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Beating of oscillations in transport coefficients of a one-dimensionally periodically modulated
two-dimensional electron gas in the presence of spin-orbit interaction
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Transport properties of a two-dimensional electron @3EG) are studied in the presence of a perpendicu-
lar magnetic fieldB, of a weak one-dimensional1D) periodic potential modulation, and of the spin-orbit
interaction(SOI) described only by the Rashba term. In the absence of the modulation the SOI mixes the
spin-up and spin-down states of neighboring Landau levels into two new, unequally spaced energy branches.
The levels of these branches broaden into bands in the presence of the modulation and their bandwidths
oscillate with the fieldB. Evaluated at the Fermi energy, thh level bandwidth of each series has a minimum
or vanishes at different values of the fi@dIn contrast with the 1D-modulated 2DEG without SOI, for which
only one flat-band condition applies, here there are two flat-band conditions that can change considerably as a
function of the SOI strengtlr and accordingly influence the transport coefficients of the 2DEG. The phase and
amplitude of the Weiss and Shubnikov-de H&&dH) oscillations depend on the strengthFor small values
of a both oscillations show beating patterns. Those of the former are due to the independently oscillating
bandwidths whereas those of the latter are due to modifications of the density of states, exhibit an even-odd
filling factor transition, and are nearly independent of the modulation strength. For strong valuéseoSdH
oscillations are split in two.
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I. INTRODUCTION showed a zero-magnetic-field spin splitting for carriers with
finite momentum in a modulation-doped GaAs/AlGaAs
The magnetotransport of the two-dimensional electron gaketerojunctiof* as well as by magnetotransport measure-
(2DEG), subjected to periodic potential modulations, has atments in a 2D hole systefi.The explanation proposed by
tracted considerable experimeftaind theoreticdl® atten- Bychkov and RashB& employed the Rashba spin-orbit
tion during the last two decades. For one-dimensighf) Hamiltonian, in which the spin of finite-momentum electrons
modulations novel oscillations of the magnetoresistivity tenfeels a magnetic field perpendicular to the electron momen-
sor p,,, have been observed, at low magnetic fieRjsdis- tum in the inversion plape. A detailed account of magne-
tinctly different in period and temperature dependence fronfotransport of the 2DEG in the presence of SOI but absence
the usual Shubnikov-de HaéSdH) ones observed at higher Of modulations appeared recentfy. _ _
B. These novel oscillations, referred to as the Weiss oscilla- Given the importance the SOI has acquired, one question
tions, reflect the commensurability between two lengththat arises concerns its influence on magnetotransport prop-
scales: the cyclotron diameter at the Fermi leve®, 2 ©rtes of a 2DEG in the presence of periodic potential modu-
=2\27mg¢2, with n, the electron density ang, the magnetic lations. So far we are aware of only the briefassicalstudy
length, anda the period of the potential modulation. of Ref. 18. Since some effects of the modulations can be

Lo : . ; explained only quantum mechanicallyt is of interest to
The emerging field of spintronics brought into the fore theree?xamine thg groblerquantum mech)gnicaIJyThis is the
importance of spin-orbit interactiofSOIl) in a variety of

e . ) X ubject of this paper. We will consider only weak 1D modu-
situations. It is important in the development of spln-baseqsations and make use of our experience with themd with

transistors, possibly in future quantum computation8) an  the unmodulated 2DEG in the presence of $OThe main
unexpected metal-to-insulator transition in two—dimensionabuamative findings are as follows. The levels of theand
(2D)—Ref. 6—hole gas, in spin-resolved ballistic transport, — unequally spaced energy branches, due to the SOI when
in Aharonov-Casher experimerftin spin-galvani€ and spin  the modulation is absent, broaden into bands when the
valve'? effects, in the spin-Hall effect, etc. The effect is modulation is present and their bandwidths oscillate with the
important in inversely asymmetric bulk semiconductor crys-field B. Evaluated at the Fermi energy, these bandwidths van-
tals, due to the internal crystal field, as well in asymmetri-ish at different values of the field and modify considerably
cally confined semiconductor heterostructures. In the formethe flat-band condition and the transport coefficients as a
case the contributions to the spin splitting in the conductiorfunction of the SOI strengtlw. As a result, the phase and
band vary as a~k® term and dominate inwide-gap amplitude of the commensurability and SdH oscillations
structure¥’ whereas in the latter vary as-ak term, referred change wheny is varied. For small values af the former

to as the Rashba term, and dominate narrow-gap show a beating pattern while for strong valuesxahe latter
structures? The latter was confirmed by experiments thatare split in two.
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In the next section we present the one-electron eigenfunc- ~ akyy b1 (X+Xo)
tions and eigenvalues. Analytical results for the conductivi- Wo(ky) = T\ - Degx+x) ) (7)
ties are given in Sec. Il and numerical results in Sec. IV. The VEyts sTs ¢

last section contains a summary and concluding remarks. \yhere 4 =1+D? and D= (\2sa/l o) /[Eq+\E2+25a?/12]
S cl®

Il. EIGENFUNCTIONS AND EIGENVALUES B. A 2DEG in the presence of SOI and of a 1D potential

A. A 2DEG in the presence of SOI and absence of potential modulation
modulation In the presence of a 1D periodic electric modulation, we
We consider a 2DEG in théx—y) plane and a magnetic consider the Hamiltonian
field along the z direction. In the Landau gaugé\ H = H- + V. cogK g
=(0,Bx,0) the one-electron Hamiltonian including the 0+ Vo COSKX), 8)
Rashba term reads with K=27/a anda the modulation period. For weak modu-

. lations the energy correction due to the tevfcogKx) is

_(p+eA) « 1 evaluated by first-order perturbation theory. The results for
Ho="— +—+ h[ﬂx (p+eA)l+350ueBos, (1) 4o branches are

wherep is the momentum operator of the electromé,is the  Es = Shay + [E§ + 25a/11V2 + Voe ™2 cog Kxo)[ DZLgy(u)
effective electron masg the Zeeman factorug the Bohr +L -

L X uwl/As, s=0,1,..., 9
magnetono=(oy, 0y, 0>) the Pauli spin matrices, andthe (WA ©
strength of the SOI or Rashba parameter.

- _ 2 271271/12 —u/2
Using the Landau wave functions without SOI as a basis, Es = t®c~ [Eg + 2sa/Ic]" + Voe™* cog Kxo)[ Ls-1(u)

we can express the new eigenfunction in the form: +DA(WIA, s=1,2,..., (10)
e c — where u=2722/a2=K2%/2 and x.=k/IZ. Lqu) is the La-
Wy (r)=¢€ W (X +X) c VL. (2)  guerre polynomial and fos=0 Eq.(9) reduces to Eq(3) as

n=0 n modified by the perturbation correction. The width of the

broadened levels of the two branches is given by twice the
absolute value of the last term in Eq8) and (10) without

the cogK(Zk,) factor and is denoted by|&%|. A can be
written in the compact form

Here qﬁn(x):e‘xz’z'an(x/IC)/(\““’7_72“n!Ic)l’2 is the harmonic
oscillator function,w,=eB/m" the cyclotron frequencyl,
=(h/m wy)*? the magnetic length, and the cyclotron orbit is
centered a1xc:I§ky, n the Landau-level index, andr) the
electron spin written as the row vectos|=(1,0) if it is AL =Voe Y Lg 1ps10+ Dols 112l Ass  (10)
pointing up andO, 1) if it is pointing down. ) ) L

Using these wave functions and E@.) the eigenvalue with the upper signs pertalnlng to t+h§ branch and the
problemH,W=EW leads to an infinite system of equations lower ones to the- branch; obwou_sl;A; is not the same for
that can be solved exactly after decomposing it into indepent-he two branches. In contrast, without SOI we have only a
dent systems of one or two equatidfidhe resulting eigen- Single branch and a single bandwitiind the eigenvalues
states are labeled by a new quantum nunsifer the energy ~ @reé given, when the Zeeman term is neglected, by
instead ofn. For s=0 there is one level, the same as the E. = (n+ /2%, + Voe V2 cogKx )L (U) (12)
lowest Landau level without SOI, with energy

with n the Landau-level index. This has consequences that

Ej=Eo=fwd2 - gugB/2 (3)  will be detailed below.
. As in the absence of SOI, the presence of the modulation
and wave function broadens the discrete levels into bands. An important differ-
ence with the situation in which the modulation is absent is
Wk, :eikyy¢0(x+xc)<0) \f (4) that the diagonal matrix elements of the velocity operator
Oy 1 4 now do not vanish. Using;=(1/#)3E%(k,)/ ok, their values
For s=1,2,3,...,there are two branches of levels, de- '€
noted by+ and —, with energies U; = — 2Voue Y D2Ly_1(u) + Ly(u) Jsin(Kxo)/(FK Ay,
EX = Shag + [E2 + 2sa?/12]V2. (5) 13
The + branch is described by the wave function vy =~ 2Voue Y Ly (u) + DAL(u) Isin(Kx)/ (K Ay).
Wik = ey (Ds¢s_1<x+xc>> © (14)
S VLA d(X+x) /' These nonvanishing values lead to a nonvanishing diffusive

conductivity whereas in the absence of the modulation this
and the— one by conductivity vanishes whether the SOI is present or*fhot.
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Compared to the case without SOI, we have two contribu-

tions, one from Eq(9) and one from Eq(10), while for a
=0 we have only one value given by
vy = = (2V/iK)ue 2L (u)sin(Kx,) . (15)

As a function of the magnetic fiel, thesev+ contributions

PHYSICAL REVIEW B 71, 125301(2005

o= 2 f ds f de’ o — EZ(k)18le’ — E (K))1f(e)

><[1 —f(S')]ngr(s,s Y=y, (18

wherey,=(Zly|0); W, (e,&") is the transition rate. For elas-
tic scattering by dilute impurities, of density;, we have

do not oscillate in phase due to the dlfferent dependence of

the Laguerre polynomials oB. This modifies mostly the

diffusive conductivity in the presence of the modulation and W (e,e")

will be detailed in the following sections.

Using the asymptotic expressmn of the Laguerre polyno-

mials for larges, we obtainA% «cog2\su-/4). The Lan-

7N
ﬁsol% U(@)|4F o (u)[?8(e = &') 6 ki -q

(19

dau level indices® ands- of the corresponding branches at Whereu=1202/2 and q?=g+q. U(q)=(€/2epe)/ (q+ky) is

the Fermi energy can be determined by the equatE)éns
~E, and ne=(s++s‘+1)/(27TI§), wheren, is the electron
density. Then from the argument of ¢@ssu-/4) we ob-
tain the flat-band conditions

\r‘ﬂ[ \”E'c - a’/(\“Eﬁwcl o] =ml(i - 1/4)12 (16)

with the upper(lower) sign corresponding to the- (—)

branch. Since the cyclotron radius at the Fermi energy is

R; | \29+1 Eq. (16) can be written asl?g/a i—1/4with
R:=R)F a/hwC and R the cyclotron radius without SOI or
K(ke T k)I2=m(i-1/4) with ke=+2mn,, and k,=am’/#2,

the Fourier transform of the screened impurity potential with
€ the static dielectric constangy the dielectric permittivity,
andk the screening wave vector.

The diffusion contribution given by Eq17) becomes

€4
o= A TSE O * g (A7 2Sir?(KIZ ) (ES el
— Bk )] (20)
with AZ=A? given by Eq.(11). The related contribution !

is zero smce the velocity, vanishes.
For weak potential modulations we can neglect Landau-

The same result has been obtained in Ref. 18 by a purelgvel m|x|ng, i.e., we can take'=s. Then noting thatrig'

classical treatment. The fact that now we hawe flat-band
conditions, as opposed tmefor =0, leads to oscillations

col

=0y, 3 (S)/ZW)foqdq (S/2md)f5du, and 3y
—(S)/Zwl 2), the collisional contribution given by Eq18

with two different frequencies and consequently to beatingskes the form

patterns that will be shown in Sec. IV. Explicitly, writing EQ.

(16) again fori—i+1 and subtracting the result from Eq.

(16), gives the periods in the*x branches asQ*
=eal[2i(ke—k,)] and Q™ =ea/[27i(kg+k,)].

IlI. CONDUCTIVITIES

For weak electric field&,, i.e., for linear responses, and
weak scattering potentials the expressions for the dc conduc-
re-

tivity tensor o,,, in the one- electron approximation,
viewed in Ref 19, readsr a'lu +OJ;1 with w,v=X,y,z
The terms(r# and (TM stem from the diagonal and nondi-
agonal part of the density operamrrespectlvely, in a given
basis and(J,)=Tr(pJ,) =0 . In general, we have.rrd

=0+, The termzrd'f descrlbes the diffusive motion of
electrons and the termff" the collision contributions or hop-
ping. The former is given by

o = pe Ef(E")[l (EDIA(EDvyol, (A7)

where {=(s,o,k,) denotes the quantum numbersg
=(lv,|2) is the dlagonal element of the velocity operatgr
andf(s) the Fermi-Dirac function. Further(EY) is the re-
laxation time for elastic scatteringd=1/kgT, andS; is the
area of the system.

The termcr°°' can be written in the form

oy = f;‘fjm f duFZWlu f de[8(e ~ E) Pf(e)[1

— f(e)JUG2u?)?, (22)
where

[Fodw)[?={Ls1(u) + DIL(u)}?e™/AZ, (22

FedW]? = {D2Le 1() + L)} AZ. (23)

The exponentiat™ favors small values ofi. Assuming
b=k212/2>u we may neglect the termu2l? in the expres-
sion for U(v2u/1%) and defineU,=U(0). We then obtain

e€NU
o= mf S [agzien-ren e
where
I£=[(2s% 1)D? - 2sD? + 25+ 1]/ A2. (25)

The impurity densityN, determines the Landau Level
broadeningI'=W,,(e,&")/%. Evaluating W, (e,&')/% in
the u— 0 limit without taking into account the SOI, we ob-
tain N, =4[ (2eey/ €°) 1T 1 1.

The Hall conductivityo}y is given by
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FIG. 1. The quantit\} of Eq.
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The resistivity tensop,,, is given in terms of the conduc-

tivity tensor o, upon using the standard expressigng
=owlS py=0ulS py=py=—0ywlS where S=oy,0y,

~ Ty

8 10 12 14

panel3 and vs inverse magnetic

B(T) field 1/B (lower panely at the

Fermi level, for different values of

=50 + the strengtha. The modulation
period is a=3500 A and the

modulation strengtV;=0.5 meV.

2 4 6 8 10 12 14
1/B (I/T)

of the inverse magnetic field B/in the lower panels. The
other parameters ara=3500 A, T=2 K, n,=3n,, andV,
=0.5 meV. We plotA; and not 2A| so that the oscillations
are seen more clearly. Comparing the0 panel with the
a# 0 ones, we see clearly, fer# 0, the contributions from

the + and — branches. The large-amplitude oscillations, for
low B in the upper panels and for high B/in the lower
panels, are the Weiss oscillations whereas the step-like be-
havior on the right side of the upper panels is due to the
small-amplitude SdH ones. On the scale used the latter are

width and the two conductivities given by Eq20) and(23)
for various values of the SOI strength of the modulation
strengthV, and perioda, of the electron density,, and of
the temperatureT. We measurea in units of ag
=10 eV m, n, in units of np=10"1Y/cn?, and use the ef-
fective mass of InAan’=0.05m, with m, the free-electron

mass.

In Fig. 1 we plotAZ, given by Eq.(11) and directly re-
lated to the bandwidth|&%|, at the Fermi level, as a function

IV. NUMERICAL RESULTS

barely visible on the very left side in the lower panels. The
phase shift between the oscillations &f and A; and their
slightly different frequencies described by EG6) lead to
the beating patterns of the conductivities shown below. For
In this section we present numerical results for the bandexample, fora=2«, the oscillations of the bandwidth %],

given after Eq.(16), have a period)*=2.14 T in the +
branch and a perio@ =1.76 T in the — branch.

In Fig. 2 we plot the conductivities versus the inverse of
the magnetic fieldB for different values ofe and a shorter
modulation perioda=800 A. The upper curve is the colli-
sional conductivity, given by Eq23), and the lower one the

diffusive conductivity, given by Eq.20). Notice the absence

of a beating pattern fotr=0 and its development fak + 0.
For finite «, the longer-period beating pattern of the Weiss

of the magnetic field in the upper panels and as a function oscillations is observed in the diffusive curves and the

0.5

041

0.3

0.

G (10°Q™
(3]

0.

s

o=0

s

N

5 0 5

1/B (1/T)

1I/B (1/T)
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FIG. 2. Conductivities vs in-
verse magnetic field® for differ-
ent values ofx with a=800 A, T
=1 K, ng=3ny, andVy=0.3 meV.
The upper (lower) curves show
the collisional (diffusive)
contribution.
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FIG. 3. Conductivities vs filling factonh/eB for the panela
=aq of Fig. 2. The dashed vertical lines show the even filling factor
values and the curves are marked as in Fig. 2.

shorter-period beating pattern of the SdH oscillatldirs the
collisional curves. The reason is that at low magnetic fields
and low temperatures the Weiss oscillations dominate the
diffusive conductivity while the SdH oscillations dominate
the collisional conductivity. In the former the energy correc-
tion due to the modulation, given by Ed9) and(10), enters

FIG. 4. (a) Subband energy vs indexin the absence of modu-

. + . lation. The DOS vs energy is shown (i) for subband broadening
mainly the square of, and the argument of the Fermi func- _ 4 mev and ir(c) for ['=0.5 meV. WherE is the Fermi energy

tion, Cf_' Egs.(17) and (20), whereas in the latter '_t ente_rs the quantity E/E. with E.=%w, is approximately the filling factor.
essentially only through the argument of the Fermi function,
cf. Eqs.(18) and(24). the = branches and the DOS is as described above, the col-
To see the oscillations shown in Fig. 2 more clearly, welisional conductivity shows a beating pattern with even-
plot the conductivities versus filling factoth/eB in Fig. 3 oddfilling factor transition. Although here the modulation is
for a=ag andny,=3n,. As can be seen, the collisional con- present, it is very weak and leaves the oscillations of the
ductivity (upper curve shows a beating pattern of the SdH collisional conductivity nearly intact. A complementary way
oscillations resulting from the different Landau-level separa-of seeing how the beating pattern is formed, is to plot sepa-
tions in the + and — spin branches. The indext at the rately ¢°°~ and ¢°°*. Both contributions oscillate with
Fermi energy is expressed approximately as slightly different frequencies and their sum shows the beat-
=(mngi ¥ m ay2mn./fi)/eB. The resulting period of the ing pattern of Fig. 3. The period of this pattern, in units of
beating pattern, measured in units of inverse magnetic fieldnverse of magnetic field, isa/ 4%k, or 4.63 T in Fig. 3. A
is 2k k=/e or 0.85 T in Fig. 3. We notice that a transition similar even-odd filling factor transition was also observed
from conductivity maxima aévenfilling factors to conduc-  for strongmodulations, which make the Landau levels over-
tivity maxima atodd filling factors occurs between adjacent lap, in the absence of SOl and was explained by the behavior
wraps of the SdH oscillations. This can be understood byf the corresponding DO%. The diffusive conductivity
checking the DOS of the system. As shown in Fig. 4, when(lower curvg shows mainly a beating pattern of the Weiss
the subband broadening is comparable to the subband sepascillations since here the SdH oscillations are very weak.
ration, a beating pattern appears in the DOS, with SOl Above we observed a beating pattern in the SdH and
present and modulation absent, and each DOS peak corréeiss oscillations occurring, respectively, in the collisional
sponds to one pair of spin levels. Because the spin-up anaind diffusive conductivities, versus filling factor when vary-
spin-down levels have different separations, there is one uring the magnetic field at a fixed electron density. If we vary
paired spin level at each node of the beating pattern. As the electron density and fix the magnetic fi@dthe beating
result, in one wrap of the DOS oscillations there isemen  pattern of the SdH oscillations holds because it corresponds
number of levels below each pair and the DOS has a peak &b the Fermi energy passing through the DOS with beating
odd filling factors, while in the next wrap there is add  pattern. However, we do not observe a beating pattern in the
number of levels below each pair and the DOS has a peak &t/eiss oscillations. This can be explained by Etf), from
evenfilling factors. When the Fermi energy passes throughwhere we see that, for fixeB, the bandwidths of the two

T=1K T=5K

FIG. 5. Conductivities vs inverse magnetic

field B for different temperatures withh=«y and
V\WWUW\ n.=3ny. The upperlower) curves show the col-

lisional (diffusive) contribution.

15 5 10 15 5 10 15
1/B (1/T) 1/B (1/T) 1/B (1/T)
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FIG. 6. Conductivities vs magnetic field for two different
values ofa. The temperature i§=1 K and the densitp,=3ng. The
dotted(solid) curves show the collisiondtiffusive) conductivity.

FIG. 7. Conductivities vs inverse magnetic fidddfor different
densities@= g, and temperaturé=1 K. The uppeflower) curves
show the collisionaldiffusive) conductivity.

series of spin levels oscillate with the same frequency as a . .
function of the electron density, though with different =2 K. The upper(lower) curves are the collisionaliffu-
phases. For a system without the potential modulation, th§Ve®) contributions. The diffusive curve shows mainly the
diffusive conductivity disappears and we observe only a/Veiss oscillations at lowB and at highB the short-period

beating pattern of the SdH oscillations in the collisional con-SdH oscillations in addition to the long-period Weiss oscil-
ductivity. lations. The collisional curve shows clearly the SdH oscilla-

In Fig. 5 we plot again the conductivities versus the in_t@o_ns fora=0 and a beating pattern of the SdH oscillation for
verse of the magnetic fiell for different values of the tem-  finite a. _ o
perature,a= ag, Ne=3n,, andV,=0.3 meV. The two curves We now address the issue of the Hall conductmﬂ?. In
are marked as in Fig. 2. Notice that beating pattern exists fof€ absence of modulation and presence of SO, it has been
all temperatures but the oscillation amplitude decreases witRvaluated in Ref. 17 for rathestrong fields B=1 T and
increasing temperature and nearly disappeai&=ab K for ~ Shows two series of quantum Hall plateaus, $oong « («
the density and SOI strength used. ~10qaq), corresponding to the two branches developed due

In Fig. 6 we plot the conductivities vs magnetic figgj  the SOI. The 1D modulation removes tkgdegeneracy of
for rather strong values @, and differenta. The tempera- the Landau levelss and broadens them into bands with
ture isT=1 K. The dottedsolid) curves show the collisional €igenvalues, . From Eq.(26) we see that this may affect
(diffusive) conductivity. The SOI splits each Landau subbandthe Hall conductivity at weak magnetic fields when the
and reduces the DOS inside it. As a result, a reduction in thbroadening)g is comparable to the enerdyw.. In the pres-
oscillation amplitude and a splitting of tl{€dH) oscillations  ence of modulation and absence of SOI, it has been evalu-
are observed in thee=2a, panel compared with thee=0  ated in Ref. 3 foweakfieldsB=<1 T and shows very small-
one. For the high magnetic fields involved here, the period oimplitude oscillations expressed mainly through the energy
the Weiss oscillations is very long and both the diffusive anddifference between the andn+1 Landau levels. Here the
collisional conductivity curves show the SdH oscillations interest is in the region ofveakfieldsB=<1 T for which the
with the same phase. Weiss oscillations appear. Despite the fact thats compa-

In Fig. 7 we plot the conductivities vs magnetic fi@dor  rable to%w,, it exhibits again very small-amplitude oscilla-
different densitiese = ap, and temperatur&=1 K. Again the  tions so far not observed faveakmodulations’! If we ne-
two curves are marked as in Fig. 2. Notice how increasinglect these oscillations, it is approximately given bQ‘y’
the density and thus changing the position of the Fermi levet= ne/B.
relative to those of the- and — branches closest to it modi- Experimentally one usually measures the resistipity.
fies the beating pattern. Using the expressions given at the end of Sec. Il ggy,

In Fig. 8 we plot the conductivities vs magnetic fi@dor UQS~ ne/B, and the results fos,, andoy,, we show in Fig.
different a. The density isn,=3n, and the temperaturg 9 the resistivities divided by the magnetic fietg,/B, for

0.2

FIG. 8. Conductivities vs mag-
netic field B for different a. The
density isng=3ng, the modulation
period a=3500 A, and the tem-
perature T=2 K. The upper
(lower) curves show the colli-
sional (diffusive) conductivity.

0.1

c(10°Q"
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tained and the SdH oscillations split in two, cf. Fig. 6. We
also noticed the even-odd filling factor transition in the SdH
oscillations and explained it with the help of the broadened
DOS. A similar observation was made in Ref. 20 for strong
modulations and was explained by the corresponding DOS.
Regarding the Weiss oscillations the results for the diffu-
Lo=30,, Py sive conductivity agree, as expected, for the relevant weak
0.05 010 0.15 0.20 magnetic fields and high quantum numbersvith those of
the classicalevaluation of Ref. 18. However, the results for
the collisional conductivity could not be obtained bylas-
FIG. 9. Resistivities divided by the fieB, p,,/B andp,,/B, vs  sical treatment and, to our knowlege, are new. It is well
field B for o=« (upper panglanda=3aq (lower panel. The other  known that this collisional or hopping conductivity describes
parameters are the same as in Fig. 2. the SdH oscillations which cannot be treatdassically This
explains their absence from Ref. 18 and their modification

a=a, (upper pandland a=3a, (lower pane), as a function for strong a as well as for strond, cf. Fig. 6, presented

of the magnetic field for a system with=3n, and otherwise ~ here. o o _

the same parameters as in Fig. 7. BGrag and in the low- For weaka both conductivities exhibit beating patterns.
field region, in which the SdH oscillations are absent, a beat] hose of the diffusive conductivity pertain to the Weiss os-
ing pattern of the Weiss oscillations is clearly observed in th&illations and are due to the two independent frequencies
pxx CUrvVe. Thep,, curve exhibits a beating pattern only for involved in the bandwidths of thé- and — branches created
the SdH oscillations since they result only from collisional Py the SOI whereas those of the collisional conductivity per-
current contributions and the Weiss oscillations are veryjiain to the SdH oscillations and have a similar explanation
weak as the diffusive contributions ig, o, vanish. For though the two frequencies involved here are not those of the
a=3a, though the beating patterns change: that of the WeisBandwidths, see the discussion of Fig. 3. As we saw though,
oscillations, when discernible ip,,, becomes shorter and these patterns weaken or disappear rather quickly upon in-
that of the SdH oscillations ip,, disappears. For complete- Creasing the temperature or the strengthOn the electron
ness it should be mentioned, though not shown, thatafor densityn, though, they appear to have a rather weak depen-
=0 there are no beating patterns in either the VieisssdH  dence, cf. Fig. 7, at least as longmdalls in the range of the

p/B (100€/T)

1

B (T)

(Ref. 17 oscillations. usual experimental densities of a 2DEG.
We are not aware of any directly relevant experimental
V. CONCLUDING REMARKS work. We hope though that the findings described above will

motivate experiments in which the magnetoresistivities along

We evaluatedjuantum mechanicallthe dc conductivities thex andy directions could be measured in a weakly modu-
of a 2DEG in the presence of SOI of strengthof a normal lated 2DEG in the presence of SOIl. For a 1D modulation
magnetic fieldB, and of aweak1D potential modulation of along thex direction, the diffusive and collisional contribu-
strengthV, and of perioda. The SOI splits the Landau lev- tions to the conductivity can be obtained separately using the
els, fora=0, in two unequally spaced energy branches. As ivelationsoy,= a§'f+a§§' and o= 0<%, Combining them with
the absence of SOI, the modulation broadens the levels dhe standard rerations given after €@6), gives the magne-
these branches into bands and their bandwidths oscillate ineresistivities.
dependently with the fiel@. This gives rise to two flat-band
conditions, instead of one fax=0, and to the beating pat-
terns of the Weiss oscillations. As for the SdH oscillations, ACKNOWLEDGMENTS
their beating patterns for weak are nearly independent of This work was supported by the Canadian NSERC Grant
the modulation, at least as long as the latter is weak, antlo. OGP0121756, by the Flemish Science Foundation
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