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Transport properties of a two-dimensional electron gass2DEGd are studied in the presence of a perpendicu-
lar magnetic fieldB, of a weak one-dimensionals1Dd periodic potential modulation, and of the spin-orbit
interactionsSOId described only by the Rashba term. In the absence of the modulation the SOI mixes the
spin-up and spin-down states of neighboring Landau levels into two new, unequally spaced energy branches.
The levels of these branches broaden into bands in the presence of the modulation and their bandwidths
oscillate with the fieldB. Evaluated at the Fermi energy, thenth level bandwidth of each series has a minimum
or vanishes at different values of the fieldB. In contrast with the 1D-modulated 2DEG without SOI, for which
only one flat-band condition applies, here there are two flat-band conditions that can change considerably as a
function of the SOI strengtha and accordingly influence the transport coefficients of the 2DEG. The phase and
amplitude of the Weiss and Shubnikov-de HaassSdHd oscillations depend on the strengtha. For small values
of a both oscillations show beating patterns. Those of the former are due to the independently oscillating
bandwidths whereas those of the latter are due to modifications of the density of states, exhibit an even-odd
filling factor transition, and are nearly independent of the modulation strength. For strong values ofa the SdH
oscillations are split in two.
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I. INTRODUCTION

The magnetotransport of the two-dimensional electron gas
s2DEGd, subjected to periodic potential modulations, has at-
tracted considerable experimental1 and theoretical2,3 atten-
tion during the last two decades. For one-dimensionals1Dd
modulations novel oscillations of the magnetoresistivity ten-
sor rmn have been observed, at low magnetic fieldsB, dis-
tinctly different in period and temperature dependence from
the usual Shubnikov-de HaassSdHd ones observed at higher
B. These novel oscillations, referred to as the Weiss oscilla-
tions, reflect the commensurability between two length
scales: the cyclotron diameter at the Fermi level 2Rc

=2Î2pne,c
2, with ne the electron density and,c the magnetic

length, anda the period of the potential modulation.
The emerging field of spintronics brought into the fore the

importance of spin-orbit interactionsSOId in a variety of
situations. It is important in the development of spin-based
transistors,4 possibly in future quantum computations,5 in an
unexpected metal-to-insulator transition in two-dimensional
s2Dd—Ref. 6—hole gas, in spin-resolved ballistic transport,7

in Aharonov-Casher experiments,8 in spin-galvanic9 and spin
valve10 effects, in the spin-Hall effect,11 etc. The effect is
important in inversely asymmetric bulk semiconductor crys-
tals, due to the internal crystal field, as well in asymmetri-
cally confined semiconductor heterostructures. In the former
case the contributions to the spin splitting in the conduction
band vary as a,k3 term and dominate inwide-gap
structures12 whereas in the latter vary as a,k term, referred
to as the Rashba term, and dominate innarrow-gap
structures.13 The latter was confirmed by experiments that

showed a zero-magnetic-field spin splitting for carriers with
finite momentum in a modulation-doped GaAs/AlGaAs
heterojunction14 as well as by magnetotransport measure-
ments in a 2D hole system.15 The explanation proposed by
Bychkov and Rashba16 employed the Rashba spin-orbit
Hamiltonian, in which the spin of finite-momentum electrons
feels a magnetic field perpendicular to the electron momen-
tum in the inversion plane. A detailed account of magne-
totransport of the 2DEG in the presence of SOI but absence
of modulations appeared recently.17

Given the importance the SOI has acquired, one question
that arises concerns its influence on magnetotransport prop-
erties of a 2DEG in the presence of periodic potential modu-
lations. So far we are aware of only the brief,classicalstudy
of Ref. 18. Since some effects of the modulations can be
explained only quantum mechanically,3 it is of interest to
reexamine the problemquantum mechanically. This is the
subject of this paper. We will consider only weak 1D modu-
lations and make use of our experience with them3 and with
the unmodulated 2DEG in the presence of SOI.17 The main
qualitative findings are as follows. The levels of the1 and
2, unequally spaced energy branches, due to the SOI when
the modulation is absent, broaden into bands when the
modulation is present and their bandwidths oscillate with the
field B. Evaluated at the Fermi energy, these bandwidths van-
ish at different values of the fieldB and modify considerably
the flat-band condition and the transport coefficients as a
function of the SOI strengtha. As a result, the phase and
amplitude of the commensurability and SdH oscillations
change whena is varied. For small values ofa the former
show a beating pattern while for strong values ofa the latter
are split in two.
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In the next section we present the one-electron eigenfunc-
tions and eigenvalues. Analytical results for the conductivi-
ties are given in Sec. III and numerical results in Sec. IV. The
last section contains a summary and concluding remarks.

II. EIGENFUNCTIONS AND EIGENVALUES

A. A 2DEG in the presence of SOI and absence of potential
modulation

We consider a 2DEG in thesx−yd plane and a magnetic
field along the z direction. In the Landau gaugeA
=s0,Bx,0d the one-electron Hamiltonian including the
Rashba term reads

H0 =
sp + eAd2

2m* +
a

"
fs Ã sp + eAdgz + 1

2gmBBsz, s1d

wherep is the momentum operator of the electrons,m* is the
effective electron mass,g the Zeeman factor,mB the Bohr
magneton,s=ssx,sy,szd the Pauli spin matrices, anda the
strength of the SOI or Rashba parameter.

Using the Landau wave functions without SOI as a basis,
we can express the new eigenfunction in the form:

Cky
sr d = eikyyo

n=0

`

fnsx + xcdSCn
+

Cn
−DYÎLy. s2d

Here fnsxd=e−x2/2lc
2
Hnsx/ lcd / sÎp2nn! lcd1/2 is the harmonic

oscillator function,vc=eB/m* the cyclotron frequency,lc
=s" /m*vcd1/2 the magnetic length, and the cyclotron orbit is
centered atxc= lc

2ky, n the Landau-level index, andusl the
electron spin written as the row vectorksu=s1,0d if it is
pointing up ands0, 1d if it is pointing down.

Using these wave functions and Eq.s1d the eigenvalue
problemH0C=EC leads to an infinite system of equations
that can be solved exactly after decomposing it into indepen-
dent systems of one or two equations.17 The resulting eigen-
states are labeled by a new quantum numbers for the energy
instead ofn. For s=0 there is one level, the same as the
lowest Landau level without SOI, with energy

E0
+ = E0 = "vc/2 − gmBB/2 s3d

and wave function

C0
+skyd = eikyyf0sx + xcdS0

1
DYÎLy. s4d

For s=1,2,3, . . .,there are two branches of levels, de-
noted by1 and2, with energies

Es
± = s"vc ± fE0

2 + 2sa2/lc
2g1/2. s5d

The 1 branch is described by the wave function

Cs
+skyd =

eikyy

ÎLyAs

SDsfs−1sx + xcd

fssx + xcd
D , s6d

and the2 one by

Cs
−skyd =

eikyy

ÎLyAs

S fs−1sx + xcd
− Dsfssx + xcd

D , s7d

whereAs=1+Ds
2 andDs=sÎ2sa / lcd / fE0+ÎE0

2+2sa2/ lc
2g.

B. A 2DEG in the presence of SOI and of a 1D potential
modulation

In the presence of a 1D periodic electric modulation, we
consider the Hamiltonian

H = H0 + V0 cossKxd, s8d

with K=2p /a anda the modulation period. For weak modu-
lations the energy correction due to the termV0 cossKxd is
evaluated by first-order perturbation theory. The results for
the two branches are

Es
+ = s"vc + fE0

2 + 2sa2/lc
2g1/2 + V0e

−u/2 cossKxcdfDs
2Ls−1sud

+ Lssudg/As, s= 0,1, . . . , s9d

Es
− = s"vc − fE0

2 + 2sa2/lc
2g1/2 + V0e

−u/2 cossKxcdfLs−1sud

+ Ds
2Lssudg/As, s= 1,2, . . . , s10d

where u=2p2lc
2/a2=K2lc

2/2 and xc=kylc
2. Lssud is the La-

guerre polynomial and fors=0 Eq.s9d reduces to Eq.s3d as
modified by the perturbation correction. The width of the
broadened levels of the two branches is given by twice the
absolute value of the last term in Eqs.s9d and s10d without
the cossK,c

2kyd factor and is denoted by 2uDs
±u. Ds

± can be
written in the compact form

Ds
± = V0e

−u/2fLs−1/2±1/2+ Ds
2Ls−1/271/2g/As, s11d

with the upper signs pertaining to the1 branch and the
lower ones to the2 branch; obviouslyDs

± is not the same for
the two branches. In contrast, without SOI we have only a
single branch and a single bandwidth3 and the eigenvalues
are given, when the Zeeman term is neglected, by

En = sn + 1/2d"vc + V0e
−u/2 cossKxcdLnsud s12d

with n the Landau-level index. This has consequences that
will be detailed below.

As in the absence of SOI, the presence of the modulation
broadens the discrete levels into bands. An important differ-
ence with the situation in which the modulation is absent is
that the diagonal matrix elements of the velocity operator
now do not vanish. Usingvy

±=s1/"d]Es
±skyd /]ky their values

are

vy
+ = − 2V0ue−u/2fDs

2Ls−1sud + LssudgsinsKxcd/s"KAsd,

s13d

vy
− = − 2V0ue−u/2fLs−1sud + Ds

2LssudgsinsKxcd/s"KAsd.

s14d

These nonvanishing values lead to a nonvanishing diffusive
conductivity whereas in the absence of the modulation this
conductivity vanishes whether the SOI is present or not.17
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Compared to the case without SOI, we have two contribu-
tions, one from Eq.s9d and one from Eq.s10d, while for a
=0 we have only one value given by

vy = − s2V0/"Kdue−u/2LnsudsinsKxcd. s15d

As a function of the magnetic fieldB, thesevy
± contributions

do not oscillate in phase due to the different dependence of
the Laguerre polynomials onB. This modifies mostly the
diffusive conductivity in the presence of the modulation and
will be detailed in the following sections.

Using the asymptotic expression of the Laguerre polyno-
mials for larges, we obtainDs

± ~coss2Îsu−p /4d. The Lan-
dau level indicess+ ands− of the corresponding branches at
the Fermi energy can be determined by the equationsEs+

+

<Es−
− and ne=ss++s−+1d / s2plc

2d, where ne is the electron
density. Then from the argument of coss2Îsu−p /4d we ob-
tain the flat-band conditions

ÎufÎpnelc 7 a/sÎ2"vclcdg = psi − 1/4d/2 s16d

with the upperslowerd sign corresponding to the1 s2d
branch. Since the cyclotron radius at the Fermi energy is
Rc

±= lcÎ2s±+1, Eq.s16d can be written as 2Rc
± /a= i −1/4 with

Rc
±=Rc

07a /"vc andRc
0 the cyclotron radius without SOI or

KskF7kadlc
2=psi −1/4d with kF=Î2pne, and ka=am* /"2.

The same result has been obtained in Ref. 18 by a purely
classical treatment. The fact that now we havetwo flat-band
conditions, as opposed toone for a=0, leads to oscillations
with two different frequencies and consequently to beating
patterns that will be shown in Sec. IV. Explicitly, writing Eq.
s16d again for i → i +1 and subtracting the result from Eq.
s16d, gives the periods in the6 branches asV+

=ea/ f2"skF−kadg andV−=ea/ f2"skF+kadg.

III. CONDUCTIVITIES

For weak electric fieldsEn, i.e., for linear responses, and
weak scattering potentials the expressions for the dc conduc-
tivity tensor smn, in the one-electron approximation, re-
viewed in Ref. 19, readssmn=smn

d +smn
nd with m ,n=x,y,z.

The termssmn
d and smn

nd stem from the diagonal and nondi-
agonal part of the density operatorr̂, respectively, in a given
basis andkJml=Trsr̂Jmd=smnEn. In general, we havesmn

d

=smn
dif +smn

col. The termsmn
dif describes the diffusive motion of

electrons and the termsmn
col the collision contributions or hop-

ping. The former is given by

smn
dif =

be2

S0
o

z

fsEs
sdf1 − fsEs

sdgtzsEs
sdvm

z vn
z , s17d

where z;ss,s ,kyd denotes the quantum numbers,vm
z

=kzuvmuzl is the diagonal element of the velocity operatorvm,
and fs«d the Fermi-Dirac function. Further,tzsEs

sd is the re-
laxation time for elastic scattering,b=1/kBT, andS0 is the
area of the system.

The termsmn
col can be written in the form

syy
col =

be2

2S0
o
z,z8
E

−`

`

d«E
−`

`

d«8df« − Es
sskxdgdf«8 − Es8

s8skx8dgfs«d

3f1 − fs«8dgWzz8s«,«8dsyz − yz8d
2, s18d

whereyz=kzuyuzl; Wzz8s« ,«8d is the transition rate. For elas-
tic scattering by dilute impurities, of densityNI, we have

Wzz8s«,«8d =
2pNI

"S0
o
q

uUsqdu2uFzz8sudu2ds« − «8ddkx,kx8−qx
,

s19d

whereu= lc
2q2/2 andq2=qx

2+qy
2. Usqd=se2/2e0ed / sq+ksd is

the Fourier transform of the screened impurity potential with
e the static dielectric constant,e0 the dielectric permittivity,
andks the screening wave vector.

The diffusion contribution given by Eq.s17d becomes

syy
dif =

e2

h

4bu2t

pK o
s,s
E

0

a/2lc
2

dkysDs
sd2sin2sKlc

2kydfsEn,ky

s df1

− fsEn,ky

s dg s20d

with Ds
s=Ds

± given by Eq.s11d. The related contributionsxx
dif

is zero since the velocityvx vanishes.
For weak potential modulations we can neglect Landau-

level mixing, i.e., we can takes8=s. Then noting thatsxx
col

=syy
col, oq=sS0/2pde0

`qdq=sS0/2plc
2de0

`du, and okx
=sS0/2plc

2d, the collisional contribution given by Eq.s18d
takes the form

syy
col =

e2

"

NIb

2A0
o

s,s,ky

E
0

`

duuFss
s sudu2uE

−`

`

d«fds« − Es
sdg2fs«df1

− fs«dguUsÎ2u/lc
2du2, s21d

where

uFss
− sudu2 = hLs−1sud + Ds

2Lssudj2e−u/As
2, s22d

uFss
+ sudu2 = hDs

2Ls−1sud + Lssudj2e−u/As
2. s23d

The exponentiale−u favors small values ofu. Assuming
b=ks

2lc
2/2@u we may neglect the term 2u/ lc

2 in the expres-
sion for UsÎ2u/ lc

2d and defineU0=Us0d. We then obtain

syy
col =

e2

h

NIU0
2b

paG
o
s,s
E

0

a/2lc
2

dkyIs
sfs«df1 − fs«dg, s24d

where

Is
± = fs2s± 1dDs

4 − 2sDs
2 + 2s± 1g/As

2. s25d

The impurity densityNI determines the Landau Level
broadeningG=Wzz8s« ,«8d /". Evaluating Wzz8s« ,«8d /" in
the u→0 limit without taking into account the SOI, we ob-
tain NI <4pfs2ee0/e2dg2G /".

The Hall conductivitysxy
nd is given by
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sxy
nd =

2i"e2

S0
o
z,z8

fsEzdf1 − fsEz8dgkzuvxuz8l

3kz8uvyuzl
1 − ebsEz−Ez8d

sEz − Ez8d
2 , z8 Þ z. s26d

The resistivity tensorrmn is given in terms of the conduc-
tivity tensor smn upon using the standard expressionsrxx
=syy/S, ryy=sxx/S, ryx=rxy=−syx/S, where S=sxxsyy
−sxysyx.

IV. NUMERICAL RESULTS

In this section we present numerical results for the band-
width and the two conductivities given by Eqs.s20d ands23d
for various values of the SOI strengtha, of the modulation
strengthV0 and perioda, of the electron densityne, and of
the temperatureT. We measure a in units of a0
=10−11 eV m, ne in units of n0=10−11/cm2, and use the ef-
fective mass of InAsm* =0.05m0 with m0 the free-electron
mass.

In Fig. 1 we plotDs
±, given by Eq.s11d and directly re-

lated to the bandwidth 2uDs
±u, at the Fermi level, as a function

of the magnetic fieldB in the upper panels and as a function

of the inverse magnetic field 1/B in the lower panels. The
other parameters area=3500 Å, T=2 K, ne=3n0, and V0
=0.5 meV. We plotDs

± and not 2uDs
±u so that the oscillations

are seen more clearly. Comparing thea=0 panel with the
aÞ0 ones, we see clearly, foraÞ0, the contributions from
the 1 and2 branches. The large-amplitude oscillations, for
low B in the upper panels and for high 1/B in the lower
panels, are the Weiss oscillations whereas the step-like be-
havior on the right side of the upper panels is due to the
small-amplitude SdH ones. On the scale used the latter are
barely visible on the very left side in the lower panels. The
phase shift between the oscillations ofDs

+ and Ds
− and their

slightly different frequencies described by Eq.s16d lead to
the beating patterns of the conductivities shown below. For
example, fora=2a0 the oscillations of the bandwidth 2uDs

±u,
given after Eq.s16d, have a periodV+=2.14 T−1 in the 1
branch and a periodV−=1.76 T−1 in the 2 branch.

In Fig. 2 we plot the conductivities versus the inverse of
the magnetic fieldB for different values ofa and a shorter
modulation perioda=800 Å. The upper curve is the colli-
sional conductivity, given by Eq.s23d, and the lower one the
diffusive conductivity, given by Eq.s20d. Notice the absence
of a beating pattern fora=0 and its development foraÞ0.
For finite a, the longer-period beating pattern of the Weiss
oscillations is observed in the diffusive curves and the

FIG. 1. The quantityDs
± of Eq.

s11d vs magnetic fieldB supper
panelsd and vs inverse magnetic
field 1/B slower panelsd, at the
Fermi level, for different values of
the strengtha. The modulation
period is a=3500 Å and the
modulation strengthV0=0.5 meV.

FIG. 2. Conductivities vs in-
verse magnetic fieldB for differ-
ent values ofa with a=800 Å, T
=1 K, ne=3n0, andV0=0.3 meV.
The upper slowerd curves show
the collisional sdiffusived
contribution.
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shorter-period beating pattern of the SdH oscillations17 in the
collisional curves. The reason is that at low magnetic fields
and low temperatures the Weiss oscillations dominate the
diffusive conductivity while the SdH oscillations dominate
the collisional conductivity. In the former the energy correc-
tion due to the modulation, given by Eqs.s9d ands10d, enters
mainly the square ofvy

± and the argument of the Fermi func-
tion, cf. Eqs.s17d and s20d, whereas in the latter it enters
essentially only through the argument of the Fermi function,
cf. Eqs.s18d and s24d.

To see the oscillations shown in Fig. 2 more clearly, we
plot the conductivities versus filling factornh/eB in Fig. 3
for a=a0 and ne=3n0. As can be seen, the collisional con-
ductivity supper curved shows a beating pattern of the SdH
oscillations resulting from the different Landau-level separa-
tions in the1 and 2 spin branches. The indexs± at the
Fermi energy is expressed approximately ass±

=spne"7m*aÎ2pne/"d /eB. The resulting period of the
beating pattern, measured in units of inverse magnetic field,
is 2"kakF /e or 0.85 T−1 in Fig. 3. We notice that a transition
from conductivity maxima atevenfilling factors to conduc-
tivity maxima atodd filling factors occurs between adjacent
wraps of the SdH oscillations. This can be understood by
checking the DOS of the system. As shown in Fig. 4, when
the subband broadening is comparable to the subband sepa-
ration, a beating pattern appears in the DOS, with SOI
present and modulation absent, and each DOS peak corre-
sponds to one pair of spin levels. Because the spin-up and
spin-down levels have different separations, there is one un-
paired spin level at each node of the beating pattern. As a
result, in one wrap of the DOS oscillations there is aneven
number of levels below each pair and the DOS has a peak at
odd filling factors, while in the next wrap there is anodd
number of levels below each pair and the DOS has a peak at
evenfilling factors. When the Fermi energy passes through

the 6 branches and the DOS is as described above, the col-
lisional conductivity shows a beating pattern with aneven-
odd filling factor transition. Although here the modulation is
present, it is very weak and leaves the oscillations of the
collisional conductivity nearly intact. A complementary way
of seeing how the beating pattern is formed, is to plot sepa-
rately scol,− and scol,+. Both contributions oscillate with
slightly different frequencies and their sum shows the beat-
ing pattern of Fig. 3. The period of this pattern, in units of
inverse of magnetic field, isea/4"ka or 4.63 T−1 in Fig. 3. A
similar even-odd filling factor transition was also observed
for strongmodulations, which make the Landau levels over-
lap, in the absence of SOI and was explained by the behavior
of the corresponding DOS.20 The diffusive conductivity
slower curved shows mainly a beating pattern of the Weiss
oscillations since here the SdH oscillations are very weak.

Above we observed a beating pattern in the SdH and
Weiss oscillations occurring, respectively, in the collisional
and diffusive conductivities, versus filling factor when vary-
ing the magnetic field at a fixed electron density. If we vary
the electron density and fix the magnetic fieldB, the beating
pattern of the SdH oscillations holds because it corresponds
to the Fermi energy passing through the DOS with beating
pattern. However, we do not observe a beating pattern in the
Weiss oscillations. This can be explained by Eq.s16d, from
where we see that, for fixedB, the bandwidths of the two

FIG. 5. Conductivities vs inverse magnetic
field B for different temperatures witha=a0 and
ne=3n0. The upperslowerd curves show the col-
lisional sdiffusived contribution.

FIG. 3. Conductivities vs filling factornh/eB for the panela
=a0 of Fig. 2. The dashed vertical lines show the even filling factor
values and the curves are marked as in Fig. 2.

FIG. 4. sad Subband energy vs indexs in the absence of modu-
lation. The DOS vs energy is shown insbd for subband broadening
G=0.1 meV and inscd for G=0.5 meV. WhenE is the Fermi energy
the quantity 2E/Ec with Ec="vc is approximately the filling factor.
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series of spin levels oscillate with the same frequency as a
function of the electron densityne though with different
phases. For a system without the potential modulation, the
diffusive conductivity disappears and we observe only a
beating pattern of the SdH oscillations in the collisional con-
ductivity.

In Fig. 5 we plot again the conductivities versus the in-
verse of the magnetic fieldB for different values of the tem-
perature,a=a0, ne=3n0, andV0=0.3 meV. The two curves
are marked as in Fig. 2. Notice that beating pattern exists for
all temperatures but the oscillation amplitude decreases with
increasing temperature and nearly disappears atT<5 K for
the density and SOI strength used.

In Fig. 6 we plot the conductivities vs magnetic fieldB,
for rather strong values ofB, and differenta. The tempera-
ture isT=1 K. The dottedssolidd curves show the collisional
sdiffusived conductivity. The SOI splits each Landau subband
and reduces the DOS inside it. As a result, a reduction in the
oscillation amplitude and a splitting of thesSdHd oscillations
are observed in thea=2a0 panel compared with thea=0
one. For the high magnetic fields involved here, the period of
the Weiss oscillations is very long and both the diffusive and
collisional conductivity curves show the SdH oscillations
with the same phase.

In Fig. 7 we plot the conductivities vs magnetic fieldB for
different densities,a=a0, and temperatureT=1 K. Again the
two curves are marked as in Fig. 2. Notice how increasing
the density and thus changing the position of the Fermi level
relative to those of the1 and2 branches closest to it modi-
fies the beating pattern.

In Fig. 8 we plot the conductivities vs magnetic fieldB for
different a. The density isne=3n0 and the temperatureT

=2 K. The upperslowerd curves are the collisionalsdiffu-
sived contributions. The diffusive curve shows mainly the
Weiss oscillations at lowB and at highB the short-period
SdH oscillations in addition to the long-period Weiss oscil-
lations. The collisional curve shows clearly the SdH oscilla-
tions fora=0 and a beating pattern of the SdH oscillation for
finite a.

We now address the issue of the Hall conductivitysxy
nd. In

the absence of modulation and presence of SOI, it has been
evaluated in Ref. 17 for ratherstrong fields Bù1 T and
shows two series of quantum Hall plateaus, forstronga sa
<10a0d, corresponding to the two branches developed due
the SOI. The 1D modulation removes theky degeneracy of
the Landau levelsEs and broadens them into bands with
eigenvaluesEs,ky

. From Eq.s26d we see that this may affect
the Hall conductivity at weak magnetic fields when the
broadeningDs is comparable to the energy"vc. In the pres-
ence of modulation and absence of SOI, it has been evalu-
ated in Ref. 3 forweakfieldsBø1 T and shows very small-
amplitude oscillations expressed mainly through the energy
difference between then and n±1 Landau levels. Here the
interest is in the region ofweakfields Bø1 T for which the
Weiss oscillations appear. Despite the fact thatDs is compa-
rable to"vc, it exhibits again very small-amplitude oscilla-
tions so far not observed forweakmodulations.21 If we ne-
glect these oscillations, it is approximately given bysxy

nd

<ne/B.
Experimentally one usually measures the resistivityrmn.

Using the expressions given at the end of Sec. III forrmn,
sxy

nd<ne/B, and the results forsyy andsxx, we show in Fig.
9 the resistivities divided by the magnetic fieldrxx/B, for

FIG. 7. Conductivities vs inverse magnetic fieldB for different
densities,a=a0, and temperatureT=1 K. The upperslowerd curves
show the collisionalsdiffusived conductivity.

FIG. 6. Conductivities vs magnetic fieldB for two different
values ofa. The temperature isT=1 K and the densityne=3n0. The
dottedssolidd curves show the collisionalsdiffusived conductivity.

FIG. 8. Conductivities vs mag-
netic field B for different a. The
density isne=3n0, the modulation
period a=3500 Å, and the tem-
perature T=2 K. The upper
slowerd curves show the colli-
sional sdiffusived conductivity.
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a=a0 supper paneld anda=3a0 slower paneld, as a function
of the magnetic field for a system withne=3n0 and otherwise
the same parameters as in Fig. 7. Fora=a0 and in the low-
field region, in which the SdH oscillations are absent, a beat-
ing pattern of the Weiss oscillations is clearly observed in the
rxx curve. Theryy curve exhibits a beating pattern only for
the SdH oscillations since they result only from collisional
current contributions and the Weiss oscillations are very
weak as the diffusive contributions toryy~sxx vanish. For
a=3a0 though the beating patterns change: that of the Weiss
oscillations, when discernible inrxx, becomes shorter and
that of the SdH oscillations inryy disappears. For complete-
ness it should be mentioned, though not shown, that fora
=0 there are no beating patterns in either the Weiss3 or SdH
sRef. 17d oscillations.

V. CONCLUDING REMARKS

We evaluatedquantum mechanicallythe dc conductivities
of a 2DEG in the presence of SOI of strengtha, of a normal
magnetic fieldB, and of aweak1D potential modulation of
strengthV0 and of perioda. The SOI splits the Landau lev-
els, fora=0, in two unequally spaced energy branches. As in
the absence of SOI, the modulation broadens the levels of
these branches into bands and their bandwidths oscillate in-
dependently with the fieldB. This gives rise to two flat-band
conditions, instead of one fora=0, and to the beating pat-
terns of the Weiss oscillations. As for the SdH oscillations,
their beating patterns for weaka are nearly independent of
the modulation, at least as long as the latter is weak, and
agree with those of Ref. 17 obtained in the absence of modu-
lation. However, for stronga an additional structure is ob-

tained and the SdH oscillations split in two, cf. Fig. 6. We
also noticed the even-odd filling factor transition in the SdH
oscillations and explained it with the help of the broadened
DOS. A similar observation was made in Ref. 20 for strong
modulations and was explained by the corresponding DOS.

Regarding the Weiss oscillations the results for the diffu-
sive conductivity agree, as expected, for the relevant weak
magnetic fields and high quantum numberss, with those of
the classicalevaluation of Ref. 18. However, the results for
the collisional conductivity could not be obtained by aclas-
sical treatment and, to our knowlege, are new. It is well
known that this collisional or hopping conductivity describes
the SdH oscillations which cannot be treatedclassically. This
explains their absence from Ref. 18 and their modification
for strong a as well as for strongB, cf. Fig. 6, presented
here.

For weaka both conductivities exhibit beating patterns.
Those of the diffusive conductivity pertain to the Weiss os-
cillations and are due to the two independent frequencies
involved in the bandwidths of the1 and2 branches created
by the SOI whereas those of the collisional conductivity per-
tain to the SdH oscillations and have a similar explanation
though the two frequencies involved here are not those of the
bandwidths, see the discussion of Fig. 3. As we saw though,
these patterns weaken or disappear rather quickly upon in-
creasing the temperature or the strengtha. On the electron
densityne though, they appear to have a rather weak depen-
dence, cf. Fig. 7, at least as long asne falls in the range of the
usual experimental densities of a 2DEG.

We are not aware of any directly relevant experimental
work. We hope though that the findings described above will
motivate experiments in which the magnetoresistivities along
thex andy directions could be measured in a weakly modu-
lated 2DEG in the presence of SOI. For a 1D modulation
along thex direction, the diffusive and collisional contribu-
tions to the conductivity can be obtained separately using the
relationssyy=syy

dif +syy
col andsxx=sxx

col. Combining them with
the standard relations given after Eq.s26d, gives the magne-
toresistivities.
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