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The nonlinear response of infinite periodic solids to homogenous electric fields and collective atomic dis-
placements is discussed in the framework of density functional perturbation theory. The approach is based on
the 2n+1 theorem applied to an electric-field-dependent energy functional. We report the expressions for the
calculation of the nonlinear optical susceptibilities, Raman scattering efficiencies, and electro-opticsEOd co-
efficients. Different formulations of third-order energy derivatives are examined and their convergence with
respect to thek-point sampling is discussed. We apply our method to a few simple cases and compare our
results to those obtained with distinct techniques. Finally, we discuss the effect of a scissors correction on the
EO coefficients and nonlinear optical susceptibilities.
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I. INTRODUCTION

Nowadays, density functional theory1,2 sDFTd is consid-
ered as a standard method in condensed matter physics, to
study electronic, structural, and macroscopic properties of
solids from first principles. Combined with adiabatic pertur-
bation theory, it allowsa priori the computation of deriva-
tives of the energy and related thermodynamic potentials up
to any order. At the second order, this approach has been
applied to compute linear response functions such as phonon
frequencies or Born effective charges with an accuracy of a
few percent. The third-order derivatives are related to non-
linear properties such as phonon lifetimes, Raman tensors, or
nonlinear optical susceptibilities.

The linear-response formalism has been implemented in
various first-principles codes and is routinely applied to an
increasing number of systemsssee, for example, Ref. 3 and
references thereind. By contrast, the nonlinear response for-
malism has been mostly restricted to quantum chemistry
problems. Although the hyperpolarizabilities of a huge num-
ber of molecules have been computed, taking into account
both electronic and vibrationalsionicd contributions,4,5 appli-
cations in condensed matter physics have focused on rather
simple cases.6–13

Here, we present a methodology for the computation of
nonlinear response functions and related physical quantities
of periodic solids from density functional perturbation theory
sDFPTd. We focus on perturbations characterized by a zero
wave vector and involving either three electric fields, or two
electric fields and one atomic displacement. Following
Nunes and Gonze,14 our approach makes use of the 2n+1
theorem applied to an electric-field-dependent energy
functional.15 We report the local density approximation
sLDA d expressions, as implemented within theABINIT

package.16

Our paper is organized as follows. In Sec. II, we describe
the theoretical background related to the 2n+1 theorem and
the electric field perturbation. In Sec. III, we describe the

computation of the nonlinear optical susceptibilities, the non-
resonant Raman scattering efficiencies of both transverse
sTOd and longitudinalsLOd zone-center optical phonons and
the linear electro-opticsEOd tensor. In Sec. IV, we illustrate
the validity of the formalism by applying our methodology to
some semiconductors and ferroelectric oxides and we briefly
discuss the effect of a scissors correction on the EO coeffi-
cients and nonlinear optical susceptibilities.

Some of the tensors we consider in this work depend on
static electric fields: they include contributions of both the
electrons and the ions. Other quantities imply only the re-
sponse of the valence electrons: they are defined for frequen-
cies of the electric field high enough to get rid of the ionic
contributions but sufficiently low to avoid electronic excita-
tions. For clarity, we adopt the following convention. Static
fields will be labeled by Greek indicessa ,b , . . .d while we
will refer to optical fields with Latin symbolssi , j , . . .d. To
simplify the notation, we will also drop labels such as` for
quantities that do not involve the response of the ions. Using
this convention, we can write«i j and «ab, respectively, for
the optical and static dielectric tensor, respectively, andr ij g
for the linear EOsPockelsd tensor that involves two optical
and one static electric field.

II. FORMALISM

A. Mixed third-order energy derivatives

In this section, we present the general framework of the
computation of third-order energy derivatives based on the
2n+1 theorem.17–19 Using the notation of Refs. 20 and 21,
we consider three Hermitian perturbations labeledl1, l2, and
l3. The mixed third-order derivatives

El1l2l3 =
1

6
U ]3E

]l1 ] l2 ] l3
U

l1=0,l2=0,l3=0
s1d

can be computed from the ground-state and first-order wave
functions19
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El1l2l3 =
1

6
sẼl1l2l3 + Ẽl1l3l2 + Ẽl2l1l3 + Ẽl2l3l1 + Ẽl3l2l1 + Ẽl3l1l2d, s2d

with

Ẽl1l2l3 = o
a

fkca
l1usT + vextdl2l3uca

s0dl + kca
l1usT + vext+ vHxcdl2uca

l3l + kca
s0dusT + vextdl1l2l3uca

s0dl + kca
s0dusT + vextdl1l2uca

l3lg

− o
a,b

Lba
l2 kuca

l1ucb
l3l+

1

6
E drdr 8dr 9

d3EHxcfns0dg
dnsr ddnsr 8ddnsr 9d

nl1sr dnl2sr 8dnl3sr 9d

+
1

2
E drdr 8

d

dl2
U d2EHxcfns0dg

dnsr ddnsr 8d
U

l=0
nl1sr dnl3sr 8d +

1

2
E dr

d2

dl1dl3
UdEHxcfns0dg

dnsr d
U

l=0
nl2sr d +

1

6
Ud3EHxcfns0dg

dl1dl2dl3
U

l=0
.

s3d

T is the kinetic energy andEHxc svHxcd is the sum of the
Hartree and exchange-correlation energyspotentiald. The
first-order potentialvHxc

l2 can be computed as a second-order
functional derivative ofEHxc:

19

vHxc
l2 =E d2EHxcfns0dg

dnsrddnsr8d
nl2sr8ddr8 +

d

dl2
UdEHxcfns0dg

dnsrd
U

l=0
.

s4d

Within the parallel gauge, the first-order Lagrange multipli-
ers are given by

Lba
l2 = kcb

s0dusT + vext+ vHxcdl2uca
s0dl. s5d

As a consequence of the 2n+1 theorem, the evaluation of
Eq. s3d requires no higher-order derivatives of the wave
functions than the first one. These first-order wave functions
are nowadays available in several first-principles codes. They
can be computed from linear response by minimizing a sta-
tionary expression of the second-order energy20 or equiva-
lently by solving the corresponding Sternheimer equation.22

It follows that the computation of third-order energy deriva-
tives does not require additional quantities other than the
calculation of second-order energy derivatives.

Equations3d is the general expression of the third-order
energy derivatives. In case at least one of the perturbations
does not affect the explicit form of the kinetic energy or the
Hartree and exchange-correlation energy, it can be simpli-
fied: some of the terms may be zero. This is the case for the
electric field perturbations treated in this work as well as for
phonon-type perturbations. Further simplifications can be
made in case pseudopotentials without nonlinear exchange-
correlation core correction are used.

B. The electric field perturbation

As mentioned in the Introduction, special care is required
in case one of the perturbationsl j is a macroscopic electric
field E. In fact, as discussed in the literature, for infinite
periodic solids, usually treated with Born–von Kármán
boundary conditions, the scalar potentialE ·r breaks the pe-
riodicity of the crystal lattice. Moreover, it is unbound from

below: it is always possible to lower the energy by transfer-
ring electrons from the valence states to the conduction states
in a distant regionsZener breakdownd. However, for suffi-
ciently small fields, the tunneling current through the band
gap can be neglected and the system is well described by a
set of electric-field-dependent Wannier functionsWnsr d. As
shown by Nunes and Vanderbilt,15 these Wannier functions
minimize the energy functional

EfWn;Eg = E0fWng − V0E ·P, s6d

whereE0 is the Kohn-Sham energy under zero field,V0 the
unit cell volume, andP the macroscopic polarization that
can be computed from the Wannier function centers. It is
important to note that these Wannier functions do not corre-
spond to the true ground state of the system but rather to a
long-lived metastable state.

In practical applications, it is not mandatory to evaluate
the functional equations6d in a Wannier basis. It can equiva-
lently be expressed using Bloch functionsunk related toWn
by a unitary transform. In this case, the polarization can be
computed as a Berry phase of the occupied bands23

P = −
2ie

s2pd3o
n

occE
BZ

dkkunku=kuunkl, s7d

where BZ is the Brillouin zone,e is the absolute value of the
electronic charge, and the factor of 2 accounts for spin de-
generacy. The Bloch functions are chosen to satisfy the pe-
riodic gauge condition

eiG·Runk+G = unk . s8d

In order to use Eq.s7d in practical calculations, the integra-
tion over the BZ, as well as the differentiation with respect to
k, has to be performed on a discrete mesh ofNk k points. In
case of the ground-state polarization, the standard approach
is to build strings ofk points parallel to a vector of the
reciprocal spaceGi. The polarization can then be computed
as a string-averaged Berry phase. Unfortunately, the adapta-
tion of this method to the computation of the energy deriva-
tives is plagued with several difficulties, like the following.
The general form of the nonlinear optical susceptibility ten-

VEITHEN, GONZE, AND GHOSEZ PHYSICAL REVIEW B71, 125107s2005d

125107-2



sor of a compound is imposed by its symmetry. For example,
in zinc-blende semiconductors, this tensor, expressed inCar-
tesian coordinates, reduces toxi jl

s2d=xs2duei jl u, wheree is the
Levi-Civita tensor. It follows that thereduced coordinatefor-
mulation ofxi jl

s2d satisfies the relation

Uxi jl
s2d

xiii
s2dU =

1

3
, s9d

where at least one of the three indicesi, j , andl are different
from the two others. When we tried to use strings ofk points
to computexi jl

s2d, Eq. s9d was not satisfied. However, we were
able to avoid these problems by using the finite difference
formula of Marzari and Vanderbilt24 on a regular grid of
specialk points sinstead of stringsd,

= fskd = o
b

wbbffsk + bd − fskdg, s10d

whereb is a vector connecting ak-point to one of its nearest
neighbors andwb is a weight factor. The sum in Eq.s10d
includes as many shells of first neighbors as necessary to
satisfy the condition

o
b

wbbabb =
gab

s2pd2 , s11d

where ba are the reduced coordinates ofb and gab is the
metric tensor associated with the real space crystal lattice.

In the case of the ground-state polarization, we cannot
apply the discretization equations10d directly to Eq.s7d. As
shown by Marzari and Vanderbilt, the discretization of Eq.
s7d does not transform correctly under the gauge transforma-
tion

unksr d → e−ik·Runksr d. s12d

Since Eq.s12d is equivalent to a shift of the origin by one
lattice vectorR, P must change accordingly by one polar-
ization quantum. In order to obtain a discrete expression that
matches this requirement, we must combine Eq.s10d with
the King-Smith and Vanderbilt formula23,25

P =
2e

NkV0
o

k
o

b
wbb Im ln det fSsk,k + bdg, s13d

whereS is the overlap matrix between Bloch functions atk
andk +b:

Sn,msk,k + bd = kunkuumk+bl. s14d

As discussed by Nunes and Gonze,14 when we apply the
perturbation expansion of the preceding section to the energy
functional Eq.s6d, we can adopt two equivalent approaches.
The first possibility is the use of Eq.s7d for the polarization
and a discretization after having performed the perturbation
expansion. The second possibility is to apply the 2n+1 theo-
rem directly to Eq.s13d in which case no additional discreti-
zation is needed. Using the notations of Nunes and Gonze,
we will refer to the first case as the discretization after per-
turbation expansionsDAPEd formulation and to the second

one as the perturbation expansion after discretization
sPEADd formulation of the third-order energy. In the follow-
ing sections, we will discuss both expressions. In addition, in
Sec. IV B, we will compare their convergence with respect to
thek-point sampling on a realistic example. The perturbation
expansion of the first termsE0d of Eq. s6d can easily be
performed, as described in the Sec. II A. In contrast, the
expansion of the second terms−V0E ·Pd is more tricky
since it explicitly depends on the polarization. In the two
sections that follow, we will focus on the −V0E ·P term of
Eq. s6d. It will be referred to asEpol.

C. DAPE expression

According to the formalism of the preceding section, the
E ·P term acts as an additional external potential that has to
be added to the ionic one. TheE ·P perturbation is linear in
the electric field and does not depend explicitly on other
variables such as the atomic positions. It just enters the terms
of Eq. s3d that involve the first derivative ofvext with respect
to E. In other words, the only terms in Eq.s2d that involve

the expansion ofP are of the formẼl1Eil3, wherel1 andl3
represent an arbitrary perturbation such as an electric field or
an atomic displacement.

The DAPE expression of the third-order derivative ofEpol
is written as follows14

Ẽpol
l1Eil3 =

2ieV0

s2pd3E
BZ

dko
n

occ

kunk
l1uS ]

]ki
o

m

occ

uumk
l3 lkumk

s0d uDuunk
s0dl,

s15d

whereunk
l j are the projections of the first-order wave func-

tions on the conduction bands. The complete expression of
various third-order energy derivatives, taking into account
the expansion of bothE0 and Epol, are reported in Sec. III.
Eq. s15d was derived first by Dal Corso and Mauri26 in a
slightly different context: they performed the perturbation
expansion of the energy functional equations6d using a Wan-
nier basis. The resulting expression of the third-order energy
was expressed in terms of Bloch functions by applying a
unitary transform to the Wannier orbitals.

Using the finite difference expression of Marzari and
Vanderbilt equations10d, Eq. s15d becomes

Ẽpol
l1Eil3 =

2ie

Nk
o

k
o

b
o
n,m

occ

wbsb ·Gid

3 hkunk
l1uumk+b

l3 lkumk+b
s0d uunk

s0dl − kunk
l1uumk

l3 ldn,mj,

s16d

whereGi is a basis vector of the reciprocal lattice.
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D. PEAD expression

Applying directly the 2n+1 theorem to Eq.s13d we obtain
the alternative PEAD formulation of the third-order energy:14

Ẽpol
l1Eil3 =

− e

Nk
Imo

k
o

b
wbsb ·Gid

3 F2o
n,m

occ

kunk
l1uumk+b

l3 lQmnsk,k + bd

− o
n,m,l,l8

occ

Smn
l1 sk,k + bdQnlsk,k + bd

3 Sll8
l3sk,k + bdQl8msk,k + bdG s17d

whereQ is the inverse of the overlap matrixS and Sl j its
first-order perturbation expansion

Snm
l j sk,k + bd = kunk

l j uumk+b
s0d l + kunk

s0duumk+b
l j l. s18d

III. NONLINEAR OPTICAL PROPERTIES

In the preceding section we have discussed the general
expressions of third-order energy derivatives. We now par-
ticularize them to the computation of selected nonlinear
properties.

A. Nonlinear optical susceptibilities

In an insulator the polarization can be expressed as a Tay-
lor expansion of the macroscopic electric field

Pi = Pi
s + o

j=1

3

xi j
s1dE j + o

j ,l=1

3

xi jl
s2dE jEl + ¯ , s19d

wherePi
s is the zero-fieldsspontaneousd polarization,xi j

s1d the
linear dielectric susceptibilityssecond-rank tensord, andxi jl

s2d

the second-order nonlinear optical susceptibilitysthird-rank
tensord. In the literature on nonlinear optics, one often finds

another definition of the nonlinear optical susceptibility: in-
stead ofxi jl

s2d, it is more convenient to rely on thed tensor
defined as

dijl =
1

2
xi jl

s2d. s20d

In general, the polarization depends on valence electrons
as well as ions. In the present section, we deal only with the
electronic contribution: we will consider the ionic cores as
clamped to their equilibrium positions. This constraint will
be relaxed in the following sections where we allow for ionic
displacements.

Experimentally, the electronic contribution to the linear
and nonlinear susceptibilities corresponds to measurements
for electric fields at frequencies high enough to get rid of the
ionic relaxation but low enough to avoid electronic excita-
tions. In case of the second-order susceptibilities, this con-
straint implies that both the frequency ofE, and its second
harmonic, are lower than the fundamental absorption gap.

The general expression of the electronic nonlinear optical
susceptibility depends on the frequencies of the optical elec-
tric fields ssee, for example, Ref. 27d. In the present context
of the 2n+1 theorem applied within the LDA tosstaticd DFT,
we neglect the dispersion ofxi jl

s2d. As a consequence,xi jl
s2d

satisfies Kleinman’s28 symmetry condition, which means that
it is symmetric under a permutation ofi, j , andl. In order to
be able to investigate its frequency dependence, one would
need either to apply the formalism of time-dependent DFT9

or to use expressions that involve sums over excited
states.29–33 Following the work of Dal Corso and
co-workers9,26 we can relate the nonlinear optical suscepti-
bilities to a third-order derivative of the energy with respect
to an electric field,

xi jl
s2d = −

3

V0
EEiE jEl , s21d

whereEEiE jEl is defined as the sum over the permutations of

the three perturbationsẼEiE jEl fEq. s2dg. Using the PEAD for-
mulation of Sec. II B we can express these terms as follows:

ẼEiE jEl =
− e

Nk
Imo

k
o

b
wbsb ·G jdF2o

n,m

occ

kunk
Ei uumk+b

El lQmnsk,k + bd

− o
n,m,n8,m8

occ

Smn
Ei sk,k + bdQnn8sk,k + bdSn8m8

El sk,k + bdQm8msk,k + bdG
+

2

Nk
o

k
o
n,m

occ

fdm,nkunk
Ei uvhxc

E j uumk
El l − kumk

s0d uvhxc
E j uunk

s0dlkunk
Ei uumk

El lg

+
1

6
E drdr 8dr 9

d3Excfn0g
dnsr ddnsr 8ddnsr 9d

nEisr dnE jsr 8dnElsr 9d. s22d
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B. Raman susceptibilities of zone-center optical phonons

We now consider the computation of Raman scattering
efficiencies of zone-center optical phonons. In the limit

q→0, the matrix of interatomic force constantsC̃ can be
expressed as the sum of an analytical part and a nonanalyti-
cal term21

C̃ka,k8bsq → 0d = C̃ka,k8b
AN sq = 0d + C̃ka,k8b

NA sq → 0d.

s23d

The analytical part corresponds to the second-order deriva-
tive of the energy with respect to an atomic displacement at
q=0 under the condition of vanishing macroscopic electric
field. The second term is due to the long-range electrostatic
interactions in polar crystals. It is at the origin of the so-
called LO-TO splitting and can be computed from the
knowledge of the Born effective chargesZkab

* and the elec-
tronic dielectric tensor21 «i j . The phonon frequenciesvm and
eigendisplacementsumskad are solutions of the following
generalized eigenvalue problem,

o
k8,b

C̃ka,k8bumsk8bd = Mkvm
2 umskad, s24d

whereMk is the mass of atomk. As a convention, we choose
the eigendisplacements to be normalized as

o
k,a

Mkumskadunskad = dm,n. s25d

In what follows we consider nonresonant Raman scatter-
ing where an incoming photon of frequencyv0 and polariza-
tion e0 is scattered to an outgoing photon of frequencysv0

−vmd and polarizationeS by creating a phonon of frequency
vm sStokes processd. The scattering efficiency34,35scgs unitsd
corresponds to

dS

dV
= ueS·Rm ·e0u2 =

sv0 − vmd4

c4 ueS· am ·e0u2
"

2vm
snm + 1d,

s26d

wherec is the speed of light in vacuum andnm the boson
factor

nm =
1

exps"vm/kBTd − 1
. s27d

The Raman susceptibilityam is defined as

ai j
m = ÎV0o

k,b

]xi j
s1d

]tkb

umskbd, s28d

wherexi j
s1d is the electronic linear dielectric susceptibility ten-

sor. In Eq.s26d, V is the angle of collection in which the
outgoing photon is scattered. As discussed in Ref. 34, we
have to be careful when we compare the theoretical and ex-
perimental scattering efficiencies. Due to Snell’s law, the
angle of collection is modified at the interface between the

sample and the surrounding medium. Experimentally, the
scattering efficiencies are measured with respect to the solid
angle of the surrounding medium while Eq.s26d refers to the
solid angle inside the sample. In order to relate theory and
experiment, one has to take into account the different refrac-
tive indices of the sample and medium. For example, in case
of an isotropic sample, Eq.s26d has to be multiplied34 by
sn8 /nd2 wheren andn8 are, respectively, the refractive indi-
ces of the sample and the medium. In contrast to the scatter-
ing efficiencies, the Raman susceptibilities defined in Eq.
s28d are intrinsic properties of the sample and do not depend
on the change in the angle of collection.

For pure transverse optical phonons,]xi j
s1d /]tkb can be

computed as a mixed third-order derivative of the energy
with respect to an electric field, twice, and to an atomic dis-
placement under the condition of zero electric field

U ]xi j
s1d

]tkl

U
E=0

= −
6

V0
EtklEiE j . s29d

In case of longitudinal optical phonons with wave vector
q→0 in a polar crystal, Eq.s28d must take into account the
effect of the macroscopic electric field generated by the lat-
tice polar vibration. This field enters the computation of the
Raman susceptibilities at two levels. On one hand, it gives
rise to the nonanalytical part of the matrix of interatomic
force constants, Eq.s23d, that modifies the frequencies and
eigenvectors with respect to pure transverse phonons. On the
other hand, the electric field induces an additional change in
the dielectric susceptibility tensor related to the nonlinear
optical coefficientsxi jk

s2d. For longitudinal optical phonons,
Eq. s29d has to be modified as follows:36

]xi j
s1d

]tkl

= U ]xi j
s1d

]tkl

U
E=0

−
8p

V0

ol
Zkll

* ql

ol,l8
ql«ll8ql8

o
l

xi jl
s2dql . s30d

The mixed third-order derivatives Eq.s29d can be computed
from various techniques including finite differences of the
dielectric tensor37–39 or the second derivative of the elec-
tronic density matrix.40,41Here, we follow an approach simi-
lar to Deinzer and Strauch10 based on the 2n+1 theorem. The
third-order energy can be computed as the sum over the 6
permutations, Eq.s2d, of tkl, Ei, and E j. According to the
discussion of Sec. II B, we have to distinguish between the
terms that involve the discretization of the polarization such

as ẼtklEiE j or ẼE jEitkl and those that can be computed from a
straightforward application of the 2n+1 theorem such as

ẼEitklE j. The former ones show an electric field as second
perturbation. They can be computed from an expression
analogous to Eq.s22d:
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ẼtklEiE j =
− e

Nk
Imo

k
o

b
wbsb ·GidF2o

n,m

occ

kunk
tkluumk+b

E j lQmnsk,k + bd − o
n,m,l,l8

occ

Smn
tklsk,k + bdQnlsk,k + bdSll8

E j sk,k + bdQl8msk,k + bdG
+

2

Nk
o

k
o
n,m

occ

fdm,nkunk
tkluvhxc

Ei uumk
E j l − kumk

s0d uvhxc
Ei uunk

s0dlkunk
tkluumk

E j lg +
1

6
E drdr 8dr 9

d3Excfn0g
dnsr ddnsr 8ddnsr 9d

ntklsr dnEisr 8dnE jsr 9d.

s31d

We obtain a similar expression forẼE jEitkl. The remaining terms do not require any differentiation with respect tok. They can
be computed from the first-order change of the ionicspseudo-d potential with respect to an atomic displacementvext

tkl:

ẼEitklE j =
2

Nk
o

k
o
n,m

occ

fkunk
Ei uvext

tkl + vhxc
tkluumk

E j ldn,m − kunk
s0duvext

tkl + vhxc
tkluumk

s0dlkumk
Ei uunk

E j lg

+
1

2
E drdr 8

d

dtkl

u
d2EHxcfn0g

dnsr ddnsr 8d
nEisr dnE jsr 8d +

1

6
E drdr 8dr 9

d3Excfn0g
dnsr ddnsr 8ddnsr 9d

ntklsr dnEisr 8dnE jsr 9d. s32d

In pseudopotential calculations, the computation of the first-
order ionic potentialvext

tkl requires the derivative of local and
nonlocalsusually separabled operators. These operations can
be performed easily without any additional workload as de-
scribed in Ref. 20.

In spite of the similarities between Eqs.s31d ands32d and
the expression proposed by Deinzer and Strauch we can
quote a few differences. First, our expression of the third-
order energy derivatives makes use of the PEAD fomulation
for the expansion of the polarization. Moreover, Eq.s32d is
more general since it allows the use of pseudopotentials with
nonlinear core correction through the derivative of the
second-order exchange-correlation energy with respect totkl

sthird termd.

C. Sum rule

As in the cases of the Born effective charges and of the
dynamical matrix,42 the coefficients]xi j

s1d /]tka must vanish
when they are summed over all atoms in the unit cell:

o
k

]xi j
s1d

]tka

= 0. s33d

Physically, this sum rule guarantees that the macroscopic di-
electric susceptibility remains invariant under a rigid transla-
tion of the crystal. In practical calculations, it is not always
satisfied although the violation is generally less severe than

in case ofC̃ or Z* . Even in calculations that present a low
degree of convergence, the deviations from this law can be
quite weak. They can be corrected using similar techniques
as in the case of the Born effective charges.21 For example,
we can define the mean excess of]xi j

s1d /]tka per atom

]xi j
s1d

]ta

=
1

Nat
o

k

]xi j
s1d

]tka

s34d

and redistribute it equally between the atoms:

]xi j
s1d

]tka

→ ]xi j
s1d

]tka

−
]xi j

s1d

]ta

. s35d

D. Electro-optic tensor

The optical properties of a compound usually depend on
external parameters such as the temperature, electric fields,
or mechanical constraintssstress, straind. In the present sec-
tion we consider the variations of the refractive index in-
duced by a static or low-frequency electric fieldEg. At linear
order, these variations are described by the linear EO coeffi-
cientssPockels effectd

Ds«−1di j = o
g=1

3

r ij gEg, s36d

wheres«−1di j is the inverse of the electronic dielectric tensor
and r ij g the EO tensor.

Within the Born-Oppenheimer approximation, the EO
tensor can be expressed as the sum of three contributions: a
bare electronic partr ij g

el , an ionic contributionr ij g
ion, and a

piezoelectric contributionr ij g
piezo.

The electronic part is due to an interaction ofEg with the
valence electrons when considering the ions artificially as
clamped at their equilibrium positions. It can be computed
from the nonlinear optical coefficients. As can be seen from
Eq. s19d, xi jl

s2d defines the second-order change of the induced
polarization with respect toEg. Taking the derivative of Eq.
s19d, we also see thatxi jl

s2d defines the first-order change of the
linear dielectric susceptibility, which is equal tos1/4pdD«i j .
Since the EO tensor depends onDs«−1di j rather thanD«i j , we
have to transformD«i j to Ds«−1di j by the inverse of the zero-
field electronic dielectric tensor43
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Ds«−1di j = − o
m,n=1

3

«im
−1D«mn«nj

−1. s37d

Using Eq. s37d we obtain the following expression for the
electronic EO tensor:

r ij g
el =U − 8p o

l,l8=1

3

s«−1dilxll8k
s2d s«−1dl8 jU

k=g

. s38d

Equations38d takes a simpler form when expressed in the
principal axes of the crystal under investigation:44

r ij g
el =U− 8p

ni
2nj

2 xi jk
s2dU

k=g

, s39d

where theni coefficients are the principal refractive indices.
The origin of the ionic contribution to the EO tensor is the

relaxation of the atomic positions due to the applied electric
field Eg and the variations of«i j induced by these displace-
ments. It can be computed from the Born effective charges
Zk,ab

* and the]xi j
s1d /]tka coefficients introduced in Sec. III B.

As shown in the Appendixssee also Refs. 36 and 45d, the
ionic EO tensor can be computed as a sum over the trans-
verse optic phonon modes atq=0:

r ij g
ion = −

4p

ÎV0ni
2nj

2o
m

ai j
mpm,g

vm
2 , s40d

wheream is the Raman susceptibility of modem fEq. s28dg
andpm,g the mode polarity

pm,g = o
k,b

Zk,gb
* umskbd, s41d

which is directly linked to the mode oscillator strength

Sm,ab = pm,apm,b. s42d

For simplicity, we have expressed Eq.s40d in the principal
axes while a more general expression can be derived from
Eq. s37d.

Finally, the piezoelectric contribution is due to a relax-
ation of the unit cell shape due to the converse piezoelectric
effect.46,47As it is discussed in the Appendix, it can be com-
puted from the elasto-optic coefficientspij mn and the piezo-
electric strain coefficientsdgmn:

r ij g
piezo= o

m,n=1

3

pij mndgmn. s43d

In the discussion of the EO effect, we have to specify
whether we are dealing with strain-freesclampedd or stress-
free sunclampedd mechanical boundary conditions. The
clamped EO tensorr ij g

h takes into account the electronic and
ionic contributions but neglects any modification of the unit
cell shape due to the converse piezoelectric effect:46,47

r ij g
h = r ij g

el + r ij g
ion. s44d

Experimentally, it can be measured for frequencies ofEg

high enough to eliminate the relaxations of the crystal lattice
but low enough to avoid excitations of optical phonon modes

susually above,100 MHzd. To compute the unclamped EO
tensorr ij g

s , we have to add the piezoelectric contribution to
r ij g

h :

r ij g
s = r ij g

h + r ij g
piezo. s45d

Experimentally,r ij g
s can be measured for frequencies ofEg

below the sgeometry-dependentd mechanical body reso-
nances of the sample47 susually below,1 MHzd.

IV. RESULTS

A. Technical details

Our calculations have been performed within the local
density approximationsLDA d to the density functional
theory1,2 sDFTd. We used theABINIT package,16 a plane-
wave, pseudopotential DFT code48 in which we have imple-
mented the formalism presented above. For reasons that will
become obvious below, we chose the PEAD formulation, Eq.
s17d , to perform the differentiation with respect tok. For the
exchange-correlation energyExc we relied on the parametri-
zation of Perdew and Wang49 as well as the parametrization
of Goedecker, Teter, and Hutter.50 These expressions have
the advantage of avoiding any discontinuities in the func-
tional derivative ofExc.

In case of the semiconductors Si, AlAs, and AlP, we used
a 16316316 grid of specialk points, a plane-wave kinetic
energy cutoff of 10 hartree, and Troullier-Martins51 norm-
conserving pseudopotentials. These calculations have been
performed at the theoretical lattice constant. To perform the
finite difference calculations of the Raman polarizabilities,
changes of the electronic dielectric tensor were computed for
atoms displaced by ±1% of the unit cell parameter along the
Cartesian directions.

In case of rhombohedral BaTiO3, we used a 10310
310 grid of specialk points, a plane-wave kinetic energy
cutoff of 45 hartree, and extended norm-conserving
pseudopotentials.52 Since the ferroelectric instability is quite
sensitive to the volume of the unit cell and tends to disappear
due to the volume underestimation of the LDA,53 we chose
to work at the experimental lattice constants. In contrast to
the lattice parameters, the atomic positions have been re-
laxed: the residual forces on the atoms were smaller than 5
310−5 hartree/bohr.

It was shown by Gonze, Ghosez, and Godby54 that an
accurate functional for the exchange-correlation energy in
extended systems should depend on both the density and the
polarization. The LDA used here neglects this polarization
dependence and may consequently introduce significant rela-
tive errors when studying the response of a solid to an elec-
tric field. In case of the second-order derivatives, the LDA
usually yields an overestimate of the dielectric tensorsas
large as 20% in BaTiO3d.55 In contrast, no clear trends have
been reported yet concerning nonlinear optical properties
such asxi jl

s2d.9,29

In LDA calculations, it is common practice to apply a
scissors correction57 to compensate for the lack of polariza-
tion dependence of the exchange-correlation functional. In
case of nonlinear optical properties, such a correction can be

NONLINEAR OPTICAL SUSCEPTIBILITIES, RAMAN… PHYSICAL REVIEW B 71, 125107s2005d

125107-7



applied at different levels. On one hand, we can compute the
nonlinear optical susceptibilitiesfEq. s22dg using a scissors
operator for the first-order wave functions.21 On the other
hand, in the computation of the EO coefficients, we can use
a scissors corrected refractive index in Eqs.s39d and s40d.
The influence of these corrections will be discussed below.

B. Nonlinear optical susceptibilities and Raman
polarizabilities of semiconductors

In order to illustrate the computation of third-order energy
derivatives, we performed a series of calculations on various
cubic AB semiconductors where the atomA is located at the
origin and B in s1/4,1/4,1/4d. In these compounds, the
nonlinear optical susceptibility tensor has only one indepen-
dent element,d123,

dijk = d123uei jku, s46d

where«i jk is the Levy-Civita tensor. The Raman susceptibili-
ties are also defined by a single number,a12. For phonons
polarized along the Cartesian directionl, the Raman suscep-
tibility tensors are written as

ai jsld = a12uei j lu. s47d

In cubic semiconductors, it is customary to report the Raman
polarizability34,60 defined as

a = ÎmV0a12 = V0
]x12

s1d

]tA,3
, s48d

wherem is the reduced mass of the two atoms in the unit cell
andtA,3 a displacement of atomA along thez direction.

The formalism of Sec. II involves an integration over the
BZ and a differentiation with respect tok. In practical cal-
culations, these operations must be performed on a discrete
mesh of specialk points. As we explained in Sec. II, the
discretization can either be performed beforesPEADd or af-
ter sDAPEd the perturbation expansion of the energy func-
tional equations6d. Up until now, the applications of the
present formalism to real materials9,10made use of the DAPE
formula of the third-order energy. The only application of the
PEAD formula has been reported by Nunes and Gonze14 on
a one-dimensional model system. These authors observed
that the PEAD formula converges better with respect to the
k-point sampling than the DAPE formula. In order to com-
pare the performance of these two approaches for a realistic
case, we applied both of them to compute the nonlinear op-
tical susceptibility d123 of AlAs. We performed a series of
calculations on an3n3n grid of specialk points. As can be
seen in Fig. 1 the PEAD formula converges much faster than
the DAPE formula. Therefore, the PEAD formulation has
been applied to obtain the results presented below. It is the
one that is actually available in theABINIT code.

It is interesting to note that a different speed of conver-
gence for distinct expressions has also been reported for the
localization tensor. In Ref. 56 Sgiarovello and co-workers
compared the convergence of two formulations based on dif-
ferent discretizations of the samek space integral.They ob-
served thatsid both expressions converge to the same value

in the limit of a large number ofk points andsii d that the
expression used in their work converges faster than the ex-
pression used in Ref. 24.

In Table I, we report the nonlinear optical susceptibilities
of the cubic semiconductors AlAs and AlP. Our results are in
close agreement with the values obtained by Dal Corso and
co-workers9 who applied the 2n+1 theorem within the
DAPE formalism, the results of Levine and Allan29 who used
a “sum over excited states” technique, and the values ob-
tained by Souza and co-workers,58 who followed a finite
electric field approach. The values in the lower part of Table
I have been obtained using a scissors correction. Our meth-
odology provides a correction similar to that reported by
Levine and Allan.30

The scissors correction decreases the value of the nonlin-
ear optical susceptibilities in agreement with the discussion
of Ref. 59. To the authors’ knowledge, no experimental data
are available for AlAs and AlP. For other cubic semiconduc-
tors, it is, however, not clear that the use of a scissors cor-
rection improves agreement with experiment29 and will even
have a negative effect when the LDA underestimates the ex-
perimental value. In addition, it is not straightforward to iso-
late the error of the LDA on the nonlinear response functions
from other sources of errors. Other factors have a strong
influence onxi jl

s2d similar to the scissors correction. For ex-

FIG. 1. Nonlinear optical susceptibility d123spm/Vd of AlAs for
various grids ofn3n3n specialk points.

TABLE I. Nonlinear optical susceptibilitiesd123spm/Vd of some
semiconductors. The values in the lower part of the table have been
obtained using a scissorssSCId correction.

Method AlAs AlP

2n+1 theoremspresentd 35 21

2n+1 theorema 32 19

Finite fieldsb 32 19

Sum over statesc 34 21

2n+1 theorem + SCIspresentd 21 13

Sum over states + SCIc 21 13

aReference 9.
bReference 58.
cReference 30.
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ample, the values of the nonlinear optical susceptibilities
strongly depend on the pseudopotential9 or on the error on
the unit cell volume29,59 that is usually underestimated in
LDA calculations.

We also computed the Raman polarizabilities of the trans-
versesTOd and longitudinal opticalsLOd phonons of various
semiconductors. In addition, we performed finite difference
calculations of the dielectric tensor with respect to atomic
displacements. Our results are summarized in Table II where
we also report the results of Deinzer and Strauch10 sDSd and
Baroni and Resta37 sBRd as well as the experimental result of
Wagner and Cardona60 for Si. The agreement between our
results and those obtained in previous works is quite good. In
addition, the results we obtained from the 2n+1 theorem
closely agree with the finite difference calculations, giving us
some indication of the numerical accuracy of the implemen-
tation.

The Raman polarizabilities of the TO and LO modes are
different. As it is discussed in Sec. III B, this difference is
attributed to the macroscopic electric field associated with a
longitudinal polar lattice vibration. On the one hand, this
field modifies the dynamical matrix atq→0. The eventual
related modification of the eigenvectors of the LO modes
may imply a first change of the Raman susceptibility. On the
other hand, the macroscopic electric field itself may induce
an additional change ofa related to the nonlinear optical
coefficientsxi jl

s2d. In the cubic semiconductors, the eigenvec-
tors of the TO and LO modes are identical. The difference
between the polarizabilities of the TO and LO modes comes
therefore exclusively from the second term of Eq.s30d.

C. EO tensor in ferroelectric oxides

In the rhombohedral phase of BaTiO3, the EO tensor has
four independent elements:r13, r33, r22, andr51. In contrast to
the dielectric tensor, the EO coefficients can either be posi-
tive or negative. The sign of these coefficients is often diffi-
cult to measure experimentally. Moreover, it depends on the
choice of the Cartesian axes. Experimentally, these axes are
chosen according to theStandards on Piezoelectric
Crystals.65,71 The z axis is along the direction of the sponta-

neous polarization and they axis lies in a mirror plane. The
z and y axes are both piezoelectric. Their positive ends are
chosen in the direction that becomes negative under com-
pression. The orientation of these axes can easily be found
from pure geometrical arguments. Unfortunately, these argu-
ments do not allow us to determine the direction of they
axis. Therefore, we applied the methodology of Ref. 61 to
compute the piezoelectric tensor from finite differences of
the Berry phase polarization. Our results are reported in the
Cartesian axes where the piezoelectric coefficientse22 and
e33 are positive.

These coefficients, as well as their decomposition on the
individual phonon modes and their electronic part, are re-
ported in Table III. All EO coefficients are positive. As is the
case for the tetragonal phase,46 the modes that have the
strongest overlap with the soft mode of the paraelectric phase
dominate the amplitude of the EO coefficients. Moreover, the
electronic contribution is found to be quite small.

As we discussed in the previous sections, linear and non-
linear optical susceptibilities are sometimes relatively inac-
curate within the LDA. In this context, it is interesting to
investigate the error due to the use of the LDA optical di-
electric constants in the transformation equations37d. Unfor-
tunately, we could not find any experimental data on the EO
coefficients in the rhombohedral phase of BaTiO3. In Ref.

TABLE III. Decomposition of the clamped EO tensorspm/Vd
in the rhombohedral phase of BaTiO3. Reported are the contribu-
tions of individual zone-center phonon modes and the electronic
contribution. The phonon frequencies are reported in cm−1.

A1 modes E modes

v r13
h r33

h v r22
h r51

h

TO1 168 0.65 2.16 163 0.79 5.15

TO2 253 13.82 27.32 202 5.40 19.16

TO3 509 1.31 2.05 293 0.01 −0.02

TO4 469 0.24 0.65

Elect. 1.15 2.95 0.12 1.24

Tot. 16.93 34.48 6.56 26.18

TABLE II. Raman polarizabilities of the transversesTOd and longitudinalsLOd optical modessÅ2d of
some semiconductors.

Si AlAs sTOd AlAs sLOd AlP sTOd AlP sLOd

2n+1 theorem

Present 20.02 8.48 12.48 4.30 7.46

DSa 23.56 7.39 5.13

Finite differences

Present 20.17 8.59 4.25

DSa 20.44 5.64 4.44

BRb 26.16

Experiment 23±4c

aReference 10.
bReference 37.
cReference 60.
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46, we studied the EO coefficients of ferroelectric LiNbO3
and tetragonal BaTiO3 and PbTiO3 and found an overall
good agreement between theory and experiment. In Table IV,
we report the EO coefficients of these compounds as well as
the values obtained using a scissors-corrected optical dielec-
tric constant. No scissors correction has been applied for the
nonlinear optical susceptibilities of these compounds that are
required to compute the electronic contributions.

The effect of this correction is more important for the
perovskite compounds than for LiNbO3, for which the LDA
band gap and optical dielectric constants are in reasonable
agreement with experiment.62 For BaTiO3, we tested the op-
tical dielectric tensor obtained from the scissors correction
that modifies the LDA band gap to its experimental value:21

we obtainr13
h =12.68 pm/V andr33

h =30.84 pm/V, in closer
agreement with experimental data. However, such an im-
provement is not a general rule. In PbTiO3, a scissors shift
that corrects the LDA band gap fails to correct the LDA
optical dielectric constantfwe obtain «11=5.81 and «33
=5.51, while the experimental values are 6.63 and 6.64sRef.
63dg and yieldsr13

h =14.24 pm/V andr33
h =8.94 pm/V. Using

the experimental dielectric constants, we obtainr13
h

=10.92 pm/V andr33
h =6.16 pm/V in better agreement with

the experiment.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, we presented the general framework for the
computation of third-order energy derivatives within DFT.
Our formalism makes use of the 2n+1 theorem and the mod-
ern theory of polarization. Focusing on derivatives that are
characterized by a zero wave vector and that involve either
three electric fields or two electric fields and one atomic
displacement, we described the computation of nonlinear op-
tical susceptibilities, of Raman scattering efficiencies of TO
and LO phonons, and of the EO tensor.

The computation of the Berry phase polarization involves
a derivative of the wave functions with respect to their wave
vector. In practice, this differentiation is computed on a grid
of specialk points. The perturbation expansion can either be
performed beforesDAPEd or aftersPEADd the discretization,
leading to two mathematically distinct expressions of the
third-order energies. We used both of them to compute the
nonlinear optical susceptibility of AlAs, and we have shown
that the PEAD formulation converges faster with respect to
the k-point sampling.

We have computed the nonlinear optical susceptibilities
and Raman polarizabilities of some cubic semiconductors as
well as the EO tensor in the rhombohedral phase of BaTiO3.

Finally, we have studied the effect of a scissors correction
on the EO coefficients and the nonlinear optical susceptibili-
ties. In contrast to the dielectric tensor, we did not find a
systematic improvement of the results by using this correc-
tion.

We can figure out several applications of the methodology
presented in this work. Combined with the calculation of
phonon frequencies and infrared intensities, the computation
of Raman efficiencies can be a useful complementary tool
for the interpretation of experimental spectra. Furthermore,
the computation of the EO tensor from first principles can
guide the tuning of the EO properties and help in designing
new efficient EO materials. This could be particularly helpful
since accurate optical measurements require high-quality
single crystals not always directly accessible.
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APPENDIX: EXPRESSIONS OF THE CLAMPED AND
UNCLAMPED EO TENSORS

1. Macroscopic approach

As discussed in Sec. III D, the optical properties of a
compound are modified by an electric fieldEg or a mechani-

TABLE IV. Effect of a scissors correction on the EO coefficients
of LiNbO3 sclamped and unclamped casesd and the tetragonal
phases of PbTiO3 and BaTiO3 sclamped cases onlyd. The dielectric
tensor required to perform the transformation, Eq.s37d, has been
computed within the LDAs«LDAd and using the LDA with a scissors
corrections«SCId. No scissors correction has been used to compute
the nonlinear optical susceptibilities that determine the electronic
contribution to the EO coefficients. In case of PbTiO3, we also use
the experimental dielectric tensors«exptd to compute the EO coeffi-
cients. The values are compared to the experimental results.

r13 r33 r22 r51

LiNbO3 «LDA 9.67 26.93 4.55 14.93

sclampedd «SCI 10.37 28.89 4.88 16.02

Expt.a 8.6 30.8 3.4 28

LiNbO3 «LDA 10.47 27.08 7.53 28.61

sunclampedd «SCI 11.23 29.06 8.08 30.69

Expt.a 10 32.2 6.8 32.6

Expt.b 9.89

PbTiO3 «LDA 8.98 5.88 30.53

sclampedd «SCI 14.24 8.94 47.39

«expt 10.92 6.16 34.45

Expt.c 13.8 5.9

BaTiO3 «LDA 8.91 22.27

sclampedd «SCI 12.68 30.84

Expt.d 10.2 40.6

Expt.e 8 28

aReference 71.
bReference 72.
cReference 73.
dReference 74.
eReference 47.
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cal constraintsa stresssmn or a homogeneous strainhmnd. At
linear order, the variations of«i j

−1 can be described using
either the variables64,65 sEg ,hmnd or sEg ,smnd:

Ds«−1di j = o
g=1

3

r ij g
h Eg + o

m,n=1

3

pij mnhmn, sA1ad

Ds«−1di j = o
g=1

3

r ij g
s Eg + o

m,n=1

3

pi j mnsmn, sA1bd

wherer ij g
h andr ij g

s are, respectively, the clampedsstrain-freed
and unclampedsstress-freed EO coefficients,pij mn are the
elasto-optic sstrain-opticd coefficients, andpi j mn are the
piezo-opticalsstress-opticald coefficients. In order to relate
Eqs. sA1ad and sA1bd, we can express the strain as being
induced by the stress or by the electric fieldsconverse piezo-
electric effectd,

hmn = o
m8,n8=1

3

Smnm8n8sm8n8 + o
g=1

3

dgmnEg, sA2d

whereSmnm8n8 are the elastic compliances anddgmn the piezo-
electric strain coefficients.

If we assume, for example, that the unit cell is free to
relax within the electric fieldsstress-free mechanical bound-
ary conditionsd we can either use Eq.sA1bd sin which case
the second term of the right-hand side is zerod or Eq. sA1ad
to computeDs«−1di j . In the latter case, the strain induced by
the electric field can be obtained from the second term of the
right-hand side of Eq.sA2d:

Ds«−1di j = o
g=1

3

r ij g
s Eg = o

g=1

3

r ij g
h Eg + o

m,n=1

3

o
g=1

3

pij mndgmnEg.

sA3d

Using this identity, we obtain the following relation between
the unclamped and the clamped EO coefficients:

r ij g
s = r ij g

h + o
m,n=1

3

pij mndgmn. sA4d

2. Microscopic approach

In order to derive the expressions of the clamped and
unclamped EO tensor of Sec. III D, we use a Taylor expan-
sion of the electric enthalpy66 F. Similar developments have
already been applied to determine the lattice contribution of
the static dielectric tensor and of the piezoelectric tensor.67,68

They are based on an expansion ofF up to the second order
in the atomic coordinatesRka, the homogeneous strainhmn,
and the macroscopic electric fieldEg. In this section, we
extend these developments to the third order.

The electric enthalpy of a solid in an electric field is ob-
tained by the minimization

FsEd = min
R,h

FsR,h,Ed. sA5d

We denoteRsEd andhsEd the atomic positions and the strain
that minimizeF at constantE andR0, h0s=0d their values at

E=0. For small fields, we can expand the function
FsR ,h ,Ed in powers ofE aroundE=0:

FsR,h,Ed = FsR,h,0d − V0o
i=1

3

PisR,hdEi

−
V0

8p
o
i,j=1

3

«i jsR,hdEiE j

−
V0

3 o
i,j ,k=1

3

xi jk
s2dsR,hdEiE jEk + . . . sA6d

where V0 is the volume of the primitive unit cell in real
space andPsR ,hd, «i jsR ,hd, andxi jk

s2dsR ,hd are the macro-
scopic polarization, electronic dielectric tensor, and nonlin-
ear optical coefficients at zero macroscopic electric field and
for a given configurationsR ,hd. At nonzero field, these
quantities are defined as partial derivatives ofF with respect
to E. For example, the electric-field-dependent electronic di-
electric tensor can be computed from the expression

«i j„RsEd,hsEd,E… = − U4p

V0

]2F

]Ei ] E j
U

RsEd,hsEd,E
. sA7d

Let tka=Rka−R0,ka be the displacement of atomk along
directiona andtka

l shmn
l d the first-order modification of the

atomic positionsstraind induced by a perturbationl:

tka
l = U ]tka

]l
U

l=0
, hmn

l = U ]hmn

]l
U

l=0
. sA8d

In the discussion that follows, we will study the effect of an
electric field perturbation and a strain perturbation on the
electric enthalpyF in order to obtain the formulas to com-
pute the elasto-optic coefficients as well as the clamped and
the unclamped EO tensors.

a. Elasto-optic coefficients„E=0…

The elasto-optic tensor can be computed from thetotal
derivative of the dielectric tensor with respect tohmn at zero
electric field

Ud«i jsR,h,0d
dhmn

U
R0,h0

= U ]«i jsR,hd
]hmn

U
R0,h0

+ U4po
ka

]xi j
s1dsR,hd
]tka

U
R0,h0

tka
hmn.

sA9d

The derivative in the first term of the right-hand side is com-
puted considering the ionic cores as artificially clamped at
their equilibrium positions. The remaining terms represent
the ionic contribution to the elasto-optic tensor. They involve
derivatives of the linear dielectric susceptibilityxi j

s1d with re-
spect to the atomic positions that have to be multiplied by the
first-order strain-induced atomic displacementstka

hmn fEq.
sA8dg. To compute these quantities we use the fact thatF is
minimum at the equilibrium for an imposed strainh. This
condition implies
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U ]FsR,hd
]tka

U
Rshd,h

= 0. sA10d

Since we are interested in first-order atomic displacements
we can writetkashd=om,n=1

3 tka
hmnhmn+Osh2d. Solving the ex-

tremum equationsA10d to the linear order inh, we obtain

o
k8,a8

U ]2FsR,hd
]tka ] tk8a8

U
R0,h0

tk8a8
hmn = − U ]2FsR,hd

]hmn ] tka
U

R0,h0

.

sA11d

The second derivatives on the left side of Eq.sA11d define
the matrix of interatomic force constants at zero macroscopic
electric field, which enables the computation of the trans-
verse phonon frequenciesvm and eigendisplacements
umskad. By decomposingtka

hmn in the basis of the zone-center
phonon-mode eigendisplacements

tka
hmn = o

m

tm
hmnumskad sA12d

and using Eqs.s24d ands25d we derive the following expres-
sion for the first-order strain-induced atomic displacements:

tm
hmn =

− 1

vm
2 U ]2FsR,hd

]hmn ] tm
U

R0,h0

, sA13d

where

U ]2FsR,hd
]hmn ] tm

U
R0,h0

= o
k,a
U ]2FsR,hd

]hmn ] tka
U

R0,h0

umskad.

sA14d

If we introduce Eqs.sA12d andsA13d into Eq. sA9d and use
the definition of the Raman susceptibility, Eq.s28d, and the
transformation, Eq.s37d, we finally obtain the formula to
compute the elasto-optic tensor

pij mn =
− 1

ni
2nj

2U ]«i jsR,hd
]hmn

U
R0,h0

+
4p

ni
2nj

2ÎV0
o

m

ai j
m

vm
2 U ]2FsR,hd

]hmn ] tm
U

R0,h0

. sA15d

To simplify, we write Eq.sA15d in the principal axes of the
crystal under investigation. A more general expression can be
obtained from Eq.s37d.

EquationsA15d is different from the approach used pre-
viously by Detraux and Gonze to study the elasto-optic ten-
sor in a-quartz.69 The authors of Ref. 69 used finite differ-
ences with respect to strains to compute the total derivative
of «i j . In their approach, the atoms where relaxed to their
equilibrium positions in the strained configurations. In case
of Eq. sA15d, the first term of the right-hand side is com-
puted at clamped atomic positions while the effect of the
strain-induced atomic relaxations is taken into account by the
second term.

b. Clamped EO coefficients„h=0…

The clamped EO tensor can be computed from thetotal
derivative of the electric field dependent dielectric tensor,
Eq. sA7d, with respect toE

Ud«i jsR,h0,Ed
dEg

U
R0,E=0

= U ]«i jsR0,h0,Ed
]Eg

U
E=0

+ 4po
ka

U ]xi j
s1dsR,h0d
]tka

U
R0

tka
Eg .

sA16d

The derivative in the first term is computed considering the
ionic cores as artificially clamped at their equilibrium posi-
tions. This term represents the bare electronic contribution to
the EO tensor that can be computed from the nonlinear op-
tical coefficients

UU ]«i jsR0,h0,Ed
]Eg

U
E=0

= 8pxi jk
s2dU

k=g

, sA17d

related to a third-order partial derivative ofF:

xi jk
s2d = xi jk

s2dsR0,h0d = U − 1

2V0

]3FsR0,h0,Ed
]Ei ] E j ] Ek

U
E=0

. sA18d

The remaining terms in Eq.sA16d represent the ionic contri-
bution to the EO tensor. They involve derivatives of the
linear dielectric susceptibilityxi j

s1d with respect to the atomic
positions that have to be multiplied by the first-order electric
field induced atomic displacementstka

Eg fEq. sA8dg. To obtain
these quantities, we proceed the same way as in case of the
elasto-optic tensor. Using the equilibrium condition

]F

]tka

= 0 =U ]FsR,h0,0d
]tka

U
RsEd

− V0o
i=1

3 U ]PisR,h0d
]tka

U
RsEd

Ei

− UV0

8p
o
i,j=1

3
]«i jsR,h0d

]tka
U

RsEd

EiE j + . . . sA19d

and expandingtka to the first order in the electric field, we
obtain

o
k8,a8

U ]2FsR,h0,0d
]tka ] tk8a8

U
R0

tk8a8
Eg = V0U ]PgsR,h0d

]tka
U

R0

.

sA20d

This expression is similar to Eq.sA11d. The second-order
derivatives ofF on the left side are the interatomic force
constants and the derivative of the zero field polarization
with respect totka on the right side is the Born effective
charge tensorZk,ga

* of atomk. Decomposingtka
Eg in the basis

of the zone-center phonon-mode eigendisplacementsfEq.
sA12dg and using the orthonormality constraint Eq.s25d we
derive the following expression for the first-order electric-
field-induced atomic displacements:
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tm
Eg =

1

vm
2 o

k,a
Zk,ga

* umskad. sA21d

If we introduce Eqs.sA17d and sA21d into Eq. sA16d we
finally obtain the formula to compute the total derivative of
the dielectric tensor:

UUd«i jsR,Ed
dEg

U
R0,E=0

= 8pxi jk
s2dU

k=g

+ 4po
m

1

vm
2 So

k,a

]xi j
s1dsRd

]tka

umskadD
3So

k8,b

Zk8,gb
* umsk8bdD . sA22d

Using the definition of the Raman susceptibilityfEq. s28dg,
the mode polarityfEq. s41dg and the transformationfEq.
s37dg, we obtain the expression of the clamped EO tensor

r ij g
h =U− 8p

ni
2nj

2 xi jl
s2dU

l=g

−
4p

ni
2nj

2ÎV0
o

m

ai j
mpm,g

vm
2 . sA23d

As in the case of the elasto-optic tensorfEq. sA15dg, we have
written Eq. sA23d in the principal axes of the crystal under
investigation.

c. Unclamped EO tensor„s=0…

In order to compute the unclamped EO tensor, we have to
take into account both the electric-field-induced atomic dis-
placmentstka

Eg and the electric-field-induced strainhmn
Eg when

computing the total derivative of«i j :

Ud«i jsR,h,Ed
dEg

U
R0,h0,E=0

= U ]«i jsR0,h0,Ed
]Eg

U
E=0

+ U4po
ka

]xi j
s1dsR,h0d
]tka

U
R0

tka
Eg

+ 4p o
m,n=1

3 U ]xi j
s1dsR0,hd
]hmn

U
h0

hmn
Eg . sA24d

The electronic contributionffirst term of Eq.sA24dg is the
same as for the clamped EO tensor. It can be computed from
the nonlinear optical coefficientsfEq. sA17dg. To compute
tka
Eg andhmn

Eg , we can use an equilibrium condition similar to
Eq. sA19d where we require that the first-order derivatives of
F with respect totka andhmn vanish. Expandingtka andhmn

to the first order in the electric field, we obtain the system of
coupled equationsssee also Ref. 70d

o
k8,a8

U ]2FsR,h,0d
]tka ] tk8a8

U
R0,h0

tk8a8
Eg + o

m,n
U ]2FsR,h,0d

]tka ] hmn
U

R0,h0

hmn
Eg

= UV0

]PgsR,hd
]tka

U
R0,h0

, sA25ad

o
m8,n8

U ]2FsR,h,0d
]hmn ] hm8n8

U
R0,h0

hm8n8
Eg

+ o
k8,a8

U ]2FsR,h,0d
]tk8a8 ] hmn

U
R0,h0

tk8a8
Eg

= UV0

]PgsR,hd
]hmn

U
R0,h0

. sA25bd

Because of the coupling betweentka
Eg andhmn

Eg , defined by the
mixed second-order derivatives]2F /]tkahmn, the second
term of the right-hand side of Eq.sA24d is different from that
of Eq. sA16d. That means that the sum of the first and second
terms of Eq.sA24d is not identical to the clamped EO coef-
ficients r ij g

h . Moreover, the third term of Eq.sA24d is differ-
ent from the piezoelectric contribution of Sec. A 1.

In order to obtain the decomposition ofr ij g
s into elec-

tronic, ionic, and piezoelectric contributions defined previ-
ously, we can solve Eq.sA25ad for tka

Eg . In the basis of the
zone-center phonon mode eigendisplacements we can write

tn
Eg =

pn,g

vn
2 −

1

vn
2o

mn

U ]2FsR,h,0d
]tn ] hmn

U
R0,h0

hmn
Eg . sA26d

If we insert this relation into Eq.sA24d and use the transfor-
mation equations37d we obtain the following expression of
the unclamped EO tensor in the principal axes:

r ij g
s = U− 8p

ni
2nj

2 xi jl
s2dU

l=g

−
4p

ni
2nj

2ÎV0
o

m

ai j
mpm,g

vm
2

−
4p

ni
2nj

2o
m,n
FU ]xi j

s1dsR,h,Ed
]hmn

U
R0,h0,E=0

−
1

ÎV0
o

m
Uai j

m

vm
2

]2FsR,h,0d
]tm ] hmn

U
R0,h0,E=0

Ghmn
Eg

sA27d

The sum of the first and second term of the right-hand side of
Eq. sA27d is equal to the clamped EO coefficientr ij g

h . The
product of the conversion factor times the bracket in the third
term of Eq.sA27d is equal to the elasto-optic coefficientpij mn

fEq. sA15dg. Finally, by definition of the converse piezoelec-
tric effect,hmn

Eg is equal to the piezoelectric strain coefficient
dgmn. We thus obtain the following expression of the
unclamped EO coefficients that is equal to the one derived in
Sec. A 1 from pure macroscopic arguments:

r ij g
s = r ij g

h + o
m,n=1

3

pij mndgmn. sA28d

It is worth noting that the so-called piezoelectric contribution
not only takes into account the change of the linear optical
susceptibility with strainfthird term of the right-hand side of
Eq. sA24dg but also includes the modification of the ionic
contribution, with respect to the clamped case, that is asso-
ciated to the modification of the ionic relaxation induced by
the strain.
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