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Validity of semiclassical treatment of optical response in cavity systems
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We have investigated the validity of the semiclassical treatment to calculate the third-order nonlinear spectra
of cavity systems. Even if applied field is coherent, a quantized effect of a cavity-quasimode manifests itself in
the nonlinear spectra in the weak- and strong-coupling regimes, and thus the semiclassical treatment is found
to be invalid. One exception exists in the weak-coupling regime without a pure transverse damping.
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[. INTRODUCTION are included by employing the master equation. In general,
the semiclassical treatment is invalid to calculate the nonlin-
Optical properties of resonant matter inside a cavity, havear spectra except for the weak-coupling regime without the
been extensively studied because of its potential to achieveure transverse damping.
large optical nonlinearity, which is necessary to realize opti- This paper is organized as follows: In Sec. Il, the driven
cal devices such as the optical switchirigthe optical quan- JC Hamiltonian and the master equation are presented. The
tum gates’ and so on. At first, optical properties of the cavity procedure to calculate the third-order nonlinear field is de-
systems have been investigated for atoms passing throughsaribed in the cavity-QED treatment and its semiclassical
cavity, and the field of the cavity quantum electrodynamicsapproximation. In Sec. Ill, we compare the spectra obtained
(QED) has been exploretAn impressive demonstration of from the cavity-QED and semiclassical treatments in the
an enhanced nonlinear phase shift has been exhibited for @geak- and strong-coupling regimes. A summary is given in
atoms in the cavity. More recently, a semiconductor quan- Sec. IV.
tum dot (QD) embedded in the cavity has been attracted

much attention because of its large oscillator strength and the
tractability for fabricating a built-in device. Il. THE TWO-LEVEL SYSTEM IN A CAVITY

When gpplied fields have the same polarization, it has Optical response of the two-level system in the cavity can
been predicted and measured that the QD can be treated ag@ \ye|| described by the driven JC modeThe driven JC
two-level system in the optical resporfs.If the two-level g consists of cavity-quasimode creation and annihilation

system is embedded in a Iossle.ss cavity, the. energy 'evel§peratorsaﬁ anda connecting applied coherent fielg™ !
have the ladder structure according to the cavity QED, eaCQ/ith coupling constantT. The phenomenological descrip-

rung of which consists of two energy levesnfwo£\NG,  tion has been derived from a more fundamental
wheren is the photon number inside the cavity iS the  555r04cH3.14n which electromagnetic fields extending in-
resonant frequency of the two-level system and the cavit¥ije and outside cavity are quantized.

mode, andj is the coupling constant of the two-level system | ot \,s consider a two-side cavity, inside which the two-

and the cavity mode. The schematic level structure is showpy, g system interacts with the cavity-quasimode photons
in Fig. 1.

The energy splitting of the lowest excited rufig=1) is

called the vacuum-Rabi splitting. The vacuum-Rabi splitting E'ngy E

can be found in the semiclassical treatment also, and the nhwo + vng

resulting linear optical spectra agree with that calculated in nhwe — \/ig

the cavity-QED treatmerit.On the other hand, the higher ~_

excited rungs, which contribute to the nonlinear processes, .

can not be derived from the semiclassical theory. Therefore, ~— . o

it is expected that the cavity-QED treatment is necessary to vacuum-Rabi 2hwo + V29
. . splitting Mo — V2

calculate the nonlinear spectra of the cavity systems. For 0 g

semiconducting nanostructures in the cavity, however, most ¢ A hwo + g

of theoretical studies on the nonlinear properties have been fwo — g

performed in the semiclassical treatmé&tt? 0

In this paper, we clarify the validity of the semiclassical
treatment of the third-order nonlinearity. We use the driven
Jaynes-Cuming&JC) model to describe the interaction of the  FIG. 1. Energy level structures of the coupled modes of a two-
QD and the cavity quasimode fed from the outside coherentvel system and a cavity mode. The vacuum-Rabi splitting appears
field. Both longitudinal- and pure transverse-damping effect$oth in the semiclassical and cavity-QED treatments.

semiclassical treatment  cavity QED
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with the coupling constang. The cavity-quasimode energy JrB

of interest is denoted bw,, and the excitation energy of the (@)W =i AB— 2t (9
two-level system is denoted b¥w, Then the driven JC 9

Hamiltonian is given by It is noted that the solution&B-g?=0 provide the complex

1 o + vacuum-Rabi frequencies
H=3hw,0,+hoa'a+ifg@'o. - o.a)

— . . I [
+iflE(ad - a'e™), (1) Ae=wo— Z(ZF + 1+ 2y) £ Vg? = (20 = y; — 2,)?/16.

whereo,, o, are pseudospin operators for the two-level sys- (10)

tem. ) )
Decay processes of the excited states are usually charathe real and imaginary parts af. correspond to the reso-

terized by the longitudinaly;) and pure transverséy,) nant frequency and th_e spectral width of the linear transmis-
damping constants. Photons inside the cavity decay to thgion SPectra, respectively. Fog#2l'~y,-2y,, we have
outside because of the imperfection of the cavity mirrors REA+]=REN-]=wo (weak-coupling regime For 4g>2T

and the corresponding decay constant is gived'bfheQ  ~ 717272 on the other hand, the real parts have different
factor of the cavity is related tb asQ=w./2I". In the pres- Values, which lead to the vacuum-Rabi splittifigtrong-
ence of these decay processes, a density matfiar the ~ Coupling regimg . _

two-level system and the cavity quasimode satisfies the mas- 1h€ equations of motion to obtain the second-order solu-

ter equation tions are written as

(2
%=i[H p]+ﬂ(20'_p0' - 0.0.p—po,0o.) s fg 900 _0 <?-Z> 2

dt in 2 o * g2 -¢ 0 0 0 -g (@)
g2 0 -¢£ 0 0 -g (ac,)?
+%(Uzpcfz-p)+T(2apaT—a*ap-paTa)- (2) 0 0 0 iD-g O (ao )@

, o 0 0 0 29 iE O (aa)?

The driven JC Hamiltoniafl) and the master Eq.2) 0O g g 0 0 —-2r (@)@

determine optical response of the two-level system embed-

ded in the two-side cavity. The response fiElds calculated 0
from the input-output theofy as (o)
E= J’F a), 3 <0.+>(1)
VI'(a) (3 =VF5 W , (12)
with (a)=Tr(pa). (0-)
2ayV
A. The cavity-QED treatment @ +(@hv

Here, we present a quantum treatment of the cavitywith D=2Aw+il'+i(y/2+7y,), E=2Aw+2i", and ¢é=I
quasimode in the perturbation with respect o In the  +(y,/2+7,).
following calculations, we consider the degenerate case: A simultaneous equation providing the third-order solu-
we=wa= wy. In the steady-state condition, the equations oftjons is given by
motion of (a), (o_), (o, and{ao,) are given by

Ak g 0 0O 0 O (a)®
. =
iA(@) +g(o_) —\I'E=0, (4) 0O B g 0 0 0 (o)
. -y -g iC -2g -2g 0 (aoy)®
iB(0-) + glasy =0, (5) g2 0 g2 iF 0 -g || @ar)®
i _ ®
2g(alo) +29(0,8) + 1(0) + 7, =0, (6) 9 0 g 0 iF -g]| (@
0O 0 0 29 g iG (a'aa)®
iC(ao) - 2g(a'ac_) - 2g(aao,) - g(o-) = \I'&(a,) 0
- v(@/2=0, (7) 0
(2
respectively, with A=Aw+iT', B=Aw+i(y;/2+y,), and =\T¢ () (12)
C=Aw+iT+iy, whereAw=w—w,. (ao_)? +(a'o_)?
The zeroth order solutiotv,)©=-1 is obtained from Eq. 2ac,)?
(6). The first-order solutions are calculated from E&. (aa)® + 2(ata)®

(5), and(7) as follows:
— with F=Aw+2iT +i(y1/2+y5) gnd G=Aw+3iI'. The third-
(o) =— gvI’ 3 (g  order nonlinear responge®=\I'(a)® is calculated from the
AB-g? simultaneous Eq€11) and(12) numerically.
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B. The semiclassical treatment

The semiclassical treatment corresponds to the approxi-

mation of the cavity-QED treatment, where the operat®
replaced by its mean value, for instan¢ay,) = (a){(o,). Ap-
plying the approximation to Eq$4)—(6), we obtain the equa-
tions of motion in a closed form

J—

_i9 o
<a>—|A<cr_) i A g, (13
(0 =i 2(axay, (14)
B
Yo = - - 20[@No) + @) o)) (15

The zeroth order ofo,) is given by (o) @=-1 from Eq.
(15). The calculateda)? and(s_)) have the same form as

Egs.(8) and(9), respectively. Namely, the semiclassical ap-
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FIG. 2. The third-order nonlinear spect&®| for the two-level
system in the cavity witlfQ=50 and 10 as a function of the detun-

proximation leads to the same result as that in the cavitymg Aw. The intensity is normalized by the maximum oyE%3>|

QED treatment in the linear-response regime.
To derive the third-order nonlinear spectra we have

yi+2y, 2¢°T >
2 28 ’

v |AB-g
by substituting Egs(8) and (9) into Eg. (15). After getting
(o_)®, we have the third-order response fi&l®
29°1? e
A(AB-g)|AB-g?*

(0@ = (16)

— + 2
E® = \T(a)® = 1222
V1

(17)

It has been demonstrated that the present semiclassicg]la
e

approximation of the cavity-QED treatment agrees with th

conventional semiclassical approach on the basis of the Max®

well equations and boundary conditions at cavity mirdrs.
The analytic demonstration has been performed for a Qigh-

without the cavity. They are calculated in the semiclassical ap-
proach on the basis of the Maxwell equatidisslid curve$, the
semiclassical approximation of the cavity QHEdbtted curves and

the cavity QED treatmeniashed curves

“semi. conv.” show the results of the conventional semiclas-
sical approach on the basis of the Maxwell equations, and
dotted curves indicated by “semi. approx.” show the results
of Eq. (17), namely, the semiclassical approximation of the

cavity QED. It is found from these results that the driven JC

miltonian describes cavity systems relatively well even in

e low-Q regime. The dashed curves indicated by “cavity

QED” shows the results of the cavity-QED treatment.

Ill. COMPARISON OF THE CAVITY-QED AND THE
SEMICLASSICAL TREATMENTS

cavity, in which the cavity quasimode is well defined, and the

phenomenological parametErhas been related to the trans-
mission coefficient of the mirrors as/T'=-i\c/2Lt whereL
is the length of the cavity.

A. The weak-coupling regime

In the case of the weak-coupling regirtie>g), the cav-
ity quasimode operatar can be eliminated adiabaticalyjn

Figure 2 shows the third-order nonlinearities calculatedyhich a is approximated as

from various approaches for a lo@-cavity. The parameters

in the following calculations are selected for the interface
GaAs QDs as the two-level system. The QDs have

large transition-dipole moment ranging from
50 to 100 D"18 The typical v, of the interface QD at

T
a=ids - ¢

A A (18

In the adiabatic-elimination procedure, operatois substi-

T=12K is y,~16-27 ueV.® The parameters are selected astuted into the equations of motion fés_) and(), and we

wo=1.65 eV;? y;=8 ueV,! and y,=16 ueV. The coupling
constant is given byhg=PvV4mhwy/SL, where P is a
transition-dipole moment anfl is a cross section of the ap-

obtain the equations of motion of the pseudospin operators in
a closed form.
Substituting Eq(18) into Eq.(5), we have

plied laser field. The energy of the lowest cavity quasimode =

is adjusted to the excitation energy of the QD, i.e.,
wo=L/cm. Then the coupling constant is rewritten as
hg=2(P/a)(fwy/ Vic). When the Gaussian waist, of the
applied laser field is 1@&m, the coupling energy becomes
0.07-0.14 meV forP=50-100 D, where | have used the
relation S= 7TW(2,/4.4 Here, the coupling constant is fixed at
g=0.1 meV.

The intensity is normalized by the maximum intensity
|Ef)3)| for the QD without the cavity. Solid curves indicated by

ore
(0= Ap= & (19
The (o) is calculated from Eq918) and (6)
5+ 2y,|A]?
@ = 29T ——=—5¢7 20
(0 g 5|AB—g2|25 ) (20)

with 6=2g°T"+ y,|A|2. Then(o_)® is obtained from Eq(19),
and(a)® is calculated. Thus thE® is given by
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given in Eq.(17). The left column shows the results for

v,=0, in which the semiclassical treatment has been demon-

strated to be justified in the weak-coupling regime. In fact,

The expressions cE® in the semiclassical approximation the semiclassical approximation provides the same result as
. . that in the cavity-QED treatment f@@=10° and y,=0 [see

(17) and the cavity-QED treatmeri21), are different. For y-Q @ 72701

i : Fig. 3(@)]. The right column shows the nonlinear spectra for
extremely low€ cavity, however, the cavity-QED treatment

. _ _ - 7»=16 ueV. As is demonstrated, the semiclassical approxi-
should lead to the same result obtained in the semiclassic@{ation is found to be invalid even in the weak-coupling

approach. In fact, Eq21) is approximated as the semiclas- regime [see Fig. &)]. The semiclassical approximation
sical result(17) in the extremely weak-coupling regime sat- gverestimates the third-order nonlinearity considerably for

isfying y;>g?/T. ¥,#0.
In Fig. 2 of the previous section, we compare the third-
order nonlinear spectra calculated from the cavity QED B. Strong-coupling regime
(dashed curvgsand semiclassical treatmer{totted curveps In the strong-coupling regime, intensity of the nonlinear

for extremely low® cavity (Q=10 and 50. The difference spectra in the semiclassical approximation is different from
between the two approaches becomes much smaller with déhat in the cavity-QED treatment both fgs=0 and 16ueV
crease of th& factor. Thus the cavity-QED effect disappears[see Figs. &), 3(c), 3(e), and f)]. In addition to the quan-

in the extremely weak-coupling regime. titative incorrectness, semiclassical treatment has some

For vy,=0 in the weak-coupling regime, the nonlinear qualitative errors in the strong-coupling regime. One of the
spectra obtained from the cavity-QED and semiclassicagrrors is the enhancement of optical nonlinearity due to the
treatments become in agreement with each other. In othgrure dephasing foQ=10" [see Figs. (b) and Xe)]; the in-
words, the semiclassical treatment gives the correct nonlinedensity of E® for y,=16 ueV becomes larger than that for
field in the weak-coupling regime provided that the purey,=0. This tendency is not found in the cavity-QED treat-
transverse damping is negligible. ment at all. In the semiclassical result fog+# 0, further-

Let us compare the results of the cavity-QED and semiimore, there exists a peak structuré\ai=0, and appreciable
classical treatments numerically. The results of the cavitynonlinear intensity appears between the Rabi-splitting peaks
QED are obtained by solving Egél1) and (12). The cou- in the extremely strong-coupling reginisee Fig. 1f)]. In
pling energy is fixed atg=0.1 meV, and the weak- and the cavity-QED treatment, the nonlinear intensity is quite
strong-coupling regimes are attained by changingQHfac-  small between the Rabi-splitting peaks.
tor. Figure 3 shows the intensity of the third-order nonlinear
spectra in the weak- and strong-coupling regimes. The cal- IV. SUMMARY AND CONCLUSION

culations are performed in the cavity-QED treatméstlid In summary, the validity of the semiclassical approxima-
curves and the semiclassical approximatitotted curves tion of the optical response, has been investigated for the
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two-level system embedded in the cavity, by comparing the The vacuum-Rabi splitting disappears in the weak-
results of the cavity-QED treatment. Although there is nocoupling regime. However, the discrepancy of the nonlinear
difference between semiclassical and cavity-QED treatmentspectra between the semiclassical and cavity-QED treatments
in the linear response, cavity-QED effect appears in the nonis appreciable in the weak-coupling regime withw 0. The
linear response. discrepancy has been analytically demonstrated and numeri-
Except for the extremely weak-coupling regime with cally shown in Fig. &). In the absence of the pure trans-
v1>g°/T, the semiclassical approximation is invalid in the yerse damping, however, the semiclassical approximation
nonlinear response of th_e cavity systems in the weéakth has been demonstrated to be vdkee also Fig. @)].
72#0) and strong-coupling regimes. This fact can be ex-  1he yajidity of the optical nonlinearity of the cavity sys-
pected easily in the strong-coupling regime because of th?ems has been studied in the two-level system. However, the
well-defined excited rungs of the energy ladder structure i'bresént results would be also applicable for other I(;w-

the cavity QED. Except for the lowest excited ruigr . .
vacuum-Rabi splitting the energy ladder structure is not dimensional systems such as quantum well.

found in the semiclassical approximation.

In the strong-coupling regime, the semiclassical approxi-
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