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We calculate the effective mass of a single quantized vortex in the Bardeen–Cooper–Schrieffer supercon-
ductor at finite temperature. Based on effective action approach, we arrive at the effective mass of a vortex as
integral of the spectral functionJsvd divided byv3 over frequency. The spectral function is given in terms of
the quantum-mechanical transition elements of the gradient of the Hamiltonian between two Bogoliubov–
deGennessBdGd eigenstates. Based on self-consistent numerical diagonalization of the BdG equation we find
that the effective mass per unit length of vortex at zero temperature is of ordermskfj0d2 skf =Fermi momentum,
j0=coherence lengthd, essentially equaling the electron mass displaced within the coherence length from the
vortex core. Transitions between the core states are responsible for most of the mass. The mass reaches a
maximum value atT<0.5Tc and decreases continuously to zero atTc.
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I. INTRODUCTION

Phase coherence is the defining characteristic of the su-
perfluid matter, and vortices—the quantized twist of the un-
derlying phase texture—are the unique elementary excita-
tions of the condensate. Their ubiquity, not to mention their
role in transport and phase transition, makes the dynamics of
an isolated vortex or their array an integral part of our un-
derstanding of superfluidity.

The motion of a single vortex may be phrased as a New-
tonian equation

Mv
d2r v

dt2
+ h

dr v

dt
= Fv, s1d

where Fv is the force acting on the vortex, andMv is its
effective mass. The position of the vortex is represented by
r v. The mass of a vortex isentirely effectivein nature.1 A
vortex is unable to sustain its existence outside the superfluid
medium, hence the only sensible definition of the mass,the
intrinsic mass, must be zero. Now, imagine a magnet with its
north and south poles placed on either side of a thin super-
conducting slab as shown in Fig. 1. Dragging the magnet
parallel to the surface of the slab requires a force that ex-
ceedsMmsd2r v /dt2d sMm=mass of the magnetd because in
the process, ah/2e flux quantum attached to the magnet
interacts with the surrounding quasiparticles. The virtual
transitions among the quasiparticle states caused by the vor-
tex motion lead to renormalization of mass, which in this
case will account for the entire vortex mass. Real transitions
between the states, on the other hand, lead to dissipation,
giving rise to a damping term represented byh in Eq. s1d.

The Newtonian description of the vortex motion is a lim-
iting case of the more general quantum-mechanical formula-
tion. Quantum-mechanical law of motion of an object em-
bedded in a medium with which it interacts is most easily
derived in the effective action approach.2 In essence, one
divides the dynamics into those of quasiparticles and the
vortex, then by integrating out the quasiparticle degrees of

freedom, one is left with the effective dynamics of the vortex
alone. Equations of vortex dynamics were written down in
this way first in the work of Šimánek3 and later extensively
developed by Ao and Zhu.4,5

In Ref. 5, the functional integral theory of vortex dynam-
ics was applied to calculate the friction coefficienth of a
moving vortex, and to calculate the transverse force on it in
both clean and dirty limits. Wentzel–Kramers–Brillouin
sWKBd approximation for the extended eigenstates was used
to calculate the transition probability that led to friction at
temperatureT. The friction coefficient thus derived was con-
sistent with earlier results derived by other approaches.5

Based on a similar approach, Han, Ao, and ZhusHAZd
tried to calculate the effective mass of a slowly moving vor-
tex within the same WKB approximation for the eigenstates
of a single vortex.6 The calculation of the effective mass of a
quantized vortex has been repeatedly tackled by theorists in
the past. The conclusions roughly fall into two categories,
with one group of theories predicting a “small” mass of
roughly one electron mass per atomic length,7 whereas an-
other group predicts a “large” mass, of ordermskfj0d2 skf

=Fermi momentum,j0=coherence length atT=0d.8 In either
case the theories were limited to zero temperature. The work
of HAZ extends the calculation to an arbitrary finite tempera-
ture by working with the imaginary-time action.

In neither work, Refs. 5 and 6, was the validity of the
WKB approximation carefully checked against an exact di-
agonalization of the Bogoliubov–deGennessBdGd equation.
Also lacking in previous works was the consideration of the
self-consistent nature of the pair potential, which in particu-
lar will affect the behavior atT close to the transition tem-
peratureTc. After the pioneering work of Gygi and Schlüter,
the self-consistent numerical diagonalization of the BdG
equation for a single vortex or an array of vortices became
standard.12

In this paper, we employ a self-consistent numerical
method to solve the BdG equation with a single vortex. The
eigenstates thus obtained are used to calculate the effective
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mass of a vortex, according to the formula originally derived
in Ref. 6. Employing self-consistent calculation of the pair
potential at finite temperatures we compute the variation of
the effective mass in the full temperature range 0,T,Tc.

We proceed by revisiting the formulation of the effective
mass of Ref. 6 in Sec. II. The mass formula is then rewritten
in a form that is convenient for efficient numerical work. In
Sec. III numerical results for the temperature-dependent
mass are presented. We conclude with a summary and out-
look in Sec. IV.

II. FORMULATION

The effective actionSeff of a single vortex of a Bardeen–
Cooper–SchrieffersBCSd superconductor, centered atr vstd
at imaginary timet, is given by3–5,9

1

8
E

0

b

dtE
−`

`

dt8E
0

`

dvJsvde−vut−t8uur vstd − r vst8du2. s2d

The spectral function is the quantity

Jsvd = o
ab

dsv − uEa − EbudufsEad − fsEbduUKaU ]H0

]r v
UbLU2

,

s3d

which encodes the density of available low-energy excita-
tions created by, in this case, the change in the vortex posi-
tion r v. Fermi distribution function with energyx is denoted
fsxd. There is an additional action inSeff, pertaining to the
transverse motion of the vortex, which we do not consider
here.5 The statesa, b are the eigenstates of the Bogoliubov–
deGennessBdGd HamiltonianH0 in the presence of vortex at
r v, with energiesEa and Eb respectively. When we assume
that the dynamics is sufficientlylocal in time,10 we may ap-
proximater vstd−r vst8d<st−t8dṙ vstd and write

Seff <
1

2
3 SE

0

`

dv
Jsvd
v3 D 3 E

0

b

dtSdr v

dt
D2

. s4d

The effective vortex mass is the quantity in parenthesis,
given by

Mv = o
ab
U fsEad − fsEbd

sEa − Ebd3 UUKaU ]H0

]r v
UbLU2

. s5d

This formula, first derived by HAZ, allows an explicit calcu-
lation of the vortex mass at temperatureT using the eigenen-
ergies and wave functions of the BdG Hamiltonian.

The eigenstates of the BdG equation in the cylindrical
coordinates are written in the general form11

casr d =
1

Î2pL
eikzzeimuSe−iu/2uasrd

e+iu/2vasrd
D s6d

in the presence of a gap functionDsr d=Dsrde−iu for a recti-
linear vortex of lengthL centered atr =0. The radial func-
tions fuasrd ,vasrdg are obtained as eigenfunctions of the
coupled differential equationsr dependence inu, v andD is
implicitd

r2u9 + ru8 + Fskr
2 + 2mEdr2 − Sm −

1

2
D2Gu = 2mr2Dv,

r2v9 + rv8 + Fskr
2 − 2mEdr2 − Sm +

1

2
D2Gv = − 2mr2Du,

s7d

wherekr
2=kf

2−kz
2. Since the gradient operator does not mix

differentkz states, states characterized by differentkz’s make
additive contributions to the mass. Therefore, we assume that
the effective mass is,skfLd times the mass obtained from
kz=0 sector alone. Hence, we restrict ourselves tokz=0 in
the numerical diagonalization. Now each eigenstatesa is la-
beled bya=sma ,Ead andb=smb ,Ebd whereEasEbd denotes
energies of states having the angular momentummasmbd.

Self-consistency requires that ther-dependent gap func-
tion obey the relationDsrd=Voauasrdvasrdf1−2fsEadg for
some choice of the pairing interaction strengthV. Unique-
ness of the wave function requires thatm be half odd inte-
gers. Using these eigenstates, transition amplitudes can be
worked out

−KaU ]H0

]r v
UbL =

x̂ 7 iŷ

2
E

0

RHsuavb + ubvadr
dD

dr

± suavb − ubvadDJdr. s8d

Upper and lower signs correspond toma=mb±1. The upper
limit of integration is chosen atr =R where a hard-wall
boundary condition is imposed:uasr =Rd=0=vasr =Rd. The
two eigenstates differ by one unit of angular momentum due
to the gradient operator which connects them.

On integrating by parts, Eq.s8d is equal tosassuming
ma=mb+1d

FIG. 1. sColor onlined A magnet generates a quantized flux in-
side a thin slab of superconductorsblued. When a magnet is
dragged, the flux interacts with the surrounding medium.
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sEb − EadE
0

RHSua

dub

dr
+ va

dvb

dr
Dr − SSmb −

1

2
Duaub

+ Smb +
1

2
DvavbDJdr +

R

2m
Sdva

dr

dvb

dr
−

dua

dr

dub

dr
D

r=R
.

s9d

One must be careful not to ignore the boundary term atr
=R on the rhs of the above equation, which is generally
nonzero. A naive application of Feynman–Hellman theorem,
as was done by HAZ, would yield Eq.s8d=Eq. s9d without
the boundary term, which is incorrect. When eitherua or va

is localized over the distance much less thanR, the boundary
term can be ignored. However, no justification can be pro-
vided to ignore the boundary term for a generic pair of ex-
tended eigenstates.

We follow earlier works12 and write the eigenfunctions in
the form

uasrd = o
i

caifnisrd, vasrd = o
i

daifn+1,isrd,

fnisrd =
Î2

RJn+1sznid
JnSzni

r

R
D , s10d

wherezni is the ith zero of the Bessel functionJn. Integer
value n is related to the angular momentum byma=n+ 1

2.
Coefficients scai ,daid are determined from matrix
diagonalization.12 Negative-m states need not be considered
separately, instead one can use a positive-m eigenstate
sua ,vad of energyEa to construct a negative-m eigenstate,
given by sva ,−uad, of opposite energy −Ea.

With the eigenstates thus obtained, Eq.s9d can be re-
expressed using the coefficientsscai ,daid and making use of
Bessel identities. Forma=n+ 1

2, mb=n− 1
2, n.0, Eq. s9d be-

comes

An,ab =
2

R
o
i j

caicb jznizn−1,jS Ea − Eb

zni
2 − zn−1,j

2 −
j0

R2D
+

2

R
o
i j

daidb jzn+1,iznjS Ea − Eb

zn+1,i
2 − znj

2 +
j0

R2D s11d

and forma= + 1
2, mb=−1

2, it equals

Bab =
2

R
o
i j

caidb jz0iz1j
J0sz1jd
J2sz1jd

SEa + Eb

z0i
2 − z1j

2 −
j0

R2D
+

2

R
o
i j

daicb jz1iz0j
J0sz1id
J2sz1id

SEa + Eb

z0j
2 − zi1

2 −
j0

R2D . s12d

In deriving Eqs.s11d ands12d energy is expressed in units of
the zero-temperature gap value at a large distance from the
core, denotedDs0d, and the length in units ofkf

−1. In Eq.s11d,
a and b refer to eigenstates with a given angular momenta
ma=n+1/2 andmb=n−1/2,each. A mapping of negative-m
to positive-m eigenstates was used to express Eq.s12d solely
in terms of them= + 1

2 eigenstates. Now the vortex mass can
be calculated using

Mv = 2m ·
j0

2
· 2 o

n.0,ab

U fsEad − fsEbd
sEa − Ebd3 UAn,ab

2

+ 2m ·
j0

2 o
n=0,ab

U fsEad − fs− Ebd
sEa + Ebd3 UBab

2 . s13d

Factor 2 multiplying the first term reflects the transitions
within the negative angular momentum channels which gives
rise to equal mass as them.0 transitions.

Equationss11d–s13d are the main results of the paper, al-
lowing us to calculate vortex mass in the superconductor.
Using Eqs.s11d and s12d is much more efficient over the
brute-force numerical integration of Eqs.s8d and s9d in ob-
taining the transition amplitude.

III. RESULTS

Equations7d is diagonalized assuming a coherence length
j0;Ef /Ds0d=20 and choosing the radius of the boundary
kfR=100. For each angular momentumm, eigenstates with
energies within ±10Ds0d were retained. This left us with
about 90 eigenstates form=1/2, and adecreasing number of
states for largerm. Calculations were restricted tokz=0 only
as stated earlier. The energy gap vanishes completely atT
<0.571Ds0d, which we take as the transition temperatureTc.
We work at severalsreducedd temperaturest;T/Tc in the
range 0, t,1.

Figure 2 shows the calculated gap at a large distance from
the core,DsTd, and them= + 1

2 core energy level,e1/2sTd, for
the temperatures we considered. Both quantities decrease
monotonically withT. For T/Tc*0.9 the core energy levels
are no longer resolved as distinct from the continuum.

Referring to Eqs.s5d ands13d we may divide the mass as
arising from transitions between the core statessMv

ccd, core-
to-extended statessMv

ced, and between extended statessMv
eed:

Mv=Mv
cc+Mv

ce+Mv
ee. No other selection rule is imposed on

the initial and final states except the angular momentum dif-

FIG. 2. sColor onlined Pair potential well away from the core,
DsTd sblued, and the core energy level form= + 1

2, e1/2sTd sredd,
plotted vsT/Tc. Both quantities are normalized by their respective
T=0 values, withe1/2s0d /Ds0d=0.088 from self-consistent calcula-
tion. DsTd shows excellent fit toDs0dÎ1−sT/Tcd2.9 sblack curved.
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ference which must be one. As it turns out the transition
element is vanishingly small between a core and an extended
state, and thus the mass is effectivelyMv<Mv

cc+Mv
ee. In Fig.

3sad we show the total massMvsTd and the core-to-core
mass, Mv

ccsTd. As is evident from the figure,Mv
ccsTd

@Mv
eesTd for all temperatures except very nearTc where core

levels are not resolved, but here the total mass is vanishingly
small anyway. Both the total massMv and the level-resolved
massesMv

cc andMv
ee reach a maximum value atT/Tc,0.5.

The core-to-core mass can be further grouped according
to the angular momentum channelssma=n+ 1

2
d↔ smb=n− 1

2
d

over which the transition takes place. We denote such
angular-momentum-resolved, core-to-core mass,Mv

cc,nsTd.
Figure 3sbd shows Mv

cc,0sTd and onÞ0Mv
cc,nsTd=Mv

ccsTd
−Mv

cc,0sTd. We find thatMv
cc,0sTd, betweenm= ± 1

2 core lev-
els, survives at zero temperature and monotonically de-
creases at higherT. The nÞ0 channels give zero mass for
T=0, reaches a maximum at some intermediateT, and de-
creases to zero atT=Tc. This behavior accounts for the ob-
served maximum in the massMv

ccsTd.
The results shown in Fig. 3sbd can be nicely understood

thanks to the approximate identity which states
ukau¹vH0ublu<uEa−Ebu when both states belong to the core
levels.8 Numerical calculation confirms this relation with ex-

cellent accuracy for all temperatures, except nearTc. Then,
we can approximatefsee Eq.s13dg

Mv
cc,nsTd < 2mj0U fsen−1/2sTdd − fsen+1/2sTdd

en−1/2sTd − en+1/2sTd
U , s14d

where en±1/2 are the core-level energies form=n±1/2. In
particular, for n=0 we have the massMv

cc,0sTd
=2mj0 tanhfbe1/2sTdg /2e1/2sTd. At zero temperature we get
Mv

cc,0s0d=2mj0/2e1/2s0d,mj0
2 since Ds0d /e1/2s0d,j0. This

is precisely the mass of the electrons occupying the area
,j0

2.
On the other hand, Mv

cc,nÞ0sTd<2mj0b /
f4 cosh2sbensTd /2dg, ensTd;fen+1/2sTd+en−1/2sTdg /2, pro-
vided the temperature is much larger than the typical core
energy spacing,T@ uen+1/2sTd−en−1/2sTdu. As the typical core
energy spacings are a few percent of the energy gapDsTd,
this is not a very restrictive condition except nearT=0. Then
one can easily check that this approximate form forMv

cc,nsTd
rises to a maximum value forT equal to some fraction of the
gap Ds0d, in agreement with the observed maximum in the
mass shown in Figs. 3sad and 3sbd.

One finds that Eq.s14d is nonvanishing asT→Tc, and
en±1/2sTd→0. The core-to-core mass seemingly survives at
the transition temperature. A similar behavior, in fact a diver-
gence of the core-to-core mass atTc, was predicted in the
WKB calculation of HAZ. However, both Eqs.s14d ands10d
of HAZ are predicated on the existence of well-resolved core
states. Instead, all the core levels collapse into the continuum
eventually and Eq.s14d loses its meaning altogether.

SinceMv
ee makes a negligible contribution to mass at all

temperatures its behavior is not analyzed in detail.

IV. SUMMARY AND OUTLOOK

Summarizing our findings,sid At zero temperature the ef-
fective massMvsT=0d is the mass of electrons occupying a
cylinder of radiusj0, in agreement with earlier calculations.8

It increases upon higher temperature, reaching a maximum at
T<0.5Tc, and vanishes atTc. sii d Transitions between local-
ized eigenstates forming the core spectrum are mainly re-
sponsible for the effective mass. Hence,MvsTd<Mv

ccsTd. On
the other hand, dissipation experienced by a moving vortex
is due to the extended states as it requires transition between
states of the same energy.

Suppose now that the core levels got smeared due to the
impurities. If all higher angular momentum core levels ex-
cept n=0 disappeared, we would expectMv

cc,nÞ0sTd to be
effectively zero, and the mass behaves asMvsTd<Mv

cc,0sTd
showing the monotonic behavior of Fig. 3sbd. If all core
levels disappeared, we will be left with the extended states
whose mass contribution is shown to be quite small. It is
conceivable that in this case the mass becomes small, in
agreement with predictions of Ref. 7.

To fully describe the vortex dynamics, one must of course
know h in Eq. s1d with equal accuracy as the mass itself. If
the motion is overdamped, an object’s mass is no longer the
governing factor in the dynamics. Since the damping rate
rises monotonically with temperature, it is conceivable that

FIG. 3. sColor onlined sad Effective massMvsTd and the core-
to-core contribution to massMv

ccsTd at temperatureT/Tc, normal-
ized by Mvs0d. One findsMvsTd<Mv

ccsTd over most ofT. sbd
Mv

ccsTd=Mv
cc,0sTd+onÞ0Mv

cc,nsTd ssee text for definitiond. Mv
cc,0sTd

andMv
ccsTd−Mv

cc,0sTd are plotted separately.Mv
cc,0sTd is monotoni-

cally decreasing while the higher-n channels give a maximum mass
at T/Tc<0.5. The core levels are not well resolved forT too close
to Tc, which explains the absence of data points forT<Tc.
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above some crossover temperatureT* , the vortex motion gets
overdamped.

How do we calculateh within the same framework of
numerical diagonalization proposed in this paper? Dissipa-
tion due to transitions among equal-energy states is only well
defined in the thermodynamic limit,R→`. To analyze the
R=` behavior, one should presumably rely on a finite-size
scaling analysis of various transition amplitudes. Study of
size dependence may be necessary to get a better estimate of
the extended-states mass, too. A standard treatment of quan-
tum dissipative dynamics would predict that if the environ-
ment is ohmic, i.e.,Jsvd,hv at low frequency, the effective
mass is linearly divergent. A WKB-based calculation indeed
gives a linear spectral density for the vortex,5 and extended-
to-extended mass employing similar approximation is also
predicted to behave asMv

ee,m3Ds0d /vc for some cutoff
vc.

6 The finite-sizeR employed in the numerical calculation
can serve as the effective cutoff.

The choiceR/j0=5 used in our work is, we believe, large
enough to conclude that the core-to-core mass obtained in
this paper is that of the thermodynamic limit,Mv

ccsR/j0=5d
<Mv

ccsR/j0=`d, since all core levels are localized over a
few coherence lengths. On the other hand, extended states do
not meet this requirement, at least for ultraclean systems
with no impurity scattering to provide the cutoff. Although
Mv

eesR/j0=5d turned out to be negligible in comparison to
the core-to-core mass, one cannot completely rule out the
R-dependent growth ofMv

ee as predicted by quantum envi-
ronmental dynamics. We will return to these issues in a fu-
ture publication.
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