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Statistics of delay times in mesoscopic systems as a manifestation of eigenfunction fluctuations
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We reveal a general explicit relation between the statistics of delay times in one-channel reflection from a
mesoscopic sample of any spatial dimension and the statistics of the eigenfunction intensities in its closed
counterpart. This opens the possibility to use experimentally measurable delay times as a sensitive probe of
eigenfunction fluctuations. For the particular case of quasi-one-dimensional geometry of the sample, we use an
alternative technique to derive the probability density of partial delay times for any number of open channels.
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[. INTRODUCTION tions for statistics of eigenfunctions and energy levels were
successfully tested experimentally in microwave and acous-
The standard way of describing scattering in quantum systic experiments?
tems employs aM X M unitary matrix known ass matrix, Beyond the zero-dimensional limit the particular nature of
with M standing for the number of scattering channels operthe sample geometry and type of disorder causing chaotic
at a given energy. Then, the Wigner delay tindefined as behavior starts to play an important role. In particular, in
the energy derivative of the total scattering phase shjft ~systems with random short-range impurities another energy
=-i#(d/dE)In detS, is one of the most important and fre- scale known as the Thouless energy, plays a prominent
quently used characteristics of quantum scattering, see, e.§ol€; the ratiog=27E/A being known as the dimensionless

Refs.[2,3]. It can be interpreted as a time delay in prc)Ioaga_conductance of the sample. This parameter controls the sys-

tion of the peak of the wave packet due to scattering ifem properties, with the universal RMT regime being recov-

comparison with a free wave packet propagation. More de_ered in the limitg— . The statistical properties of the en-

tailed characterization of scattering calls for introducing theST9y spectra and_eigenfunctions of closed mesoscopic

Wigner-Smith time delay matrixQ=i#(¢S/9E)S, whose ei- systems as a function of dimensional conductance were un-

) der intensive investigation for more than a decade, both
genvalues are frequently callgdoper delay times. Alterna- analytically?>26 and numericall’-?® and some predicted

tively_, denotingM _unimodular eigenvalue_s of trfe_matrix as  features are also seen in microwave experim&hhe re-
{exp(i6y), ... exgify)}, one can considempartial delay  gsearch resulted in a detailed picture emerging for various
times definedlas ,=d6,/JE,a=1, ... M. Beyond the one- regimes, including the most difficult case of the Anderson
channel case proper and partial delay times differ, althouglocalization transition; see the reviefRef. [30]) for a gen-
the sums of partial and proper delay times overMlscat-  eral picture. At the same time systematic statistical analysis
tering channels are always equal and yield the Wigner delagf delay times beyond the universal zero-dimensional limit is
time. still lacking, apart from a few useful insights in Refs.
Statistics of delay times of all sorts were studied inten-[31-34.
sively in the framework of quantum chaotic scattering. Ear- The goal of the present paper is to initiate systematic in-
lier works on the subject used various approximationvestigation of delay times beyond the zero-dimensional ap-
schemes, frequently not very well controllett.is, however, proximation in metallic, critical, and localized regimes. To
well known that quantum statistical properties of classicallythis end, in the first part of the paper we reveal a very general
chaotic systems are to a large extent universal and indeperelation between the delay time distribution and the distribu-
dent of their microscopic nature® which allows one to use tion of eigenfunction intensities for a single-channel scatter-
the random matrix theoryRMT) for description of their ing. On one hand, this relation allows us to use the existent
properties: When applied to the scattering problems, and inknowledge on eigenfunction statistics to provide explicit ex-
particular to the study of delay time statistics, the RMT pressions for delay time distributions in various regimes of
yielded many exact analytical results in recent years; semterest. On the other hand, since phase shifts and delay
Refs.[5,10-194 and references therein. Those were successimes are experimentally measurable quantities, especially in
fully verified in numerical simulations of several quantum the one-channel reflection experiméfit{°the relation opens
chaotic systems of quite a diverse nature; see, e.g.[R&8f. a new possibility for experimental study of eigenfunctions.
Some properties of delay times were also studied by semi- In the second part of the paper we consider a model of a
classical method¥ quasi-one-dimensional disordered wire represented by the
In the general framework of mesoscopic systems, théanded random matriBRM) ensemble. It is well-known
RMT regime corresponds to the so-called zero-dimensionahat in the limit of the thick wire this model is exactly
limit. In this limit the closed counterpart of a scattering sys-solvablé! by the transfer matrix approa¢hThe same tech-
tem is characterized by the only nontrivial energy scalenique, when combined with methods introduced in RBf.
which is simply the mean level spaciig and RMT predic-  for the scattering problem, yields the distribution of partial
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delay times for any finite number of open channels. In par{“diagonal”) term in the product of sums over eigenvalues
ticular, for the single open channel it reproduces the result

obtained from the general relation developed in the first sec-

tion.

II. DELAY TIME DISTRIBUTION FOR ONE-CHANNEL
SCATTERING: RELATION TO EIGENFUNCTION
STATISTICS

Consider a single-channel antenna or lead perfectly
coupled to an absorptive disordered system, characterized by

the (energy-, absorption-, and position-dependeetlection
coefficientR=R(7,r)=|S(E, 7)|><1, wherer stands for the
coordinate of antenna port, ang=0 for the absorption pa-

N
k- K Ui
PR e

Evaluating the standard integrals, we observe that

— 1
0 772k—l 0 1 \7Tr<k_§>
f_w Doer 7 f Wiy

rk '
which yields the above result, E(B).

rameter. Here and henceforth, the absorption is considered a The right-hand side of E¢3) is proportional to the mo-
uniform, position-independent process, and therefore can b@ents of the local eigenfunction intensigy Vi (r)[?, with
accounted for as an imaginary shift of the energy of incom- standing for the volume of our sample, averaged in a small
ing waves. For the definition of “perfect coupling” see Eq.energy window around poirk of the spectrum. Denoting

(57) below and the discussion preceding it.

additional disorder averaging by brackets and introducing the

The Wigner delay time can be conveniently written asdistribution function,(v) of the random variablev,(r)

mw=lim,_o(1-R)/27; see, e.g., Ref40]. Introduce variable
x=1 via R=(x-1)/(x+1), and letP}”(x) stand for the dis-
tribution function ofx at given absorption.

In the limit of zero absorption;— 0 the reflection coef-
ficient R— 1, hencex— . In fact, the correct limit is such
that x=z//7,z<e. The variablez is nothing else but the
inverse delay time

2
= =him—L = lim p(x+ 1) = z.
Tw 7]~>01_R 7n—0

(&

The distribution functiorv?f)”)(x) behaves in the limit of van-
ishing absorption asPy(z/ ) — 7Py(2), where Py(2) is a
well-defined distribution function of variable (i.e., of the
inverse delay time

On the other hand, l&&(E+i#;r;r’) be the Green'’s func-
tion of a closed system with broadening so that the local
density of state$DoS) at any pointr in the sample is given
by

1 1

~ . 7

N=-=ImMGE+in;r;r)=— NP—5——.
v7]( ) - ( n ) 7Tn2:1|¢-n( )| (E_ En)2+ 772

)

=v,(r)VA, with A being the mean level spacing of the
sample, we therefore can rewrite our relation as

’r’_ k-1 o]
(yk>=Lr(|;)|im<%T> f dv v P,(v).
et

(4)

At the next step we use a recently discovered relation be-
tween the probability distributiorP,(v) of LDoS and the

function Pg”)(x) ,x=1 (Ref.[43])

V2 [ 1/ 1
ms/zf qué”>[q2+5<v+;)], (5)
0

valid for those disordered and chaotic systems which allow
an effective description in terms of the nonlineamodel.

The existence of this relation is based on the following two
observations. First, the scattering matrix for a one-channel
scattering can be expressed in terms of the diagonal matrix
element of the resolvent of the corresponding closed system
[see Eqs(23) and(30) in the next sectioh In this way one

can relate the probability distribution of LDoS and statistical
properties of the scattering matrix. The second observation is

Py(v) =

Here, i,(r) stands for the local amplitude of the eigenfunc- that,_un_der anqlitions_ of perfect coupling, the_phase ofShe
tion of the wave or Schrodinger operator describing a clasmatrix is statistically independent of tH#matrix modulus
sical wave or quantum particle in the disordered sample an®=(x-1)/(x+1) and is distributed uniformly over the unit

corresponding to the eigenfrequency and/or energy [Eyel

circle. Consequently, all nontrivial information on the scat-

Using this relation, it is easy to prove that for any integertering matrix is contained in the distribution function of its

k=1,2,3,...holds

1
\,'Fr<k— —) N

2
> n(D[*SE-Ey),

Cr kel ek ] —
lim [ 71755 (r)] = O

7—0

()

wherel'(z) stands for the Euler gamma function.

modulusR, or equivalently in the distribution function of
This fact explains the appearance of the funcﬂ%ﬁﬂ)(x) on
the right-hand side of Ed5), see[43] for the detailed deri-
vation and discussion. It is important also to remember that
the above distributiof?,(v) is normalized in such a way that
the first moment is equal to unityv)=1.

Rescaling the variable=z/ 5 in the integral(4), we see
that it is lim,_oP,(2/ n)/ 7* which we are interested in. The

Indeed, in the limityp— 0 the nonvanishing contribution limit can be calculated fronts) by changing the variable in
to the above expression comes only from the most singulahe integral tog=t/+»n
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lim
7]*}0

5 (= = C Bl2-1a(Bl2ly - B2
%ﬂ(E) _ \Zglzf dt Po(t2+ E)_ ®) Py(y) =Cpy e . Cp=(BI2FIT(BI2), (12
neem 0 with the particular cas@=1 frequently being referred to as
In this way we bring Eq(4) to the form the Porter-Thomas distribution. The known expressibts
for all three pure symmetry classes immediately follow as

oo [T\ 2 Tk (7 [ (2 2 /2 -Bl2—2 I+
vo=13 a1, dz ¥ . dt Pol t°+ 7 ). PulT) = [(BIPT (BI2)T7 P27 P, (13
r{k-3)
2 Moreover, the distribution of the one-channel delay times in
7) the crossover regime between unitap~2) and orthogonal
(B=1) symmetry classes was calculated in R3]
Introducing the new variable=t?>+z/2, we further notice

that 1t ”
Pult) = =3 f dxf A\ G0V T
o o T )
fdz i—WJ dt7~>o<t2+5) T
0 0 2

AVAa-1
X lﬂ~—2‘|T2(A!x2)l (14)

Tw

0 0 1 2
24/s— 52 TN =2X (1 -N)e @+ \5(1 - )] - (1 -7,
F<k_ }) (15
|7 2) [* ~ - where a=X?(1-\?), 1o(2) stands for the modified Bessel
V2 T ) ds Py(s)(29) . ®  function, andX is a crossover driving parametérThis re-

sult can be easily recovered from the distribution of the
Substituting now the last expression irf®, we arrive at the ~ €igenfunction intensities in the crossover found in R48]
relation

o

- ("~ [2ms|e Pyy) =2 J dt{;(X) + [(1X)? - 1] D,(X)}
f dy Py(y)y=(y") = f ds Py(s) ) 9 1
’ ’ X (D02 oyt = D yE XD,
valid for all integersk=1. We therefore conclude that the
distribution functions in the left- and right-hand sides of this %2 X
expression are simply related to each other By(2) @1(X)267f dxe’, CDz(X):%' (16)

~ 2
=Po(2Z %, whereZz=2mz/ A. Remembering interpretation of 0 X

z he inver I ime and intr ing the distributi . . .
zas the Inverse (_je ay t (ia_ d introduc .g the d ?t bUtonIn the metallic regime beyond RMT,the perturbative correc-
Pu(7y) of scaled time delays, = 7A/2m, we finally arrive at  yjons to the body of the distribution of eigenfunction inten-

the following simple but fundamental relation between mo-gities were calculated using the supersymmetric nonlinear
ments of eigenfunction intensity and the inverse moments el in Ref.[24]. Then, relation(11) yields the following

of the time delay: distributions of the Wigner delay times:
Gy = (Y, (10 . & V% { P (3 3 1 ) }
Pt =——| 1+ -+ —= |+ =1,
resulting in the functional relation between the two distribu- 2772 2\2 %, 2% A
tions
-1
- 1 1 _ e ~'w K< 4 1 ) :| _
N P =— | 1+5|2-=+5 |+ | B=2,
PaTw) = ?%Py<;w), (11) w(7) =] { 2752 B
and constituting one of the central results of the present pa- 262w « 6 2
per. Some remarks on the conditions of validity of Ed<€) Pou(T) = T{l (3 -— +~—> + } B=4.
and(11) are given in the last section of the present paper. Tw Tw T
Let us now demonstrate how the relation Etfl) works (17)

in various situations. Let us start with the case of a “zero-

dimensional” system which can be described by the RMTHere, the parametet=a/g is just the diagonal part of the
The distributions of eigenfunction intensities typical for the so-called diffusion propagatdi(r,r) (Refs.[24,30) and is
zero-dimensional case and various symmetry classes chardanversely proportional to the dimensionless conductag.ce
terized by 8=1,2,4 (Ref. [9]) are given by the so-called The exact value of the constaatdepends essentially on the
x-squared distribution sample geometry and on the coordinates of the lead.
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Equation(17) holds for relatively large delay timeg,  delay times by considering the two-point correlation function
=k, while in the opposite case the distribution is domi- of eigenvalue densities of th€ matrix. The latter matrix is
nated by the existence of the anomalously localized statedermitian and is defined in terms of the scattering matrix via
(see Ref[30] for a review and has the following behavior the relation
for dimensionalityd=2,323

~ 1-imK
gl 1 1 R §=—7 (23)
PulTo) ~ €XP 5) — = Frg *of ], kST = K, T+imk
w w
(18) Denoting the real eigenvalues of tike matrix by z,, a

=1,... M the partial delayzgmes can be obviously written as
_ _ d ~ T(E)=00,(E) dE=—{2[1+Z(E)|H{[dz,(E) /dE}. Knowing
PulT) ~ expi= Cdn" (7)), 7 = & (19 the joint probability density of random variables and v,
It deserves mentioning that the log-normal distribution found= dz,/ JE
in Ref. [35] was observed for the opposite limit ¢drge
delay times andnanyopen channels.
Another important consequence (@fl) is that the eigen- Pe(zv) = 2 z- Za)ﬁ(v B _> ' (24)
function multifractality typical for the vicinity of the Ander-
son localization transitio reflects itself in the distribution one can recover the mean density of the partial delay times
of Wigner delay times. Generally, this means that the negaas
tive moments of the delay time scale anomalously with the
system sizd

2 81— 1,)

<%> ~ LDq@-D), (20

w f f dzdb Pe(z, v)5<7'+ 22>. (25)
where D, is a fractal dimension of the eigenfunctions. The

idea of the anomalous scalif@0) of the time delays was
suggested by one of the authors in H&6].

The fractal dimensions of the eigenfunctions are know
analytically for a two-dimensional system in the metallic re-
gime, where the deviation from the normal scaling is deter-
mined by the inverse conductandthe regime of weak X{pe+0/2(2)), (26)
multifractality)3°

1
<7-q_‘1> _ L—[2—(q/,8wg)](q—1), q < 2Bmg. (21)
W

Another case when the anomalous dimensions are known
analytically is the model of power-law random banded ma- (27)
trices, whose elements are independent random variakles
with the variance decreasing in a power-law fashion:
((Hip?=[1+(li=j|/b)?>]™%. For «=1 this model shows criti-

The functionPg(z,v) in turn can be extracted from the cor-
r,|relation function

Ke 0(21,2) = {pe-012(21) pe+0i2(Z2)) = {pe-ai2(Z1))

of the densitiepg(2)= (1/M)E 10lz—z,(E)] of eigenvalues
z,(E) at a given energ§ as

Pe(z,v) =M Iim QKg (21 =2-v2,2,=2+v/2).
0—0

Finally, to gain access to the correlation functi@®), we
‘introduce the related object in terms of the traces of the re-

cal behavior and the fractal dimensions of the e|genfunct|ons solvent
can be calculated fdp>1 (Ref.[46]) 1 1
f(Zl,Zz) =( Tr - = Tr - = y
i _ L—[l—(qIZBwb)](q—l) (22) Zl_ le— K(E_QIZ) Zl+ le— K(E+ Q/Z)
q-1 :
Tw (28)

from which the required correlation function can be extracted

as
IIl. PARTIAL DELAY TIMES IN A QUASI-ONE-

DIMENSIONAL GEOMETRY

1
Kea(z1,2) = =——Ref.(z7,2)), (29
In this section we consider a quasi-one-dimensional dis- P P VE e

ordered sample of length with a perfect lead attached to

one of its edges, the other edge _being impenetrable for the f(21,2) = f(21,2)) — (2))f(2).

waves. The lead supportd scattering channels; thus, tige ) )

matrix is anM X M unitary matrix and the partial delay imes ~ In order to calculat¢28) we obwously need to specify the
Following the method suggested for the zero- dlmensmnapresent approacK can be written in terms of the random

case in Refs[5,11], we address the statistics of the partial Hamiltonian of a closed system represented.byL Hermit-
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ian matrix I:|, and some deterministic X M matrix W de- ; _ Fa 231)2(32) M}_J ]
scribing the coupling of the system to the leads; see Refs. (21.2) = 03,03, \ 2,22, (J1,32) .
[5147!48 - - 1_ 2_
Ao 1 A
K=W'——W. 30 TOu
E-H _<qu—Qm—Hma?nmiE+QQ—Hm@9n>
- _ _ (1) _ (2) !
An important combination of these two matrices is the so- de{E - /2 = He(Zyzo) Jdel E + /2 — Her(Z320)]

called effective non-Hermitian Hamiltoniamdeq=H-iT, (33

wherel’ = mWW'. Actually, for the scattering problemgss in
many respects replaces the Hamiltonian of the closed syste

H.

W‘here we introduced the notatior@p):zp+(—l)pe+\]p, p
=1,2 anddefined the effective Hermitian matrices

There are several convenient microscopic models for the 1.
HamiltonianH describing the quasi-one-dimensional disor- Her(ZP) =H + ﬁr- (34
dered wire decoupled from leads. One may, for example, j
employ the one-dimensional varidhof the gauge-invariant The ensemble averaging in E(3) can be easily per-
N-orbital model introduced by Wegn& Here, we prefer to  formed after one represents the determinants in terms of the

work within the ensemble df X L banded random matrices Gaussian supersymmetric integralidie follow notations in
(BRM); see Refs[7,4]] for detail and discussions. In the Ref.[5]; see alsf7]

limit of large number of orbitalsN>1 and of the large

widths of the bandb>1, both microscopic models can be R QO an
reduced to the same field-theoretical construction known as F(J1,J5) = (= 1)'-[ [d¥]exp) — IEVLY - iE\PTLA\If
the nonlinears model and are therefore equivalent. For the

sake of simplicity, in the main part of this section we con- R PO

sider explicitly the case of Hermitian matrices corresponding VT ® (LU)P ((expliv'(H© L)W}, (39
to systems with broken time-reversal invariance due to a

magnetic field. The calculation for the case of preserveq,pere

time-reversal invariance is similar in spirit, although more

involved technically, and we quote the corresponding results - -
at the very end. ¥ = herew = [ —19
The matrix elements of the Hamiltoniad; ,i <] are cho- (\f,z)' where Xo » P=12. (36

sen to be independent random variables with the joint prob-

ability density The elements of theL-dimensional vectors§p and

L 2 ) are commuting and anticommuting variables, respectively.
PH)=M] exp(— i)H ex;{— ML) (31) The 4X 4 matrices appgaring in Eq35 are diaanaI

i=1 2Vj 2Vjj L=diag1,1,-1,3, A=diag1,1,-1,-1, Ut
=diagz}",,z\", 22,,2%?).

In order to calculate the right-hand side of E85), we
perform all the standard stepé! (i) average over the ran-
\2 li-j dom matricedH according the distribution functio¢81); (ii)

Vi =5 P(‘ —> . (32 introduce auxiliary supermatric€y that allow decoupling of
the obtained integral by the Hubbard-Stratonovich transfor-

. _ . . mation;(iii ) perform a Gaussian integral ovér, (iv) employ

This ensemble was studied intensively during the last yearg o saddle-point approximation for the integrals o@ius-

and .many analytical results are knowr.1 " theA I|Arh|}>b tified by largeb andL. All these steps allow us to represent
>1 in the closed fornt! As to the matrixI'=m™WV" de-  the main object of interest as

scribing coupling to a singl&-channel lead attached to the
edge of the sample, it can be verified that in the limit b L
> M that matrix can be chosen diagonal with only the first f(z1,20) = lim T du(Qy)
elements different from zerd'=diagy,,...,yu.,0,...,0. 31220091933 ) iz
The eigenvaluey, define the strength of coupling to a given L
channel in the lead, and will enter the final expression via the xexp{— §E StrQQisy
coupling coefficientsgya:Z/Ta—l; see Eq(42) below. The 455
perfect coupling corresponds as usuagl;ga):Tazl. qQ & M

To find the correlation functiof28), we express it via the —i—7v>, Str Qif\} 111, (37)
generating function i=1 a=1

i<j

where the varianceg; decay rapidly outside a band of width
2b around the main diagonal

25T
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L dent way. The exact solution of E41) can be written in
)} Vo= Vi terms of the modified Bessel functiofisand for a single-
i=1 channel setup it reproduces the result obtained by one of the
(38)  authors in a different wasf
. Let us briefly discuss some asymptotic behavior of the
Here, the supermatrice3; satisfy the following constraints: obtained solution in a few important limiting cases. For the
fp nmg aas - case of a short wire, i.el,/ £< 1, the solution of Eq(41) can
Q =1l Q=LQL, StrrQ=0. (39 pe approximated by\(y,t)~e™¥t so thatw,(z)=e2 This
The mean density of states around a pointE in the approximation yields the probability density for delay times
spectrum is_given in this limit by the semicircular law:
v=(1/27Vy)V4V,-E?,  whereas the parameter & 1 e
=[(7Vo)?8bN~2e7 1]/ (1-e72P) ~ b? is nothing else but the Pi(7) = M1 (46)
localization length of the wire detached from the le&tihe
integral over supermatrice®; can be calculated using the
transfer matrix technique* The technical details of the cal-
culation are rather similar to those performed in RES41],
and we skip them here in favor of presenting the final resul
for the density of theéscaled partial time delay&=7/27v

1 YalE .
fa:Sdefl{U 1—V—z<z—|7ﬂ/Qa

which coincides with the distribution for the zero-
dimensional case derived in the framework of the standard
BMT.SJL12 Expanding the exact solution in powers of the
small parameter Iy=L/ ¢ proportional to the inverse dimen-
- , sionless conductance for the quasi-one-dimensional sample,
(-pM* g — . we find

P’;.G) = Wﬁ) d0(gy— \r'gi— lCOSG)MW(LM e

> 1
2 — -1/7]
-\g: - Ps(7) = —-—€ 1+ —(MM+1
x(gL\%T?’Llﬂg). (40) D= ( 39[ M+1)
1 1
Here, the notatiow™*"(2) =[d"*!w,(2)]/dZ"*! stands for -2(M+ 1)5_ *u;} + ) (47)

the (M +1)-th derivative of the functionv, (z) with respect to
its argument. The functiow, (z) is expressed in terms of the

solution of the following differential equation: For M=1 this formula once more yields EGL7), after we

use the fact that the value of the diffusion propagatas
IW (.29 _ exactly equal to 2/@ at the edge of the quasi-one-
at (y.t)= (y ay? - y)W(y,t), W, 00=1,  (41) dimensional sample. The relation holds for not-too-small val-
. . ues of delay time$>L/&. In the opposite limit the distribu-
aswi (2)=W(£z,L/¢). In deriving the expression E40), we  tjon is dominated by anomalously localized st&emd has
assumed for simplicity that all the scattering channels havene following form:

equal coupling strengtly,=1y related to the parametey, as

9= 27TV’}/<V0 ¥ 1>' (42) PAT) ~ WGX;{— 4\/L:7'> (48

For the important case of perfect coupling to leggs 1,
see the discussion by E(7) , and the expressiof0) can  In the case of a long enough wil& > &) the probability

be considerably simplified density function is determined by the stationary
(- M+t 1 (t-independentsolution of Eq.(41), and is given by
— (M+1)( _—
'P;.(';') = M1 |_M+l“7‘J\/|+2WL <7’L> (43)
(_ 1)M+1 852 a(M—l) 5 | —
According to the results of Ref52], the distribution of the Pi7) =~ M '7””2?&[2 J /(L~)](M_1)[K1(2V§/(LT))
eigenfunction intensitiesy=V|y,(r)[? at the edge of the ' vel(Lr
sample can be expressed in terms of the same funeaii(x) + K(Z)(Z\"gl(L"%))]. (49)
as
_1 ooy It has the same asymptotic behavior as &@).
Pyly) = 2\ ) (44) Finally, let us briefly discuss the case of the Hamiltonian

matrix H real and symmetric, which is pertinent for the sys-
tems respecting the time-reversal invariance. It turns out that
(1) the above derivation can be straightforwardly generalized to

Comparing these two expressions, we conclude that
(_ 1)M+1 M-1)
Wpy = (45 this case. We omit all the cumbersome details of intermediate
' calculation and proceed directly to the final result for the
In particular, forM =1 we rediscover Eq.11), verifying this  density of partial time delays fdvl equivalent channels and
relation for a quasi-one-dimensional geometry in an indepenzero energye=0

Pi(7) =
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Cu [~ 1 [0 W(LZ)(iX) tion intensities found in Ref52]; see also Eq(3.14) of Ref.
P+ = ;J dzl +sz dx SivL(Z2+ 1 e V72 [30]. It is easy to see that this is indeed the case. For arbitrary
— —==i0 { - W(—)TXJ p>0 the time delay density also can be related to eigenfunc-
Z+y tion statistics by differentiation, similarly to E45). Finally,
(500  for the case of a short wire we can use again the approximate
solution of the differential equatiof1), W(y,t) =€, so
thatw, (z)=e™? and the integral in Eq51) can be calculated
straightforwardly for allM, both odd and even. This yields
She density of partial time delays well-known from the stan-
dard RMT (Ref. [13])

7Cy [~ W(LZ)(iX) 1 1
PAn ="~ X —— - 51 ) = 1
@ 7 Jsio [1—2AL7XIW? 6D Pi(7) = 22D (M2 + 1)7J\/|/2+29Xp{ 2“} . (56)

Here, we use the same notation as in Ef) andCy, is a
normalization constant, with the infinitesimal shifO-ensur-
ing the integral to be well-defined. The expression can b
again simplified for the perfect coupling=1)

We shall consider separately the case of even and odd chan-
nel numberM. For M=2p, with p being an integer, we re-

write the above expression as IV. DISCUSSION AND CONCLUSIONS

P(7) = 7C, (-1 d—pF(z) The main message of this paper is that, by measuring
7 PP (p-1)!(2L)PdZ s scattering characteristics such as time delays, one can get
direct access to properties of eigenfunctions of the closed
=10 \W(ix) counterpart of the scattering system. For the simplest case of

F(z) = dx———=. (52 the single-channel reflection from a disordered and/or cha-

-0 Z7IX otic sample, the relation is most explicit and is summarized

in Eq. (11); see also Eq(57) below. It is very generalsee
the discussion beloy and is valid for all pure symmetry
classedand even in the crossover regimes; see Ef4)]

One can show that the functiom(LZ)(ix) is analytic in the
lower half plane of the complex variahbibe, and therefore the

integral in (52) is given by the residue at the pole= ;4 in the whole parameter region ranging from fully local-

~i/2L7. Using the propertiesv (0)=1 andw («)=0 to fix ;04 15 gelocalized eigenstates via the critical region of the
the normalization constant, we finally arrive at the following pnqerson transition.

simple expression: In fact, one could suspect the existence of some relation

1 (-1t get of this sort already from the original derivatinof time
P+(7) = ~72+pr+1dTﬂW|_(Z) , (53 delay distribution for the simplest case of zero spatial dimen-
p!(a) =127 sion (RMT regime; see Eq(13) . Indeed, the derivation was
generalizing Eq(43) to the case of preserved time-reversalP@sed on relating the time delay statistics to that of residues
invariance, and an even number of channels. of the K matrix by employing the so-called Wigner conjec-
For the odd number of channeéé=2p+1, we use a very Ure. According to RMT those residues are chi-squared dis-
similar manipulation and rewrités1) as tributed as a consequence of eigenfunction fluctuations, Eq.
(12). However, the authots failed to trace the generality,
P(7) = 7Cy (-2)P d—pF(z) br(_)ad validity, and p_hysical consequences of the ensuing re-
T (ZL)M/2"72+(M/2) (2p-1)!1dZ z—1/2L~, lation beyond that simplest case.

e The problem of relating scattering characteristics to the
0i0 @ properties of closed systems also enjoyed some discussion in

F(z2) = dxwﬂ ' (54) the framework of a discrete-time evolution of the so-called

—wmio NZ—IX network models for disordered electron transport; see, e.g.,

) ) ) ) Ref.[53] for discussion and further references. Those models
The integral featured in this expression can be reduced tgy not use a Hamiltonian as the starting point, but rather

that along the branch cut parametrized>as-iq—(i/2L7),  gperate with networks of unidirectional links serving origi-
where O<q<. After restoring the normalization constant, na|ly to mimic electron propagation in strong magnetic field

we find of quantum Hall phenomendi.
(- 1P 1 aP Let us briefly emphasize a few points related to the valid-
P71 = F(z) , ity of the central formula Eq(11) which may need clarifica-

32 —(1/2r=p+(5/2) 4P : X " _ e o
20302\ (p + 3/2) LP- 2P d2 =127 tion. First of all, statistics of the eigenfunction intensities

entering that relation refers to the positiorof the lead or
_(Tdqg 2 antenna port, so that both quantities should be considered
F@=] Fw’(q+2). (55 |ocally. This may be important if the antenna attached not to
0o \d the bulk, but rather to the boundary of the sample, where
Since the one-channel case correspondp=6, we should eigenfunction statistics may be modified due to boundary
expect that the corresponding distribution of time delays isffects; see, e.g., Reffl30]. Second, the derivation given in
related by Eq(11) to the known distribution of eigenfunc- Sec. Il of the paper implies two very general assumptions
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only: (i) The energyE of the spectrum is not a singular point could be related to statistics of eigenfunctions. The same
of the density of states, so that the latter can be approximateguestion remains for the Wigner time delay for more than
by the constant value in the energy window of the order ofone open channel.
the mean level spacing. This condition is violated , e.g., close Referring to the critical regime and corresponding multi-
to the spectral edges, or close to the band center for systerfractality as reflected in the statistics of time delays, let us
with special (e.g., “chiral;” see Ref[18] and references mention that recently the scaling of the second negative mo-
therein symmetries; andii) the phase of the scattering ma- ment of the Wigner delay time was studied numerically at the
trix is statistically independent from the modulus of the scat-metal-insulator transitioff It was indeed found that the scal-
tering matrix and is uniformly distributed over the unit ing is anomalous, but in contrast to the behaviaf?)
circle?® The latter property is a very general feature of the~ | -20s expected from(20) the authors reportec{ﬁf}
perfect couplingegime defined as one for which the energy — | -D>_ precise reasons for such discrepancy are not clear to
and/or ensemble averags) of the S matrix vanishes. The ys at the moment and deserve a separate investigation. We
general case of nonperfect coupling is characterized by thgould like only to mention thati) for the case of 3D Ander-
so-called transmission coefficiefit 1-[(S[?<1,*"“8and it  son model the Wigner time delay was numerically calculated
is well-known that statistics of various quantities at the per<for a disordered sample coupled to a very large number of
fect couplingT=1 allows one to find the properties for a channels,M>1. This limiting case is not covered by the
general casd@ <1 after simple manipulations. In particular, present work, and requires separate considerafiiont is an
such a relation for the partial delay times at arbitrary cou-open question to which extent the numerical value=1.7
pling T can be found in Ref[16]; see also Ref[15]. It reported in Ref[56] can be used for reliable comparison
allows one to write the expression for the delay time distri-with eigenfunction properties. Indeed, it differs considerably
bution for any coupling in terms of the statistics of the eigen-from the valueD,=1.3+0.05 found in Ref.28] after a care-
function intensities afcf. Eq. (40)] ful data analysis on eigenfunction statistics. Another point
1 (2 1 1 that deserves mentioning is that analytical results for the
PWG'W):—J de - < - ) (57) anomalous .sca_lmg of the e|genfL_|nct|ons were obtalneq in
27 ), pr(e)rfv N\ 2mp(6)7, earlier publications after performing the spatial averaging
. , over the whole sample. Thus, one expects validity of Egs.
where the density of scattering phasgg6)={27(9, (21) and(22) after averaging the left-hand side over all pos-
—\g5-1cog6)]} " is characterized by the parametgr(Ref.  sible positions of the lead and/or antenna. Alternatively, one
[55]) related to the coupling strength,=2/T-1. For the  must be sure that the point where the lead is attached is a
relation of the parameteg,, to “microscopic” characteristics “representative” one, meaning that the local statistics at this
of the banded random matrix model, see E4QR) of the  point is the same as the global one. The last condition is
present paper. In particular, the relati@?) implies that mo-  usually satisfied due to eigenfunction ergodicity, but some
ments of the inverse time delay are always proportional ta&pecial situations like a lead attached to the boundary of the
the moments of the eigenfunction intensjty V|, (r)|? as sample may require special care.

1 (2 Note addedAfter the present paper had already been sub-
(};J‘) = <yk+1>—J dé[2mp(6))<1. (58) mitted _for publication, we were informed by J.T. Chalker that
27 ) a relation analogous to our E@.1) between the current den-

sity in a link and the energy derivative of the total phase shift
emerged in a one-dimensional version of the network model
Eonsidered in Ref.54].

The range of validity of the relations Eq&7) and(58) for a
given microscopic model of a disordered system is the sam
as the range of validity of the nonlinearmodel description
of the latter, provided the singularities in the spectrum are
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