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Localization of Wannier functions for entangled energy bands
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A method for the localization of crystalline orbitals for entangled energy bands is proposed. It is an exten-
sion of the Wannier-Boys algorithi€©. M. Zicovich-Wilson, R. Dovesi, and V. R. Saunders, J. Chem. Phys.,
115 9708(2001)] which is particularly well suited for linear combination of atomic orbital representations of
the Bloch waves. It allows the inclusion of additional bands during the optimization of the unitary hybridiza-
tion matrix used in the multiband Wannier transformation. By a projection technique, the proper chemical
character is extracted from the Bloch waves and compact localized orbitals are obtained even for entangled
bands. The performance of our projective Wannier—Boys localization is demonstrated on the low-lying unoc-
cupied bands of trans-polyacetylene, diamond, and silicon.7Tbands of graphene are discussed as well.
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[. INTRODUCTION original scheme, the new method is especially designed for a
plane wave representation of the BWs and heavily relies on
Localization of Wannier function§WFs) has attracted numericalk-space differentiations.

great attention of scientists in recent years. Despite the suc- In this paper, we propose a similar extension for the
cess of describing most of the physical phenomena in cryswannier-Boys (WB) localization scheme developed by
tals in terms of Bloch wave$BWs), WFs (Ref. 1) have  Zicovich-Wilsonet al!® This scheme differs in many aspects
obvious advantages. To mention a few: WFs provide &rom the algorithm proposed by Marzat al® In particular,
chemically intuitive picture of the electronic structure in it is much better suited for BWs given in a linear combina-
crystals, using localized WFs, physical quantities such as etfion of atomic orbitaLCAO) representation as employed in
fective Born charges and spontaneous polarization can b@any widely used program packages for periodic systems
evaluated in a very simple way} and they play a central such as CRYSTAL,2* GAUSSIANZ?® DMmoL® (Ref. 26,
role in many post-Hartree-Fock electron correlationNFP-LMTO,2” or ADF-BAND.28:29
methods~® In fact, orbital localization schemes, both for  In Sec. Il, the details of our algorithm are described.
solids and molecules, have a long tradition as can be seemhen, in Sec. lll, the results from the localization are pre-
for example, from Refs. 10 and 11; two of the early keysented fortrans-polyacetylendt-PA), diamond, and silicon,

references. and some concluding remarks are drawn in Sec. IV.
Several rigorous procedures for the localization of WFs
have been proposed so far. They fall into two categories, Il. THE LOCALIZATION PROCEDURE

those which are based on the variational princigi€, and o

those which are an extension of the Foster-Boys localization The projective WB scheme we want to present here sets
criteriont*15for periodic system&-1°For the latter class, it OUt from the original WB localization procedure which is

is important to find a rigorous way of defining the expecta-discussed in detail in Ref. 19. Like all localization schemes
tion value(r) of the position operator for periodic systems fpr composite bands, it relies on the initial speC|f'|cat|on of a
which is by no means trivi@® All of these localization fixed set of energy bands. These bands determine the space
methods can only be applied to isolated band complexes, i.e‘?,f the Bloch funct_lons which are a_lllowed to participate in the

a group of bands which are separated from the other pandBultiband Wannier transformation, the so-called active
by an energy gap over thentire Brillouin zone. This restric- SPace. For example, the valence bands of a system can be
tion appreciably confines the possible applications of thos&€h0Sen as such a set of bands. The WB algorithm is a com-
methods and only a limited number of systems can pdination of two steps: The so-called “Wannierization” and a
treated. In particular, the energy bands of the unoccupieEOS'[er'BOYS localization of the obta_uned WFs within the ref-
Bloch waves usually do not exhibit any such band gaps€rence unit cell. Recently, the algorithm has been extended to
Thus, none of the localization schemes developed so far cpperate with a multicell Foster-Boys localization to better

be applied routinely to selectively generate virtual WFs adreserve the Space group symmetry of the system under
needed, for instances, in our wave-function-based pos@ons'derat'Oﬁ-

Hartree-Fock correlation methods for valermed conduc- The Wannierization step starts from a set of trial WFs
tion bandg?122 w(so)(r) in LCAO representation
Recently, Souzaet al?® have extended the original
’ ) O)(p) = R e —
Marzari-Vanderbilt localization schertfeto systems with en- wg" (1) = ER CpsPulr =S, ~R). (1)
My

tangled bands. The method is based on a preselection of
optimal Bloch waves having maximal similarity at neighbor- We follow the notation from Ref. 19 here. Thysruns over
ing k points by minimizing a suitable functional. Like the all atomic basis functiong,(r—s,) in the reference unit cell,
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s, denotes their centers, afdruns over all lattice vectors of projected functiongg, are those functions in the active space
the underlying Bravais lattice. To reduce the spatial extent ofvhich resemble the initial model BW&, the most. They
each of these WFs, the orbital coefficienfs are set to zero span theN-dimensional subspace used in the subsequent
for all sites s,+R at which the atomic Mulliken Wannier transformation. In this sense, the procedure outlined
populationg!32 of the given WF falls below a certain thresh- here is very similar to the one proposed by Soatral?® In
old (for details, see Ref. 19The WFs obtained this way, the particular, our extended projection step during the Wanner-
so-called “model functions!® are transformed tdk space, ization can be regarded as an analog to the band preselection
projected onto the active space spanned by the selected BWs&sheme used in their method.
orthonormalized again, transformed back to real space, and For convenience, the projectel-space transformed
moved back into the reference unit c@fl necessary The  model functionsé), are subject to a symmetric or Lowdin
resulting (real) WFs , then enter the Foster-Boys step, orthonormalizatior?? resulting in a set of orthonormal BWs
where they are subject to an orthogonal transformation & which—after a band-by-band Wannier transformation—
yield the WFswg we are looking for. That means, the ulti-
mate orthonormal Bloch wave&§, can be understood as the

1) - (1)
s gl @ Ots ) k space transforms of the generated Wannier functians
that minimizes the spread[{w_"}] given by the functional &u(n) = % éRayr-R). (6)
N - . - - .
wd]=S (0dr]wy - (odrlwd?). 3) As for any kind of hybrid orbitals, the orbital energies
& = (€l Fl&go (7)

Here,N is the number of energy bands involved in the local-of the orthonormalized projected model BWs have little in

ization. Finally, the optimized functions” are used as new common with the canonical band energieg they originate
(orthonormal trial functions for the Wannlenzatlon and the from. Even the well-known sum rule

whole procedure is repeated until convergence is reached. N

The discarding of orbital coefficients and the subsequent pro- E n o i

jection onto the active space is the crucial part of the WB & Enk

algorithm. It is combined with a Foster-Boys localization to

ensure localization of the WFs algusidethe unit cells. does not hold anymore, if the numhég of selected BWSs is
The described algorithm performs well for isolated bandlarger than the numbeX of WFs. Yet, by diagonalizing the

complexes. In the case of entangled bands, however, the sgdbblock

lection of proper bands to set up a suitable active space be- (K) = (£ |F| &l (9)

comes problematic. Avoided and symmetry-allowed cross- st sit 15tk

ings between the energy bands in mind and other disturbingf the Fock operatorF of the system, or—which is

energy bands occur, and the orbital character we are lookingquivalent—the Wannier representation

for is spread over several BWs which in turn exhibits more

or Iesspstrong admixtures from other contaminating orbitals. Fst(R) = (wn)|Flax(r = R)), (10

To overcome these difficulties, we give up the concept of aN new, so-called disentangled energy bargsare obtained.

rigid active space, abandon the constraint that the number af/here the contamination of the canonical BWs with orbitals

selected BWs pek point has to coincide with the numbBr  of wrong character is small, the disentangled bands will es-

of Wannier functions per unit cell, and allow additional BWs sentially coincide with the canonical ones. Close to band

to be included in the active space at e&choint. crossings, where the contamination is larger, they will devi-
The selection of an appropriakedimensional active sub- ate substantially from the canonical bands in order to be able

space is then done in the projection step during the Wannieto follow the chemical nature of the underlying BWs. By this

(8

ization. To this end, the “model BWs” focus on the chemical character of the disentangled bands, an
KR effectivelyisolated complex oN bands is formed with none
() = % eTE(r-R), (4)  of the bands showing any kinks and corfese Sec. Il for

more details The associated eigenvectors Ff(k) can be
which are thek-space transforms of the model functions regarded as a sort of optimal BW hybrids with minimal or-

&4(r), are projected onto the active space via bital contamination and vanishing off-diagonal terms in the
N Fock operator. We will refer to these hybrids as disentangled
;o _ BWs.
S = gll/’”k<‘!’“k|§5k> fors=1,...N ®) The WFswg provide a local representation of precisely

these disentangled BWSs, and the corresponding representa-
with the numberN, of selected BWsy,,, at eachk point  tion F¢(R) of the Fock operator of the system can be under-
being at least as large as the number of WFs per unit celktood as an effective tight-binding or Hickedlescription of
The matricesU k) =(¢nk|és) showing up here establish a the electronic structure of the system with special emphasize
generalization of the unitary hybridization matrices used inon a particular type of orbitalcharacterized by the active
conventional multiband Wannier transformatidgAghe new  space and the initial set of model functions
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10 and carbor{without f functiong are used, the bond distances
are d(C—C)=1.45A, d(C=C)=1.36 A, and d(C—H)
=1.09 A, and the bond angles are(C—C=C)=121.7°
and / (C—C—H)=118.2°. Two different geometries are
considered, flat-PA (the experimental structurend a dis-
torted configuration with the hydrogens being bent out of
plane by 20° in such a way that the inversion symmetry of
the polymer is preserved. The Brillouin zone is sampled by a
r « X uniform grid of 100k points.

The first three virtual bands are selected for the disen-

FIG. 1. Virtual Hartree-Fock bands 6fPA in the energy range tanglement(Fig. 1). One is am’ band formed by &=C m

from 0 to 10 eV calculated with a cc-pVTZ basis ¢ste Ref. 3y antibonds, the other two are ef symmetry and describe
C-H antibondgnot C—Co antibonds, as one might think at

. . . . first glance. For the flat polymer, the symmetry separation is
The canonical BWS ¢, to be included in the active erfgct, for the distortedpst)r/ucture sorr¥e mixtalre bpetween the
space, can be selected in various ways, for example, by anqg 7 bonds occurs. Nevertheless, the two types of BWs
specifying an energy window and taking all BWs whoseremain quite different in their orbital character which should
band energiesy fall into this window. Alternatively, a so-  facilitate the band disentanglement significantly. In this
called “energy tube” around a given pair of reference bandsense, our first system very much resembles the one chosen

(n,n) may be used, i.e., all BWs with band energies by Souzaet al?® They used copper which exhibitsdaband
manifold which is entangled with a sing#p valence band.
enk € (2o~ & 8k + 2] (11) Of course, fott-PA, one could localize the virtual BWs by

are considered whereands are some user-specified energy Means of the original WB algorithm. But what we want to
demonstrate here is that it is also possible to localizerthe

tolerances. . " .
We have implemented the above projection and rediago@nd" bandsseparately We first consider the fla&tPA chain.

nalization scheme as an extension to the original WB localll that case, the BWs come in two different symmetries and
ization routine in thecRvSTAL 200x code® a precursor of the disentanglement could simply be achieved by a proper
the most recent public version of therySTAL program labeling of the energy bands and the associated BWs. Yet,

packagé® Its ability to disentangle energy bands properIyS”Ch symmetry classifications are hard to implement in lo-

will be demonstrated in Sec. Il where our method is applied-@/ization schemes for periodic systems, and thus usually not
to the virtual bands of-PA. diamond and silicon. exploited. Our band disentanglement algorithm, however, is

able to recognize the different symmetries and to separate the
bands properly.
IIl. RESULTS AND DISCUSSION As an initial guess for ther-type WFs, antiphase linear

All band structures shown here are calculated on th&°mbinations of p, atomic orbitals at neighboring carbon
Hartree-Fock level of theory. The periodib initio program ~ atoms are used. For thetype WFs, antibonding linear com-

packagecRYSTAL (version 2005 is used for that purpose. bingtions of 3p hybrid orbitals on carbon ands]atc_)mic _
The localization of the WFs is performed a posteriori with orbitals on hydrogen are constructed. Because of this choice,

the WB algorithni® as implemented itRYSTAL 200x (Ref.  the hybridization matricesJ,(k) become 31 and 3x<2
35) in conjunction with our extension for entangled bandsmMatrices, respectively, with a maximum-rank subblock and
which has been built into this version oRYSTAL. all other entries being exactly zero, as is confirmed numeri-

In all cases, we focus on the first few low-lying virtual C&llY- _ _ .
bands of the systems. Because of the larger extent of the AS S€en in the upper panel of Fig. 2, where the canonical
localized virtual Wannier functions compared to the occupied?@nd energies:,. are compared to the disentangled band
ones, the former WFs are quite sensitive to the numbér of €Nergies g, our band disentanglement procedure is per-
points in the Monkhorst-Pack gri.We chose sufficiently fectly able to describe either the or the o orbitals alone.

fine grids to remove any ambiguities resulting from the dis-1h€ €rossing of ther bands on the left-hand side is an
cretek-space integration. avoided ongbecause of the lack of any extra symmetry in

the small point group of thé points inside the Brillouin
zone. The apparently extremely weak coupling of the two
bands is due to “soft symmetry selection rulé$.That
trans-polyacetylene;—[HC=CH]..—, suits perfectly as means, the impact of the C—C bond length alternation in
an illustrative example for band disentanglement, because, iPA on the C—H antibond dominated bands is so small
the basis set employed here, it exhibits three low-lying enthat they essentially behave as if there would exist an addi-
tangled virtual bands which are separated from the rest of thgonal glide plane symmetry in the systeisuch as in equi-
unoccupied band structut€ig. 1). distant t-PA). This concept is corroborated by a detailed
The computational parameters foPA are taken from a analysis of the involved BWs.
recent study on the correlated valence and conduction bands A more interesting situation for band disentanglement
of t-PA 21 That is, Dunning’s correlation-consistent polarized arises when the symmetry of the system is lowered by mov-
valence tripleZ basis setgcc-pVT2) (Ref. 37 for hydrogen ing the hydrogen atoms out of plane. Now, the three energy

A. trans-polyacetylene
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FIG. 3. Virtual band structure of diamond from a canonical

FIG. 2. Zoom into the first three virtual bandstelPA along the  Hartree-Fock calculatiorisolid lineg in comparison to the band
A line (the endpoints of the plot correspond to one-third and two-energies resulting from localized Wannier functiddstted line.
thirds of theI'X distance for the flat(a) and the distortedb) ge- The localization is either done with the original WB algoritiie)
ometry of the polymer. Solid lines show the canonical bands, symer by band disentanglement with an energy window of 0—38 eV
bols represent the disentangled bands: One afharacte(®), two (b).
of ¢ character( ).
corresponding doublé-basis set(with exponent 0.55%
hand, as fort-PA, thef function had to be skipped because
CRYSTAL cannot handle them. This basis set, referred to as
bulk-optimized cc-pVTZ, has been used very successfully in
our embedding studies of wave-function-based correlation
r%alculations for diamonéf The experimental lattice constant
of 3.57 A (Ref. 40 is adopted which corresponds to an in-
teratomic C—C distance of 1.546 A, together with a 40
X 40X 40 Monkhorst-Pack grid.

Because the first four low-lying virtual bands of diamond
are separated from the rest of the virtual bands by a small
gap, it is possible to use the original WB algorithm to gen-

from I' to X, they smoothly switch from the lower two bands : X
d PN erate localized WFs. The energy bands obtained from the
to the upper two bands without being influenced by the ComWannier representatioRy(R) of the Fock operator exactly

lex structure of the canonical bands close to the multiple . .
gvoided crossing P reproduce the canonical bangdse Fig. 8)]. Nevertheless,

the resulting localized WFs possess rather substantial tails at
e second-nearest-neighbor carbon atoms as seen in Fig.

bands avoid each other and the underlying BWs carry bot
7 and o type atomic orbital contributions. Using band dis-
entanglement, we are able to follow these contributions indi
vidually. Setting out from an initial guess far type WFs, a
single smooth band can be generated starting at the thi
canonical band at thE point, passing the avoided crossing
in the middle of the Brillouin zone without any kinks and
wiggles and ending at the lowest band at ¥hpoint[see the
black dots in the Fig. @)]. The same holds for the two
disentangled band of predominanthycharacter. When going

After having demonstrated that our projective Wannier-
Boys scheme is able to separate energy bands appropriateip, ™ | I il th ; ¢
the effect of the disentanglement on the locality of the result*\&)- These tails can very well spoil the performance of any

ing Wannier functions should be addressed. For that purposé?heme W.hiCh relies on the locality of virtual WHike the
one used in Ref. 21

we turn our attention to the more complex case of bulk ma- . . . .
terials, diamond, and silicon, in our case. Extending the_ active space used in the WB algorithm
opens the possibility for making the WFs more compact.
Switching to an energy window of 0—38 eV, the spread of
the virtual WF, as measured by the Foster-Boys functional
Because of the rather diffuse, atom-optimized basis func¢3), reduces by more than a factor of e Table )l and the
tions present in the original carbon cc-pVTZ basis set ofundesired orbital contributions at the second-nearest-
Dunning®” (outermosts and p exponents of 0.1285 and neighbor carbon atoms disappear in the contour plot shown
0.1209, respectively it cannot be used for a Hartree-Fock in Fig. 4(b). No shrinking of the virtual WF around the cen-
calculation of bulk diamond. Hence, the outermost exponentgral bond is discernible in Fig. 4 compared to the WF ob-
were reoptimized by minimizing the Hartree-Fock energytained by the original WB localization. Apparently, the re-
per unit cell of diamond. The resulting exponents are 0.201Huction in the spread is solely due to the fading of the tails in
for the s function and 0.6256, 0.3243 for the functions, the localized WF, precisely what we are aiming for.
typical values for diamoné? In addition the twad functions The price to pay, is an overall upward shift of the disen-
of the triple{ basis set were replaced by the single one of thaangled bands with respect to the canonical ones, more pro-

B. Diamond
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FIG. 5. Fourth and fifth conduction band of silicon in the vicin-
ity of the two symmetry-allowed crossings on tBdine drawn as a
two-dimensional function in th&XI'" plane. The canonical bands
are shown as energy surfaces, the uppermost disentangled band
(whose energies are only available on the Monkhorst-Pack gsd
dots. An energy window of 0-15eV is used for the
disentanglement.

FIG. 4. Virtual WF of diamond shown in th€l10 plane of a
C-C zig-zag chain as obtained by the original WB algoriftaor
by band disentanglement with an energy window of 0—38(lel\V
The values of the contours are +0.046, +0.10, and +0.2286Ha
geometrical progression witty=10%3).

are used here. The basis set is augmented by a dingte
nounced at theX point than at thd” or L point, a phenom- larization function with an exponent of 0.4. The Si—Si dis-
enon we also hit on for silicon in Sec. Ill C. It is a feature tance is set to 2.352 A which corresponds to a lattice con-
one often observes when Foster-Boys-type schemes are uss@nt of 5.432 A. These computational parameters originate
to localize virtual orbitals. The localization functior@ltries  from the first pioneer study on a rigorous determination of
to minimize the extent of the orbitals as much as possiblethe correlation energy of silicon by means of an incremental
regardless of the chemical nature of the orbitals and, in parexpansior?,and have successfully been used from that time
ticular, their orbital energies. But compactness of orbitalson in all ab initio studies of correlation effects in bulk silicon
usually implies high kinetic energies. Thus, it can easily happerformed with the incremental schethé® or its extension
pen that the WFs pick up more and more kinetic energyto valence and conduction barftfsAs for diamond, a very
during the iterative procedure of the projective WB localiza-dense 4 40X 40 Monkhorst-Pack grid is used here to re-
tion algorithm as soon as the BWs spanning the active spacsplve the subtle details of the silicon conduction bands to be
allow it. In practice, a compromise has to be found betweerniscussed below.
tracing the proper orbital character in BWs energetically far The reasons why band disentanglement is absolutely cru-
away from the bands in mind and the risk of opening chancial for silicon are the two symmetry-allowed crossings of

nels for spurious orbital compression. the fourth and fifth conduction band on tReline from X
overU=K toT"’ (the S+X line to be precisewhich prevents
C. silicon a direct application of the WB algorithiisee Figs. 5 and)9

. ) ) i .. The localization simply fails because the active BWs exhibit
Silicon is the next and most interesting example which issymmetries different from the ones of the model B\&s
dltsfjusfecljl Pere.,l.becau_?ﬁ |°tcg| v:jrtgfal V\QFS ?annOtt be genefnd the projection stefb) yields linear dependent projec-
ated at all for silicon without band disentanglement. i / o i
The relativistic energy-consistent Ne-core pseudopotentiaﬂOns gs-k' A d _band s involved, o might speculate, but
1 , . loser inspection of the corresponding BWSs reveals that the
from Stuttgart' together with a decontracté¢@s3p] version it conduction band is asp band, formed—in contrast to
of the corresponding optimized valence doubleasis set the other four conduction bands—isyand p orbitals of the
next atomic shell following the 8 3p valence shell, at least
TABLE I. The spreadQ) (per orbita) of the virtual WFs of in the basis set employed here.
diamond and silicortin boh?) as a function of the energy window  Sometimes it is argued that the band crossing problem
(in eV) used for the band disentanglement. For comparison, theliscussed above can simply be solved by a proper relabeling
scaled spread®/a? with a being the lattice constant are given as of the energy bands. This is not the case. Energy bands of

well. bulk materials are three-dimensional functions of the crystal
momenturrk and the two critical bands exhibit an interesting
Diamond Silicon topology around the symmetry-allowed crossings. They only
Window Q /a2 Window Q /a2 touch (twic_e), similar to the tips of two_ cones, as is clearly
seen in Fig. 5 where the band energies are plotted as two-
None 10.10 0.792 0-15 33.03 1.120 dimensional energy surfaces over th&XI”” plane. The
0-38 4.94 0.388 0-31 1545 0524 Symmetry-allowed crossings are singularities. No band

crossing occurs anywhere else in the neighborhood of these
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FIG. 7. The = bands(solid lineg of graphene around thk
point together with the disentangled band (dotg for even BWs
with respect to the vertical mirror plane along the T’ line. The
Fermi level is at —0.83 e\(the energy of the crossihg

FIG. 6. Virtual WF in silicon shown in thé€110 plane of a
Si—Si zig-zag chain as obtained from band disentanglement with aR0ints, the corners of the hexagonal first Brillouin zdsee
energy window of 0—15 e\(a) or 0—31 eV(b). The value of the Fig. 7). Moving along theT+T’ line fromI" overK to M, the
contours are +0.022, +0.046, and +0.10 bdffr(see Fig. 4 character of the BWs from the lowefoccupied band
V\fhanges abruptly from even to odd with respect to the verti-

points. Nevertheless, the character of the associated B /S| mirror plane along tha+T' direction, when passing

switches from one band to the other when passing from th I ' o : : .
left- to the right-hand side of the plot plane precisely as in rom inside the first Brillouin zone into the neighbor B.r|l-
conventional avoided crossings no matter whether one god@Uin zone. The BWs from the uppérirtual) band behave in
along theX line or passes aside this high-symmetry line.  the opposite way. Band disentanglement can be used to fol-
Band disentanglement is the only way out. Two differentlow one of these characters, if one is willing to mix occupied
energy windows are considered, one being sort of minima&nd virtual states. This is demonstrated in Fig. 7 for the band
with the upper edge at 15 eV which is closely above the togstructure calculated with an STO-3G minimal basis set for
of the fourth conduction band, the other being big enough t@arbon, a lattice constant of 2.461 A, and a x9®6
follow the BWs with propersp character up to the 12th nonkhorst-Pack grid for the case of even BWSs.
unoccupied band dt’=2m/a(1,1,1. In both cases, the lo-  The resulting disentangled band is smooth with a well-
calization cogld t_Je performgd without any problems. As isgefined nonzero gradie, 74 at eachk point. The band is
cIearIy seen in Fl_g. 5, the different sy_mm.etnes of the fourthoccupied to about 85% and virtual to about 15% with the
and fifth conduction band along the line is perfectly rec- ;a1 contributions being restricted to the neighborhood of
ognized by the t?a”d, dlsentanglement algorithm—just as Ofhe T’ lines parallel to the symmetry-defining vertical mirror
the flatt-PA chain discussed in Sec. |l A—and the upper- e The associated WF is a well-localized bondingr-
most disentangled energy band exclusively follows the flatte ital sitting on a C—C bond perpendicular to the mirror plane
of the two canonical bands without any kinks. Leaving the(See Fig. 8
high-symmetry line, the disentangled bands start to interpo- Let ué turn back to the band structure of silicon. The

late between the two canonical bands and form a smooth ar’lgamplete disentangled bands are shown in Fig. 9. As already

well-behaved energy surface with underlying BWs of €SSeNYiscussed above disentangled conduction bands have the
tially 3s/3p character. '

The resulting localized virtual WFs of silicon are depictedtenOIenCy to shift upward with increasing size of the energy

L . ' -~ . window, a trend which is also found for silicdsee Fig. 9.
in Fig. 6. Compared to diamond which exhibits typicaP - ;
hybrid character around the nuclei, the virtual WF of S”iconTherefore, a further increase of the energy window beyond

is more symmetric ang-like in the vicinity of the nuclei.
The same holds for the maximally localized virtual WF of
silicon shown in Ref. 23. Expectedly, the larger energy win-
dow yields the more compact WF and, as in the case of A -0
diamond, the reduction in the spread is impressive, from 33
down to 15 boht (Table )). Yet, all together, the virtual or-
bitals of silicon remain more diffuse than those of diamond
even if the difference in the lattice constants is accounted for, ' )
as done by the scaled spreads listed in Table I. This is not
surprising, because of the much smalldirec band gap of
silicon (3.4 eV atT", experimentally** compared to diamond FIG. 8. Localizedr type WF of graphenéplotted 0.4 A above
(7.3 6\0-44 the molecular planeas obtained from the disentangled band shown

The same conelike band touching as found for silicon alsan Fig. 7. The values of the contours are +0.010, 0.022, 0.046, 0.10,
occurs for thewr bands of a graphene sheet around khe and 0.22 bohP’? (which are two more than in Fig.)4
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20

This is the reason why we switched to the larger energy
window of 0—31 eV, though a non-negligible upward shift
of the disentangled virtual bands arises. Nevertheless, we
consider the disentangled bands and Bloch orbitals from the
enlarged energy window to be the more appropriate ones.

IV. CONCLUSIONS

An extension of the Wannier-Boys localization algorithm
for periodic system$1°is developed which allows to gen-
erate localized WFs in the case @ftangledenergy bands.
The method has been implemented into the localization rou-
tine of the CRYSTAL program packag® Its main feature is
the use of an enlarged set of active BWs during the optimi-
zation of the unitary hybridization matrix for the multiband

1 Wannier transformation. This allows the inclusion al
20 4 BWs which contain noticeable admixture from orbitals with

the same chemical character as the localized Wannier func-
tions one is looking for. The proper identification of these
admixtures is done by a simple projection technique.

The efficiency of our projective Wannier-Boys algorithm
is demonstrated for the virtual bands of three different sys-
tems, t-PA, diamond, and bulk silicon. Localizedirtual
Wannier functions could be generated in all three cases. The
spatial extent of them is found to be controllable by the size
of the active space, i.e., the number of selected Bloch waves
perk point. The more Bloch waves are considered, the more
r compact the localized Wannier functions become. Yet, at the
same time, an increasing tendency for an overall upward
shift in the energies of the disentangled bands is observed.

The same trend is discernible in the Kohn-Sham energies
of silicon discussed by Souz al,?® though, because of the
tight energy window employed ther@p to ~11 eV), the
31 eV is not very helpful anymore, although even more com-effect is not very pronounced. The spread of the maximally
pact virtual WFs can be generated this way. localized virtual Wannier function of silicon reported there is

There exist a couple of further interesting features in the30.13 bohf (based on a 18 10x 10 Monkhorst-Pack grid
disentangled conduction bands of silicon. One is, that thevhich is quite close to the value of 33.03 bdkre found for
second disentangled band along théine climbs up to the the 0—15 eV energy window.
upper part of the avoided crossing in the middle of the Even metallic bands can be disentangled by the projective
panel. Apparently, close to this crossing the contaminatingyannier-Boys algorithm as is demonstrative exemplarily for
4s/4p orbital character is solely sitting on the energetically the = bands of a graphene monolayer.
more stable second BW while the corresponding valence  The choice of the systems considered here was not acci-
3s/3p contributions form the fourth BW, an interpretation gental. Subsequent use of the localized Wannier functions in
which is corroborated by a detailed analysis of the involved,4ye_function-based post-Hartree-Fock correlation methods

BWs. L . .. . :
The second point is the unexpected discontinuity in thel‘or periodic systems which explicitly exploit the local char

uppermost disentangled band along Xéine discernible in acter of virtual WFs was the driving force of this work, for
Fig. 9a) for the 0—15 eV window. Its position coincides exa;nplﬁ th% mgthgspxs(eRd fng))ur s_tudy ?f the _valerlpe and
with the position of the avoided crossing between the sixt ponduction bands el. orin analogue Investiga-
and eighth conduction band which shows up in the middile of 1S of the band structure of bulk materials like diaméad.
the S panel between 15 and 18 eV. During the band disen- he more compact the WFs are the better these local corre-
tanglement, the BWs from the upper part of this crossing aréation methods perform.

excluded from the active space while those of the lower part

are present, and it seems that there is still a substantial part of

the necessary orbital cha_racter present in th_is upper BWs to ACKNOWLEDGMENTS

cause the abrupt change in the uppermost disentangled band.

Obviously, the 3/3p valence orbital character moves up  We thank thecRYSTAL group in Torino for making avail-
much higher into the unoccupied band structure of siliconable to us the source code of thrYSTAL 200x code without
than one might expect at first glance. which the present study would not have been possible.

FIG. 9. Virtual Hartree-Fock band structure of silicgsolid
lines) and the energies of the disentangled bafultés using either
a 0-15 eV energy windowa) or a 0—31 eV energy windowb) for
the band disentanglement.
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