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A method for the localization of crystalline orbitals for entangled energy bands is proposed. It is an exten-
sion of the Wannier-Boys algorithmfC. M. Zicovich-Wilson, R. Dovesi, and V. R. Saunders, J. Chem. Phys.,
115, 9708s2001dg which is particularly well suited for linear combination of atomic orbital representations of
the Bloch waves. It allows the inclusion of additional bands during the optimization of the unitary hybridiza-
tion matrix used in the multiband Wannier transformation. By a projection technique, the proper chemical
character is extracted from the Bloch waves and compact localized orbitals are obtained even for entangled
bands. The performance of our projective Wannier–Boys localization is demonstrated on the low-lying unoc-
cupied bands of trans-polyacetylene, diamond, and silicon. Thep bands of graphene are discussed as well.
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I. INTRODUCTION

Localization of Wannier functionssWFsd has attracted
great attention of scientists in recent years. Despite the suc-
cess of describing most of the physical phenomena in crys-
tals in terms of Bloch wavessBWsd, WFs sRef. 1d have
obvious advantages. To mention a few: WFs provide a
chemically intuitive picture of the electronic structure in
crystals, using localized WFs, physical quantities such as ef-
fective Born charges and spontaneous polarization can be
evaluated in a very simple way,2–4 and they play a central
role in many post-Hartree-Fock electron correlation
methods.5–9 In fact, orbital localization schemes, both for
solids and molecules, have a long tradition as can be seen,
for example, from Refs. 10 and 11; two of the early key
references.

Several rigorous procedures for the localization of WFs
have been proposed so far. They fall into two categories,
those which are based on the variational principle,12,13 and
those which are an extension of the Foster-Boys localization
criterion14,15 for periodic systems.16–19 For the latter class, it
is important to find a rigorous way of defining the expecta-
tion value krl of the position operator for periodic systems
which is by no means trivial.20 All of these localization
methods can only be applied to isolated band complexes, i.e.,
a group of bands which are separated from the other bands
by an energy gap over theentireBrillouin zone. This restric-
tion appreciably confines the possible applications of those
methods and only a limited number of systems can be
treated. In particular, the energy bands of the unoccupied
Bloch waves usually do not exhibit any such band gaps.
Thus, none of the localization schemes developed so far can
be applied routinely to selectively generate virtual WFs as
needed, for instances, in our wave-function-based post-
Hartree-Fock correlation methods for valenceand conduc-
tion bands.21,22

Recently, Souzaet al.23 have extended the original
Marzari-Vanderbilt localization scheme16 to systems with en-
tangled bands. The method is based on a preselection of
optimal Bloch waves having maximal similarity at neighbor-
ing k points by minimizing a suitable functional. Like the

original scheme, the new method is especially designed for a
plane wave representation of the BWs and heavily relies on
numericalk-space differentiations.

In this paper, we propose a similar extension for the
Wannier-Boys sWBd localization scheme developed by
Zicovich-Wilsonet al.19 This scheme differs in many aspects
from the algorithm proposed by Marzariet al.16 In particular,
it is much better suited for BWs given in a linear combina-
tion of atomic orbitalsLCAOd representation as employed in
many widely used program packages for periodic systems
such as CRYSTAL,24 GAUSSIAN,25 DMOL3 sRef. 26d,
NFP-LMTO,27 or ADF-BAND.28,29

In Sec. II, the details of our algorithm are described.
Then, in Sec. III, the results from the localization are pre-
sented fortrans-polyacetylenest-PAd, diamond, and silicon,
and some concluding remarks are drawn in Sec. IV.

II. THE LOCALIZATION PROCEDURE

The projective WB scheme we want to present here sets
out from the original WB localization procedure which is
discussed in detail in Ref. 19. Like all localization schemes
for composite bands, it relies on the initial specification of a
fixed set of energy bands. These bands determine the space
of the Bloch functions which are allowed to participate in the
multiband Wannier transformation, the so-called active
space. For example, the valence bands of a system can be
chosen as such a set of bands. The WB algorithm is a com-
bination of two steps: The so-called “Wannierization” and a
Foster-Boys localization of the obtained WFs within the ref-
erence unit cell. Recently, the algorithm has been extended to
operate with a multicell Foster-Boys localization to better
preserve the space group symmetry of the system under
consideration.30

The Wannierization step starts from a set of trial WFs
vs

s0dsrd in LCAO representation

vs
s0dsrd = o

m,R
cms

R fmsr − sm − Rd. s1d

We follow the notation from Ref. 19 here. Thus,m runs over
all atomic basis functionsfmsr −smd in the reference unit cell,
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sm denotes their centers, andR runs over all lattice vectors of
the underlying Bravais lattice. To reduce the spatial extent of
each of these WFs, the orbital coefficientscms

R are set to zero
for all sites sm+R at which the atomic Mulliken
populations31,32of the given WF falls below a certain thresh-
old sfor details, see Ref. 19d. The WFs obtained this way, the
so-called “model functions,”19 are transformed tok space,
projected onto the active space spanned by the selected BWs,
orthonormalized again, transformed back to real space, and
moved back into the reference unit cellsif necessaryd. The
resulting sreald WFs, v̄s

s1d, then enter the Foster-Boys step,
where they are subject to an orthogonal transformation

vs
s1d = o

t=1

N

v̄t
s1dOts s2d

that minimizes the spreadVfhvs
s1djg given by the functional

Vfhvsjg = o
s=1

N

skvsur2uvsl − kvsur uvsl2d. s3d

Here,N is the number of energy bands involved in the local-
ization. Finally, the optimized functionsvs

s1d are used as new
sorthonormald trial functions for the Wannierization and the
whole procedure is repeated until convergence is reached.
The discarding of orbital coefficients and the subsequent pro-
jection onto the active space is the crucial part of the WB
algorithm. It is combined with a Foster-Boys localization to
ensure localization of the WFs alsoinside the unit cells.

The described algorithm performs well for isolated band
complexes. In the case of entangled bands, however, the se-
lection of proper bands to set up a suitable active space be-
comes problematic. Avoided and symmetry-allowed cross-
ings between the energy bands in mind and other disturbing
energy bands occur, and the orbital character we are looking
for is spread over several BWs which in turn exhibits more
or less strong admixtures from other contaminating orbitals.
To overcome these difficulties, we give up the concept of a
rigid active space, abandon the constraint that the number of
selected BWs perk point has to coincide with the numberN
of Wannier functions per unit cell, and allow additional BWs
to be included in the active space at eachk point.

The selection of an appropriateN-dimensional active sub-
space is then done in the projection step during the Wannier-
ization. To this end, the “model BWs”

jsksrd = o
R

eikRjssr − Rd, s4d

which are thek-space transforms of the model functions
jssrd, are projected onto the active space via

jsk8 = o
n=1

Nk

cnkkcnkujskl for s= 1, . . .N s5d

with the numberNk of selected BWscnk at eachk point
being at least as large as the number of WFs per unit cell.
The matricesUnsskd=kcnk ujskl showing up here establish a
generalization of the unitary hybridization matrices used in
conventional multiband Wannier transformations.10 The new

projected functionsjsk8 are those functions in the active space
which resemble the initial model BWsjsk the most. They
span theN-dimensional subspace used in the subsequent
Wannier transformation. In this sense, the procedure outlined
here is very similar to the one proposed by Souzaet al.23 In
particular, our extended projection step during the Wanner-
ization can be regarded as an analog to the band preselection
scheme used in their method.

For convenience, the projectedk-space transformed
model functionsjsk8 are subject to a symmetric or Löwdin
orthonormalization,33 resulting in a set of orthonormal BWs
jsk9 which—after a band-by-band Wannier transformation—
yield the WFsvs we are looking for. That means, the ulti-
mate orthonormal Bloch wavesjsk9 can be understood as the
k space transforms of the generated Wannier functionsvs:

jsk9 srd = o
R

eikRvssr − Rd. s6d

As for any kind of hybrid orbitals, the orbital energies

«sk9 = kjsk9 uFujsk9 l s7d

of the orthonormalized projected model BWs have little in
common with the canonical band energies«nk they originate
from. Even the well-known sum rule

o
s=1

N

«sk9 = o
n=1

Nk

«nk s8d

does not hold anymore, if the numberNk of selected BWs is
larger than the numberN of WFs. Yet, by diagonalizing the
subblock

Fstskd = kjsk9 uFujtk9 l s9d

of the Fock operatorF of the system, or—which is
equivalent—the Wannier representation

FstsRd = kvssrduFuvtsr − Rdl, s10d

N new, so-called disentangled energy bandshsk are obtained.
Where the contamination of the canonical BWs with orbitals
of wrong character is small, the disentangled bands will es-
sentially coincide with the canonical ones. Close to band
crossings, where the contamination is larger, they will devi-
ate substantially from the canonical bands in order to be able
to follow the chemical nature of the underlying BWs. By this
focus on the chemical character of the disentangled bands, an
effectivelyisolated complex ofN bands is formed with none
of the bands showing any kinks and conesssee Sec. III for
more detailsd. The associated eigenvectors ofFstskd can be
regarded as a sort of optimal BW hybrids with minimal or-
bital contamination and vanishing off-diagonal terms in the
Fock operator. We will refer to these hybrids as disentangled
BWs.

The WFsvs provide a local representation of precisely
these disentangled BWs, and the corresponding representa-
tion FstsRd of the Fock operator of the system can be under-
stood as an effective tight-binding or Hückel34 description of
the electronic structure of the system with special emphasize
on a particular type of orbitalscharacterized by the active
space and the initial set of model functionsd.
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The canonical BWs cnk, to be included in the active
space, can be selected in various ways, for example, by
specifying an energy window and taking all BWs whose
band energies«nk fall into this window. Alternatively, a so-
called “energy tube” around a given pair of reference bands
snp ,n̄d may be used, i.e., all BWs with band energies

«nk P f«npk − «p ,«n̄k + «̄g s11d

are considered where«p and«̄ are some user-specified energy
tolerances.

We have implemented the above projection and rediago-
nalization scheme as an extension to the original WB local-
ization routine in theCRYSTAL 200x code,35 a precursor of
the most recent public version of theCRYSTAL program
package.24 Its ability to disentangle energy bands properly
will be demonstrated in Sec. III where our method is applied
to the virtual bands oft-PA, diamond and silicon.

III. RESULTS AND DISCUSSION

All band structures shown here are calculated on the
Hartree-Fock level of theory. The periodicab initio program
packageCRYSTAL sversion 200xd35 is used for that purpose.
The localization of the WFs is performed a posteriori with
the WB algorithm19 as implemented inCRYSTAL 200x sRef.
35d in conjunction with our extension for entangled bands
which has been built into this version ofCRYSTAL.

In all cases, we focus on the first few low-lying virtual
bands of the systems. Because of the larger extent of the
localized virtual Wannier functions compared to the occupied
ones, the former WFs are quite sensitive to the number ofk
points in the Monkhorst-Pack grid.36 We chose sufficiently
fine grids to remove any ambiguities resulting from the dis-
cretek-space integration.

A. trans-polyacetylene

trans-polyacetylene,ufHCvCHg`u, suits perfectly as
an illustrative example for band disentanglement, because, in
the basis set employed here, it exhibits three low-lying en-
tangled virtual bands which are separated from the rest of the
unoccupied band structuresFig. 1d.

The computational parameters fort-PA are taken from a
recent study on the correlated valence and conduction bands
of t-PA.21 That is, Dunning’s correlation-consistent polarized
valence triple-z basis setsscc-pVTZd sRef. 37d for hydrogen

and carbonswithout f functionsd are used, the bond distances
are dsCuCd=1.45 Å, dsCvCd=1.36 Å, and dsCuHd
=1.09 Å, and the bond angles are/sCuCvCd=121.7°
and /sCuCuHd=118.2°. Two different geometries are
considered, flatt-PA sthe experimental structured and a dis-
torted configuration with the hydrogens being bent out of
plane by 20° in such a way that the inversion symmetry of
the polymer is preserved. The Brillouin zone is sampled by a
uniform grid of 100k points.

The first three virtual bands are selected for the disen-
tanglementsFig. 1d. One is ap* band formed by CvC p
antibonds, the other two are ofs symmetry and describe
C–H antibondssnot C–Cs antibonds, as one might think at
first glanced. For the flat polymer, the symmetry separation is
perfect, for the distorted structure some mixture between the
s andp bonds occurs. Nevertheless, the two types of BWs
remain quite different in their orbital character which should
facilitate the band disentanglement significantly. In this
sense, our first system very much resembles the one chosen
by Souzaet al.23 They used copper which exhibits ad band
manifold which is entangled with a singlesp valence band.

Of course, fort-PA, one could localize the virtual BWs by
means of the original WB algorithm. But what we want to
demonstrate here is that it is also possible to localize thep
ands bandsseparately. We first consider the flatt-PA chain.
In that case, the BWs come in two different symmetries and
the disentanglement could simply be achieved by a proper
labeling of the energy bands and the associated BWs. Yet,
such symmetry classifications are hard to implement in lo-
calization schemes for periodic systems, and thus usually not
exploited. Our band disentanglement algorithm, however, is
able to recognize the different symmetries and to separate the
bands properly.

As an initial guess for thep-type WFs, antiphase linear
combinations of 2pz atomic orbitals at neighboring carbon
atoms are used. For thes-type WFs, antibonding linear com-
binations of 2sp2 hybrid orbitals on carbon and 1s atomic
orbitals on hydrogen are constructed. Because of this choice,
the hybridization matricesUnsskd become 331 and 332
matrices, respectively, with a maximum-rank subblock and
all other entries being exactly zero, as is confirmed numeri-
cally.

As seen in the upper panel of Fig. 2, where the canonical
band energies«nk are compared to the disentangled band
energieshsk, our band disentanglement procedure is per-
fectly able to describe either thep or the s orbitals alone.
The crossing of thes bands on the left-hand side is an
avoided onesbecause of the lack of any extra symmetry in
the small point group of thek points inside the Brillouin
zoned. The apparently extremely weak coupling of the two
bands is due to “soft symmetry selection rules.”38 That
means, the impact of the C–C bond length alternation int
-PA on the C–H antibond dominateds* bands is so small
that they essentially behave as if there would exist an addi-
tional glide plane symmetry in the systemssuch as in equi-
distant t-PAd. This concept is corroborated by a detailed
analysis of the involved BWs.

A more interesting situation for band disentanglement
arises when the symmetry of the system is lowered by mov-
ing the hydrogen atoms out of plane. Now, the three energy

FIG. 1. Virtual Hartree-Fock bands oft-PA in the energy range
from 0 to 10 eV calculated with a cc-pVTZ basis setssee Ref. 37d.
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bands avoid each other and the underlying BWs carry both,
p and s type atomic orbital contributions. Using band dis-
entanglement, we are able to follow these contributions indi-
vidually. Setting out from an initial guess forp type WFs, a
single smooth band can be generated starting at the third
canonical band at theG point, passing the avoided crossing
in the middle of the Brillouin zone without any kinks and
wiggles and ending at the lowest band at theX point fsee the
black dots in the Fig. 2sbdg. The same holds for the two
disentangled band of predominantlys character. When going
from G to X, they smoothly switch from the lower two bands
to the upper two bands without being influenced by the com-
plex structure of the canonical bands close to the multiple
avoided crossing.

After having demonstrated that our projective Wannier-
Boys scheme is able to separate energy bands appropriately,
the effect of the disentanglement on the locality of the result-
ing Wannier functions should be addressed. For that purpose,
we turn our attention to the more complex case of bulk ma-
terials, diamond, and silicon, in our case.

B. Diamond

Because of the rather diffuse, atom-optimized basis func-
tions present in the original carbon cc-pVTZ basis set of
Dunning,37 soutermosts and p exponents of 0.1285 and
0.1209, respectivelyd, it cannot be used for a Hartree-Fock
calculation of bulk diamond. Hence, the outermost exponents
were reoptimized by minimizing the Hartree-Fock energy
per unit cell of diamond. The resulting exponents are 0.2011
for the s function and 0.6256, 0.3243 for thep functions,
typical values for diamond.39 In addition the twod functions
of the triple-z basis set were replaced by the single one of the

corresponding double-z basis setswith exponent 0.55d,37

and, as fort-PA, the f function had to be skipped because
CRYSTAL cannot handle them. This basis set, referred to as
bulk-optimized cc-pVTZ, has been used very successfully in
our embedding studies of wave-function-based correlation
calculations for diamond.22 The experimental lattice constant
of 3.57 Å sRef. 40d is adopted which corresponds to an in-
teratomic C–C distance of 1.546 Å, together with a 40
340340 Monkhorst-Pack grid.

Because the first four low-lying virtual bands of diamond
are separated from the rest of the virtual bands by a small
gap, it is possible to use the original WB algorithm to gen-
erate localized WFsvs. The energy bands obtained from the
Wannier representationFstsRd of the Fock operator exactly
reproduce the canonical bandsfsee Fig. 3sadg. Nevertheless,
the resulting localized WFs possess rather substantial tails at
the second-nearest-neighbor carbon atoms as seen in Fig.
4sad. These tails can very well spoil the performance of any
scheme which relies on the locality of virtual WFsslike the
one used in Ref. 21d.

Extending the active space used in the WB algorithm
opens the possibility for making the WFs more compact.
Switching to an energy window of 0–38 eV, the spread of
the virtual WF, as measured by the Foster-Boys functional
s3d, reduces by more than a factor of 2ssee Table Id and the
undesired orbital contributions at the second-nearest-
neighbor carbon atoms disappear in the contour plot shown
in Fig. 4sbd. No shrinking of the virtual WF around the cen-
tral bond is discernible in Fig. 4 compared to the WF ob-
tained by the original WB localization. Apparently, the re-
duction in the spread is solely due to the fading of the tails in
the localized WF, precisely what we are aiming for.

The price to pay, is an overall upward shift of the disen-
tangled bands with respect to the canonical ones, more pro-

FIG. 2. Zoom into the first three virtual bands oft-PA along the
D line sthe endpoints of the plot correspond to one-third and two-
thirds of theGX distanced for the flat sad and the distortedsbd ge-
ometry of the polymer. Solid lines show the canonical bands, sym-
bols represent the disentangled bands: One ofp* charactersPd, two
of s* charactersLd.

FIG. 3. Virtual band structure of diamond from a canonical
Hartree-Fock calculationssolid linesd in comparison to the band
energies resulting from localized Wannier functionssdotted linesd.
The localization is either done with the original WB algorithmsad
or by band disentanglement with an energy window of 0–38 eV
sbd.
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nounced at theX point than at theG or L point, a phenom-
enon we also hit on for silicon in Sec. III C. It is a feature
one often observes when Foster-Boys-type schemes are used
to localize virtual orbitals. The localization functionalV tries
to minimize the extent of the orbitals as much as possible,
regardless of the chemical nature of the orbitals and, in par-
ticular, their orbital energies. But compactness of orbitals
usually implies high kinetic energies. Thus, it can easily hap-
pen that the WFs pick up more and more kinetic energy
during the iterative procedure of the projective WB localiza-
tion algorithm as soon as the BWs spanning the active space
allow it. In practice, a compromise has to be found between
tracing the proper orbital character in BWs energetically far
away from the bands in mind and the risk of opening chan-
nels for spurious orbital compression.

C. Silicon

Silicon is the next and most interesting example which is
discussed here, because local virtual WFs cannot be gener-
ated at all for silicon without band disentanglement.

The relativistic energy-consistent Ne-core pseudopotential
from Stuttgart41 together with a decontractedf3s3pg version
of the corresponding optimized valence double-z basis set

are used here. The basis set is augmented by a singled po-
larization function with an exponent of 0.4. The Si–Si dis-
tance is set to 2.352 Å which corresponds to a lattice con-
stant of 5.432 Å. These computational parameters originate
from the first pioneer study on a rigorous determination of
the correlation energy of silicon by means of an incremental
expansion,5 and have successfully been used from that time
on in all ab initio studies of correlation effects in bulk silicon
performed with the incremental scheme42,43 or its extension
to valence and conduction bands.8,9 As for diamond, a very
dense 40340340 Monkhorst-Pack grid is used here to re-
solve the subtle details of the silicon conduction bands to be
discussed below.

The reasons why band disentanglement is absolutely cru-
cial for silicon are the two symmetry-allowed crossings of
the fourth and fifth conduction band on theS line from X
overU=K to G8 stheS+S line to be precised which prevents
a direct application of the WB algorithmssee Figs. 5 and 9d.
The localization simply fails because the active BWs exhibit
symmetries different from the ones of the model BWsjsk
and the projection steps5d yields linear dependent projec-
tions jsk8 . A d band is involved, one might speculate, but
closer inspection of the corresponding BWs reveals that the
fifth conduction band is ansp band, formed—in contrast to
the other four conduction bands—bys andp orbitals of the
next atomic shell following the 3s/3p valence shell, at least
in the basis set employed here.

Sometimes it is argued that the band crossing problem
discussed above can simply be solved by a proper relabeling
of the energy bands. This is not the case. Energy bands of
bulk materials are three-dimensional functions of the crystal
momentumk and the two critical bands exhibit an interesting
topology around the symmetry-allowed crossings. They only
touch stwiced, similar to the tips of two cones, as is clearly
seen in Fig. 5 where the band energies are plotted as two-
dimensional energy surfaces over theGXG8 plane. The
symmetry-allowed crossings are singularities. No band
crossing occurs anywhere else in the neighborhood of these

FIG. 4. Virtual WF of diamond shown in thes110d plane of a
C–C zig-zag chain as obtained by the original WB algorithmsad or
by band disentanglement with an energy window of 0–38 eVsbd.
The values of the contours are ±0.046, ±0.10, and ±0.22 bohr−3/2 sa
geometrical progression withq=101/3d.

TABLE I. The spreadV sper orbitald of the virtual WFs of
diamond and siliconsin bohr2d as a function of the energy window
sin eVd used for the band disentanglement. For comparison, the
scaled spreadsV /a2 with a being the lattice constant are given as
well.

Diamond Silicon

Window V V /a2 Window V V /a2

None 10.10 0.792 0–15 33.03 1.120

0–38 4.94 0.388 0–31 15.45 0.524

FIG. 5. Fourth and fifth conduction band of silicon in the vicin-
ity of the two symmetry-allowed crossings on theS line drawn as a
two-dimensional function in theGXG8 plane. The canonical bands
are shown as energy surfaces, the uppermost disentangled band
swhose energies are only available on the Monkhorst-Pack gridd as
dots. An energy window of 0–15 eV is used for the
disentanglement.
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points. Nevertheless, the character of the associated BWs
switches from one band to the other when passing from the
left- to the right-hand side of the plot plane precisely as in
conventional avoided crossings no matter whether one goes
along theS line or passes aside this high-symmetry line.

Band disentanglement is the only way out. Two different
energy windows are considered, one being sort of minimal
with the upper edge at 15 eV which is closely above the top
of the fourth conduction band, the other being big enough to
follow the BWs with propersp character up to the 12th
unoccupied band atG8=2p /as1,1,1d. In both cases, the lo-
calization could be performed without any problems. As is
clearly seen in Fig. 5, the different symmetries of the fourth
and fifth conduction band along theS line is perfectly rec-
ognized by the band disentanglement algorithm—just as for
the flat t-PA chain discussed in Sec. III A—and the upper-
most disentangled energy band exclusively follows the flatter
of the two canonical bands without any kinks. Leaving the
high-symmetry line, the disentangled bands start to interpo-
late between the two canonical bands and form a smooth and
well-behaved energy surface with underlying BWs of essen-
tially 3s/3p character.

The resulting localized virtual WFs of silicon are depicted
in Fig. 6. Compared to diamond which exhibits typicalsp3

hybrid character around the nuclei, the virtual WF of silicon
is more symmetric andp-like in the vicinity of the nuclei.
The same holds for the maximally localized virtual WF of
silicon shown in Ref. 23. Expectedly, the larger energy win-
dow yields the more compact WF and, as in the case of
diamond, the reduction in the spread is impressive, from 33
down to 15 bohr2 sTable Id. Yet, all together, the virtual or-
bitals of silicon remain more diffuse than those of diamond
even if the difference in the lattice constants is accounted for,
as done by the scaled spreads listed in Table I. This is not
surprising, because of the much smallersdirectd band gap of
silicon s3.4 eV atG, experimentallyd44 compared to diamond
s7.3 eVd.44

The same conelike band touching as found for silicon also
occurs for thep bands of a graphene sheet around theK

points, the corners of the hexagonal first Brillouin zonessee
Fig. 7d. Moving along theT+T8 line from G overK to M, the
character of the BWs from the lowersoccupiedd band
changes abruptly from even to odd with respect to the verti-
cal mirror plane along theT+T8 direction, when passing
from inside the first Brillouin zone into the neighbor Bril-
louin zone. The BWs from the uppersvirtuald band behave in
the opposite way. Band disentanglement can be used to fol-
low one of these characters, if one is willing to mix occupied
and virtual states. This is demonstrated in Fig. 7 for the band
structure calculated with an STO-3G minimal basis set for
carbon, a lattice constant of 2.461 Å, and a 96396
Monkhorst-Pack grid for the case of even BWs.

The resulting disentangledp band is smooth with a well-
defined nonzero gradient¹khsk at eachK point. The band is
occupied to about 85% and virtual to about 15% with the
virtual contributions being restricted to the neighborhood of
theT8 lines parallel to the symmetry-defining vertical mirror
plane. The associated WF is a well-localized bondingp or-
bital sitting on a C–C bond perpendicular to the mirror plane
ssee Fig. 8d.

Let us turn back to the band structure of silicon. The
complete disentangled bands are shown in Fig. 9. As already
discussed above, disentangled conduction bands have the
tendency to shift upward with increasing size of the energy
window, a trend which is also found for siliconssee Fig. 9d.
Therefore, a further increase of the energy window beyond

FIG. 6. Virtual WF in silicon shown in thes110d plane of a
Si–Si zig-zag chain as obtained from band disentanglement with an
energy window of 0–15 eVsad or 0–31 eVsbd. The value of the
contours are ±0.022, ±0.046, and ±0.10 bohr−3/2 ssee Fig. 4d.

FIG. 7. Thep bandsssolid linesd of graphene around theK
point together with the disentangledp band sdotsd for even BWs
with respect to the vertical mirror plane along theT+T8 line. The
Fermi level is at −0.83 eVsthe energy of the crossingd

FIG. 8. Localizedp type WF of graphenesplotted 0.4 Å above
the molecular planed as obtained from the disentangled band shown
in Fig. 7. The values of the contours are ±0.010, 0.022, 0.046, 0.10,
and 0.22 bohr−3/2 swhich are two more than in Fig. 4d.
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31 eV is not very helpful anymore, although even more com-
pact virtual WFs can be generated this way.

There exist a couple of further interesting features in the
disentangled conduction bands of silicon. One is, that the
second disentangled band along theS line climbs up to the
upper part of the avoided crossing in the middle of theS
panel. Apparently, close to this crossing the contaminating
4s/4p orbital character is solely sitting on the energetically
more stable second BW while the corresponding valence
3s/3p contributions form the fourth BW, an interpretation
which is corroborated by a detailed analysis of the involved
BWs.

The second point is the unexpected discontinuity in the
uppermost disentangled band along theS line discernible in
Fig. 9sad for the 0–15 eV window. Its position coincides
with the position of the avoided crossing between the sixth
and eighth conduction band which shows up in the middle of
the S panel between 15 and 18 eV. During the band disen-
tanglement, the BWs from the upper part of this crossing are
excluded from the active space while those of the lower part
are present, and it seems that there is still a substantial part of
the necessary orbital character present in this upper BWs to
cause the abrupt change in the uppermost disentangled band.
Obviously, the 3s/3p valence orbital character moves up
much higher into the unoccupied band structure of silicon
than one might expect at first glance.

This is the reason why we switched to the larger energy
window of 0–31 eV, though a non-negligible upward shift
of the disentangled virtual bands arises. Nevertheless, we
consider the disentangled bands and Bloch orbitals from the
enlarged energy window to be the more appropriate ones.

IV. CONCLUSIONS

An extension of the Wannier-Boys localization algorithm
for periodic systems18,19 is developed which allows to gen-
erate localized WFs in the case ofentangledenergy bands.
The method has been implemented into the localization rou-
tine of theCRYSTAL program package.35 Its main feature is
the use of an enlarged set of active BWs during the optimi-
zation of the unitary hybridization matrix for the multiband
Wannier transformation. This allows the inclusion ofall
BWs which contain noticeable admixture from orbitals with
the same chemical character as the localized Wannier func-
tions one is looking for. The proper identification of these
admixtures is done by a simple projection technique.

The efficiency of our projective Wannier-Boys algorithm
is demonstrated for the virtual bands of three different sys-
tems, t-PA, diamond, and bulk silicon. Localizedvirtual
Wannier functions could be generated in all three cases. The
spatial extent of them is found to be controllable by the size
of the active space, i.e., the number of selected Bloch waves
perk point. The more Bloch waves are considered, the more
compact the localized Wannier functions become. Yet, at the
same time, an increasing tendency for an overall upward
shift in the energies of the disentangled bands is observed.

The same trend is discernible in the Kohn-Sham energies
of silicon discussed by Souzaet al.,23 though, because of the
tight energy window employed theresup to ,11 eVd, the
effect is not very pronounced. The spread of the maximally
localized virtual Wannier function of silicon reported there is
30.13 bohr2 sbased on a 10310310 Monkhorst-Pack gridd
which is quite close to the value of 33.03 bohr2 we found for
the 0–15 eV energy window.

Even metallic bands can be disentangled by the projective
Wannier-Boys algorithm as is demonstrative exemplarily for
the p bands of a graphene monolayer.

The choice of the systems considered here was not acci-
dental. Subsequent use of the localized Wannier functions in
wave-function-based post-Hartree-Fock correlation methods
for periodic systems which explicitly exploit the local char-
acter of virtual WFs was the driving force of this work, for
example the method used in our study of the valence and
conduction bands oft-PA sRef. 21d or in analogue investiga-
tions of the band structure of bulk materials like diamond.22

The more compact the WFs are the better these local corre-
lation methods perform.

ACKNOWLEDGMENTS

We thank theCRYSTAL group in Torino for making avail-
able to us the source code of theCRYSTAL 200x code without
which the present study would not have been possible.

FIG. 9. Virtual Hartree-Fock band structure of siliconssolid
linesd and the energies of the disentangled bandssdotsd using either
a 0–15 eV energy windowsad or a 0–31 eV energy windowsbd for
the band disentanglement.
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