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The nonlinear response of infinite periodic solids to homogenous electric fields and collective atomic dis-
placements is discussed in the framework of density functional perturbation theory. The approach is based on
the 2n+1 theorem applied to an electric-field-dependent energy functional. We report the expressions for the
calculation of the nonlinear optical susceptibilities, Raman scattering efficiencies, and electre@ptio-
efficients. Different formulations of third-order energy derivatives are examined and their convergence with
respect to the&k-point sampling is discussed. We apply our method to a few simple cases and compare our
results to those obtained with distinct techniques. Finally, we discuss the effect of a scissors correction on the
EO coefficients and nonlinear optical susceptibilities.
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I. INTRODUCTION computation of the nonlinear optical susceptibilities, the non-
resonant Raman scattering efficiencies of both transverse
Nowadays, density functional thedrf/(DFT) is consid-  (TO) and longitudinalLO) zone-center optical phonons and
ered as a standard method in condensed matter physics, tige linear electro-opti¢EO) tensor. In Sec. IV, we illustrate
study electronic, structural, and macroscopic properties ofhe validity of the formalism by applying our methodology to
solids from first principles. Combined with adiabatic pertur-some semiconductors and ferroelectric oxides and we briefly
bation theory, it allowsa priori the computation of deriva- discuss the effect of a scissors correction on the EO coeffi-
tives of the energy and related thermodynamic potentials upients and nonlinear optical susceptibilities.
to any order. At the second order, this approach has been Some of the tensors we consider in this work depend on
applied to compute linear response functions such as phonafiatic electric fields: they include contributions of both the
frequencies or Born effective charges with an accuracy of @lectrons and the ions. Other quantities imply only the re-
few percent. The third-order derivatives are related to nonsponse of the valence electrons: they are defined for frequen-
linear properties such as phonon lifetimes, Raman tensors, @fes of the electric field high enough to get rid of the ionic
nonlinear optical susceptibilities. contributions but sufficiently low to avoid electronic excita-
The linear-response formalism has been implemented ifions. For clarity, we adopt the following convention. Static
various first-principles codes and is routinely applied to arfields will be labeled by Greek indicdsy, 3,...) while we
increasing number of systenisee, for example, Ref. 3 and wjl| refer to optical fields with Latin symbolsi,j,...). To
references therejnBy contrast, the nonlinear response for- simplify the notation, we will also drop labels suchagor
malism has been mostly restricted to quantum chemistryyantities that do not involve the response of the ions. Using
problems. Although the hyperpolarizabilities of a huge num-+hjs convention, we can write;; and e, respectively, for
ber of molecules have been computed, taking into accounhe optical and static dielectric tensor, respectively, Bnd

both electronic and vibrationonic) contributions’:*appli-  for the linear EO(Pockel tensor that involves two optical
cations in condensed matter physics have focused on rathgrd one static electric field.

simple case$:'3

H_ere, we present a m_ethodology for the cqmputation_ pf Il. FORMALISM
nonlinear response functions and related physical quantities
of periodic solids from density functional perturbation theory A. Mixed third-order energy derivatives

(DFPT). We focus on perturbations characterized by a zero | this section, we present the general framework of the
wave vector and involving either three electric fields, or tWOcomputation of third-order energy derivatives based on the
electric fields and one atomic displacement. Followingsn 1 theorent’-19 Using the notation of Refs. 20 and 21

Nunes and GQ”Z& our approach makes use of the+2l e consider three Hermitian perturbations labelgd,, and
theorem applied to an electric-field-dependent energy . The mixed third-order derivatives

functional’® We report the local density approximation
(LDA) expressions, as implemented within theiNnIT EMAAs = 1 FE 0
package? _ _ 6 N IN2 N3 |y z00,200550

Our paper is organized as follows. In Sec. Il, we describe s
the theoretical background related to thetZ theorem and can be computed from the ground-state and first-order wave
the electric field perturbation. In Sec. Ill, we describe thefunctiong®
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T is the kinetic energy and,,. (vyy) IS the sum of the below: it is always possible to lower the energy by transfer-
Hartree and exchange-correlation energpotentia). The  ring electrons from the valence states to the conduction states
first-order potentiab’2 . can be computed as a second-orderin a distant regionZener breakdown However, for suffi-

H
functional derivative >(<)CEHXC:19 ciently small fields, the tunneling current through the band
© © gap can be neglected and the system is well described by a
2 = &FErdn ]nXZ(r’)dr’ + d Eudn™] set of electric-field-dependent Wannier functiofg(r). As
Hxe an(ryon(r’) d\, () |0 shown by Nunes and Vanderbtftthese Wannier functions
(4) minimize the energy functional
Within the parallel gauge, the first-order Lagrange multipli- E[Wh; £]= Eo[Whl -~ Qo€ - P, (6)
ers are given by whereE, is the Kohn-Sham energy under zero fiet}, the
A)éi:<lr/ff/_?)|(-r+Uext+Uch))\2|(/fg?)>- (5) unit cell volume, andP the macroscopic polarization that

can be computed from the Wannier function centers. It is

As a consequence of then21 theorem, the evaluation of important to note that these Wannier functions do not corre-
Eqg. (3) requires no higher-order derivatives of the wavespond to the true ground state of the system but rather to a
functions than the first one. These first-order wave functionsong-lived metastable state.
are nowadays available in several first-principles codes. They In practical applications, it is not mandatory to evaluate
can be computed from linear response by minimizing a stathe functional equatiof6) in a Wannier basis. It can equiva-
tionary expression of the second-order enétgy equiva- lently be expressed using Bloch functiong related tow,
lently by solving the corresponding Sternheimer equatfon. by a unitary transform. In this case, the polarization can be
It follows that the computation of third-order energy deriva- computed as a Berry phase of the occupied b&nds
tives does not require additional quantities other than the oig O
calculation of second-order energy derivatives. ___«le

Equation(3) is the general expression of the third-order P= (2m)3 Bzdk<u”k|vk|u”k>’ @
energy derivatives. In case at least one of the perturbations
does not affect the exp|icit form of the kinetic energy or theWhere BZ is the Brillouin zoneg is the absolute value of the
Hartree and exchange-corre|ation energy, it can be Simp"electronic Charge, and the factor of 2 accounts for Spin de-
fied: some of the terms may be zero. This is the case for th@eneracy. The Bloch functions are chosen to satisfy the pe-
electric field perturbations treated in this work as well as forfiodic gauge condition
phonon-type perturbations. Further simplifications can be
made in case pseudopotentials without nonlinear exchange-
correlation core correction are used. In order to use Eq(7) in practical calculations, the integra-
tion over the BZ, as well as the differentiation with respect to
k, has to be performed on a discrete mesiNgk points. In
case of the ground-state polarization, the standard approach

As mentioned in the Introduction, special care is requireds to build strings ofk points parallel to a vector of the
in case one of the perturbations is a macroscopic electric reciprocal spac&,. The polarization can then be computed
field £. In fact, as discussed in the literature, for infinite as a string-averaged Berry phase. Unfortunately, the adapta-
periodic solids, usually treated with Born—von Karmantion of this method to the computation of the energy deriva-
boundary conditions, the scalar potenigalr breaks the pe- tives is plagued with several difficulties, like the following.
riodicity of the crystal lattice. Moreover, it is unbound from The general form of the nonlinear optical susceptibility ten-

n

eIG.Runk+G = Unk - (8)

B. The electric field perturbation
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sor of a compound is imposed by its symmetry. For examplepne as the perturbation expansion after discretization
in zinc-blende semiconductors, this tensor, express&am  (PEAD) formulation of the third-order energy. In the follow-
tesian coordinatesreduces toxff)=x(2)|€ij||, wheree is the  ing sections, we will discuss both expressions. In addition, in

Levi-Civita tensor. It follows that theeduced coordinatéor-  Sec. IV B, we will compare their convergence with respect to

mulation of)(i(ﬁ) satisfies the relation thek-point sampling on a realistic example. The perturbation
@ expansion of the first ternfiEy) of Eq. (6) can easily be

Xijl_ :1 (9) performed, as described in the Sec. Il A. In contrast, the
Xi(iiz) 3 expansion of the second terfrQ,E-P) is more tricky

since it explicitly depends on the polarization. In the two
sections that follow, we will focus on the(& - P term of
Eq. (6). It will be referred to asE,.

where at least one of the three indiéeg, and| are different
from the two others. When we tried to use stringk gfoints

to computeXi(jzl), Eq. (9) was not satisfied. However, we were
able to avoid these problems by using the finite difference
formula of Marzari and Vanderbftt on a regular grid of

. . - . C. DAPE expression
specialk points(instead of strings P

According to the formalism of the preceding section, the
&€ P term acts as an additional external potential that has to
be added to the ionic one. Ti& P perturbation is linear in
whereb is a vector connecting ke-point to one of its nearest the electric field and does not depend explicitly on other
neighbors andw, is a weight factor. The sum in Eq10)  variables such as the atomic positions. It just enters the terms
includes as many shells of first neighbors as necessary ©f Eq. (3) that involve the first derivative af,,, with respect
satisfy the condition to €. In other words, the only terms in E) that involve

the expansion ofP are of the formE*1%*s, where); and\;
> Wpb, b= &/”—2 (11)  represent an arbitrary perturbation such as an electric field or
b (2m an atomic displacement.
The DAPE expression of the third-order derivativebg,
is written as follows*

V (k) = > wpb[f(k +b) - f(k)], (10)
b

whereb, are the reduced coordinates lofand g, is the
metric tensor associated with the real space crystal lattice.
In the case of the ground-state polarization, we cannot

apply the discretization equatig0) directly to Eq.(7). As _ oce oce

shown by Marzari and Vanderbilt, the discretization of Eq.  zaen, _ 2ieQ)y kS iz U9 ) [u©)
(7) does not transform correctly under the gauge transforma- —ro! 2mdls, 5 nk ki mk/ A= mk] f 50
tion

(15)
unk(r) - e_ik.Runk(r)- (12)

Since Eq.(12) is equivalent to a shift of the origin by one \yhere Y are the projections of the first-order wave func-
lattice vectorR, P must change accordingly by one polar- tisns on the conduction bands. The complete expression of
ization quantum. In order to obtain a discrete expression thafarioys third-order energy derivatives, taking into account
matches this requirement, we must c;)smblne B with e expansion of botk, and Epo are reported in Sec. Ill.
the King-Smith and Vanderbilt formuta Eq. (15) was derived first by Dal Corso and Matfrin a
2e slightly different context: they performed the perturbation
P= > > wyb ImIndet[Sk,k +b)], (13 expansion of the energy functional equatiéhusing a Wan-
N2 "5 nier basis. The resulting expression of the third-order energy
was expressed in terms of Bloch functions by applying a
unitary transform to the Wannier orbitals.
Using the finite difference expression of Marzari and

Sk K + ) = (Uni|Uncan). (14) Vanderbilt equation(10), Eq. (15) becomes

whereS is the overlap matrix between Bloch functionskat
andk +b:

As discussed by Nunes and GoriZzeyhen we apply the
perturbation expansion of the preceding section to the energy Jie occ
functional Eq.(6), we can adopt two equivalent approaches. Eggfiks = szk: > > wy(b-Gy)

The first possibility is the use of Ed7) for the polarization b nm

and a discretization after having performed the perturbation M|y ha © [, _ /i Ml A3
expansion. The second possibility is to apply time-2 theo- X AUt Undern) (Ul Unic) = (U Ungo) O )
rem directly to Eq(13) in which case no additional discreti- (16)

zation is needed. Using the notations of Nunes and Gonze,
we will refer to the first case as the discretization after per-
turbation expansiolDAPE) formulation and to the second whereG,; is a basis vector of the reciprocal lattice.
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D. PEAD expression another definition of the nonlinear optical susceptibility: in-

. . . (2) i
Applying directly the 21+ 1 theorem to Eq(13) we obtain ~ Steéad ofx;’, it is more convenient to rely on thet tensor
the alternative PEAD formulation of the third-order enety: defined as

~ - 1
Eggfm = —eImE > wy(b-G)) dij = §X|(12|) (20)
Ne kb
occ In general, the polarization depends on valence electrons
X [22 <U§&|Uﬁi+b>an(k.k +b) as well as ions. In the present section, we deal only with the
nm electronic contribution: we will consider the ionic cores as

occ clamped to their equilibrium positions. This constraint will
be relaxed in the following sections where we allow for ionic
-2 /S;\“ln(k’k *+0)Qui(k.k +D) displacements. ’
L Experimentally, the electronic contribution to the linear
and nonlinear susceptibilities corresponds to measurements
X §(k,k +b)Qm(K,k +b) (17)  for electric fields at frequencies high enough to get rid of the
ionic relaxation but low enough to avoid electronic excita-
tions. In case of the second-order susceptibilities, this con-
straint implies that both the frequency &f and its second
harmonic, are lower than the fundamental absorption gap.
i(k,k +b)= <U§!;|fo?lz+b> + <U5101<)|U24k+b>- (18) The ge.n_eral expression of the electr'onic nonlinea_lr optical
susceptibility depends on the frequencies of the optical elec-
tric fields (see, for example, Ref. 27In the present context
[1l. NONLINEAR OPTICAL PROPERTIES of the 2n+1 theorem applied within the LDA t(statig DFT,
we neglect the dispersion Qii(ﬁ). As a consequencg«fﬁ)

In the preceding section we have discussed the general™. f' lei % diti hich h
expressions of third-order energy derivatives. We now parSatisfies Kleinman's symmetry condition, which means that

ticularize them to the computation of selected nonlinear! IS Symmetric under a permutation ofj, andl. In order to
properties. be able to investigate its frequency dependence, one would

need either to apply the formalism of time-dependent DFT
or to use expressions that involve sums over excited
states®32 Following the work of Dal Corso and

In an insulator the polarization can be expressed as a Tayo-worker§26 we can relate the nonlinear optical suscepti-

where Q is the inverse of the overlap matri& and SV its
first-order perturbation expansion

A. Nonlinear optical susceptibilities

lor expansion of the macroscopic electric field bilities to a third-order derivative of the energy with respect
3 3 to an electric field,
PP+ 2 6+ 2 g+ (19 ,_ 3
i=1 jl=1 Xi(jl) =- Q—Egigigl, (21)
0

whereP} is the zero—fieldspontaneoosjoIarization,ijl) the e _ .

linear dielectric susceptibilitysecond-rank tensprand x| whereE“"" is defined as the sum over the permutations of
the second-order nonlinear optical susceptibilityird-rank  the three perturbatior&i€il [Eq. (2)]. Using the PEAD for-
tenso). In the literature on nonlinear optics, one often findsmulation of Sec. 1l B we can express these terms as follows:

occ

~ -e :
ESi64 = N—klmEk Eb wp(b - Gj) [ 22 (Unk| Ui Qi K + b)
n,m

occ
- X Sikk+b)Qu(kk+b)S! (KK +b)Qum(k,k +b)
n,mn’,m’
2 occ
+ 12 2 [oma(Uilorduio = UmlvridureX(uiduro]

k k nm

1 [ 66EXC[nO] Ei Eilv N\NAEI (¢!
+ 6jdrdr dr éh(r)éh(r’)éh(r”)n (r)nci(r")yns(r"). (22
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B. Raman susceptibilities of zone-center optical phonons sample and the surrounding medium. Experimentally, the

We now consider the computation of Raman Scatteringscattering efficiencies are measured with respect to the solid

efficiencies of zone-center optical phonons. In the limitangle of the surrounding medium while Hg6) refers to the
solid angle inside the sample. In order to relate theory and

0, the matrix of interatomic force constar@can be . . .
9 gxperiment, one has to take into account the different refrac-

expressed as the sum of an analytical part and a nonanaly

cal tern?t tive indices of the sample and medium. For example, in case
of an isotropic sample, Eq26) has to be multiplie#f by
~ ~ ~ A ' ; e indi-
Cranrs@—0) = C/:S,K'p(q =0)+ CS:K'B(Q ~0). (n"/n)* wheren andn’ are, respectively, the refractive indi

ces of the sample and the medium. In contrast to the scatter-
(23)  ing efficiencies, the Raman susceptibilities defined in Eq.

The analytical part corresponds to the second-order derivd29 are intrinsic properties of the sample and do not depend
tive of the energy with respect to an atomic displacement a@n the change in the angle of collection. W

g=0 under the condition of vanishing macroscopic electric FOr pure transverse optical phonori;"/d7,s can be
field. The second term is due to the long-range electrostatiEomputed as a mixed third-order derivative of the energy
interactions in polar crystals. It is at the origin of the so-Wwith respect to an electric field, twice, and to an atomic dis-
called LO-TO splitting and can be computed from theplacement under the condition of zero electric field
knowledge of the Born effective chargé§a5 and the elec-

tronic dielectric tensat &ij. The phonon frequencies,, and

eigendisplacements,(ka) are solutions of the following Py 6
generalized eigenvalue problem, S = —ETab6, (29
T lezo Qo
2 CKa,K'Bum(K,B) = Mwanum(Ka), (24)
K',B

In case of longitudinal optical phonons with wave vector
whereM, is the mass of atom. As a convention, we choose q— 0 in a polar crystal, Eq(28) must take into account the

the eigendisplacements to be normalized as effect of the macroscopic electric field generated by the lat-
tice polar vibration. This field enters the computation of the
> M Un(ka@)un(ka) = Smn- (25) Raman susceptibilities at two levels. On one hand, it gives

K rise to the nonanalytical part of the matrix of interatomic

In what follows we consider nonresonant Raman scatter]iorce constants, Eq23), that modifies the frequencies and

ing where an incoming photon of frequeney and polariza- e;grj]en\;]ectgrs”:/v |th| retspe?t tlg pudre transverjg_tphor}onhs - On t_he
tion e, is scattered to an outgoing photon of frequeliey other hand, the electric Tield induces an additional change in

—w,) and polarizatiores by creating a phonon of frequency the dielectric susceptibility tensor related to the nonlinear

oy, (Stokes processThe scattering efficiené$5 (cgs units optical coefficientsxi(i). For longitudinal optical phonons,
corresponds to Eq. (29) has to be modified as follow?:

ds - on)? h

5 < jes R 2= o g (o 1), *

dQ C 20 FIVC RPN ) 8 > Z,,0

X X ST LT S @ (30)
(26) P) P QO Xijr ai-
Thh Tix | £=0 Ozl,l’ geqpr |
wherec is the speed of light in vacuum ang, the boson
factor
1 The mixed third-order derivatives E(R9) can be computed

m= . (27)  from various techniques including finite differences of the
expion/ksT) — 1 dielectric tensot’~3° or the second derivative of the elec-
tronic density matri¥%4!Here, we follow an approach simi-
lar to Deinzer and Strau¢hbased on ther2+ 1 theorem. The

The Raman susceptibilitg™ is defined as

oy ® third-order energy can be computed as the sum over the 6
o = VO a—X'I—um(K,g), (28) pgrmutgtions, Eq(2), of 7, &, and 5,-.. Accqrding to the
B 9 Tkp discussion of Sec. Il B, we have to distinguish between the
B terms that involve the discretization of the polarization such

wherey::” is the electronic linear dielectric susceptibility ten-  ~ ~
sor InXIIJEq (26), Q is the angle of collection in ?/vhichythe asE"\ or EI7 and those that can be computed from a

outgoing photon is scattered. As discussed in Ref. 34, wgtraightforward application of then1 theorem such as
have to be careful when we compare the theoretical and ex&“"*“i. The former ones show an electric field as second
perimental scattering efficiencies. Due to Snell's law, theperturbation. They can be computed from an expression
angle of collection is modified at the interface between theanalogous to Eq(22):
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occ occ
~ -e , - _
E70 = —=Im3 X wy(b - G)| 2 (U |ufhen)Quuk K +b) = X Sk k + b)Qui(k,k + D)5 (K + b)Qu(k,k + b)
k k b nm nml,l’

occ

2 T, i i i T, i 1 ! n
+ 233 [amafuilofidl - Ul o+ £ [ e
k k nm

FEJN’]

T Ei(r! £J- "
an(r)en(ryan(r”) " (r)n=i(r")n%i(r").

(31)
We obtain a similar expression f&i€i7. The remaining terms do not require any differentiation with respekt fithey can

be computed from the first-order change of the idipiseudo) potential with respect to an atomic displacemefy:

occ

=& g 2 £ E: 0 0 £ E:
SOOSE —kEk 2 UGz + vl Ul 8y m = (U o 2 + v uig(ush (U]
n,m

1 fi M Ei Ei(r ! lf rdr” 53EXC[nO] Tix Ei(r \AEi(r"
+2fdrdr dr bh(r)m(r’)n (rn°i(r )+6 drdr’dr éh(r)éh(r’)&w(r”)n (r)n“i(r")n%i(r"). (32

In pseudopotential calculations, the computation of the first-
order ionic potentiab s} requires the derivative of local and
nonlocal(usually separabjeoperators. These operations can
be performed easily without any additional workload as de-
scribed in Ref. 20.

In spite of the similarities between Eq81) and(32) and D. Electro-optic tensor
the expression proposed by Deinzer and Strauch we can
quote a few differences. First, our expression of the third- The optical properties of a compound usually depend on
order energy derivatives makes use of the PEAD fomulatiorexternal parameters such as the temperature, electric fields,
for the expansion of the polarization. Moreover, E82) is  or mechanical constraintstress, strain In the present sec-
more general since it allows the use of pseudopotentials wittion we consider the variations of the refractive index in-
nonlinear core correction through the derivative of theduced by a static or low-frequency electric figlgd At linear
second-order exchange-correlation energy with respegfto order, these variations are described by the linear EO coeffi-

1 1 1
aXi(j) . axg’ B axg’

T aT aT

Ko Ka o

(35

(third term. cients(Pockels effegt
C. Sum rule .
As in the cageg of the Bgrp effec(tB/e charges and_of the A(S—l)ij =3 oS (36)
dynamical matrix? the coefﬂuentsa)(ij /97, must vanish ¥=1

when they are summed over all atoms in the unit cell:

(1

> 2. 0. (33) where(e7%); is the inverse of the electronic dielectric tensor
« ITka andr;;, the EO tensor.

Within the Born-Oppenheimer approximation, the EO

Physically, this sum rule guarantees that the macroscopic dignsor can be expressed as the sum of three contributions: a
electric susceptibility remains invariant under a rigid translaygre electronic part_ejl an ionic contributionr® and a
ijy

tion of the crystal. In practical calculations, it is not always piezoelectric contribution?'s? e

satisfied although the violation is generally less severe than Thg glectronic part is die to an interaction&gfwith the

in case ofC or Z'. Even in calculations that present a low valence electrons when considering the ions artificially as
degree of convergence, the deviations from this law can belamped at their equilibrium positions. It can be computed
quite weak. They can be corrected using similar techniqguefom the nonlinear optical coefficients. As can be seen from
as in the case of the Born effective chargeor example,  Eq.(19), x|;’ defines the second-order change of the induced
we can define the mean excess&m‘jl)/ JT., PEr atom polarization with respect t&,. Taking the derivative of Eq.
(19), we also see thr;\ti(.zl) defines the first-order change of the
linear dielectric susceptibility, which is equal tb/4m)Ae;;.

A 1o

ZL==3 3@ g 2
07, Ny™ 07 Since the EO tensor depends &(e™);; rather thame;;, we
have to transforme;; to A(s'l)ij by the inverse of the zero-
and redistribute it equally between the atoms: field electronic dielectric tensby
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3
Ale™;=- 2 EimAEmEn;

m,n=1

(37)

Using Eq.(37) we obtain the following expression for the

electronic EO tensor:

el _.

3
_ 2 -
Fijy = -87> (e 1)i|)(|(|/)k(8 i

II'=1

(38)
k=y

Equation(38) takes a simpler form when expressed in the

principal axes of the crystal under investigatfdn:
-8m

2Xi(jk) ,

] k=y

el _

VY nn

(39)

PHYSICAL REVIEW B 71, 125107(2005

(usually above~100 MH2). To compute the unclamped EO

tensorrif,, we have to add the piezoelectric contribution to
ri’j7y:

[ ) piezo
Ty =Ty Ty (45)
Experimentally,rj, can be measured for frequencies&f
below the (geometry-dependentmechanical body reso-
nances of the samgie(usually below~1 MHz).

r

IV. RESULTS
A. Technical details

Our calculations have been performed within the local
density approximation(LDA) to the density functional

where then; coefficients are the principal refractive indices. theory2 (DFT). We used theaBiNIT packagé® a plane-
The origin of the ionic contribution to the EO tensor is the yave, pseudopotential DFT cdén which we have imple-

relaxation of the atomic positions due to the applied electrignented the formalism presented above. For reasons that will

field £, and the variations of;; induced by these displace- pecome obvious below, we chose the PEAD formulation, Eq.

*

As shown in the Appendixsee also Refs. 36 and ¥5he

ments. It can b(% computed from the Born effective charge$17) , to perform the differentiation with respectko For the
Z, .5 and thedx;."/ dr,, coefficients introduced in Sec. Ill B. exchange-correlation enerd@y. we relied on the parametri-

zation of Perdew and Wafjas well as the parametrization

ionic EO tensor can be computed as a sum over the trangf Goedecker, Teter, and HutfrThese expressions have

verse optic phonon modes @t0:

m
4ar CY” pm’,y
2 ’

iy™ [0 n2n2
\Qonl I’]J m Wy

ion _ _

r (40)

where @™ is the Raman susceptibility of mode [Eq. (28)]
andpp,, the mode polarity

Prny = 2 Zyeygtm(KB), (41)
KB

which is directly linked to the mode oscillator strength

Sm,aﬁ = pm,apm,,B- (42)
For simplicity, we have expressed EdO) in the principal

the advantage of avoiding any discontinuities in the func-
tional derivative ofE,..

In case of the semiconductors Si, AlAs, and AlP, we used
a 16X 16X 16 grid of speciak points, a plane-wave kinetic
energy cutoff of 10 hartree, and Troullier-Martthsiorm-
conserving pseudopotentials. These calculations have been
performed at the theoretical lattice constant. To perform the
finite difference calculations of the Raman polarizabilities,
changes of the electronic dielectric tensor were computed for
atoms displaced by +1% of the unit cell parameter along the
Cartesian directions.

In case of rhombohedral BaTiODwe used a 1610
X 10 grid of speciak points, a plane-wave kinetic energy
cutoff of 45 hartree, and extended norm-conserving

axes while a more general expression can be derived frompseudopotentia®: Since the ferroelectric instability is quite

Eq. (37).

sensitive to the volume of the unit cell and tends to disappear

Finally, the piezoelectric contribution is due to a relax- due to the volume underestimation of the LBAwe chose
ation of the unit cell shape due to the converse piezoelectrito work at the experimental lattice constants. In contrast to
effect?64’As it is discussed in the Appendix, it can be com-the lattice parameters, the atomic positions have been re-

puted from the elasto-optic coefficients,, and the piezo-
electric strain coefficientd,,,,:

3
rﬁisZO: E lpij,uvdy,uw (43)

=

laxed: the residual forces on the atoms were smaller than 5
X 1075 hartree/bohr.

It was shown by Gonze, Ghosez, and Godbthat an
accurate functional for the exchange-correlation energy in
extended systems should depend on both the density and the
polarization. The LDA used here neglects this polarization

In the discussion of the EO effect, we have to specifydependence and may consequently introduce significant rela-

whether we are dealing with strain-fréelamped or stress-

tive errors when studying the response of a solid to an elec-

free (unclampedd mechanical boundary conditions. The tric field. In case of the second-order derivatives, the LDA
clamped EO tensar/, takes into account the electronic and usually yields an overestimate of the dielectric tenéas
ionic contributions but neglects any modification of the unitiarge as 20% in BaTig).5® In contrast, no clear trends have
cell shape due to the converse piezoelectric effétt: been reported yet concerning nonlinear optical properties
such asy'?.929

In LDA calculations, it is common practice to apply a
Experimentally, it can be measured for frequencies€pf — scissors correctiotl to compensate for the lack of polariza-
high enough to eliminate the relaxations of the crystal latticdion dependence of the exchange-correlation functional. In
but low enough to avoid excitations of optical phonon modescase of nonlinear optical properties, such a correction can be

7 — el ion
iy =iy + Ty (44)
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applied at different levels. On one hand, we can compute the O—T—TT T T T T T
nonlinear optical susceptibilitigd=q. (22)] using a scissors
operator for the first-order wave functioflsOn the other
hand, in the computation of the EO coefficients, we can use 35

a scissors corrected refractive index in E&9) and (40). S
The influence of these corrections will be discussed below. £ 30
§ DAPE —o—
B. Nonlinear optical susceptibilities and Raman o5 PEAD

polarizabilities of semiconductors

In order to illustrate the computation of third-order energy
derivatives, we performed a series of calculations on various 20
cubic AB semiconductors where the atohis located at the
origin andB in (1/4,1/4,1/4. In these compounds, the
nonlinear optical susceptibility tensor has only one indepen- FiG. 1. Nonlinear optical susceptibility,si(pm/V) of AlAs for
dent elementd, 53, various grids ofn X nXx n specialk points.

NN AN NN N N N S B
2 4 6 8 10 12 14 16 18
n

o
N
o

dhjk = di2d €ijul (46) in the limit of a large number ok points and(ii) that the
wheres; is the Levy-Civita tensor. The Raman susceptibili- €xPression used in their work converges faster than the ex-
ties are also defined by a single numbey, For phonons Pression used in Ref. 24.

polarized along the Cartesian directibnthe Raman suscep- ~ |n Table I, we report the nonlinear optical susceptibilities
tibility tensors are written as of the cubic semiconductors AlAs and AIP. Our results are in
close agreement with the values obtained by Dal Corso and
aij(N) = aggl€j,|. (47)  co-worker8 who applied the 8+1 theorem within the

In cubic semiconductors, it is customary to report the Ramarg "i‘\sPuErrfO(;Tear“SeTéizgg r;zttjgss,,ofel(‘;\r/]'inigng:‘éﬁz\éhs;ﬁzg ob-
polarizability?*%° defined as que,

tained by Souza and co-workéfswho followed a finite

— 3X(112) electric field approach. The values in the lower part of Table
a= \",U«Qoalzzﬂoa_, (48) | have been obtained using a scissors correction. Our meth-
odology provides a correction similar to that reported by
wherey is the reduced mass of the two atoms in the unit cellLevine and Allan®
and 7 3 a displacement of atorA along thez direction. The scissors correction decreases the value of the nonlin-

The formalism of Sec. Il involves an integration over the ear optical susceptibilities in agreement with the discussion
BZ and a differentiation with respect ta In practical cal- of Ref. 59. To the authors’ knowledge, no experimental data
culations, these operations must be performed on a discretee available for AlAs and AIP. For other cubic semiconduc-
mesh of speciak points. As we explained in Sec. Il, the tors, it is, however, not clear that the use of a scissors cor-
discretization can either be performed bef@P&AD) or af-  rection improves agreement with experintérand will even
ter (DAPE) the perturbation expansion of the energy func-have a negative effect when the LDA underestimates the ex-
tional equation(6). Up until now, the applications of the perimental value. In addition, it is not straightforward to iso-
present formalism to real material® made use of the DAPE late the error of the LDA on the nonlinear response functions
formula of the third-order energy. The only application of thefrom other sources of errors. Other factors have a strong
PEAD formula has been reported by Nunes and G6hae  influence onXi(jzl) similar to the scissors correction. For ex-
a one-dimensional model system. These authors observed
that the PEAD formula converges better with respect to the TABLE I. Nonlinear optical susceptibilities; »5(pm/V) of some
k-point sampling than the DAPE formula. In order to com- semiconductors. The values in the lower part of the table have been
pare the performance of these two approaches for a realistRPtained using a scissofSCl) correction.
case, we applied both of them to compute the nonlinear op-=
tical susceptibility gy; of AlAs. We performed a series of Method AlAs AlP
caIcuI_atiolns on axXnxXn grid of speciak points. As can be 2n+1 theorem(present 35 21
seen in Fig. 1 the PEAD formula converges much faster than
the DAPE formula. Therefore, the PEAD formulation has2n+1 theorer 32 19

been applied to obtain the results presented below. It is thEinite fields 32 19
one that is actually available in thaINIT code. Sum over statés 34 21
It is interesting to note_that a different speed of CONVer-, . i eorem + SClpresent 21 13

gence for distinct expressions has also been reported for the
Sum over states + SE€I 21 13

localization tensor. In Ref. 56 Sgiarovello and co-workers
compared the convergence of two formulations based on difReference 9.

ferent discretizations of the sankespace integral. They ob- PReference 58.
served thafi) both expressions converge to the same valuéReference 30.
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TABLE II. Raman polarizabilities of the transver§€0) and longitudinal(LO) optical modes/A?) of
some semiconductors.

Si AlAs (TO) AlAs (LO) AIP (TO) AlP (LO)
2n+1 theorem

Present 20.02 8.48 12.48 4.30 7.46

DS 23.56 7.39 5.13
Finite differences

Present 20.17 8.59 4.25
DS? 20.44 5.64 4.44
BRP 26.16

Experiment 2314

aReference 10.
bReference 37.
‘Reference 60.

ample, the values of the nonlinear optical susceptibilitiesneous polarization and theaxis lies in a mirror plane. The
strongly depend on the pseudopotefitiai on the error on z andy axes are both piezoelectric. Their positive ends are
the unit cell volumé®®° that is usually underestimated in chosen in the direction that becomes negative under com-
LDA calculations. pression. The orientation of these axes can easily be found
We also computed the Raman polarizabilities of the transfrom pure geometrical arguments. Unfortunately, these argu-
verse(TO) and longitudinal optica{LO) phonons of various ments do not allow us to determine the direction of the
semiconductors. In addition, we performed finite differenceaxis. Therefore, we applied the methodology of Ref. 61 to
calculations of the dielectric tensor with respect to atomiccompute the piezoelectric tensor from finite differences of
displacements. Our results are summarized in Table Il wherthe Berry phase polarization. Our results are reported in the
we also report the results of Deinzer and Strafi¢PS) and  Cartesian axes where the piezoelectric coefficieassand
Baroni and Res (BR) as well as the experimental result of e;; are positive.
Wagner and Cardofifor Si. The agreement between our  These coefficients, as well as their decomposition on the
results and those obtained in previous works is quite good. Iindividual phonon modes and their electronic part, are re-
addition, the results we obtained from the+2l theorem ported in Table Ill. All EO coefficients are positive. As is the
closely agree with the finite difference calculations, giving uscase for the tetragonal pha®ethe modes that have the
some indication of the numerical accuracy of the implemenstrongest overlap with the soft mode of the paraelectric phase
tation. dominate the amplitude of the EO coefficients. Moreover, the
The Raman polarizabilities of the TO and LO modes areelectronic contribution is found to be quite small.
different. As it is discussed in Sec. Il B, this difference is As we discussed in the previous sections, linear and non-
attributed to the macroscopic electric field associated with dinear optical susceptibilities are sometimes relatively inac-
longitudinal polar lattice vibration. On the one hand, thiscurate within the LDA. In this context, it is interesting to
field modifies the dynamical matrix &— 0. The eventual investigate the error due to the use of the LDA optical di-
related modification of the eigenvectors of the LO modeselectric constants in the transformation equati®n. Unfor-
may imply a first change of the Raman susceptibility. On thetunately, we could not find any experimental data on the EO
other hand, the macroscopic electric field itself may inducecoefficients in the rhombohedral phase of BafiGh Ref.
an additional change o# related to the nonlinear optical
coefficientsxi(?. In the cubic semiconductors, the eigenvec- TABLE lil. Decomposition of the clamped EO tensgm/V)
tors of the TO and LO modes are identical. The differencen the rhombohedral phase of BaTiCReported are the contribu-
between the polarizabilities of the TO and LO modes comegons of individual zone-center phonon modes and the electronic
therefore exclusively from the second term of E80). contribution. The phonon frequencies are reported incm

_ o A; modes E modes
C. EO tensor in ferroelectric oxides © r, r, © (2, ry
In the rhombohedral phase of BaTiQhe EO tensor has
four independent elementsg, a3, 5, @andrg;. In contrast to Tol 168 0.65 2.16 163 0.79 515
the dielectric tensor, the EO coefficients can either be posil©2 253 1382 2732 202 540  19.16
tive or negative. The sign of these coefficients is often diffi-TO3 509 131 2.05 293 0.01  -0.02
cult to measure experimentally. Moreover, it depends on tha04 469  0.24 0.65
choice of the Cartesian axes. Experimentally, these axes afgect. 1.15 2.95 0.12 1.24
chosen according to theStandards on Piezoelectric 1o 16.93  34.48 656  26.18

Crystals®®71 The z axis is along the direction of the sponta-
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TABLE IV. Effect of a scissors correction on the EO coefficients V. CONCLUSIONS AND PERSPECTIVES
of LiINbO; (clamped and unclamped casesnd the tetragonal
phases of PbTiQand BaTiQ (clamped cases onlyThe dielectric
tensor required to perform the transformation, E2jf), has been

In this paper, we presented the general framework for the
computation of third-order energy derivatives within DFT.
computed within the LDAe| pa) and using the LDA with a scissors Our formalism makes use of th@2 1 theorem and the mod-

) . . ern theory of polarization. Focusing on derivatives that are
correction(esc). No scissors correction has been used to CompUt%haracterized by a zero wave vector and that involve either
the nonlinear optical susceptibilities that determine the electroni(ihree electric fields or two electric fields and one atomic
contribution to the EO coefficients. In case of Pbi@e also use  yig 3 cement, we described the computation of nonlinear op-
the experimental dielectric tensteyy) to compute the EO Coeffi- o1 o\ \seentibilities, of Raman scattering efficiencies of TO
cients. The values are compared to the experimental results. and LO phonons, and of the EO tensor

The computation of the Berry phase polarization involves

M3 M3 F22 M's1 a derivative of the wave functions with respect to their wave
LiNbO, eLop 9.67 26.93 455 1493 Vector In prac_tice, this differentiation is computed on a grid
of specialk points. The perturbation expansion can either be
(clamped esci 1037 2889 488 1602 omed beforéDAPE) or after(PEAD) the discretization,
Expt? 8.6 30.8 3.4 28 leading to two mathematically distinct expressions of the
LiNbO3 €LDA 1047  27.08 753 28.61 third-order energies. We used both of them to compute the
(unclamped esc 11.23  29.06 8.08 30.69 nonlinear optical susceptibility of AlAs, and we have shown
Expt? 10 322 6.8 326 that the PEAD formulation converges faster with respect to
Exotb the k-point sampling.
pt. 9.89 . . o
_ We have computed the nonlinear optical susceptibilities
PbTIC; €LDA 8.98 5.88 30.53 and Raman polarizabilities of some cubic semiconductors as
(clamped escl 14.24 894 47.39  well as the EO tensor in the rhombohedral phase of BgTiO
Eexpt 10.92 6.16 34.45 Finally, we have studied the effect of a scissors correction
Expt® 13.8 5.9 on the EO coefficients and the nonlinear optical susceptibili-
BaTiO, eLop 8.91 22 27 ties. In contrast to the d|efleﬁtr|c tenlsoB we _dld R'Ot find a
(clamped eee, 1266 3084 E)éit.ematm improvement of the results by using this correc
Expt! 102 406 We can figure out several applications of the methodology
Expt® 8 28 presented in this work. Combined with the calculation of

phonon frequencies and infrared intensities, the computation
of Raman efficiencies can be a useful complementary tool
for the interpretation of experimental spectra. Furthermore,
the computation of the EO tensor from first principles can
guide the tuning of the EO properties and help in designing
new efficient EO materials. This could be particularly helpful
since accurate optical measurements require high-quality
single crystals not always directly accessible.

aReference 71.
bReference 72.
‘Reference 73.
dReference 74.
®Reference 47.

46, we studied the EO coefficients of ferroelectric LiNbO
and tetragonal BaTiQand PbTiQ and found an overall
good agreement between theory and experiment. In Table IV, ACKNOWLEDGMENTS
we report the EO coefficients of these compounds as well as
the values obtained using a scissors-corrected optical dieIe%-i
tric constant. No scissors correction has been applied for the
nonlinear optical susceptibilities of these compounds that ar
required to compute the electronic contributions.

The effect of this correction is more important for the

The authors are grateful to M. D. Fontana, P. Bourson, B.
rtman, and B. Champagne for helpful discussions. M. V.
nd X. G. acknowledge financial support from the FNRS
elgium. This work was supported by the Volkswagen-
Stiftung within the project “Nano-sized ferroelectric Hy-
perovskite compounds than for LiNgCfor which the LDA bngglg(” t7h7e Z:%-?ﬁrrgt?]alflteégErgnvg:iiznggggg%iee’—zz:?{gr?ts de
band gap and optical dielectric constants are in reasonab echerche Concertées, the PAJUIAP Phase 5 “Quantum size

agreement with experimeft.For BaTiQ;, we tested the op- ; o :
tical dielectric tensor obtained from the scissors correctioneﬁeCtS in nanostructured materials,” FNRS-Belgium through

that modifies the LDA band gap to its experimental vatie: J"ants Nos. 9.4539.00 and 2'4.5(.52'03’ the El,lropean Un,i,on
we obtainr,=12.68 pm/V a?\d273:30.84 F;))m/V, in closer through the Research and Training Network “EXCITING

agreement with experimental data. However, such an im(HPRM-CT-2002-0031y7and the European Networks of Ex-

provement is not a general rule. In PbEj@ scissors shift ?l\elll\ljlagzeCTFzA(I)\AoE, égglGé)gOOlsg-)l and NANOQUANTA
that corrects the LDA band gap fails to correct the LDA

optical dielectric constanfwe obtain £1,=5.81 and es3 APPENDIX: EXPRESSIONS OF THE CLAMPED AND

=5.51, while the experimental values are 6.63 and 6FGf. UNCLAMPED EO TENSORS

63)] and yieldsr /;=14.24 pm/V and 7;=8.94 pm/V. Using _

the experimental dielectric constants, we obtait, 1. Macroscopic approach

=10.92 pm/V and7,=6.16 pm/V in better agreement with ~ As discussed in Sec. Il D, the optical properties of a
the experiment. compound are modified by an electric figg or a mechani-
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cal constrainta stressr,,, or a homogeneous straiy,,). At ~ £=0. For small fields, we can expand the function
linear order, the variations oéi‘-l can be described using F(R,#n,€&) in powers of€ around€=0:

either the variablé$% (¢,,7,,) or (£,,0,,): 5

L : F(R,7.€) =F(R,7,0) - QX Pi(R, )&,
A(S )l] = 2 ri7j7y£y+ 2 pij,u,vn/.wv (Ala) i=1
y=1 w,v=1 3
Qo
s . ~ gy Ei(RMEE,
~ " ij=1
Ay =2 178+ 2 Tjul o (Alb) .
=1 =1 QO

PR, NEEEH ... (AB)
wherer? andr{, are, respectively, the clampéstrain-free 3i,,%:1x”k PEEEK

and unclampedstress-freg EO coefficients,p;,, are the here O is th | f th - : i |
elasto-optic (strain-opti¢ coefficients, andm;,, are the WheréiloIs the volume of the p(r2|)m|t|ve unit cell in rea
piezo-optical (stress-optical coefficients. In order to relate SPace andP(R, ), &;(R, 7), andx;; (R, 7) are the macro-
Egs. (Ala) and (Alb), we can express the strain as beingSCopic polarization, electronic dielectric tensor, and nonlin-

induced by the stress or by the electric fidonverse piezo- €ar optical coefficients at zero macroscopic electric field and
electric effec}, for a given configuration(R, »). At nonzero field, these

quantities are defined as partial derivatives-okith respect

3 3
_ to €. For example, the electric-field-dependent electronic di-
Muv = > Sur' v Tt gldwvgw (A2) " electric tensor can be computed from the expression
M,,V’:l =
h he elasti liances agg), the pi dw_FF
wi ergSMVM,V_, aret (_e_eastlc compliances adg,, the piezo- &gj(R(&),7(€),E)=- — . (A7)
electric strain coefficients. Do IE IE; | rg) ne)e

If we assume, for example, that the unit cell is free to
relax within the electric fieldstress-free mechanical bound-
ary condition$ we can either use EqAlb) (in which case
the second term of the right-hand side is zesp Eq. (Ala)
to computeA(s7Y);;. In the latter case, the strain induced by or

Let 7.,=R..—Ro . b€ the displacement of atomalong
direction and 7, (77),,) the first-order modification of the
atomic position(strain induced by a perturbation:

- - . Ko &7]&_(1/
the electric field can be obtained from the second term of the Tea = R 7725 I\ (A8)
A=0 A=0

right-hand side of Eq(A2):

3 3 3 3 In the discussion that follows, we will study the effect of an
Ae™) =217 =207 £+ > > pii sy electric field perturbation and a strain perturbation on the
oot 1 " A v electric enthalpyF in order to obtain the formulas to com-

(A3) pute the elasto-optic coefficients as well as the clamped and
the unclamped EO tensors.
Using this identity, we obtain the following relation between

the unclamped and the clamped EO coefficients: a. Elasto-optic coefficient¢€=0)
3 The elasto-optic tensor can be computed from titial
rr=rl+ > Pij oy (Ad) deriva}tivg of the dielectric tensor with respectsjp, at zero
=1 electric field
2. Microscopic approach M = M
dnuv Ry 79 (977,uv /)

In order to derive the expressions of the clamped and

unclamped EO tensor of Sec. Ill D, we use a Taylor expan- aXi(.l)(R, 7)
sion of the electric enthal§§F. Similar developments have + 4r Ir e
already been applied to determine the lattice contribution of e * IRomg

the static dielectric tensor and of the piezoelectric tefst. (A9)
They are based on an expansiorFofip to the second order
in the atomic coordinateR,,, the homogeneous straip,,,
and the macroscopic electric fielgl,. In this section, we
extend these developments to the third order.

The electric enthalpy of a solid in an electric field is o

The derivative in the first term of the right-hand side is com-
puted considering the ionic cores as artificially clamped at
their equilibrium positions. The remaining terms represent
b- the ionic contribution to the elasto-optic tensor. They involve

tained by the minimization derivatives of the linear dielectric susceptibil';vﬁfl) with re-
] spect to the atomic positions that have to be multiplied by the
F(&) = rQILWF(R, 7,E). (A5)  first-order strain-induced atomic displacement> [Eq.

(A8)]. To compute these quantities we use the fact Ehiat
We denoteR(€) and 7(E) the atomic positions and the strain minimum at the equilibrium for an imposed strain This
that minimizeF at constan€ andR,, 7,(=0) their values at condition implies
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JF(R, )
aT,

Ka

b. Clamped EO coefficientéy=0)
=0. (A10)

The clamped EO tensor can be computed fromttital
R(n),n . . . .
derivative of the electric field dependent dielectric tensor,
Since we are interested in first-order atomic displacement&q. (A7), with respect ta©
we can writer, () =35 _ 7749, +O(7%). Solving the ex-

tremum equatiorfA10) to the linear order iny, we obtain de;jj(R, 70,€) _ deij(Ro, 70, E)
d& _ o€ _
E &ZF(Rv 7]) 77,u &2F(R, 7]) 7 RO’E_O 7 £=0
o T )
Ko 0-'7',(0( J Tyl o' R0 (97’/1.1/ d Tra Ro. 79 + 4,”2 M Tié'
(All) Ka Tra Ro
(A16)

The second derivatives on the left side of E411) define

the matrix of interatomic force constants at zero macroscopi@he derivative in the first term is computed considering the
electric field, which enables the computation of the transionic cores as artificially clamped at their equilibrium posi-
verse phonon frequenciess,, and eigendisplacements tions. This term represents the bare electronic contribution to
un(ka). By decomposing”# in the basis of the zone-center the EO tensor that can be computed from the nonlinear op-

phonon-mode eigendisplacements tical coefficients
Muv = unt &S(R ’ !8)
Tt Em Tnt* um(Ka) (A12) % =8 Xuk ' (A17)
J Y £=0 k=y
and using Eqsl24) and(25) we derive the following expres- (g|ated to a third-order partial derivative Bf
sion for the first-order strain-induced atomic displacements:
- l (?3F(R0, 7]0,8)
-1 (?ZFR, (2): (Z)R, - - - - . (A18
= (R,7m) , (A13) Xijk lek( 0, 770) 20 9€ 0E 8 | oo ( )
W, &nMV& Tm | Ry

The remaining terms in EGA16) represent the ionic contri-
where bution to the EO tensor. They involve derivatives of the

linear dielectric susceptibility D with respect to the atomic

2 2
FF(R,7) - FF(R,7) U (Kar). positions that have to be muItlplled by the first-order electric
I T [ Rymy 10 9w Tear | Ry g m field induced atomic dlsplacemen:t‘%r [Eq. (A8)]. To obtain
(A14) these quantities, we proceed the same way as in case of the
elasto-optic tensor. Using the equilibrium condition
If we introduce Eqs(A12) and(A13) into Eqg.(A9) and use 3
the definition of the Raman susceptibility, E§8), and the F o= IF (R, 7,0) _S IPi(R, 7o) _
transformation, Eq(37), we finally obtain the formula to  d7,, ﬁrm R(E) Oi:1 ITea IR '
compute the elasto-optic tensor
Qg deij (R, 170)
-1 25y(R,7) 8772 - E&+ ... (A19)
pij;w L= “ R®)
nl n] (977:‘“’ RO’”O
m 2 and expanding-, to the first order in the electric field, we
4w o 7FR,7) (A15)  obtain

2.2 [ 2
n; njVQO m Oy 07,0 Ty Ro 7o

2 azF(Ra 770, 0)

To simplify, we write Eq.(A15) in the principal axes of the Ir T
crystal under investigation. A more general expression can be  «".@' e T e
obtained from Eq(37). (A20)
Equation(A15) is different from the approach used pre-
viously by Detraux and Gonze to study the elasto-optic tenThis expression is similar to EqA1l1). The second-order
sor in a-quartz®® The authors of Ref. 69 used finite differ- derivatives ofF on the left side are the interatomic force
ences with respect to strains to compute the total derivativeonstants and the derivative of the zero field polarization
of &;. In their approach, the atoms where relaxed to theiwith respect tor,,, on the right side is the Born effective
equilibrium positions in the strained configurations. In casecharge tensoZ,, ., of atom«. Decomposmg- 7 in the basis
of Eq. (A15), the first term of the right-hand side is com- of the zone- center phonon-mode elgend|splacemﬁt§
puted at clamped atomic positions while the effect of the(A12)] and using the orthonormality constraint Eg5) we
strain-induced atomic relaxations is taken into account by thelerive the following expression for the first-order electric-
second term. field-induced atomic displacements:

IPLR, m0)
Ti?’a' = QO 7—770
Ro IT o

Ro
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1 *
Té‘y = —22 ZKYmum(Ka).

m K,

(A21)

w

If we introduce Eqs(Al17) and (A21) into Eq. (A16) we

finally obtain the formula to compute the total derivative of

the dielectric tensor:

d8ij(R,£)
(o} k=y
1 (< xR
+ 477.2 _2<E Mum(fca)>
m On\ e 9Tka

x(E Zh, (K’ B))- (A22)
«'.B

Using the definition of the Raman susceptibilizq. (28)],
the mode polarity{Eq. (41)] and the transformatiofEq.
(37)], we obtain the expression of the clamped EO tensor

- ﬂx_@)
niznj2 il

m,
4 aii pm,y

T 2274 2
nnivQe m  on

(A23)

7
Fijy

I=y

As in the case of the elasto-optic ten§Brg. (A15)], we have
written Eq.(A23) in the principal axes of the crystal under
investigation.

¢. Unclamped EO tensofo=0)

In order to compute the unclamped EO tensor, we have to
take into account both the electric-field-induced atomic dis-

placmentsr; and the electric-field-induced straij;, when
computing the total derivative af;;:

dSij(R,’I],S)
dg}’ R, 70,6=0
_ dgij(Ro, 170, E) 4nS (7Xi('l)(Rv770) £y
dE, £=0 o 9T R e
3 1)
v’ (R ,
vary N Ren | e (A24)
J i
mv=1 e L)

The electronic contributioffirst term of Eq.(A24)] is the

same as for the clamped EO tensor. It can be computed frofhyu-

the nonlinear optical coefficienfEq. (A17)]. To compute

PHYSICAL REVIEW B 71, 125107(2005

#F(R, 7,0)

' 0"7]/“’ J 77#’1// RO'”O

.S #F(R, ,0)
W o aTk’a’ d /m

w'v'

&
TK?/Q”

Ro o
Q dP(R,n)

= 0 (A25b)
m

Ro 70

Because of the coupling betweefy and nfjv, defined by the
mixed second-order derivativesF/dr,,7,,, the second
term of the right-hand side of EA24) is different from that

of Eq. (A16). That means that the sum of the first and second
terms of Eq.(A24) is not identical to the clamped EO coef-
ficientsri’j?y. Moreover, the third term of EqA24) is differ-

ent from the piezoelectric contribution of Sec. A 1.

In order to obtain the decomposition of  into elec-
tronic, ionic, and piezoelectric contributions defined previ-
ously, we can solve EqA25g) for 7. In the basis of the
zone-center phonon mode eigendisplacements we can write

1 #F(R, 7,0
Ar=Poy_ 2 7FR.7.0 7. (A26)
oy 0y, 9TMdny, Ro 7

If we insert this relation into EqA24) and use the transfor-
mation equatior{37) we obtain the following expression of
the unclamped EO tensor in the principal axes:

m
= 2Tl AT s %iPmy
| I i
Iy nin; ! I=y niznjzv’Qo m  ®n
1
47 IXP(R, 7, E)
T 22 P
ni nj v 7],uv R0, 70,€=0
1 o PF(R,7,0) o
!/_ 2
\QO m wm (97'm Jd 77,uV RO’”O'gZO mr

(A27)

The sum of the first and second term of the right-hand side of
Eq. (A27) is equal to the clamped EO coefficienft,. The
product of the conversion factor times the bracket in the third
term of Eq.(A27) is equal to the elasto-optic coefficignt,,

[Eqg. (A15)]. Finally, by definition of the converse piezoelec-
tric effect, 7;5; is equal to the piezoelectric strain coefficient
We thus obtain the following expression of the
unclamped EO coefficients that is equal to the one derived in

#7 and 77, we can use an equilibrium condition similar to S€C- A 1 from pure macroscopic arguments:
Eq. (A19) where we require that the first-order derivatives of 3

F with respect tor,, and »,,,, vanish. Expanding, andz,,

to the first order in the electric field, we obtain the system of

coupled equationésee also Ref. 70

E aZF(R' 77, O) 7_57 + 2 &ZF(R' 77, O) 7787
<o aTKoz d Ty’ a! Ro o o MV ﬁTKCY d Ny R 79 *
IP,R,7)
_ 907—77 , (A25a)
aTka R

ri(JTV = ri’J]‘y + E 1pij,u.1/dw.w- (A28)

V=
It is worth noting that the so-called piezoelectric contribution
not only takes into account the change of the linear optical
susceptibility with straifthird term of the right-hand side of
Eqg. (A24)] but also includes the modification of the ionic
contribution, with respect to the clamped case, that is asso-
ciated to the modification of the ionic relaxation induced by
the strain.
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