.
10Y. Fu, M. Willander, E. L. Ivchenko, and A. A. Kiselev, Phys.

Rev. B 55, 9872s1997d.
11D. M. Whittaker, Phys. Rev. B63, 193305s2001d.
12H. Ishihara and K. Cho, Appl. Phys. Lett.73, 1478s1998d.
13G. Hackenbroich, C. Viviescas, and F. Haake, Phys. Rev. Lett.

89, 083902s2002d.
14C. Viviescas and G. Hackenbroich, Phys. Rev. A67, 013805

s2003d.
15C. Gardiner and P. Zoller,Quantum Noise, 2nd ed.sSpringer,

Berlin, 2000d.
16H. Ajiki, J. Opt. B: Quantum Semiclassical Opt.7, 29 s2005d.
17T. H. Stievater, X. Li, D. G. Steel, D. Gammon, D. S. Katzer, D.

Park, C. Piermarocchi, and L. J. Sham, Phys. Rev. Lett.87,
133603s2001d.

18T. Guenther, C. Lienau, T. Elsaesser, M. Glanemann, V. M. Axt,
T. Kuhn, S. Eshlaghi, and A. D. Wiech, Phys. Rev. Lett.89,
057401s2002d.

19T. Unold, K. Mueller, C. Lienau, T. Elsaesser, and A. D. Wieck,
Phys. Rev. Lett.92, 157401s2004d.

20P. Rice and H. Carmichael, IEEE J. Quantum Electron.7, 1351
s1988d.

VALIDITY OF SEMICLASSICAL TREATMENT OF… PHYSICAL REVIEW B 71, 125302s2005d

125302-5


