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Effective vortex mass from microscopic theory
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We calculate the effective mass of a single quantized vortex in the Bardeen—Cooper—Schrieffer supercon-
ductor at finite temperature. Based on effective action approach, we arrive at the effective mass of a vortex as
integral of the spectral functiod(w) divided by w® over frequency. The spectral function is given in terms of
the quantum-mechanical transition elements of the gradient of the Hamiltonian between two Bogoliubov—
deGenne$BdG) eigenstates. Based on self-consistent numerical diagonalization of the BdG equation we find
that the effective mass per unit length of vortex at zero temperature is ofrflgh)? (k; = Fermi momentum,
&=coherence lengjhessentially equaling the electron mass displaced within the coherence length from the
vortex core. Transitions between the core states are responsible for most of the mass. The mass reaches a
maximum value af = 0.5T; and decreases continuously to zerdrat
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I. INTRODUCTION freedom, one is left with the effective dynamics of the vortex

alone. Equations of vortex dynamics were written down in

th_ise coherence is Fhe defining cha_lracten;tlc of the “Yhis way first in the work of Simanékand later extensively
perfluid matter, and vortices—the quantized twist of the un'developed by Ao and Zhts

derlying phase texture—are the unique elementary excita- . .
tions of the condensate. Their ubiquity, not to mention their. In Ref. 5, the functional integral theory of vortex dynam

role in transport and phase transition, makes the dynamics of> o> applied to calculate the friction coefficieptof a
P P ! y ?noving vortex, and to calculate the transverse force on it in

an isolated vortex or their array an integral part of our UY"hoth clean and dirty limits. Wentzel-Kramers—Brillouin

der%zng]lggocr)]f sfugesriﬂltggtzbrtex may be phrased as a NengKB) approximation.f_or the extenQed eigenstates_was used
tonian equation to calculate the transition propabﬂny that qu to friction at
temperaturd. The friction coefficient thus derived was con-
dr, dr, sistent with earlier results derived by other approaéhes.
vge T - e (1) Based on a similar approach, Han, Ao, and ZHAZ)
tried to calculate the effective mass of a slowly moving vor-
where F, is the force acting on the vortex, arM, is its  tex within the same WKB approximation for the eigenstates
effective mass. The position of the vortex is represented byf a single vortex. The calculation of the effective mass of a
r,- The mass of a vortex ientirely effectivein nature* A gquantized vortex has been repeatedly tackled by theorists in
vortex is unable to sustain its existence outside the superfluithe past. The conclusions roughly fall into two categories,
medium, hence the only sensible definition of the m#ss, with one group of theories predicting a “small” mass of
intrinsic mass must be zero. Now, imagine a magnet with its roughly one electron mass per atomic lengthhereas an-
north and south poles placed on either side of a thin supesther group predicts a “large” mass, of ordatk:&y)? (k
conducting slab as shown in Fig. 1. Dragging the magnetFermi momentumé,=coherence length at=0).8 In either
parallel to the surface of the slab requires a force that exease the theories were limited to zero temperature. The work
ceedsM(d%r,/dt?) (M,=mass of the magnebecause in of HAZ extends the calculation to an arbitrary finite tempera-
the process, d@/2e flux quantum attached to the magnet ture by working with the imaginary-time action.
interacts with the surrounding quasiparticles. The virtual In neither work, Refs. 5 and 6, was the validity of the
transitions among the quasiparticle states caused by the voWKB approximation carefully checked against an exact di-
tex motion lead to renormalization of mass, which in thisagonalization of the Bogoliubov—deGenn@&iG) equation.
case will account for the entire vortex mass. Real transition@\so lacking in previous works was the consideration of the
between the states, on the other hand, lead to dissipatiorelf-consistent nature of the pair potential, which in particu-
giving rise to a damping term represented yn Eq. (1). lar will affect the behavior afl close to the transition tem-
The Newtonian description of the vortex motion is a lim- peratureT.. After the pioneering work of Gygi and Schliter,
iting case of the more general quantum-mechanical formulathe self-consistent numerical diagonalization of the BdG
tion. Quantum-mechanical law of motion of an object em-equation for a single vortex or an array of vortices became
bedded in a medium with which it interacts is most easilystandard?
derived in the effective action approathn essence, one In this paper, we employ a self-consistent numerical
divides the dynamics into those of quasiparticles and thenethod to solve the BAG equation with a single vortex. The
vortex, then by integrating out the quasiparticle degrees oéigenstates thus obtained are used to calculate the effective

M
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1 * o J(w) B (dr,)\?
seﬁzéxu dw—3)><fo d{é). 4)

0 w
The effective vortex mass is the quantity in parenthesis,

given by
‘ <a b>

M, =2
ab

This formula, first derived by HAZ, allows an explicit calcu-
lation of the vortex mass at temperatdreising the eigenen-
ergies and wave functions of the BAG Hamiltonian.

The eigenstates of the BdG equation in the cylindrical
coordinates are written in the general fétm

i 612

. . . iz ipl € Ur)

FIG. 1. (Color online A magnet generates a quantized flux in- Uo(r) = ,—e' 2Zglnt g2
side a thin slab of superconductdblue). When a magnet is V2wl eV ,(r)
dragged, the flux interacts with the surrounding medium.

2

f(Ea) — f(Ep)
(Ea_ Eb)3

IHo

ar (5

(6)

in the presence of a gap functiadr(r)=A(r)e™? for a recti-
) . . linear vortex of lengthL centered at=0. The radial func-
mass of a vortex, according to the formula originally derived;; s [u,(r),v.(r)] are obtained as eigenfunctions of the

in Ref._ 6. Employing self-consistent calculation of t_he_ pair oupled differential equatiofr dependence im, v andA is
potential at finite temperatures we compute the variation o mplicit)

the effective mass in the full temperature range D<T..

We proceed by revisiting the formulation of the effective . ) 5 1\2 )
mass of Ref. 6 in Sec. Il. The mass formula is then rewritten ~ F°U”+1u’ + | (k} + 2mBE)r - r=5) U= 2mrAv,
in a form that is convenient for efficient numerical work. In
Sec. Il numerical results for the temperature-dependent 1\2
mass are presented. We conclude with a summary and out- y2,n 4, 4 {(krz_ 2mE)r2 - (M+ _) }U = - 2mr?Au,
look in Sec. IV. 2

()

Il. FORMULATION wherek?=k?-k2. Since the gradient operator does not mix
differentk, states, states characterized by differieist make
The effective actiorS,; of a single vortex of a Bardeen— additive contributions to the mass. Therefore, we assume that
Cooper—Schrieffe(BCS) superconductor, centered gl(7)  the effective mass is-(kL) times the mass obtained from
at imaginary timer, is given by>? k,=0 sector alone. Hence, we restrict ourselve,to0 in
the numerical diagonalization. Now each eigenstatésla-
1P % e ) beled bya=(u,,E,) andb=(ugz,Ez) whereE,(Ep) denotes
éf drf dT’f dod(w)e ™ lr (0 -1, (7). (2)  energies of states having the angular momenfuyiu).
0 = 0 Self-consistency requires that thelependent gap func-
tion obey the relationA(r)=VZ u,(r)v,(r)[1-2f(E,)] for
The spectral function is the quantity some choice of the pairing interaction strengthUnique-
ness of the wave function requires thatbe half odd inte-
< Mo > 2 gers. Using these eigenstates, transition amplitudes can be
al—|b
or,
) - <a

worked out
S — o (R
_X=Fiy dA
B>— 2 fo {(UQUB"' UBUQ)rE
which encodes the density of available low-energy excita-

tions created by, in this case, the change in the vortex posi-  (Ugvg— Uﬁva)A}dr- (8)

tion r,. Fermi distribution function with energy is denoted

f(x). There is an additional action i&, pertaining to the Upper and lower signs correspond g =pus+1. The upper
transverse motion of the vortex, which we do not considedimit of integration is chosen at=R where a hard-wall
here® The states, b are the eigenstates of the Bogoliubov— boundary condition is imposedr,(r=R)=0=v,(r=R). The
deGenne$BdG) HamiltonianH, in the presence of vortex at two eigenstates differ by one unit of angular momentum due
r,, with energiesE, and E, respectively. When we assume to the gradient operator which connects them.

that the dynamics is sufficienthpcal in timg!® we may ap- On integrating by parts, Eg8) is equal to(assuming
proximater ,(7)—r (7') = (7= 7")r ,(7) and write Mo=pptl)

Jw) =2 8w = |Ey— Ey|)|f(El) - f(Ey)|
ab

Ho
ar,
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du dv 1
_E _é _ = 10
(Eg-E )f {< “dr o “dr )r ((“ b 2)““”3 | A(T) = AQ)1(TIT,)** 1"

1 dv,dvs; du,du 08

1 R (dv,dvg du,dug
+<“B+2> )}dH (dr dr  dr dr)-' '
06

9

One must be careful not to ignore the boundary term at 04
=R on the rhs of the above equation, which is generally

nonzero. A naive application of Feynman—Hellman theorem, 0.2
as was done by HAZ, would yield E¢8)=Eq. (9) without
the boundary term, which is incorrect. When eitbgror v,, 00}
is localized over the distance much less tiathe boundary L L L L L L

term can be ignored. However, no justification can be pro- 04 02 O o8 L
vided to ignore the boundary term for a generic pair of ex- ¢
tended eigenstates. 5 FIG. 2. (Color onling Pair potential well away from the core,
We follow earlier work$? and write the eigenfunctions in A(T) (blug), and the core energy level fqr=+3, e,(T) (red,
the form plotted vsT/T.. Both quantities are normalized by their respective
B B T=0 values, withe;/5(0)/A(0)=0.088 from self-consistent calcula-
Ua(r) = 2 Coibi(1), 0a(r) = 2 dai o (1), tion. A(T) shows excellent fit ta\(0)y1-(T/To)?® (black curve.
I I
5 f(E,) — f(Eg
" R.i(z) "\ "R/ n>0.8 «~ Eg
where z,; is theith zero of the Bessel functiod,. Integer 50 D f(E) ~ f(_E ) Biﬁ' (13)
value n is related to the angular momentum fy,=n+3. 2 n20ap | (Ex*+Ep)

Coefficients (c,,d,) are determined from matrix
diagonalization? Negativey states need not be considered
separately, instead one can use a positiveigenstate
(u,,v,) of energyE, to construct a negative- eigenstate,
given by(v,,-u,), of opposite energy E,,.

Factor 2 multiplying the first term reflects the transitions
within the negative angular momentum channels which gives
rise to equal mass as the> 0 transitions.
Equations(11)—(13) are the main results of the paper, al-
. : : lowing us to calculate vortex mass in the superconductor.
With the eigenstates thqs obtained, Eg) can be re- Using Egs.(11) and (12) is much more efficient over the
expressed using the coefficierits, ,d.;) and making use of 1\ 1o torce numerical integration of Eq®) and (9) in ob-
Bessel identities. Fog,=n+3, ug=n-3, n>0, Eq.(9) be- taining the transition amplitude.
comes

2 “Ez &
Fnas Riz' aiCpiaicn 1’1(231. Zﬁ 1 R? Equation(7) is diagonalized assuming a coherence length
E, £ &=E;/A(0)=20 and choosing the radius of the boundary
+—= E da,dﬂjzmllzm(—ﬁ— + g) (11)  kR=100. For each angular momentym eigenstates with
Zﬁ+1| Zﬁj R energies within £18(0) were retained. This left us with
about 90 eigenstates far=1/2, and adecreasing number of
states for largeg. Calculations were restricted =0 only
Jo(zy) (E.+E & as stated earlier. The energy gap vanishes completely at
1,J (22 2(2) 2 TR ~0.571A(0), which we take as the transition temperatilige
! b We work at severalreduced temperatures=T/T, in the

) 12 range 0<t<<1.
‘J(l. 23, z R

Figure 2 shows the calculated gap at a large distance from
the core A(T), and theu= +% core energy levele;»(T), for

In deriving Egs(11) and(12) energy is expressed in units of the temperatures we considered. Both quantities decrease

the zero-temperature gap value at a large distance from thmonotonically withT. For T/T.= 0.9 the core energy levels

core, denoted (0), and the length in units dtf'l. In Eq.(11), are no longer resolved as distinct from the continuum.

a and g refer to eigenstates with a given angular momenta Referring to Eqs(5) and(13) we may divide the mass as

,=n+1/2 andug=n-1/2, each. A mapping of negative-  arising from transitions between the core stdtds©), core-

to positiveu eigenstates was used to express @8g) solely  to-extended statgd %), and between extended statd4):

in terms of theu=+1 > eigenstates. Now the vortex mass canM,=M;°+ M *+M:® No other selection rule is imposed on

be calculated usmg the |n|t|al and flnal states except the angular momentum dif-

) Ill. RESULTS

and for,ua:+§, :“B:_E' it equals

2
Bus= EE CaitlgiZ0iZ
ij
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@) cellent accuracy for all temperatures, except ngarThen,
i ® we can approximatgsee Eq(13
3 A‘ pp fsee Eq(13)]
N\ Fe18T) = F(epeasaT)
\e MSSN(T) =~ 2mé, . (19
m 2f ‘% €n-1/2T) = €nr1/2(T)
é J/ where €,.1» are the core-level energies fat=n+1/2. In
1t —M, particular, for n=0 we have the massM%T)
——M," =2mé, tant Beyo(T)1/2€15(T). At zero temperature we get
ol MEE0(0) = 2mé,/ 2€,,,(0) ~ M3 since A(0)/ e1,5(0) ~ &. This

is precisely the mass of the electrons occupying the area
2

00 02 04 06 08 10 ~ 5o
On the other  hand, MS"9(T)~2méB/
[4 cosR(Bey(T)/2)], en(T)=[€n1/o(T) +€n-1(T)]/2, pro-
/\ vided the temperature is much larger than the typical core
A A energy spacingl > |€,:1/2(T) — €,-12(T)|. As the typical core
energy spacings are a few percent of the energy &@dp,

N\
o 2 / A\ this is not a very restrictive condition except ndar0. Then
@ £ [—m=0 A one can easily check that this approximate formNtjf"(T)
E, oo e pn 5% g 050 \ rises to a maximum value far equal to some fraction of the
N My -My gap A(0), in agreement with the observed maximum in the
/ o\. A mass shown in Figs.(8 and 3b).
ol ad e o—00-¢ One finds that Eq(14) is nonvanishing a§ —T,, and

€+12(T)—0. The core-to-core mass seemingly survives at
the transition temperature. A similar behavior, in fact a diver-
gence of the core-to-core massTat was predicted in the
FIG. 3. (Color onling (a) Effective massM,(T) and the core- WKB Calculatlon_ of HAZ. Howev_er, both Eq$14) and(10)
to-core contribution to massI*(T) at temperature/T,, normal- of HAZ are predicated on the existence of vyell—resolved_ core
ized by M,(0). One findsM,(T)~MS(T) over most of T. (b)  States. Instead, all the core levels collapse into the continuum
MEY(T)=MESO(T) +3,,,oME"(T) (see text for definiion Mee(T)  eventually and Eq(14) loses its meaning altogether.
and M5°(T)—M§°'°(T) are plotted separateIlec’o(T) is monotoni- SinceM$® makes a negligible contribution to mass at all
cally decreasing while the higherehannels give a maximum mass temperatures its behavior is not analyzed in detail.
atT/T.~0.5. The core levels are not well resolved Totoo close
to T, which explains the absence of data pointsTer T,. IV. SUMMARY AND OUTLOOK

0.0 0.2 04 0.6 0.8 1.0
TITe

ference which must be one. As it turns out the transition summarizing our findinggj) At zero temperature the ef-
element is vanishingly sm_all bet\/\{een a cocrce ang} an e)_(tendqgctive massM,(T=0) is the mass of electrons occupying a
state, and thus the mass is effectivbly~M,"+M," IN Fig.  cyiinder of radiuss,, in agreement with earlier calculatiofs.
3(@ we Cschow the total mas#,(T) and the core-to-Core t'increases upon higher temperature, reaching a maximum at
mass, M,(T). As is evident from the figureMXT)  1_q 57  and vanishes & (i) Transitions between local-
>M;4T) for all temperatures except very néwhere core ;¢ eigenstates forming the core spectrum are mainly re-
levels are not resolved, but here the total mass is vanishinglyponsime for the effective mass. Henb,(T) =M(T). On
small anyway. BOEE the total mass, and the level-resolved {he other hand, dissipation experienced by a moving vortex
massedV” andM, " reach a maximum value &/T.~0.5. s due to the extended states as it requires transition between
The core-to-core mass can be further grouped accordingates of the same energy.
to the angular momentum channéls, =n+3) < (uz=n-3 Suppose now that the core levels got smeared due to the
over which the transition takes place. We denote suchmpuyrities. If all higher angular momentum core levels ex-
angular-momentum-resolved, core-to-core malgl,™"(T). ceptn=0 disappeared, we would expebt>"*%(T) to be
Figure 3b) shows M*T) and 2,,M*(T)=M{AT)  effectively zero, and the mass behaves\ggT) =~ MSO(T)
~MS(T). We find thatMS“®(T), betweenu==+3 core lev-  showing the monotonic behavior of Fig(t3. If all core
els, survives at zero temperature and monotonically detevels disappeared, we will be left with the extended states
creases at higher. The n#0 channels give zero mass for whose mass contribution is shown to be quite small. It is
T=0, reaches a maximum at some intermediBtend de- conceivable that in this case the mass becomes small, in
creases to zero dt=T,. This behavior accounts for the ob- agreement with predictions of Ref. 7.
served maximum in the madd;“(T). To fully describe the vortex dynamics, one must of course
The results shown in Fig.(B) can be nicely understood know 7 in Eg. (1) with equal accuracy as the mass itself. If
thanks to the approximate identity which statesthe motion is overdamped, an object's mass is no longer the
[{a|V,Ho|B)| =|E,—Eg4 when both states belong to the core governing factor in the dynamics. Since the damping rate
levels® Numerical calculation confirms this relation with ex- rises monotonically with temperature, it is conceivable that
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above some crossover temperatlirethe vortex motion gets The choiceR/ =5 used in our work is, we believe, large
overdamped. enough to conclude that the core-to-core mass obtained in
How do we calculatey within the same framework of this paper is that of the thermodynamic limitlS%(R/ &=5)
numerical diagonalization proposed in this paper? Dissipa= M:(R/&==), since all core levels are localized over a
tion due to transitions among equal-energy states is only wefew coherence lengths. On the other hand, extended states do
defined in the thermodynamic limiR— . To analyze the not meet this requirement, at least for ultraclean systems
R= behavior, one should presumably rely on a finite-sizewith no impurity scattering to provide the cutoff. Although
scaling analysis of various transition amplitudes. Study ofV;{R/&=5) turned out to be negligible in comparison to
size dependence may be necessary to get a better estimatetfi core-to-core mass, one cannot completely rule out the
the extended-states mass, too. A standard treatment of quaR=dependent growth of;° as predicted by quantum envi-
tum dissipative dynamics would predict that if the environ-ronmental dynamics. We will return to these issues in a fu-
ment is ohmic, i.e.J(w) ~ 7w at low frequency, the effective ture publication.
mass is linearly divergent. A WKB-based calculation indeed
gives a linear spectral density for the vorfeand extended-
to-extended mass employing similar approximation is also H.J.H. was supported by grant No. R01-2002-000-
predicted to behave adl;°~mX A(0)/w, for some cutoff 00326-0 from the Basic Research Program of the Korea Sci-
0..® The finite-sizeR employed in the numerical calculation ence & Engineering Foundation. We thank X. M. Zhu for
can serve as the effective cutoff. helpful conversation.
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