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We reveal a general explicit relation between the statistics of delay times in one-channel reflection from a
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alternative technique to derive the probability density of partial delay times for any number of open channels.
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I. INTRODUCTION

The standard way of describing scattering in quantum sys-
tems employs anM 3M unitary matrix known asS matrix,
with M standing for the number of scattering channels open
at a given energy. Then, the Wigner delay time1 defined as
the energy derivative of the total scattering phase shifttw
=−i"s]/]Edln detS, is one of the most important and fre-
quently used characteristics of quantum scattering, see, e.g.,
Refs.f2,3g. It can be interpreted as a time delay in propaga-
tion of the peak of the wave packet due to scattering in
comparison with a free wave packet propagation. More de-
tailed characterization of scattering calls for introducing the
Wigner-Smith time delay matrix4 Q= i"s]S†/]EdS, whose ei-
genvalues are frequently calledproper delay times. Alterna-
tively, denotingM unimodular eigenvalues of theSmatrix as
hexpsiu1d , . . . ,expsiuMdj, one can considerpartial delay
times defined5 as ta=]ua/]E,a=1, . . . ,M. Beyond the one-
channel case proper and partial delay times differ, although
the sums of partial and proper delay times over allM scat-
tering channels are always equal and yield the Wigner delay
time.

Statistics of delay times of all sorts were studied inten-
sively in the framework of quantum chaotic scattering. Ear-
lier works on the subject used various approximation
schemes, frequently not very well controlled.6 It is, however,
well known that quantum statistical properties of classically
chaotic systems are to a large extent universal and indepen-
dent of their microscopic nature,7,8 which allows one to use
the random matrix theorysRMTd for description of their
properties.9 When applied to the scattering problems, and in
particular to the study of delay time statistics, the RMT
yielded many exact analytical results in recent years; see
Refs.f5,10–18g and references therein. Those were success-
fully verified in numerical simulations of several quantum
chaotic systems of quite a diverse nature; see, e.g., Ref.f19g.
Some properties of delay times were also studied by semi-
classical methods.20

In the general framework of mesoscopic systems, the
RMT regime corresponds to the so-called zero-dimensional
limit. In this limit the closed counterpart of a scattering sys-
tem is characterized by the only nontrivial energy scale,
which is simply the mean level spacingD, and RMT predic-

tions for statistics of eigenfunctions and energy levels were
successfully tested experimentally in microwave and acous-
tic experiments.21

Beyond the zero-dimensional limit the particular nature of
the sample geometry and type of disorder causing chaotic
behavior starts to play an important role. In particular, in
systems with random short-range impurities another energy
scale known as the Thouless energy,Ec, plays a prominent
role, the ratiog=2pEc/D being known as the dimensionless
conductance of the sample. This parameter controls the sys-
tem properties, with the universal RMT regime being recov-
ered in the limitg→`. The statistical properties of the en-
ergy spectra and eigenfunctions of closed mesoscopic
systems as a function of dimensional conductance were un-
der intensive investigation for more than a decade, both
analytically22–26 and numerically,27,28 and some predicted
features are also seen in microwave experiments.29 The re-
search resulted in a detailed picture emerging for various
regimes, including the most difficult case of the Anderson
localization transition; see the reviewsRef. f30gd for a gen-
eral picture. At the same time systematic statistical analysis
of delay times beyond the universal zero-dimensional limit is
still lacking, apart from a few useful insights in Refs.
f31–36g.

The goal of the present paper is to initiate systematic in-
vestigation of delay times beyond the zero-dimensional ap-
proximation in metallic, critical, and localized regimes. To
this end, in the first part of the paper we reveal a very general
relation between the delay time distribution and the distribu-
tion of eigenfunction intensities for a single-channel scatter-
ing. On one hand, this relation allows us to use the existent
knowledge on eigenfunction statistics to provide explicit ex-
pressions for delay time distributions in various regimes of
interest. On the other hand, since phase shifts and delay
times are experimentally measurable quantities, especially in
the one-channel reflection experiment,37–40the relation opens
a new possibility for experimental study of eigenfunctions.

In the second part of the paper we consider a model of a
quasi-one-dimensional disordered wire represented by the
banded random matrixsBRMd ensemble. It is well-known
that in the limit of the thick wire this model is exactly
solvable41 by the transfer matrix approach.42 The same tech-
nique, when combined with methods introduced in Ref.f5g
for the scattering problem, yields the distribution of partial
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delay times for any finite number of open channels. In par-
ticular, for the single open channel it reproduces the result
obtained from the general relation developed in the first sec-
tion.

II. DELAY TIME DISTRIBUTION FOR ONE-CHANNEL
SCATTERING: RELATION TO EIGENFUNCTION

STATISTICS

Consider a single-channel antenna or lead perfectly
coupled to an absorptive disordered system, characterized by
the senergy-, absorption-, and position-dependentd reflection
coefficientR=Rsh ,r d;uSsE,hdu2ø1, wherer stands for the
coordinate of antenna port, andhù0 for the absorption pa-
rameter. Here and henceforth, the absorption is considered a
uniform, position-independent process, and therefore can be
accounted for as an imaginary shift of the energy of incom-
ing waves. For the definition of “perfect coupling” see Eq.
s57d below and the discussion preceding it.

The Wigner delay time can be conveniently written as
tw=limh→0s1−Rd/2h; see, e.g., Ref.f40g. Introduce variable
xù1 via R=sx−1d/sx+1d, and letP0

shdsxd stand for the dis-
tribution function ofx at given absorption.

In the limit of zero absorptionh→0 the reflection coef-
ficient R→1, hencex→`. In fact, the correct limit is such
that x=z/ /h ,z,`. The variablez is nothing else but the
inverse delay time

1

tw
= lim

h→0

2h

1 − R
= lim

h→0
hsx + 1d = z. s1d

The distribution functionP0
shdsxd behaves in the limit of van-

ishing absorption asP̃0sz/hd→hP̃0szd, where P̃0szd is a
well-defined distribution function of variablez si.e., of the
inverse delay timed.

On the other hand, letGsE+ ih ; r ; r 8d be the Green’s func-
tion of a closed system with broadeningh, so that the local
density of statessLDoSd at any pointr in the sample is given
by

ṽhsr d = −
1

p
Im GsE + ih;r ;r d =

1

p
o
n=1

N

ucnsr du2
h

sE − End2 + h2 .

s2d

Here,cnsr d stands for the local amplitude of the eigenfunc-
tion of the wave or Schrödinger operator describing a clas-
sical wave or quantum particle in the disordered sample and
corresponding to the eigenfrequency and/or energy levelEn.

Using this relation, it is easy to prove that for any integer
k=1,2,3, . . .holds

lim
h→0

fhk−1pkṽh
ksr dg =

ÎpGSk −
1

2
D

Gskd o
n=1

N

ucnsr du2kdsE − End,

s3d

whereGszd stands for the Euler gamma function.
Indeed, in the limith→0 the nonvanishing contribution

to the above expression comes only from the most singular

s“diagonal”d term in the product of sums over eigenvalues

hk−1o
n=1

N

ucnsr du2k hk

fsE − End2 + h2gk .

Evaluating the standard integrals, we observe that

E
−`

`

dx
h2k−1

fx2 + h2gk =E
−`

`

du
1

fu2 + 1gk =

ÎpGSk −
1

2
D

Gskd
,

which yields the above result, Eq.s3d.
The right-hand side of Eq.s3d is proportional to the mo-

ments of the local eigenfunction intensityy=Vucnsr du2, with
V standing for the volume of our sample, averaged in a small
energy window around pointE of the spectrum. Denoting
additional disorder averaging by brackets and introducing the
distribution function Pvsvd of the random variablevhsr d
= ṽhsr dVD, with D being the mean level spacing of the
sample, we therefore can rewrite our relation as

kykl =
ÎpGskd

GSk −
1

2
D lim

h→0
Shp

D
Dk−1E

0

`

dv vk Pvsvd. s4d

At the next step we use a recently discovered relation be-
tween the probability distributionPvsvd of LDoS and the
function P0

shdsxd ,xù1 sRef. f43gd

Pvsvd =
Î2

pv3/2E
0

`

dq P0
shdFq2 +

1

2
Sv +

1

v
DG , s5d

valid for those disordered and chaotic systems which allow
an effective description in terms of the nonlinears model.
The existence of this relation is based on the following two
observations. First, the scattering matrix for a one-channel
scattering can be expressed in terms of the diagonal matrix
element of the resolvent of the corresponding closed system
fsee Eqs.s23d and s30d in the next sectiong. In this way one
can relate the probability distribution of LDoS and statistical
properties of the scattering matrix. The second observation is
that, under conditions of perfect coupling, the phase of theS
matrix is statistically independent of theS-matrix modulus
R=sx−1d/sx+1d and is distributed uniformly over the unit
circle. Consequently, all nontrivial information on the scat-
tering matrix is contained in the distribution function of its
modulusR, or equivalently in the distribution function ofx.
This fact explains the appearance of the functionP0

shdsxd on
the right-hand side of Eq.s5d, seef43g for the detailed deri-
vation and discussion. It is important also to remember that
the above distributionPvsvd is normalized in such a way that
the first moment is equal to unity:kvl;1.

Rescaling the variablev=z/h in the integrals4d, we see
that it is limh→0Pvsz/hd /h2 which we are interested in. The
limit can be calculated froms5d by changing the variable in
the integral toq= t /Îh
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lim
h→0

1

h2PvS z

h
D =

Î2

pz3/2E
0

`

dt P̃0St2 +
z

2
D . s6d

In this way we bring Eq.s4d to the form

kykl = Sp

D
Dk−1Î 2

p

Gskd

GSk −
1

2
DE0

`

dz zk−3/2E
0

`

dt P̃0St2 +
z

2
D .

s7d

Introducing the new variables= t2+z/2, we further notice
that

E
0

`

dz zk−3/2E
0

`

dt P̃0St2 +
z

2
D

=E
0

`

ds P̃0ssdE
0

2s

dz
zk−3/2

2Îs−
1

2
z

=Îp

2

GSk −
1

2
D

Gskd E
0

`

ds P̃0ssds2sdk−1. s8d

Substituting now the last expression intos7d, we arrive at the
relation

E
0

`

dy Pysydyk ; kykl =E
0

`

ds P̃0ssdS2ps

D
Dk−1

, s9d

valid for all integerskù1. We therefore conclude that the
distribution functions in the left- and right-hand sides of this
expression are simply related to each other byPysz̃d
=P̃0sz̃dz̃−1, wherez̃=2pz/D. Remembering interpretation of
z as the inverse delay time and introducing the distribution

P̃wst̃wd of scaled time delayst̃w=tD /2p, we finally arrive at
the following simple but fundamental relation between mo-
ments of eigenfunction intensityy and the inverse moments
of the time delay:

kt̃w
−kl = kyk+1l, s10d

resulting in the functional relation between the two distribu-
tions

P̃wst̃wd =
1

t̃w
3 PyS 1

t̃w
D , s11d

and constituting one of the central results of the present pa-
per. Some remarks on the conditions of validity of Eqs.s10d
and s11d are given in the last section of the present paper.

Let us now demonstrate how the relation Eq.s11d works
in various situations. Let us start with the case of a “zero-
dimensional” system which can be described by the RMT.
The distributions of eigenfunction intensities typical for the
zero-dimensional case and various symmetry classes charac-
terized by b=1,2,4 sRef. f9gd are given by the so-called
x-squared distribution

Pysyd = Cbyb/2–1e−sb/2dy, Cb = sb/2db/2/Gsb/2d, s12d

with the particular caseb=1 frequently being referred to as
the Porter-Thomas distribution. The known expressions11,12

for all three pure symmetry classes immediately follow as

Pwst̃wd = fsb/2db/2/Gsb/2dgt̃w
−b/2–2e−b/2t̃w. s13d

Moreover, the distribution of the one-channel delay times in
the crossover regime between unitarysb=2d and orthogonal
sb=1d symmetry classes was calculated in Ref.f13g

Pwst̃wd =
1

2t̃w
3E

−1

1

dlE
1

`

dl2l2
2e−X2sl2

2−1de−l2
2/t̃wI0

3Fl2
Îl2

2 − 1

t̃w
GT2sl,l2d, s14d

T2sl,l2d = 2X2fs1 − l2de−a + l2
2s1 − e−adg − s1 − e−ad,

s15d

where a=X2s1−l2d, I0szd stands for the modified Bessel
function, andX is a crossover driving parameter.44 This re-
sult can be easily recovered from the distribution of the
eigenfunction intensities in the crossover found in Ref.f45g

Pysyd = 2E
1

`

dthF1sXd + fstXd2 − 1gF2sXdj

3stXd2I0sytÎt2 − 1de−yt2−X2st2−1d,

F1sXd =
e−X2

X
E

0

X

dxex2
, F2sXd =

1 − F1sXd
X2 . s16d

In the metallic regime beyond RMT,the perturbative correc-
tions to the body of the distribution of eigenfunction inten-
sities were calculated using the supersymmetric nonlinears
model in Ref.f24g. Then, relations11d yields the following
distributions of the Wigner delay times:

Pwst̃wd =
e−1/2t̃w

Î2pt̃w
5/2F1 +

k

2
S3

2
−

3

t̃w

+
1

2t̃w
2 D + ¯G b = 1,

Pwst̃wd =
e−1/t̃w

t̃w
3 F1 +

k

2
S2 −

4

t̃w

+
1

t̃w
2 D + ¯G b = 2,

Pwst̃wd =
4e−2/t̃w

t̃w
4 F1 +

k

2
S3 −

6

t̃w

+
2

t̃w
2 D + ¯G b = 4.

s17d

Here, the parameterk=a/g is just the diagonal part of the
so-called diffusion propagatorPsr ,r d sRefs.f24,30gd and is
inversely proportional to the dimensionless conductanceg.
The exact value of the constanta depends essentially on the
sample geometry and on the coordinates of the lead.
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Equation s17d holds for relatively large delay timest̃w

*Îk, while in the opposite case the distribution is domi-
nated by the existence of the anomalously localized states
ssee Ref.f30g for a reviewd and has the following behavior
for dimensionalityd=2,3:23

Pwst̃wd , expSb

2H−
1

t̃w

+ k
1

t̃w
2 + ¯JD, k & t̃w & Îk,

s18d

Pwst̃wd , expf− Cdln
ds1/t̃wdg, t̃w & k. s19d

It deserves mentioning that the log-normal distribution found
in Ref. f35g was observed for the opposite limit oflarge
delay times andmanyopen channels.

Another important consequence ofs11d is that the eigen-
function multifractality typical for the vicinity of the Ander-
son localization transition30 reflects itself in the distribution
of Wigner delay times. Generally, this means that the nega-
tive moments of the delay time scale anomalously with the
system sizeL

K 1

tw
q−1L , L−Dqsq−1d, s20d

whereDq is a fractal dimension of the eigenfunctions. The
idea of the anomalous scalings20d of the time delays was
suggested by one of the authors in Ref.f36g.

The fractal dimensions of the eigenfunctions are known
analytically for a two-dimensional system in the metallic re-
gime, where the deviation from the normal scaling is deter-
mined by the inverse conductancesthe regime of weak
multifractalityd30

K 1

tw
q−1L , L−f2−sq/bpgdgsq−1d, q ! 2bpg. s21d

Another case when the anomalous dimensions are known
analytically is the model of power-law random banded ma-
trices, whose elements are independent random variablesHij
with the variance decreasing in a power-law fashion:
ksHijd2l=f1+sui − j u /bd2ag−1. For a=1 this model shows criti-
cal behavior and the fractal dimensions of the eigenfunctions
can be calculated forb@1 sRef. f46gd

K 1

tw
q−1L , L−f1−sq/2bpbdgsq−1d. s22d

III. PARTIAL DELAY TIMES IN A QUASI-ONE-
DIMENSIONAL GEOMETRY

In this section we consider a quasi-one-dimensional dis-
ordered sample of lengthL with a perfect lead attached to
one of its edges, the other edge being impenetrable for the
waves. The lead supportsM scattering channels; thus, theS
matrix is anM 3M unitary matrix and the partial delay times
are defined in the standard way asta=]ua/]E, a=1, . . . ,M.

Following the method suggested for the zero-dimensional
case in Refs.f5,11g, we address the statistics of the partial

delay times by considering the two-point correlation function
of eigenvalue densities of theK matrix. The latter matrix is
Hermitian and is defined in terms of the scattering matrix via
the relation

Ŝ=
Î − ipK̂

Î + ipK̂
. s23d

Denoting the real eigenvalues of theK matrix by za, a
=1, . . . ,M the partial delay times can be obviously written as
tasEd=]uasEd /]E=−h2/f1+za

2sEdgjhf]zasEdg/]Ej. Knowing
the joint probability density of random variablesza and va
=]za/]E

PEsz,vd =
1

MKo
a=1

M

dsz− zaddSv −
]za

]E
DL , s24d

one can recover the mean density of the partial delay times
as

Ptstd =
1

MKo
a=1

M

dst − tadL
=E

−`

` E
−`

`

dzdv PEsz,vddSt +
2v

1 + z2D . s25d

The functionPEsz,vd in turn can be extracted from the cor-
relation function

KE,Vsz1,z2d = krE−V/2sz1drE+V/2sz2dl − krE−V/2sz1dl

3krE+V/2sz2dl, s26d

of the densitiesrEszd=s1/Mdoa=1
M dfz−zasEdg of eigenvalues

zasEd at a given energyE as

PEsz,vd = M lim
V→0

VKE,Vsz1 = z− vV/2,z2 = z+ vV/2d.

s27d

Finally, to gain access to the correlation functions26d, we
introduce the related object in terms of the traces of the re-
solvent

fsz1,z2d =KTr
1

z1 − ie − K̂sE − V/2d
Tr

1

z1 + ie − K̂sE + V/2d
L ,

s28d

from which the required correlation function can be extracted
as

KE,Vsz1,z2d =
1

2p2M2Re fcsz1,z2d, s29d

fcsz1,z2d = fsz1,z2d − f−sz1df+sz2d.

In order to calculates28d we obviously need to specify the
explicit form of the K matrix. In the framework of the

present approachK̂ can be written in terms of the random
Hamiltonian of a closed system represented byL3L Hermit-
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ian matrix Ĥ, and some deterministicL3M matrix Ŵ de-
scribing the coupling of the system to the leads; see Refs.
f5,47,48g

K̂ = Ŵ† 1

E − Ĥ
Ŵ. s30d

An important combination of these two matrices is the so-

called effective non-Hermitian HamiltonianĤef f=Ĥ− iĜ,

whereĜ=pŴŴ†. Actually, for the scattering problemĤef f in
many respects replaces the Hamiltonian of the closed system

Ĥ.
There are several convenient microscopic models for the

Hamiltonian Ĥ describing the quasi-one-dimensional disor-
dered wire decoupled from leads. One may, for example,
employ the one-dimensional variant49 of the gauge-invariant
N-orbital model introduced by Wegner.50 Here, we prefer to
work within the ensemble ofL3L banded random matrices
sBRMd; see Refs.f7,41g for detail and discussions. In the
limit of large number of orbitalsN@1 and of the large
widths of the bandb@1, both microscopic models can be
reduced to the same field-theoretical construction known as
the nonlinears model and are therefore equivalent. For the
sake of simplicity, in the main part of this section we con-
sider explicitly the case of Hermitian matrices corresponding
to systems with broken time-reversal invariance due to a
magnetic field. The calculation for the case of preserved
time-reversal invariance is similar in spirit, although more
involved technically, and we quote the corresponding results
at the very end.

The matrix elements of the HamiltonianHij , i ø j are cho-
sen to be independent random variables with the joint prob-
ability density

PsHd = Np
i=1

L

expS−
Hii

2

2Vii
Dp

i, j

expS−
uHij u2

2Vij
D , s31d

where the variancesVij decay rapidly outside a band of width
2b around the main diagonal

Vij =
l2

2b
expS−

ui − j u
b

D . s32d

This ensemble was studied intensively during the last years
and many analytical results are known in the limitL@b

@1 in the closed form.41 As to the matrixĜ;pŴŴ† de-
scribing coupling to a singleM-channel lead attached to the
edge of the sample, it can be verified that in the limitL@b
@M that matrix can be chosen diagonal with only the firstM

elements different from zero:Ĝ=diagsg1, . . . ,gM ,0 , . . . ,0d.
The eigenvaluesga define the strength of coupling to a given
channel in the lead, and will enter the final expression via the
coupling coefficientsgga

=2/Ta−1; see Eq.s42d below. The
perfect coupling corresponds as usual togga

=Ta=1.
To find the correlation functions28d, we express it via the

generating function

fsz1,z2d =
u]2

]J1 ] J2
FS ZJ

s1dZJ
s2d

ZJ=0
s1d ZJ=0

s2d DM

FsJ1,J2dG
J1=J2=0

,

FsJ1,J2d

=KdetfE − V/2 − Hef fsZJ
s1ddgdetfE + V/2 − Hef fsZJ

s2ddg
detfE − V/2 − Hef fsZJ=0

s1d dgdetfE + V/2 − Hef fsZJ=0
s2d dgL ,

s33d

where we introduced the notationsZJ
spd=zp+s−1dpe+Jp, p

=1,2 anddefined the effective Hermitian matrices

Hef fsZJ
spdd = Ĥ +

1

Zj
spd Ĝ. s34d

The ensemble averaging in Eq.s33d can be easily per-
formed after one represents the determinants in terms of the
Gaussian supersymmetric integrals.51 We follow notations in
Ref. f5g; see alsof7g

FsJ1,J2d = s− 1dLE fdCgexpH− iEC†L̂C − i
V

2
C†L̂L̂C

+ iC†Ĝ ^ sL̂ÛdCJkexphiC†sĤ ^ L̂dCjl, s35d

where

C = SCW 1

CW 2

D, whereCW = SSWp

xW p

D, p = 1,2. s36d

The elements of theL-dimensional vectorsSWp and xW p
are commuting and anticommuting variables, respectively.
The 434 matrices appearing in Eq.s35d are diagonal

L̂=diags1,1,−1,1d, L̂=diags1,1,−1,−1d, Û−1

=diagsZJ=0
s1d ,ZJ

s1d, ZJ=0
s2d ,ZJ

s2dd.
In order to calculate the right-hand side of Eq.s35d, we

perform all the standard steps:7,41 sid average over the ran-

dom matricesĤ according the distribution functions31d; sii d
introduce auxiliary supermatricesQ̂i that allow decoupling of
the obtained integral by the Hubbard-Stratonovich transfor-
mation;siii d perform a Gaussian integral overC; sivd employ
the saddle-point approximation for the integrals overQi jus-
tified by largeb andL. All these steps allow us to represent
the main object of interest as

fsz1,z2d = lim
J1,2→0

]2

]J1 ] J2
Ep

i=1

L

dmsQ̂id

3expF−
j

4o
i=1

L

Str Q̂iQ̂i+1

− i
V

2
pno

i=1

L

Str Q̂iL̂Gp
a=1

M

fa, s37d
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fa = Sdet−1FU−1 −
ga

V0
SE

2
− ipnQaDG, V0 = o

i=1

L

Vij .

s38d

Here, the supermatricesQ̂i satisfy the following constraints:

Q̂i
2 = Î, Q̂i

† = L̂Q̂iL̂, StrQ̂i = 0. s39d

The mean density of statesn around a pointE in the
spectrum is given in this limit by the semicircular law:
n=s1/2pV0dÎ4V0−E2, whereas the parameter j
=fspnV0d28bl−2e−1/bg / s1−e−2/bd,b2 is nothing else but the
localization length of the wire detached from the leads.41The
integral over supermatricesQi can be calculated using the
transfer matrix technique.7,41 The technical details of the cal-
culation are rather similar to those performed in Refs.f5,41g,
and we skip them here in favor of presenting the final result
for the density of thesscaledd partial time delayst̃=t /2pn

Pt̃st̃d =
s− 1dM+1

2pM ! LM+1t̃M+2E
0

2p

dusgg − Îgg
2 − 1cosudMwL

sM+1d

3Sgg − Îgg
2 − 1cosu

t̃L
D . s40d

Here, the notationwL
sM+1dszd;fdM+1wLszdg/dzM+1 stands for

thesM +1d-th derivative of the functionwLszd with respect to
its argument. The functionwLszd is expressed in terms of the
solution of the following differential equation:

]W

]t
sy,td = Sy2 ]2

]y2 − yDWsy,td, Wsy,0d = 1, s41d

aswLszd=Wsjz,L /jd. In deriving the expression Eq.s40d, we
assumed for simplicity that all the scattering channels have
equal coupling strengthga=g related to the parametergg as

gg =
1

2png
Sg2

V0
+ 1D . s42d

For the important case of perfect coupling to leadsgg=1,
see the discussion by Eq.s57d , and the expressions40d can
be considerably simplified

Pt̃st̃d =
s− 1dM+1

M ! LM+1t̃M+2wL
sM+1dS 1

t̃L
D . s43d

According to the results of Ref.f52g, the distribution of the
eigenfunction intensitiesy=Vucnsr du2 at the edge of the
sample can be expressed in terms of the same functionwLszd
as

Pysyd =
1

L2wL
s2dS y

L
D . s44d

Comparing these two expressions, we conclude that

Pt̃st̃d =
s− 1dM+1

M ! t̃M+2Py
sM−1dS1

t̃
D . s45d

In particular, forM =1 we rediscover Eq.s11d, verifying this
relation for a quasi-one-dimensional geometry in an indepen-

dent way. The exact solution of Eq.s41d can be written in
terms of the modified Bessel functions,41 and for a single-
channel setup it reproduces the result obtained by one of the
authors in a different way.36

Let us briefly discuss some asymptotic behavior of the
obtained solution in a few important limiting cases. For the
case of a short wire, i.e.,L /j!1, the solution of Eq.s41d can
be approximated byWsy,td<e−yt, so thatwLszd=e−Lz. This
approximation yields the probability density for delay times

Pt̃st̃d =
1

M ! t̃M+2e−1/t̃, s46d

which coincides with the distribution for the zero-
dimensional case derived in the framework of the standard
RMT.5,11,12 Expanding the exact solution in powers of the
small parameter 1/g=L /j proportional to the inverse dimen-
sionless conductance for the quasi-one-dimensional sample,
we find

Pt̃st̃d =
1

M ! t̃M+2e−1/t̃S1 +
1

3g
FMsM + 1d

− 2sM + 1d
1

t̃
+

1

t̃2G + ¯D . s47d

For M =1 this formula once more yields Eq.s17d, after we
use the fact that the value of the diffusion propagatork is
exactly equal to 2/3g at the edge of the quasi-one-
dimensional sample. The relation holds for not-too-small val-
ues of delay timest̃.L /j. In the opposite limit the distribu-
tion is dominated by anomalously localized states30 and has
the following form:

Pt̃st̃d ,
1

t̃sM+3d/2expS− 4Î j

Lt̃
D . s48d

In the case of a long enough wiresL@jd the probability
density function is determined by the stationary
st-independentd solution of Eq.s41d, and is given by

Pt̃st̃d <
s− 1dM+1

M ! t̃M+2

8j2

L2

]sM−1d

]f2Îj/sLt̃dgsM−1d
fK1

2s2Îj/sLt̃dd

+ K0
2s2Îj/sLt̃ddg. s49d

It has the same asymptotic behavior as Eq.s48d.
Finally, let us briefly discuss the case of the Hamiltonian

matrix Ĥ real and symmetric, which is pertinent for the sys-
tems respecting the time-reversal invariance. It turns out that
the above derivation can be straightforwardly generalized to
this case. We omit all the cumbersome details of intermediate
calculation and proceed directly to the final result for the
density of partial time delays forM equivalent channels and
zero energyE=0
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Pt̃st̃d =
CM

t̃2 E
−`

`

dz
1

1 + z2E
−`−i0

`−i0

dx
wL

s2dsixd

F1 −
2igLsz2 + 1dt̃x

z2 + g2 GM/2 .

s50d

Here, we use the same notation as in Eq.s40d and CM is a
normalization constant, with the infinitesimal shift −i0 ensur-
ing the integral to be well-defined. The expression can be
again simplified for the perfect couplingsg=1d

Pt̃st̃d =
pCM

t̃2 E
−`−i0

`−i0

dx
wL

s2dsixd
f1 – 2iL t̃xgM/2 . s51d

We shall consider separately the case of even and odd chan-
nel numberM. For M =2p, with p being an integer, we re-
write the above expression as

Pt̃st̃d = UpCp

t̃2+p

s− 1dp−1

sp − 1d ! s2Ldp

dp

dzpFszdU
z=1/2Lt̃

,

Fszd =E
−`−i0

`−i0

dx
wL

s2dsixd
z− ix

. s52d

One can show that the functionwL
s2dsixd is analytic in the

lower half plane of the complex variableix, and therefore the
integral in s52d is given by the residue at the polex=
−i/2Lt̃. Using the propertieswLs0d=1 andwLs`d=0 to fix
the normalization constant, we finally arrive at the following
simple expression:

Pt̃st̃d = U 1

t̃2+p

s− 1dp−1

p ! s2Ldp+1

dp+1

dzp+1wLszdU
z=1/2Lt̃

, s53d

generalizing Eq.s43d to the case of preserved time-reversal
invariance, and an even number of channels.

For the odd number of channelsM =2p+1, we use a very
similar manipulation and rewrites51d as

Pt̃st̃d = U pCp

s2LdM/2t̃2+sM/2d

s− 2dp

s2p − 1d ! !

dp

dzpFszdU
z=1/2Lt̃

,

Fszd =E
−`−i0

`−i0

dx
wL

s2dsixd
Îz− ix

. s54d

The integral featured in this expression can be reduced to
that along the branch cut parametrized asx=−iq−si/2Lt̃d,
where 0øq,`. After restoring the normalization constant,
we find

Pt̃st̃d = U s− 1dp

2p+3/2ÎpGsp + 3/2d
1

Lp−s1/2dt̃p+s5/2d
dp

dzpFszdU
z=1/2Lt̃

,

Fszd =E
0

` dq
Îq

wL
s2dsq + zd. s55d

Since the one-channel case corresponds top=0, we should
expect that the corresponding distribution of time delays is
related by Eq.s11d to the known distribution of eigenfunc-

tion intensities found in Ref.f52g; see also Eq.s3.14d of Ref.
f30g. It is easy to see that this is indeed the case. For arbitrary
p.0 the time delay density also can be related to eigenfunc-
tion statistics by differentiation, similarly to Eq.s45d. Finally,
for the case of a short wire we can use again the approximate
solution of the differential equations41d, Wsy,td<e−yt, so
thatwLszd=e−Lz and the integral in Eq.s51d can be calculated
straightforwardly for allM, both odd and even. This yields
the density of partial time delays well-known from the stan-
dard RMTsRef. f13gd

Pt̃st̃̃d =
1

2sM/2+1dGsM/2 + 1dtM/2+2expF−
1

2t̃
G . s56d

IV. DISCUSSION AND CONCLUSIONS

The main message of this paper is that, by measuring
scattering characteristics such as time delays, one can get
direct access to properties of eigenfunctions of the closed
counterpart of the scattering system. For the simplest case of
the single-channel reflection from a disordered and/or cha-
otic sample, the relation is most explicit and is summarized
in Eq. s11d; see also Eq.s57d below. It is very generalssee
the discussion belowd, and is valid for all pure symmetry
classesfand even in the crossover regimes; see Eqs.s14dg
and in the whole parameter region ranging from fully local-
ized to delocalized eigenstates via the critical region of the
Anderson transition.

In fact, one could suspect the existence of some relation
of this sort already from the original derivation12 of time
delay distribution for the simplest case of zero spatial dimen-
sion sRMT regimed; see Eq.s13d . Indeed, the derivation was
based on relating the time delay statistics to that of residues
of the K matrix by employing the so-called Wigner conjec-
ture. According to RMT those residues are chi-squared dis-
tributed as a consequence of eigenfunction fluctuations, Eq.
s12d. However, the authors12 failed to trace the generality,
broad validity, and physical consequences of the ensuing re-
lation beyond that simplest case.

The problem of relating scattering characteristics to the
properties of closed systems also enjoyed some discussion in
the framework of a discrete-time evolution of the so-called
network models for disordered electron transport; see, e.g.,
Ref. f53g for discussion and further references. Those models
do not use a Hamiltonian as the starting point, but rather
operate with networks of unidirectional links serving origi-
nally to mimic electron propagation in strong magnetic field
of quantum Hall phenomenon.54

Let us briefly emphasize a few points related to the valid-
ity of the central formula Eq.s11d which may need clarifica-
tion. First of all, statistics of the eigenfunction intensities
entering that relation refers to the positionr of the lead or
antenna port, so that both quantities should be considered
locally. This may be important if the antenna attached not to
the bulk, but rather to the boundary of the sample, where
eigenfunction statistics may be modified due to boundary
effects; see, e.g., Ref.f30g. Second, the derivation given in
Sec. II of the paper implies two very general assumptions
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only: sid The energyE of the spectrum is not a singular point
of the density of states, so that the latter can be approximated
by the constant value in the energy window of the order of
the mean level spacing. This condition is violated , e.g., close
to the spectral edges, or close to the band center for systems
with special se.g., “chiral;” see Ref.f18g and references
thereind symmetries; andsii d the phase of the scattering ma-
trix is statistically independent from the modulus of the scat-
tering matrix and is uniformly distributed over the unit
circle.43 The latter property is a very general feature of the
perfect couplingregime defined as one for which the energy
and/or ensemble averagekSl of the S matrix vanishes. The
general case of nonperfect coupling is characterized by the
so-called transmission coefficientT=1−ukSlu2,1,47,48 and it
is well-known that statistics of various quantities at the per-
fect couplingT=1 allows one to find the properties for a
general caseTø1 after simple manipulations. In particular,
such a relation for the partial delay times at arbitrary cou-
pling T can be found in Ref.f16g; see also Ref.f15g. It
allows one to write the expression for the delay time distri-
bution for any coupling in terms of the statistics of the eigen-
function intensities asfcf. Eq. s40dg

Pwst̃wd =
1

2p
E

0

2p

du
1

2prsudt̃w
3 PyS 1

2prsudt̃w
D , s57d

where the density of scattering phasesrsud=h2pfgg

−Îgg
2−1cossudgj−1 is characterized by the parametergg sRef.

f55gd related to the coupling strengthgg;2/T−1. For the
relation of the parametergg to “microscopic” characteristics
of the banded random matrix model, see Eq.s42d of the
present paper. In particular, the relations57d implies that mo-
ments of the inverse time delay are always proportional to
the moments of the eigenfunction intensityy=Vucnsr du2 as

kt̃w
−kl = kyk+1l

1

2p
E

0

2p

duf2prsuddk+1. s58d

The range of validity of the relations Eqs.s57d ands58d for a
given microscopic model of a disordered system is the same
as the range of validity of the nonlinears-model description
of the latter, provided the singularities in the spectrum are
avoided.

For the case of more than one channel, statistics ofpartial
time delays also can be related to the statistics of eigenfunc-
tions as is clear, e.g., from Eq.s45d. Here, however, we so far
were unable to provide the generality and clarity achieved
for the single-channel derivation. We also leave as an inter-
esting open question in which way theproper time delays,
whose statistics was in much detail investigated in Ref.f14g,

could be related to statistics of eigenfunctions. The same
question remains for the Wigner time delay for more than
one open channel.

Referring to the critical regime and corresponding multi-
fractality as reflected in the statistics of time delays, let us
mention that recently the scaling of the second negative mo-
ment of the Wigner delay time was studied numerically at the
metal-insulator transition.56 It was indeed found that the scal-
ing is anomalous, but in contrast to the behaviorktw

−2l
,L−2D3 expected from s20d the authors reportedktw

−2l
,L−D2. Precise reasons for such discrepancy are not clear to
us at the moment and deserve a separate investigation. We
would like only to mention thatsid for the case of 3D Ander-
son model the Wigner time delay was numerically calculated
for a disordered sample coupled to a very large number of
channels,M @1. This limiting case is not covered by the
present work, and requires separate consideration;sii d it is an
open question to which extent the numerical valueD2=1.7
reported in Ref.f56g can be used for reliable comparison
with eigenfunction properties. Indeed, it differs considerably
from the valueD2=1.3±0.05 found in Ref.f28g after a care-
ful data analysis on eigenfunction statistics. Another point
that deserves mentioning is that analytical results for the
anomalous scaling of the eigenfunctions were obtained in
earlier publications after performing the spatial averaging
over the whole sample. Thus, one expects validity of Eqs.
s21d ands22d after averaging the left-hand side over all pos-
sible positions of the lead and/or antenna. Alternatively, one
must be sure that the point where the lead is attached is a
“representative” one, meaning that the local statistics at this
point is the same as the global one. The last condition is
usually satisfied due to eigenfunction ergodicity, but some
special situations like a lead attached to the boundary of the
sample may require special care.

Note added.After the present paper had already been sub-
mitted for publication, we were informed by J.T. Chalker that
a relation analogous to our Eq.s11d between the current den-
sity in a link and the energy derivative of the total phase shift
emerged in a one-dimensional version of the network model
considered in Ref.f54g.
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