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Magnetic oscillations in planar systems with the Dirac-like spectrum of quasiparticle excitations.
[I. Transport properties
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The quantum magnetic oscillations of electric@hubnikov—de Haas effgcand thermal conductivities are
studied for graphene which represents a distinctive example of planar systems with a linear, Dirac-like spec-
trum of quasiparticle excitations. We show that if utmost care is taken to separate electron and phonon
contributions in the thermal conductivity, the oscillations of electron thermal conduct(®y and Lorenz
number,L(B) would be observable in the low-fieléess than a few teslasegime.
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I. INTRODUCTION gime, when only a few lowest Landau levels are occupied.
There is a variety of condensed matters systems that in th-ghIS semimetal was originally studied almost 50 years ago,

. . . . .and there was a considerable renewal of the interest in the
first approximation can be regarded as planar and which i,

the low-eneray sector can be described by the Dirac-like lectronic properties of this material during the past decade
gy s L "¢ by Ihe due to the discovery of novel carbon-based materials such as
form of the effective Hamiltonian. The difference in the be-

havior of the particles with the usual parabolic spectrum and’ arbon nanotubes constructed from wrapped graphene
, parti P - SP . sheet$. While graphite itself is a three-dimensional material
the linear, Dirac-like spectrum becomes particularly promi-

nent when an external quantizing magnetic fiBlis applied in which planar sheets of carbon atoms are stacked, graphene

erpendicularly to the plane. The eneraies of Landau Ieveliss an individual layer or sheet made from the carbon atoms.
perp y P ' 9 The simplified QED,; description is obviously appropri-

. . . — l
for. free nonf‘elat|\(|s.t|<? "electrons arEn—eﬁB/(mc)(n+5), ate for graphene. In Kish graphite the anisotropy of the re-
while for the “relativistic” problem sistivity p, along thec-axis direction and the basal-plane

E, = \/ehv,Z:BZn/c, (1) resistivity_pb can bep_C/ pp~ 107 ano! even as large a@/ Po
. . _ ~5x 10%in highly oriented pyrolytic graphitéHOPG),% in-
with n=0,1,.... Here e is the electron chargen is the dicating that the layers are weakly coupled. Therefore in the

effective mass of carriers in the parabolic bang,is the  first approximation, the QER; description with some limi-
Fermi velocity of the system with linear dispersion, and wetations may also be used for graphite. Indeed, early theoret-
wrote # andc explicitly; in the following sections we séi ical investigations of graphite show that while low-lying
=c=kg=1, unless stated explicitly otherwise. Landau levels correspond to E(l), there are other levels
The most important qualitative difference between thesgelated to the warping of the graphite Fermi surfaséery
two spectrums is that for the realistic values of the paramrecent measurements of de Haas—van AlptaivA) and
etersm andvg rather weak field8~ 10 T are sufficient to  Shubnikov—de Haa$SdH) oscillations in HOPG(Ref. 8
drive “relativistic” systems in the extreme quantum regime (for earlier literature see Refs. 9 and)®nfirm that among
causing such interesting phenomena as quantum magnetoigher carriers in graphite there is a majority of holes with
sistance. Another qualitatively distinguishable feature of thawo-dimensional2D) Dirac-like spectrum. The dependences
Dirac-like quasiparticles is an unusual form of the semiclasof the thermal and Hall conductivities on the applied mag-
sical quantization condition for energy levels in the magnetimetic field in HOPG were studied in Ref. 11 and more com-
field, S(e)=2meB/(fic)(n+y), whereSis the cross-sectional prehensive data on thermal conductivity and the deviations
area of the orbit irk spacen is a large integetn>0), and  from the Wiedemann-Fran@VF) law were reported in Ref.
v is constant(0<y=<1). For the parabolic dispersioty = 12. We mention also recent STS observatldred Landau
=1/2, which is commonly used in describing magnetic os-levels at graphite surfaces. Finally we refer to monocrystal-
cillation (MO) phenomena in metafsso that the correspond- line graphitic films made by repeated peeling of small mesas
ing Berry’'s phasey-1/2 is zero. However, for the Dirac of HOPG?!* These films contain only a few layers of
quasiparticles Berry’s phase is nontrivigind y=0, so that graphene. The SdH oscillations are clearly observed in this
the commonly used expressidimave to be modified accord- materiat* and they depend only on the perpendicular com-
ingly. This was indeed obtained in our previous pdper, ponent of the applied magnetic field. This proves the 2D
where we have studied MO of the density of stae©9), nature of the material. Moreover, the carrier dengiynd
thermodynamic potential, and magnetization in QEDvith  even the character of carriers, either electrons or hates
the spectrunil). We have also discussed the underlying con-this system is controllable by electric-field doping, so that
densed matter models and systems that in the low-energhere are SdH oscillations with varying applied voltdge.
approximation are reduced to QED form. Among them is The purpose of the present paper is to extend the analysis
graphite, which is probably the most promising and conve-of our previous papérand study the MO of the electrical,
nient for experimental investigation of the ultraguantum re-o(B) (SdH effec}, and thermak(B) conductivities. We dem-
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onstrate that since the field dependences(@®) and«(B) at  of ve~7.4x10° m/s, and accordingly one can estimate
low but still finite temperatures are different, there is a vio-from Eq. (1) thatE; ~300 KX B [T].
lation of the WF law with observable oscillations of the Lo-  Since the Lagrangiaf3) originates from nonrelativistic

renz number many-body theory, the interaction of the spin degree of free-
dom with magnetic field
Lem=~BD )
, B O-(BaT)T . ‘CB = /‘LBBE U\P(r(t!r)ﬂyoq,lr(tl r) (5)
o=+

We begin by presenting in Sec. Il the model Lagrangian S o _ o
describing Dirac quasiparticles in graphene. The general exhas to be explicitly included by considering spin splitting
pressions for electrical and thermal conductivities are writterits=#~ougB Ref. 2 of the chemical potentigk, where
in terms of the same spectral functiot{B) and the thermal #s=¢fi/(2mc) is the Bohr magneton. Note that the number
conductivity is considered also including the thermal powerof Spin components can be regarded as an additional adjust-
term. In Sec. Il we analytically extract magnetic oscillations@ble flavor index of fermionsr=1,...,N and N=2 corre-
contained in the spectral functioA(B). In the Discussion, SPonds to the physical case. The magnitude of the Zeeman
Sec. IV, our final results are summarized and their applical€™m depends on the ratjog/kg=0.67 K T This term, in

bility for the graphite is considered. fact, has the same ma_g_nit_ude as the distance between L_andau
levels in the nonrelativistic problem. Although we will in-
Il. MODEL AND GENERAL EXPRESSIONS FOR clude this term for completeness in the analytical expres-
ELECTRICAL AND THERMAL CONDUCTIVITIES sions, in the numerical calculations it can be safely neglected

because it is much smaller than estimated ali®ye
To make the treatment more general, we also include a
The Lagrangian density of noninteracting quasiparticles irmass(gap term

a single graphene sheet in the continuum limit reés=s,

A. Model Lagrangian

e.g., Refs. 16 and 17 La= 2 W, tNAT(tr), (6)
o=%1
— Y0 im,) . : : .
Lo= > uF\Ifg(t,r){— — iy ieA) in the Lagrangian3). For example, it is well known that an
o=tl UF external magnetic field is a strong catalyst in generating such
a gap for Dirac fermionsthe phenomenon of magnetic
—iy(dy - ieAy)]\If(,(t,r), (3)  catalysi$.2® Usually the opening of the gap marks an impor-

tant transition which occurs in the system. In particular, in

where the four-component Dirac spindf,=(i,,,,) is the case of pyrolytic graphite a poor screening of the Cou-
combined from two spinors,,,, #,, that describe the Bloch lomb interaction may lead to excitonic instability, resulting
states residing on the two different sublattices of the biparin the opening of the gap in the electronic spectrum and
ticle hexagona| lattice of the graphene sheet, ardt1 is manifesting itself through the onset of an insulating Charge
the spin. In Eq.(3), ¥,=¥',? is the Dirac-conjugated density wave(see, e.g., Refs. 18, 19, and)24
spinor and 44 y matrices are eithetos,ios, o) ® 03
(Ref. 18 or their unitary-equivalent representation can be
taken from Refs. 16 and 19.

Note that there is no principal difference between two- The dc conductivity tensor can be found using Kubo
band models for electron and holes discussed in Refs. 20 arf@rmule?®
21 and a model with Dirac fermions, where these electron
and holes with identical velocities are built in the formalism. R .
There are, however, some cases like a double-resonant Ra- o = — lim ImIGHQ +10) (7)
man scattering in graphif@,where the asymmetry between ! Q-0 ’
the bondingE=v¢|k|, and antibondingE=-v|k|, bands in
graphite is essential, so that multiband models are more suiWhereHﬁ(Q) is the retarded current-current correlation func-
able. tion (see, e.g., Refs. 19 and 26

Since the terms withj,, in Eq. (3) originate from the 22 .
usual kinetic term of the tight-binding Hamiltonian, vector R ) = S UF
potentialA is inserted in the Lagrangia®) using a minimal @ +10)= = EU f_w Oy ooy
coupling prescription. The vector potential for the external

B. Electrical conductivity

magnetic fieldB perpendicular to the plane is taken in the xtani{(wz— M)I2T] = tanH (wq — w,)/2T]
symmetric gauge w;—wy+ O +i0
B B o’k
A= <‘ 2% EX1> : (4) X f Wtr[A(wlyk)')’iA(WZak)')’j]- (8)

Using for the value of the nearest-neighbor hopping matrixiere A(w,k) is the spectral function associated with the
element of graphite~ 2.3 eV, we obtain the Fermi velocity translationary-invariant part of the Green'’s function of Dirac
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quasiparticles in an external magnetic field given by Egs. x(B,T) 1 |mHEE(Q+i0)

(3.3) and(3.6) of Ref. 4(see also Refs. 19, 23, and)2®hen =-glim——
. o T T0—0 QO

for the diagonal conductivity=oy,= oy, we have

R H 2
1 [ImIELQ +i0)]

d2k o - =i (12)
o= wezv,%z J WJ dow[— n,’:(a) - 1yl T200—0 0?2
p 7)) . T
Here T1RL(Q) is the retarded longitudinal energy current-
Xt A(w,K) y1A(w,K) 71, (9 current correlation function andR () is the retarded lon-

, B _ . . gitudinal correlation function of energy current with electri-
where (- p)=(1/4T)cosh (0= u)/2T] is the deriva- .\ ¢irent and the expression for the energy current operator
tive of the Fermi distribution. Further details of calculation ;g given in Refs. 26 and 27.

of tr and the momentum integral in E(R) were considered We note in passing that the second term of EX®) is

in Refs. 19, 26, and 27, so here we write down a rathefg|ated to the thermal power

simple final expression for the electrical conductivity in an

external magnetic field: 1. |mHEC(Q+i0)

S=-=Ilim , 13
w do Ta—o ImIIR(Q +i0) (13
7= ezz;’ f_w L0 (,A(Q)’B’F’A)’ (10 wherellR(Q+i0) =II3(Q+i0) =11} (1 +i0). The presence of
4T cosh oT the thermal power term in Eq12) ensures that the energy
current is evaluated under the condition of vanishing electri-
where the function cal curreng®
Similarly to the above-derived electrical conductivity we
A(w,B,T",A) finally arrive at
I S S «(B,T)
7 (eB)? + (2wI")? 7
) oy @+ AZ+T2)(eB? - 20(o? - A%+ T%)eB Sl P P
(w2_A2_1'*2)2+4w21'*2 = w T 0 4
7o 4T cosh®——~
_ole?-8%+1?) (A2+F2—w2—2in) an OSTor
r 4 2eB '
X A(w,B,I",A) =

Here, in order to consider the MO for a more realistic case, o(B,T)
we introduced the effect of quasiparticle scattering by mak- c -, 1 2
X E dow
ld -0

ing &-like quasiparticle peaks associated with the Landau A(w,B,I'A) |,
levels Lorentzians with a constant energy-independent width
I' (see details in Ref.)4This approximation still allows us to
derive a rather simple analytical expression, 8d), where (14)
¢ is the digamma function, which eventually results in a
Dingle factor in the expression for the amplitude of MO. ~ Where A is the same functioiil1) as for the electrical con-
Note that in general one should consider dressed fermiofluctivity. This function contains all information about the
propagators that include the self-enebify») due to the scat- field dependence of the transport properties of the systems
tering from impurities. Up to now the problem of scattering With a linear dispersion law, including the MO. While the
from impurities in the presence of a magnetic field does nofepresentatioit1l) can already be used for numerical calcu-
have yet a satisfactory solution. Therefore, here we havéations, for analytical work it is useful to extract explicitly
chosen the case of constant widiheT'(w=0)=-Im3R(w the MO that are contained in the digamma functipmhen
=0)=1/(27), 7 being the mean free time of quasiparticles. (he real part of its argument becomes negative.
Such a Lorentzian broadening of Landau levels with a
constantl’ was found to be a rather good approximation |II. ANALYTICAL CONSIDERATION OF OSCILLATIONS
valid in not very strong magnetic fieldg® Definitely, the
treatment of disorder in the presence of the magnetic field in

4T cosh? e
2T

A. Extracting oscillations from A using #-function

such a simplified manner should be considered as only a first properties
step until further progress in this problem is achieved The oscillations of4 in 1/B can be extracted using the
connection with this, see Refs. 29 and).30 relationship fory function,
C. Thermal conductivity W(=2)=i(2) + 1 + T cotmz, (15
z
The longitudinal thermal conductivity can also be calcu-
lated using a thermal Kubo formifa which[see also Eq4.18 of Ref. 4] results in the expression
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(Az—(e+if)2)
4 2eB
_ [A%—(e+iD)?
_l'b( 2eB
(|62—A2—r2|— ZiGF)
:Raﬂ

)[9(62— A2-T?)+ 6A2+ T2~ &)]

2eB

€-A>-T?-2iel
-i sgdez—Az—Fz)lmzﬁ(' 2eB| )
2eB
€-A>-T?+ 2l
eZ—AZ—F2+2ieF]
2eB '

+ G(eZ—AZ—FZ)[

+ T Cotm (16)

Taking the imaginary part of the last equation, we obtain

AZ—(w+iF)2)

lml//( 2eB

2- A2-T?- 26l
:—sgr(wz—Az—Fz)lm¢(|w | Iw)

2eB
4eBwl’
(02— A2-T2)2 + 40T2
“n sinh(27wl'/eB) ]
cosi2mwl/eB) - cog m(w? - A2 -T?)/eB]
(17)

- f(w? - A%~ I‘Z){

Then substituting Eq17) in Eq. (11) we obtain

A(w,B,T",A)
1o {2 ..
T 2(eB2+ (202 | Y T (0+ A2+ T2
(eB)?/2 20%(w? - A?+T?)eB
(0=-A)2+T2 (02— A2=T?)2+ 4022
, 0(0?=A2+T?)
T
(|w? - A?-T?|2iwl)
2eB

(eB)?/2

{sgr(w2 -A%2-T?

X Imy

4eBol’
(02— A2-T2)2 + 42I2
. sinh(27wl'/eB) )] }
cosh27wl'/eB) — co§ m(w? — A% - T?)/eB] '
(18)

+ 60— A2 - F2)(

PHYSICAL REVIEW Br1, 125124(2005

g (aib) cosh-¢e?

e H = 1
1-e@®  2(cosha- cosh)

R (19

one can expand

sinh(27|w|T/eB)
cosh(2rwl'/eB) - cos[m(w? — A2 -T?)/eB]

=1+ 2, cos[ mk(w? — A2 - T'?)/eBlexp (- 27k|w|T/eB)
k=1

(20
and finally arrive at the expression for oscillatory part4f

2 ol(0? - A2+T?)0(w? - A*-T?)
Aosdw,B.LLA) = (eB? + (20T)?

mk(w? - A2-T?)
eB

27k|w|T
xexp| - — o ).

X > cos
k=1

(21)

1. Low-field nonoscillatory limit
Equation.(18) can be simplified in the low-field limit:
A(w,B,T",A)

1 w? = A%+
o { L=
Xarcta 2lll
w?-A%2-T?
« m(w? = A%+T?)
20T

sgnw?-A%2-T?)

+0(w® - A%-T?)

« sinh(27wl'/eB)
cosh(2rwI/eB) - cos[m(w? - A2-T?)/eB] |’
(22)

where we kepB only in the oscillatory part ofd. For w?
< A?+T? after using the relationship

T 1
arctarx = re arctan—x, x>0, (23

the last equation reduces fteee also Eq(4.16 of Ref. 26|

A(@B=0T.A) = —|1 o = AP+T7
@ETLA TR 2lo|T

(7T 2 2 _ (1)2)
X|z—arctan————— | |-
2 2|w|l

(24)

where the oscillations are contained in the last term of Eq.

(18). Note that the real part of the argumentgfunction in
Eq. (18) is already positive and the signs befagein Egs.
(11) and (18) are different.

For w?>> A?+I? using the relationship

B. Oscillating parts of electrical and thermal
conductivities

Substituting Eq(21) in Eq. (10) one can obtain the ex-
pression for oscillating part of conductivity:
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FIG. 1. (Color onling The temperature amplitude factdrs(t)
andRi(t) given by Eqs(26) and (30).

_ 4T (42 - A2+ T 042 - A2~ T?)

Tosc= " 1 (eB2+ (2ul)?
. mk(u? - A2-T?)
xEcos{“— Rr(k, wRo(k, ),
k=1 eB
(25
where we introduced theemperature amplitudéctor
ty 27k T
Rr(k, ) = Ry(ty) = ——, = R:(0) = 1],
(K, 1) () sinh, k eB [Rr(0) ]
(26)
and theDingle factor
27k u|l
Ro(k, 1) = exp " e | (27)

Deriving Eq. (25 we made the following simplifying as-
sumptions{i) Spin splitting is not included, ang@i) the low-
temperaturel — 0 limit is considered. Thus after making a
shift w— w+x and changing the variable —2Tw, and
keeping only the linear i terms in the oscillating part of
the integrand, we used the integral

[
0

to obtain the temperature amplitude fact®6). It is essential

_cosbx _ @b/2
“cosRx ~ sinhmb/2

(28)

that in contrast to the the Dingle and temperature factors for

nonrelativisitic spectrum both Eq&6) and (27) factors for
the relativistic spectrum contain chemical poteniial(see
also Ref. 4. The distinctive concentration dependenceref
should be observed experimentally.

PHYSICAL REVIEW B 71, 125124(2005

0.005 ——-T=3K
0.004 _ ©=600 K
T=6K "1 1k
b 0.003 — - T=28K
0.002
0.001
0
0 1 2 3 4 5 6
B [Tesla]
FIG. 2. (Color online The normalized conductivity

o(B,T)/o(B=0,T) as a function of field for three different values
of temperatureT for ©x=600 K andI'=1 K. We useeB— (4.5
X 104 K2)B (T).

Kose_ AmlulT (u? = A2+ T?) 6(u? = A2 - T?)

T 3 (eB?+ (2ul)?
* 2_AN2_T1T2
x> COS{M} Rk, w)Ro (K, ),
k=1 eB
(29)
where
12 d%R(t
R?(tk):?%
k
__6 bt hio) =
~ sinht, cot 2 sinkft, [Rr(0)=1]
(30)

is thetemperature amplitudéactor for thermal conductivity
obtained using the second derivative of the inte¢28). The
temperature amplitude factoR(t) and R?(t) are shown in

0.00175
0.0015
0.00125
0.001
0.00075
0.0005
0.00025

0

B [Tesla]

FIG. 3. (Color onlin@ The normalized thermal conductivity
«(B,T)/k(B=0,T) as a function of field for three different values

Similarly to Eq.(25) one arrives at the expression for the of temperatureT for ©=600 K andT'=1 K. We useeB— (4.5

oscillating part of thermal conductivit{l4):

X 10* K2)B (T).
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0.004

0.003

x* 0.002

0.001

FIG. 4. (Color online The normalized thermal conductivity
ko(B,T)/ k(B=0,T) [calculated without the second term of Ej2)

B [Tesla]
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not include spin splitting. By analyzing these figures one can
conclude the following.

(i) As usual, the conditions favorable for the magnetic
oscillations ard”, T<w,, wherew, ~E; is the distance be-
tween Landau levels. This regime is different from the re-
gime I'<w_ <T of an unconventional magnetotransgbrt
when MO'’s are still not resolved due to the thermal smearing
of Landau levels.

(i) As the field increases froB=0 both electrical and
thermal conductivities decrease rapidly and start to oscillate
when Landau levels cross the Fermi surface. The specific of
graphene is that for the realistic values of the parameters
there are only a few Landau levels below the Fermi surface.
As the fieldB increases, these levels quickly cross the Fermi
surface, and as one can see from Fig. 2Bor4 T the low-
est Landau leveE, is already above the Fermi surface so
that the MO’s disappear and the system can, in principle,

that originates from the condition of absence electrical current irenter in the quantum Hall effect regime. Thus MO’s in

the systemhas a function of fieldB for three different values of
temperatureT for ©=600 K and I'=1 K. We use eB— (4.5

X 10°K2)B (T).

Fig. 1. Interestingly the dependen@(t) iS nonmonotonic

and R?(t) even changes its sign.

Based on Eq9.10) and(14) in Figs. 2-5 we compute the
field dependences o&(B,T)/o(B=0,T) and «(B,T)/«(B
=0,T) and the normalized Lorenz numhbeiB,T)/L,, where
Lo=7?k3/(3¢?) is Sommerfeld’s value for the Lorenz ratio.
To simplify our consideration we se¥=0, but it may be
necessary and quite interesting to consider the influende of
on MO; see Ref. 4. As mentioned above E), we also do

IV. DISCUSSION

——-T=3K
—— T=6K
6 1=600 K | —-—- T=25K
r=1K
5

e

FIG. 5. (Color online The normalized Lorenz number
L(B,T)/Ly as a function of fieldB for three different values of
temperatureT for w=600K and I'=1 K. We use eB— (4.5
X 10* K2)B (T).

2 4 6 8 10
B [Tesla]

graphene witheB=< u? are quite different from the conven-
tional MO’s when there are so many Landau levels below the
Fermi surface thaty, <u and when a new level crosses the
Fermi surface the system returns practically in the same state
as before.

For Dirac fermions in order to have at least one oscillation
the inequality[see Eq.(8.20 of Ref. 4] u?-A?=2eB have
to be satisfied, and analyzing the experimental data of Refs.
8 and 11 there is a temptation to distinguish there the regimes
of conventional MO’s and quantum Hall effect. However, the
real situation is more involved due to the difference between
the model for graphene with linearized spectrum and mea-
sured properties of bulk graphiteee also Ref. 13 Never-
theless, observation of the plateaulike features in the Hall
resistivity forB=2 T (Ref. 11 suggests that for these fields
the system is already in the quantum Hall effect regime.

(i) Comparing Figs. 2 and 3, one can see thd) and
x(B) do not oscillate in phase. In particular, we observe that
at T=28 K the oscillations ofr(B) are practically invisible,
while one can still notice some oscillations &fB).

To look closer at the difference betweerand« in Fig. 4
we also plotted the thermal conductivigg(B,T) calculated
without the second term of Eq12). In normal metals this
second term is considered to be unimportant because usually
it is ~T2/u? times less than the first term of E(L2) and
because the WF law is always considered in the lim#u
this term is usually neglected.

(iv) By comparing Figs. 2 and 4, it is easy to see that
each peak of the electrical conductivity is accompanied by
two satellite peaks of the thermal conductivity. The dip be-
tween these two peaks ik(B) coincides with the peak of
o(B). The origin of these satellite peaks is related to the fact
that the expression for the thermal conductiyity) contains
the factor g(w)=-n{(w-pu)(w=-w)?/T? and thus measures
A(w,B,I") below and above the Fermi energy, while the
electrical conductivity probesA(w,B,I") at the Fermi en-
ergy, because it contains just the factgfw) (see Ref. 31
and Figs. 12 and 13 of Ref. 26

(v) Let us now compare Figs. 3 and 4. A3 K each
double-peak structure observed in Fig. 4 is replaced by a
single broader peak in Fig. 3. This reflects the fact that the

125124-6



MAGNETICOSCILLATIONS IN PLANAR SYSTEMS... PHYSICAL REVIEW B 71, 125124(2005

full expression(12) for «(B) ~ xy(B)—a(B)/o(B), so that if
the coefficienta(B) is large enough, the peaks seenvifB)
also produce an increase &(fB), so the dip between peaks in
«(B) is filled in and we observe a single broader peak.

For higher temperatures the role played by the second
term of Eq.(12) further increases andB) and x(B) behave
quite differently. Finally we observe the above-mentioned
picture when af=28 K the oscillations ofr(B) are damped.

One can still see some oscillations ©B), but the positions 02 A A A m
of the peaks do not coincide with the positions of the peaks
. 0
in o(B) and x(B) observed at lower temperatures. 0 ] 5 3 4 5 6
(vi) The behavior of Lorenz number is shown in Fig. 5. B [Tesla|

Since in the chosen temperature interval the inequdiity

<u is well justified, we observe that the WF law is main-  FIG. 6. (Color onling The normalized thermal conductivity
tained in zero fieldsee Ref. 28 In nonzero field we observe ke, (B, T)/ kexp (B=0,T) [see Eq(31)] as a function of field for
violations of the WF law that become stronger as the temthree different values of temperatufefor =600 K andl'=1 K.
perature increases. At=3 K the behavior of.(B) is similar ~ We useeB— (4.5x 10 K?)B (T) andTy=1.5 K.

to the behavior of(B) and two satellite peaks ib(B) are

related to the broad peak ir(B), while the dip between Kexpt (B, T) +K(B,T)/K(B:O,T)—l

these peaks is caused by the pealos(). As the tempera- Kexp{B=0,T) - kpn(T/k(B=0,T) +1

ture increases, a more complicated behaviok(@) results

in the large-amplitude oscillations &fB). The positions of ~14 (B T/x(B=0T) -1 (31)
the peaks are not related to the positions of V8dH os- (TTY*+1

cillations. In the high-field regim@&>10 T there is a ten-

dency to the restoration of the WF law. The last equality is written using that the ratigy(T)/ (B

The above-presented picture is already quite complicated0,T) can be determined from the fact that &ET,
due to the interplay between the first and second terms of Eg:1.5 K the values<,(To) ~ «(B=0,Ty),*? so that assuming
(12) so that in general there are no correlations between the,(T)~T* and «(B=0,T)~T we estimate «,(T)/«(B
low-temperature SdH oscillations and oscillations«fB)  =0,T)~ (T/Ty)?.
andL(B) seen at higher temperatures. Further complications The ratio ke,y(B, T)/ kexg(B=0,T) is plotted in Fig. 6. As
can be caused by the fact that the impurity scatteringlfate one can see the MO’s of(B,T) are masked by the phonon
which we assumed to be field and temperature independegbntribution in Kexp (B, T) and only at rather low tempera-
may, in fact, depend on botd and T.29-3 tures is there a possibility to observe them. Moreover, since
Let us now discuss the relation of the obtained theoreticajhe amplitude of MO's is higher for lower fieldsee also
results to the experiments!'?To compare the results for Figs. 2—4, the MO’s are more easily observable in the low-
electrical conductivity shown in Fig. 2, one should bear infig|d regime.
mind the difference between graphene and graphite men- Taking these facts into account, let us discuss the oscilla-
tioned in item 2. In Ref. 8 the measurements were done ajons of thermal conductivity that were experimentally ob-
T=2 K and the oscillations are clearly seen and some oferved in Refs. 11 and 12 f@&=2 Tesla. Since these oscil-
them, as stated in Ref. 8, are related to the quasiparticles witations are clearly seen only in the high-field regime and
a linear dispersion. It is likely that for higher temperaturestheir amplitude increases as the field grows, their origin is
the oscillations ofr(B) are suppressétland we also see that unlikely to be related to the conventional SdH-like MO’s and
at T=28 K the oscillations oir(B) are practically smeared seems to be more associated with the quantum Hall effect. It
out. would be interesting to check whether the conventional
A comparison with experimental results for thermal con-MQ’s of the electronic thermal conductivity(B,T) pre-
ductivity is more complicated because the measured thermalicted in this paper can be also observed in graphite when
conductivity ke, (B, T)=«(B, T) + ,n(B, T) besides the elec- the measurements will be done at sufficiently low tempera-
tron contribution«(B, T) contains also the contribution from tures and/or the phonon contribution is subtracted.
phonons,k,(T), which is assumed to be field independent.
Accordingly, we can relate theoretically calculated ACKNOWLEDGMENT
«(B,T)/k(B=0,T) shown in Fig. 3 with the experimentally We gratefully acknowledge P. Esquinazi and A. Geim for
accessible ratitg,, (B, T)/ kexy(B=0,T) via helpful discussions.
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