
Magnetic oscillations in planar systems with the Dirac-like spectrum of quasiparticle excitations.
II. Transport properties

V. P. Gusynin1,* and S. G. Sharapov2,†

1Bogolyubov Institute for Theoretical Physics, Metrologicheskaya Str. 14-b, Kiev 03143, Ukraine
2Istituto Nazionale per la Fisica della Materia (INFM), Institute for Scientific Interchange, via Settimio Severo 65, I-10133 Torino, Italy

sReceived 3 December 2004; published 24 March 2005d

The quantum magnetic oscillations of electricalsShubnikov–de Haas effectd and thermal conductivities are
studied for graphene which represents a distinctive example of planar systems with a linear, Dirac-like spec-
trum of quasiparticle excitations. We show that if utmost care is taken to separate electron and phonon
contributions in the thermal conductivity, the oscillations of electron thermal conductivityksBd and Lorenz
number,LsBd would be observable in the low-fieldsless than a few teslasd regime.
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I. INTRODUCTION

There is a variety of condensed matters systems that in the
first approximation can be regarded as planar and which in
the low-energy sector can be described by the Dirac-like
form of the effective Hamiltonian. The difference in the be-
havior of the particles with the usual parabolic spectrum and
the linear, Dirac-like spectrum becomes particularly promi-
nent when an external quantizing magnetic fieldB is applied
perpendicularly to the plane. The energies of Landau levels
for free nonrelativistic electrons areEn=e"B/ smcdsn+ 1

2
d,

while for the “relativistic” problem

En = Îe"vF
2B2n/c, s1d

with n=0,1, . . . . Here e is the electron charge,m is the
effective mass of carriers in the parabolic band,vF is the
Fermi velocity of the system with linear dispersion, and we
wrote " andc explicitly; in the following sections we set"
=c=kB=1, unless stated explicitly otherwise.

The most important qualitative difference between these
two spectrums is that for the realistic values of the param-
etersm andvF rather weak fieldsB,10 T are sufficient to
drive “relativistic” systems in the extreme quantum regime1

causing such interesting phenomena as quantum magnetore-
sistance. Another qualitatively distinguishable feature of the
Dirac-like quasiparticles is an unusual form of the semiclas-
sical quantization condition for energy levels in the magnetic
field, Ssed=2peB/ s"cdsn+gd, whereS is the cross-sectional
area of the orbit ink space,n is a large integersn.0d, and
g is constants0øgø1d. For the parabolic dispersiong
=1/2, which is commonly used in describing magnetic os-
cillation sMOd phenomena in metals,2 so that the correspond-
ing Berry’s phaseg−1/2 is zero. However, for the Dirac
quasiparticles Berry’s phase is nontrivial3 and g=0, so that
the commonly used expressions2 have to be modified accord-
ingly. This was indeed obtained in our previous paper,4

where we have studied MO of the density of statessDOSd,
thermodynamic potential, and magnetization in QED2+1 with
the spectrums1d. We have also discussed the underlying con-
densed matter models and systems that in the low-energy
approximation are reduced to QED2+1 form. Among them is
graphite, which is probably the most promising and conve-
nient for experimental investigation of the ultraquantum re-

gime, when only a few lowest Landau levels are occupied.
This semimetal was originally studied almost 50 years ago,
and there was a considerable renewal of the interest in the
electronic properties of this material during the past decade
due to the discovery of novel carbon-based materials such as
carbon nanotubes constructed from wrapped graphene
sheets.5 While graphite itself is a three-dimensional material
in which planar sheets of carbon atoms are stacked, graphene
is an individual layer or sheet made from the carbon atoms.

The simplified QED2+1 description is obviously appropri-
ate for graphene. In Kish graphite the anisotropy of the re-
sistivity rc along thec-axis direction and the basal-plane
resistivity rb can berc/rb,102 and even as large asrc/rb
,53104 in highly oriented pyrolytic graphitesHOPGd,6 in-
dicating that the layers are weakly coupled. Therefore in the
first approximation, the QED2+1 description with some limi-
tations may also be used for graphite. Indeed, early theoret-
ical investigations of graphite show that while low-lying
Landau levels correspond to Eq.s1d, there are other levels
related to the warping of the graphite Fermi surface.7 Very
recent measurements of de Haas–van AlphensdHvAd and
Shubnikov–de HaassSdHd oscillations in HOPGsRef. 8d
sfor earlier literature see Refs. 9 and 10d confirm that among
other carriers in graphite there is a majority of holes with
two-dimensionals2Dd Dirac-like spectrum. The dependences
of the thermal and Hall conductivities on the applied mag-
netic field in HOPG were studied in Ref. 11 and more com-
prehensive data on thermal conductivity and the deviations
from the Wiedemann-FranzsWFd law were reported in Ref.
12. We mention also recent STS observations13 of Landau
levels at graphite surfaces. Finally we refer to monocrystal-
line graphitic films made by repeated peeling of small mesas
of HOPG.14 These films contain only a few layers of
graphene. The SdH oscillations are clearly observed in this
material14 and they depend only on the perpendicular com-
ponent of the applied magnetic field. This proves the 2D
nature of the material. Moreover, the carrier densitysand
even the character of carriers, either electrons or holesd in
this system is controllable by electric-field doping, so that
there are SdH oscillations with varying applied voltage.15

The purpose of the present paper is to extend the analysis
of our previous paper4 and study the MO of the electrical,
ssBd sSdH effectd, and thermalksBd conductivities. We dem-
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onstrate that since the field dependences ofssBd andksBd at
low but still finite temperatures are different, there is a vio-
lation of the WF law with observable oscillations of the Lo-
renz number

LsB,Td ;
ksB,Td

ssB,TdT
. s2d

We begin by presenting in Sec. II the model Lagrangian
describing Dirac quasiparticles in graphene. The general ex-
pressions for electrical and thermal conductivities are written
in terms of the same spectral functionAsBd and the thermal
conductivity is considered also including the thermal power
term. In Sec. III we analytically extract magnetic oscillations
contained in the spectral functionAsBd. In the Discussion,
Sec. IV, our final results are summarized and their applica-
bility for the graphite is considered.

II. MODEL AND GENERAL EXPRESSIONS FOR
ELECTRICAL AND THERMAL CONDUCTIVITIES

A. Model Lagrangian

The Lagrangian density of noninteracting quasiparticles in
a single graphene sheet in the continuum limit readsssee,
e.g., Refs. 16 and 17d

L0 = o
s=±1

vFCsst,r dF ig0s]t − imsd
vF

− ig1s]x− ieAxd

− ig2s]y − ieAydGCsst,r d, s3d

where the four-component Dirac spinorCs=sc1s ,c2sd is
combined from two spinorsc1s, c2s that describe the Bloch
states residing on the two different sublattices of the bipar-
ticle hexagonal lattice of the graphene sheet, ands= ±1 is
the spin. In Eq.s3d, Cs=Cs

†g0 is the Dirac-conjugated
spinor and 434 g matrices are eitherss3, is3,−is1d ^ s3

sRef. 18d or their unitary-equivalent representation can be
taken from Refs. 16 and 19.

Note that there is no principal difference between two-
band models for electron and holes discussed in Refs. 20 and
21 and a model with Dirac fermions, where these electron
and holes with identical velocities are built in the formalism.
There are, however, some cases like a double-resonant Ra-
man scattering in graphite,22 where the asymmetry between
the bonding,E=vF uk u, and antibonding,E=−vF8 uk u, bands in
graphite is essential, so that multiband models are more suit-
able.

Since the terms with]x,y in Eq. s3d originate from the
usual kinetic term of the tight-binding Hamiltonian, vector
potentialA is inserted in the Lagrangians3d using a minimal
coupling prescription. The vector potential for the external
magnetic fieldB perpendicular to the plane is taken in the
symmetric gauge

A = S−
B

2
x2,

B

2
x1D . s4d

Using for the value of the nearest-neighbor hopping matrix
element of graphitet,2.3 eV, we obtain the Fermi velocity

of vF<7.43105 m/s, and accordingly one can estimate
from Eq. s1d that E1,300 K3ÎB fTg.

Since the Lagrangians3d originates from nonrelativistic
many-body theory, the interaction of the spin degree of free-
dom with magnetic field

LB = mBBo
s=±

sCsst,r dg0Csst,r d s5d

has to be explicitly included by considering spin splitting
ms=m−smBB Ref. 2 of the chemical potentialm, where
mB=e" / s2mcd is the Bohr magneton. Note that the number
of spin components can be regarded as an additional adjust-
able flavor index of fermionss=1,… ,N and N=2 corre-
sponds to the physical case. The magnitude of the Zeeman
term depends on the ratiomB/kB.0.67 K T−1. This term, in
fact, has the same magnitude as the distance between Landau
levels in the nonrelativistic problem. Although we will in-
clude this term for completeness in the analytical expres-
sions, in the numerical calculations it can be safely neglected
because it is much smaller than estimated aboveE1.

To make the treatment more general, we also include a
masssgapd term

LD = o
s=±1

Csst,r dDCsst,r d, s6d

in the Lagrangians3d. For example, it is well known that an
external magnetic field is a strong catalyst in generating such
a gap for Dirac fermionssthe phenomenon of magnetic
catalysisd.23 Usually the opening of the gap marks an impor-
tant transition which occurs in the system. In particular, in
the case of pyrolytic graphite a poor screening of the Cou-
lomb interaction may lead to excitonic instability, resulting
in the opening of the gap in the electronic spectrum and
manifesting itself through the onset of an insulating charge
density wavessee, e.g., Refs. 18, 19, and 24d.

B. Electrical conductivity

The dc conductivity tensor can be found using Kubo
formula25

sij = − lim
V→0

ImPij
RsV + i0d

V
, s7d

wherePij
RsVd is the retarded current-current correlation func-

tion ssee, e.g., Refs. 19 and 26d

Pij
RsV + i0d =

e2vF
2

2 o
s
E

−`

`

dv1dv2

3
tanhfsv2 − msd/2Tg − tanhfsv1 − msd/2Tg

v1 − v2 + V + i0

3E d2k

s2pd2trfAsv1,kdgiAsv2,kdg jg. s8d

Here Asv ,kd is the spectral function associated with the
translationary-invariant part of the Green’s function of Dirac
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quasiparticles in an external magnetic field given by Eqs.
s3.3d ands3.6d of Ref. 4ssee also Refs. 19, 23, and 26d. Then
for the diagonal conductivitys=sxx=syy we have

s = pe2vF
2o

s
E d2k

s2pd2E
−`

`

dvf− nF8sv − msdg

3trfAsv,kdg1Asv,kdg1g, s9d

where −nF8sv−md=s1/4Tdcosh−2fsv−md /2Tg is the deriva-
tive of the Fermi distribution. Further details of calculation
of tr and the momentum integral in Eq.s9d were considered
in Refs. 19, 26, and 27, so here we write down a rather
simple final expression for the electrical conductivity in an
external magnetic field:

s = e2o
s
E

−`

` dv

4T cosh2v − ms

2T

Asv,B,G,Dd, s10d

where the function

Asv,B,G,Dd

=
1

p2

G2

seBd2 + s2vGd2

3 H2v2 +
sv2 + D2 + G2dseBd2 − 2v2sv2 − D2 + G2deB

sv2 − D2 − G2d2 + 4v2G2 U
−

vsv2 − D2 + G2d
G

ImcSD2 + G2 − v2 − 2ivG

2eB
DJ . s11d

Here, in order to consider the MO for a more realistic case,
we introduced the effect of quasiparticle scattering by mak-
ing d-like quasiparticle peaks associated with the Landau
levels Lorentzians with a constant energy-independent width
G ssee details in Ref. 4d. This approximation still allows us to
derive a rather simple analytical expression, Eq.s11d, where
c is the digamma function, which eventually results in a
Dingle factor in the expression for the amplitude of MO.

Note that in general one should consider dressed fermion
propagators that include the self-energySsvd due to the scat-
tering from impurities. Up to now the problem of scattering
from impurities in the presence of a magnetic field does not
have yet a satisfactory solution. Therefore, here we have
chosen the case of constant widthG=Gsv=0d=−ImSRsv
=0d=1/s2td, t being the mean free time of quasiparticles.

Such a Lorentzian broadening of Landau levels with a
constantG was found to be a rather good approximation
valid in not very strong magnetic fields.2,28 Definitely, the
treatment of disorder in the presence of the magnetic field in
such a simplified manner should be considered as only a first
step until further progress in this problem is achievedsin
connection with this, see Refs. 29 and 30d.

C. Thermal conductivity

The longitudinal thermal conductivity can also be calcu-
lated using a thermal Kubo formula25

ksB,Td
T

= −
1

T2 lim
V→0

ImPEE
R sV + i0d

V

−
1

T2s
lim
V→0

fImPEC
R sV + i0dg2

V2 . s12d

Here PEE
R sVd is the retarded longitudinal energy current-

current correlation function andPEC
R sVd is the retarded lon-

gitudinal correlation function of energy current with electri-
cal current and the expression for the energy current operator
is given in Refs. 26 and 27.

We note in passing that the second term of Eq.s12d is
related to the thermal power

S= −
1

T
lim
V→0

ImPEC
R sV + i0d

ImPRsV + i0d
, s13d

wherePRsV+ i0d=Pxx
R sV+ i0d=Pyy

R sV+ i0d. The presence of
the thermal power term in Eq.s12d ensures that the energy
current is evaluated under the condition of vanishing electri-
cal current.25

Similarly to the above-derived electrical conductivity we
finally arrive at

ksB,Td
T

= o
s
E

−`

`

dvSv − ms

T
D2 1

4T cosh2v − ms

2T

3 Asv,B,G,Dd −
e2

ssB,Td

3 3os
E

−`

`

dv
v − ms

T

1

4T cosh2v − ms

2T

Asv,B,G,Dd4
2

,

s14d

whereA is the same functions11d as for the electrical con-
ductivity. This function contains all information about the
field dependence of the transport properties of the systems
with a linear dispersion law, including the MO. While the
representations11d can already be used for numerical calcu-
lations, for analytical work it is useful to extract explicitly
the MO that are contained in the digamma functionc when
the real part of its argument becomes negative.

III. ANALYTICAL CONSIDERATION OF OSCILLATIONS

A. Extracting oscillations from A using c-function
properties

The oscillations ofA in 1/B can be extracted using the
relationship forc function,

cs− zd = cszd +
1

z
+ p cotpz, s15d

which fsee also Eq.s4.18d of Ref. 4g results in the expression
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cSD2 − se + iGd2

2eB
D

= cSD2 − se + iGd2

2eB
Dfuse2 − D2 − G2d + usD2 + G2 − e2dg

= RecS ue2 − D2 − G2u− 2ieG

2eB
D

− i sgnse2 − D2 − G2dImcS ue2 − D2 − G2u− 2ieG

2eB
D

+ use2 − D2 − G2dF 2eB

e2 − D2 − G2 + 2ieG

+ p cotp
e2 − D2 − G2 + 2ieG

2eB
G . s16d

Taking the imaginary part of the last equation, we obtain

ImcSD2 − sv + iGd2

2eB
D

= − sgnsv2 − D2 − G2dImcS uv2 − D2 − G2u− 2ivG

2eB
D

− usv2 − D2 − G2dF 4eBvG

sv2 − D2 − G2d2 + 4v2G2

+ p
sinhs2pvG/eBd

coshs2pvG/eBd − cosfpsv2 − D2 − G2d/eBgG .

s17d

Then substituting Eq.s17d in Eq. s11d we obtain

Asv,B,G,Dd

=
1

p2

G2

seBd2 + s2vGd2H2v2 +
seBd2/2

sv + Dd2 + G2

+
seBd2/2

sv − Dd2 + G2 −
2v2sv2 − D2 + G2deB

sv2 − D2 − G2d2 + 4v2G2

+
vsv2 − D2 + G2d

G
Fsgnsv2 − D2 − G2d

3 Imc
suv2 − D2 − G2u2ivGd

2eB

+ usv2 − D2 − G2dS 4eBvG

sv2 − D2 − G2d2 + 4v2G2

+ p
sinhs2pvG/eBd

coshs2pvG/eBd − cosfpsv2 − D2 − G2d/eBgDGJ ,

s18d

where the oscillations are contained in the last term of Eq.
s18d. Note that the real part of the argument ofc function in
Eq. s18d is already positive and the signs beforec in Eqs.
s11d and s18d are different.

For v2.D2+G2 using the relationship

Re
e−sa−ibd

1 − e−sa−ibd =
cosb − e−a

2scosha − cosbd
, s19d

one can expand

sinhs2puvuG/eBd
coshs2pvG/eBd − cosfpsv2 − D2 − G2d/eBg

= 1 + 2o
k=1

`

cosfpksv2 − D2 − G2d/eBgexps− 2pkuvuG/eBd

s20d

and finally arrive at the expression for oscillatory part ofA:

Aoscsv,B,G,Dd =
2

p

vGsv2 − D2 + G2dusv2 − D2 − G2d
seBd2 + s2vGd2

3 o
k=1

`

cos
pksv2 − D2 − G2d

eB

3expS−
2pkuvuG

eB
D . s21d

1. Low-field nonoscillatory limit

Equation.s18d can be simplified in the low-field limit:

Asv,B,G,Dd

=
1

2p2F1 −
v2 − D2 + G2

2uvuG
sgnsv2 − D2 − G2d

3arctan
2uvuG

uv2 − D2 − G2u
U + usv2 − D2 − G2d

3
psv2 − D2 + G2d

2vG

3
sinhs2pvG/eBd

coshs2pvG/eBd − cosfpsv2 − D2 − G2d/eBgG ,

s22d

where we keptB only in the oscillatory part ofA. For v2

,D2+G2 after using the relationship

arctanx =
p

2
− arctan

1

x
, x . 0, s23d

the last equation reduces tofsee also Eq.s4.16d of Ref. 26g

Asv,B = 0,G,Dd =
1

2p2F1 +
v2 − D2 + G2

2uvuG

3Sp

2
− arctan

D2 + G2 − v2

2uvuG DG .

s24d

B. Oscillating parts of electrical and thermal
conductivities

Substituting Eq.s21d in Eq. s10d one can obtain the ex-
pression for oscillating part of conductivity:
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sosc=
4e2umuG

p

sm2 − D2 + G2dusm2 − D2 − G2d
seBd2 + s2mGd2

3o
k=1

`

cosFpksm2 − D2 − G2d
eB

GRTsk,mdRDsk,md,

s25d

where we introduced thetemperature amplitudefactor

RTsk,md ; RTstkd =
tk

sinhtk
, tk =

2p2kTm

eB
fRTs0d = 1g,

s26d

and theDingle factor

RDsk,md = expF−
2pkumuG

eB
G . s27d

Deriving Eq. s25d we made the following simplifying as-
sumptions:sid Spin splitting is not included, andsii d the low-
temperatureT→0 limit is considered. Thus after making a
shift v→v+m and changing the variablev→2Tv, and
keeping only the linear inT terms in the oscillating part of
the integrand, we used the integral

E
0

`

dx
cosbx

cosh2x
=

pb/2

sinhpb/2
s28d

to obtain the temperature amplitude factors26d. It is essential
that in contrast to the the Dingle and temperature factors for
nonrelativisitic spectrum both Eqs.s26d and s27d factors for
the relativistic spectrum contain chemical potentialm ssee
also Ref. 4d. The distinctive concentration dependence ofRT
should be observed experimentally.

Similarly to Eq.s25d one arrives at the expression for the
oscillating part of thermal conductivitys14d:

kosc

T
=

4pumuG
3

sm2 − D2 + G2dusm2 − D2 − G2d
seBd2 + s2mGd2

3 o
k=1

`

cosFpksm2 − D2 − G2d
eB

GRT
hsk,mdRDsk,md,

s29d

where

RT
hstkd =

12

p2

d2RTstkd
dtk

2

=
6

sinhtk
Fcothtk −

tk
2

−
tk

sinh2tk
G fRT

hs0d = 1g

s30d

is the temperature amplitudefactor for thermal conductivity
obtained using the second derivative of the integrals28d. The
temperature amplitude factorsRTstd and RT

hstd are shown in

FIG. 1. sColor onlined The temperature amplitude factorsRTstd
andRT

hstd given by Eqs.s26d and s30d.

FIG. 2. sColor onlined The normalized conductivity
ssB,Td /ssB=0,Td as a function of fieldB for three different values
of temperatureT for m=600 K and G=1 K. We useeB→ s4.5
3104 K2dB sTd.

FIG. 3. sColor onlined The normalized thermal conductivity
ksB,Td /ksB=0,Td as a function of fieldB for three different values
of temperatureT for m=600 K and G=1 K. We useeB→ s4.5
3104 K2dB sTd.
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Fig. 1. Interestingly the dependenceRT
hstd is nonmonotonic

andRT
hstd even changes its sign.

IV. DISCUSSION

Based on Eqs.s10d ands14d in Figs. 2–5 we compute the
field dependences ofssB,Td /ssB=0,Td and ksB,Td /ksB
=0,Td and the normalized Lorenz numberLsB,Td /L0, where
L0=p2kB

2 / s3e2d is Sommerfeld’s value for the Lorenz ratio.
To simplify our consideration we setD=0, but it may be
necessary and quite interesting to consider the influence ofD
on MO; see Ref. 4. As mentioned above Eq.s6d, we also do

not include spin splitting. By analyzing these figures one can
conclude the following.

sid As usual, the conditions favorable for the magnetic
oscillations areG ,T!vL, wherevL,E1 is the distance be-
tween Landau levels. This regime is different from the re-
gime G!vL!T of an unconventional magnetotransport21

when MO’s are still not resolved due to the thermal smearing
of Landau levels.

sii d As the field increases fromB=0 both electrical and
thermal conductivities decrease rapidly and start to oscillate
when Landau levels cross the Fermi surface. The specific of
graphene is that for the realistic values of the parameters
there are only a few Landau levels below the Fermi surface.
As the fieldB increases, these levels quickly cross the Fermi
surface, and as one can see from Fig. 2 forB.4 T the low-
est Landau levelE1 is already above the Fermi surface so
that the MO’s disappear and the system can, in principle,
enter in the quantum Hall effect regime. Thus MO’s in
graphene witheB&m2 are quite different from the conven-
tional MO’s when there are so many Landau levels below the
Fermi surface thatvL!m and when a new level crosses the
Fermi surface the system returns practically in the same state
as before.

For Dirac fermions in order to have at least one oscillation
the inequalityfsee Eq.s8.20d of Ref. 4g m2−D2ù2eB have
to be satisfied, and analyzing the experimental data of Refs.
8 and 11 there is a temptation to distinguish there the regimes
of conventional MO’s and quantum Hall effect. However, the
real situation is more involved due to the difference between
the model for graphene with linearized spectrum and mea-
sured properties of bulk graphitessee also Ref. 13d. Never-
theless, observation of the plateaulike features in the Hall
resistivity for B*2 T sRef. 11d suggests that for these fields
the system is already in the quantum Hall effect regime.

siii d Comparing Figs. 2 and 3, one can see thatssBd and
ksBd do not oscillate in phase. In particular, we observe that
at T=28 K the oscillations ofssBd are practically invisible,
while one can still notice some oscillations ofksBd.

To look closer at the difference betweens andk in Fig. 4
we also plotted the thermal conductivityk0sB,Td calculated
without the second term of Eq.s12d. In normal metals this
second term is considered to be unimportant because usually
it is ,T2/m2 times less than the first term of Eq.s12d and
because the WF law is always considered in the limitT!m
this term is usually neglected.

sivd By comparing Figs. 2 and 4, it is easy to see that
each peak of the electrical conductivity is accompanied by
two satellite peaks of the thermal conductivity. The dip be-
tween these two peaks inksBd coincides with the peak of
ssBd. The origin of these satellite peaks is related to the fact
that the expression for the thermal conductivitys12d contains
the factor gsvd=−nF8sv−mdsv−md2/T2 and thus measures
Asv ,B,Gd below and above the Fermi energy, while the
electrical conductivity probesAsv ,B,Gd at the Fermi en-
ergy, because it contains just the factornF8svd ssee Ref. 31
and Figs. 12 and 13 of Ref. 26d.

svd Let us now compare Figs. 3 and 4. AtT=3 K each
double-peak structure observed in Fig. 4 is replaced by a
single broader peak in Fig. 3. This reflects the fact that the

FIG. 4. sColor onlined The normalized thermal conductivity
k0sB,Td /ksB=0,Td fcalculated without the second term of Eq.s12d
that originates from the condition of absence electrical current in
the systemg as a function of fieldB for three different values of
temperatureT for m=600 K and G=1 K. We use eB→ s4.5
3104K2dB sTd.

FIG. 5. sColor onlined The normalized Lorenz number
LsB,Td /L0 as a function of fieldB for three different values of
temperatureT for m=600 K and G=1 K. We use eB→ s4.5
3104 K2dB sTd.
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full expressions12d for ksBd,k0sBd−asBd /ssBd, so that if
the coefficientasBd is large enough, the peaks seen inssBd
also produce an increase ofksBd, so the dip between peaks in
ksBd is filled in and we observe a single broader peak.

For higher temperatures the role played by the second
term of Eq.s12d further increases andksBd andk0sBd behave
quite differently. Finally we observe the above-mentioned
picture when atT=28 K the oscillations ofssBd are damped.
One can still see some oscillations ofksBd, but the positions
of the peaks do not coincide with the positions of the peaks
in ssBd andksBd observed at lower temperatures.

svid The behavior of Lorenz number is shown in Fig. 5.
Since in the chosen temperature interval the inequalityT
!m is well justified, we observe that the WF law is main-
tained in zero fieldssee Ref. 26d. In nonzero field we observe
violations of the WF law that become stronger as the tem-
perature increases. AtT=3 K the behavior ofLsBd is similar
to the behavior ofk0sBd and two satellite peaks inLsBd are
related to the broad peak inksBd, while the dip between
these peaks is caused by the peak ofssBd. As the tempera-
ture increases, a more complicated behavior ofksBd results
in the large-amplitude oscillations ofLsBd. The positions of
the peaks are not related to the positions of low-T SdH os-
cillations. In the high-field regimeB.10 T there is a ten-
dency to the restoration of the WF law.

The above-presented picture is already quite complicated
due to the interplay between the first and second terms of Eq.
s12d so that in general there are no correlations between the
low-temperature SdH oscillations and oscillations inksBd
andLsBd seen at higher temperatures. Further complications
can be caused by the fact that the impurity scattering rateG
which we assumed to be field and temperature independent
may, in fact, depend on bothB andT.29,30

Let us now discuss the relation of the obtained theoretical
results to the experiments.8,11,12 To compare the results for
electrical conductivity shown in Fig. 2, one should bear in
mind the difference between graphene and graphite men-
tioned in item 2. In Ref. 8 the measurements were done at
T=2 K and the oscillations are clearly seen and some of
them, as stated in Ref. 8, are related to the quasiparticles with
a linear dispersion. It is likely that for higher temperatures
the oscillations ofssBd are suppressed11 and we also see that
at T=28 K the oscillations ofssBd are practically smeared
out.

A comparison with experimental results for thermal con-
ductivity is more complicated because the measured thermal
conductivitykexp sB,Td=ksB,Td+kphsB,Td besides the elec-
tron contribution,ksB,Td contains also the contribution from
phonons,kphsTd, which is assumed to be field independent.
Accordingly, we can relate theoretically calculated
ksB,Td /ksB=0,Td shown in Fig. 3 with the experimentally
accessible ratiokexp sB,Td /kexpsB=0,Td via

kexpt sB,Td
kexptsB = 0,Td

= 1 +
ksB,Td/ksB = 0,Td − 1

kphsTd/ksB = 0,Td + 1

< 1 +
ksB,Td/ksB = 0,Td − 1

sT/T0d2 + 1
. s31d

The last equality is written using that the ratiokphsTd /ksB
=0,Td can be determined from the fact that atT=T0

=1.5 K the valueskphsT0d,ksB=0,T0d,12 so that assuming
kphsTd,T3 and ksB=0,Td,T we estimate kphsTd /ksB
=0,Td,sT/T0d2.

The ratiokexpsB,Td /kexpsB=0,Td is plotted in Fig. 6. As
one can see the MO’s ofksB,Td are masked by the phonon
contribution in kexp sB,Td and only at rather low tempera-
tures is there a possibility to observe them. Moreover, since
the amplitude of MO’s is higher for lower fieldsssee also
Figs. 2–4d, the MO’s are more easily observable in the low-
field regime.

Taking these facts into account, let us discuss the oscilla-
tions of thermal conductivity that were experimentally ob-
served in Refs. 11 and 12 forB*2 Tesla. Since these oscil-
lations are clearly seen only in the high-field regime and
their amplitude increases as the field grows, their origin is
unlikely to be related to the conventional SdH-like MO’s and
seems to be more associated with the quantum Hall effect. It
would be interesting to check whether the conventional
MO’s of the electronic thermal conductivityksB,Td pre-
dicted in this paper can be also observed in graphite when
the measurements will be done at sufficiently low tempera-
tures and/or the phonon contribution is subtracted.
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FIG. 6. sColor onlined The normalized thermal conductivity
kexp sB,Td /kexp sB=0,Td fsee Eq.s31dg as a function of fieldB for
three different values of temperatureT for m=600 K andG=1 K.
We useeB→ s4.53104 K2dB sTd andT0=1.5 K.
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