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Emphasizing a proper description of short-range interactions, the ladder theorysLTd is incapable of
reliably reproducing any property of the three-dimensional electron gas except for the correlation function at
the electron coalescence limitsthe on-top densityd gs0d and the related large-k tail of the momentum distribu-
tion nskd. Because of the violation of the cusp condition, poor accuracy of the predictedgsrd is expected
for any nonvanishingr. Although the LT yields components of the correlation energy that satisfy the
virial theorem for homogeneous interaction potentials, in the case of the Coulomb potential these components
turn out to be infinite. A straightforward analysis shows that any effort at alleviating this problem by introduc-
ing a long-range screening is bound to violate the virial condition. A commonly employed approximate version
of the LT, which avoids Coulomb singularities, yields incorrect energy components and an unphysical momen-
tum distribution despite producing reasonable values ofgs0d. Since lessening of the approximation worsens
the accuracy of the high-density limit ofgs0d, this result appears to be due to a fortuitous cancellation of
errors.
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I. INTRODUCTION

The recent advances in quantum Monte CarlosQMCd
techniques have brought about a dramatic improvement in
the accuracy of energy computations for the three-
dimensional homogeneous electron gass3D HEGd.1 On the
other hand, being less amenable to stochastic simulations,
other properties of the 3D HEG are usually obtained from
approximate treatments of electron correlation. Among those
properties, the momentum distributionnskd and the correla-
tion functiongsrd are of particular importance to the devel-
opment and calibration of density and density matrix func-
tional theories.2

Present QMC calculations are capable of yielding reason-
ably accurate values ofgsrd only for the interelectronic dis-
tancer that is of the same order of magnitude as the Wigner-
Seitz parameterrs.

3 The currently available estimates ofgsrd
at shorter distances, afforded by its high-densitysrs→0d
asymptotics,4 various implementations3,5 of the Overhauser
model,6 approximations to the ladder theory,7,8 and
hypernetted-chain equations9 exhibit unacceptable scatter.
Even worse situation is encountered fornskd, for which the
high-density random phase approximationsRPAd asymptot-
ics is known to be twice the correct value for large magni-
tudes ofk due to the neglect of exchange effects.10 Attempts
at systematically correcting this deficiency11 yield results in
poor agreement with those of other theoretical treatments,9,12

whereas the published QMC estimates13 are of doubtful qual-
ity. This lack of reliable data hampers the construction of
interpolation schemes fornskd valid over entire ranges ofk
and rs.

14

While the RPA formalism is tailored towards the descrip-
tion of the direct component of long-range electron-electron
interactions, the ladder theorysLTd deals primarily with both
the direct and exchange parts of short-range correlations,
which become important at larger values ofrs.

7 In the case of

an exactly solvable one-dimensional fermion system with re-
pulsived-function interactions,15 comparison of the RPA and
LT energies with the exact ones reveals a clear superiority of
the latter approach.16 On the other hand, the two published
sets of the LT energies of the two-dimensional HEG17 are
mutually inconsistent.

Thus far, the issue of potential merits and drawbacks of
the ladder theory applied to the description of the 3D HEG
has not been properly addressed, the published calculations7,8

employing crude approximations and concerning only one
property, namelygs0d. Prompted by this state of affairs, we
have studied the applicability of the LT to the 3D HEG by
examining whether the solutions of its equations satisfy such
fundamental relations as the cusp condition18 and the virial
theorem.19 The results of this study are compiled in this pa-
per.

II. THE LADDER THEORY

Consider the three-dimensional homogeneous gas with
densityr consisting of fermions interacting through a poten-
tial specified by its Fourier transformVspd=Vs−pd with the
large-momentum asymptotics of limp→` p2 Vspd=4p. Here
and in the following, all the momenta are expressed in units
of kF:

kF = s3p2rd1/3, akFrs = 1, a = s4/9pd1/3, s1d

whereas all the potentials are in units ofkF
−2. In the ladder

theory, the correlation energy density of such a spin-
unpolarized gas is given by7

ec = − s64p9d−1kF
3E

V̄sP,pd
dP dpE

VsP,qd
AsP,p,qd

3f2Vsq − pd − Vsq + pdg UsP,p,qd dq, s2d

where the effective potentialUsP,p ,qd solves the Bethe-
Goldstone equation
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UsP,p,qd = Vsq − pd − s2pd−3kF
−1E

VsP,q8d
AsP,p,q8d

3Vsq − q8d UsP,p,q8d dq8 s3d

that ensues from an infinite summation of ladder diagrams.
In Eqs.s2d and s3d,

Vsp,qd ; up + qu ù 1 ù up − qu ù 1,

V̄sp,qd ; up + qu ø 1 ù up − qu ø 1 s4d

and fnote that in factAsP,p ,qd depends only onp andqg,

AsP,p,qd = f«sP + qd + «sP − qd − «sP + pd − «sP − pdg−1

= sq2 − p2d−1, s5d

where

«spd = s1/2dp2. s6d

Because of its complexity, Eq.s3d cannot be readily solved
even with numerical approaches. However, many properties
of its solutions can be determined without difficulty.

III. THE CORRELATION FUNCTION AND THE CUSP
CONDITION

Functional differentiation of ec with respect to V
yields the correlation contributionScskd to the static structure
factor

Scskd = 2r−1kF
2dec/dVskd

=− s3/4p4dkF
−1E

V̄sP,pd
dP dpE

VsP,qd
dq AsP,p,qd

3UsP,p,qdh2f2dsq − p − kd − dsq + p − kdg

− s2pd−3kF
−1E

VsP,q8d
dq8 AsP,p,q8d f2 UsP,p,q8d

− UsP,− p,q8dgdsq − q8 − kdj. s7d

Consequently

gs0d = 1/2 +r−1s2pd−3kF
3 E Scskd dk

=1/2 −s9/32p5dkF
−1E

V̄sP,pd
dP dp

3E
VsP,qd

dq AsP,p,qd UsP,p,qd

3F2 − s2pd−3kF
−1E

VsP,q8d
dq8 AsP,p,q8d UsP,p,q8dG

=s9/4p2dE
V̄sP,pd

F1 − s2pd−3kF
−1E

VsP,qd
AsP,p,qd

3UsP,p,qd dqG2

dP dp, s8d

as expected.8 At this point it is convenient to define a differ-
ent quantity

jsP,pd = lim
q→`

UsP,p,qd/Vsq − pd

=1 − s2pd−3kF
−1lim

q→`
Vsq − pd−1

3E
VsP,q8d

AsP,p,q8d Vsq − q8d UsP,p,q8d dq8

=1 − s2pd−3kF
−1E

VsP,q8d
AsP,p,q8d UsP,p,q8d dq8

s9d

that measures the reduction of interaction strength due to
short-range screening and allows one to write Eq.s8d in a
compact form

gs0d = s9/4p2dE
V̄sP,pd

jsP,pd2 dP dp ù 0. s10d

At the large-k limit

Sskd − 1 =Scskd = − s3/4p4dkF
−1E

V̄sP,pd
dP dp

3H2f2 AsP,p,k + pd UsP,p,k + pd

− AsP,p,k − pd UsP,p,k − pdg − s2pd−3kF
−1

3E
VsP,qd

AsP,p,qd UsP,p,qd AsP,p,q − kd

3f2 UsP,p,q − kd − UsP,− p,q − kdgdqJ
s11d

as it is always possible to find a combination of vectors that
simultaneously satisfy the conditions imposed by the delta
functions and the integration domains. Combining Eqs.s5d,
s9d, ands11d with the assumed asymptotics ofVskd yields

lim
k→`

k4f1 − Sskdg

= s3/p3d kF
−1E

V̄sP,pd
f1 + jsP,pdgjsP,pd dP dp,

s12d

from which it follows that:18

g8s0d ; dgsrd/drur=0 = s3p/8d kF lim
k→`

k4f1 − Sskdg

=s9/8p2dE
V̄sP,pd

f1 + jsP,pdg jsP,pd dP dp

=gs0d + s9/8p2dE
V̄sP,pd

f1 − jsP,pdg jsP,pd dP dp

ù gs0d, s13d
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the equality being attained only whenjsP,pd;1. Thus,
the ladder theory violates the cusp condition18 for gsrd,
approaching it only asymptotically at thers→0
limit.

IV. THE MOMENTUM DISTRIBUTION AND ITS
ASYMPTOTICS

The correlation contributionncskd to the momentum
distribution is also available through functional differentia-
tion

ncskd = s1/2d dec /d«skd

= s128p9d−1kFE
V̄sP,pd

dP dpE
VsP,qd

dq UsP,p,qd

3f2 UsP,p,qd − UsP,− p,qdgfAsP,p,k − Pd2

3dsq − k + Pd + AsP,p,P − kd2 dsq + k − Pd

− AsP,k − P,qd2 dsp − k + Pd

− AsP,P − k,qd2 dsp + k − Pdg. s14d

Inspection of the integration domains in Eq.s14d readily pro-
duces

ncskd = − s8p6d−1kF
−2E

VsP,qdùu2P−k uø1
AsP,k − P,qd2

3UsP,k − P,qdf2 UsP,k − P,qd

− UsP,P − k,qdgdP dq for k ø 1 s15d

and

ncskd = s8p6d−1kF
−2E

V̄sP,pdùu2P−k uù1
AsP,p,k − Pd2

3UsP,p,k − Pdf2UsP,p,k − Pd

− UsP,− p,k − Pdg dP dp for k ù 1. s16d

Combining Eqs.s5d, s9d, s10d, and s16d with the assumed
asymptotics ofVskd yields

lim
k→`

k8 ncskd = s2/p4dkF
−2E

V̄sP,pd
jsP,pd2 dP dp

= s8/9p2dkF
−2 gs0d s17d

as expected.20

V. THE CHEMICAL POTENTIAL, THE VIRIAL
THEOREM, AND THE KINETIC ENERGY

The correlation contributionmc to the chemical potential
reads

mc = ]ec /]r = skF/3rd ] ec/]kF

= s3rd−1H4ec + s64p9d−1kF
3E

V̄sP,pd
dP dpE

VsP,qd
AsP,p,qd

3f2UsP,p,qd − UsP,− p,qdg UsP,p,qd dqJ . s18d

Hence, the virial theorem19

3 r mc = 4 ec + tc s19d

demands that the correlation componenttc of the kinetic en-
ergy density equals

tc = s64p9d−1kF
3E

V̄sP,pd
dP dpE

VsP,qd
AsP,p,qd

3f2 UsP,p,qd − UsP,− p,qdgUsP,p,qddq. s20d

On the other hand

tc = s4p3d−1kF
5E «skdncskddk

=s32p9d−1kF
3E

V̄sP,pd
dP dpE

VsP,qd
f«sP + qd − «sP + pdg

3AsP,p,qd2UsP,p,qdf2UsP,p,qd − UsP,− p,qdgdq,

s21d

which, by virtue of Eq.s5d, affords Eq.s20d after a trivial
manipulation. Thus, despite its nonvariational character, the
ladder theory is consistent with the virial theorem.

VI. THE CASE OF THE COULOMBIC POTENTIAL
AND APPROXIMATE SOLUTIONS

In the particular case of the Coulombic potential

Vsqd = 4puqu−2, s22d

the integral

Is0d =E
V̄sP,pd

dP dpE
VsP,qd

AsP,p,qd Vsq − pd2dq s23d

diverges due to the well-known singularity atq=p.21 Conse-
quently, although the Bethe-Goldstone Eq.s3d can be iterated
for small values ofrs slarge values ofkFd, ec does not possess
a power expansion in terms ofrs. Still, one may inquire
whether the summation of ladder diagrams leads to a finiteec
sas it does in the case of ring diagrams21d. In order to answer
this question, one isolates the singularity by writing

UsP,p,qd = Vsq − pd + WsP,p,qd s24d

and substitutingWsP,p ,qd into Eq. s3d, which yields

WsP,p,pd < − s2pd−3 kF
−1fI1sP,pd + WsP,p,pdI2sP,pdg.

s25d

Both
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I1sP,pd =E
VsP,qd

AsP,p,qd Vsq − pd2 dq s26d

and

I2sP,pd =E
VsP,qd

AsP,p,qd Vsq − pd dq, s27d

which can be readily computed, diverge forq=p. Next, one
examines the finiteness of the integralfcompare Eqs.s2d, s3d,
and s25dg:

IskFd =E
V̄sP,pd

dP dpE
VsP,qd

AsP,p,qd Vsq − pdUsP,p,qd dq

=− s2pd3kFE
V̄sP,pd

WsP,p,pddP dp

<E
V̄sP,pd

I1sP,pdf1 + s2pd−3kF
−1 I2sP,pdg−1dP dp. s28d

Numerical experiments with varying quadrature grids indi-
cate that IskFd is infinite. Therefore, unlike the RPA ap-
proach, the ladder theory does not yield a finite correlation
energy.

Consider the high-density limit ofgs0d obtained by sub-
stitutingVsq−pd for UsP,p ,qd in Eq. s8d and retaining only
the term linear inkF

−1:

gs0d = s9/4p2dE
V̄sP,pd

f1 – 2s2pd−3kF
−1I2sP,pdg dP dp + . . .

=s1/2d − s9/16p5dkF
−1E

V̄sP,pd
I2sP,pddP dp + . . .

=s1/2d − s5pd−1sp2 + 6 ln2 – 3dkF
−1 + . . . . s29d

This limit turns out to be identical with the leading term in
the exact asymptotics4—an expected result taking into ac-
count that the lowest-order ring and ladder diagrams coin-
cide. On the other hand, inspection of Eqs.s15d and s16d
shows thatncskd diverges atk=1.

In principle, the divergences inec, tc, mc, andncskd could
be remedied by incorporating a long-range screening in the
CoulombicVsqd, i.e., altering it in such a way that it remains
finite at q→0. However, the dependence of the resulting
Vsqd on kF required by a proper description of such screen-
ing would give rise to violation of the virial theoremfcom-
pare Eq.s18dg.22

The singularity atq=p is also avoidedsalthough in a
spurious wayd in an approximation, employed in all the LT
calculations on the 3D HEG performed to date,7,8 that con-

sistently replacesUsP,p ,qd with Ūsqd=Us0,0,qd in Eqs.
s3d and s9d by inserting the factors2p2/9ddsPddspd in front
of dP dp in Eqs.s2d, s10d, s13d, s14d, ands21d. The resulting
approximate equations read

ec = − s18p5d−1kF
3E

1

`

q−2 Ūsqd dq, s30d

Ūsqd = 4p q−2 − spkFqd−1E
1

`

q8−1ln Uq + q8

q − q8
U Ūsq8d dq8,

s31d

j̄ ; js0,0d = s4pd−1lim
q→`

q2Ūsqd, s32d

gs0d = s1/2dj̄ 2, s33d

g8s0d = s1/4ds1 + j̄dj̄, s34d

ncskd = s36p4d−1kF
−2 hsk − 1d Ūskd2k−4

− s9p3d−1kF
−2E

1

`

Ūsqd2 q−2 dq dskd, s35d

and

tc = s72p6d−1kF
3E

1

`

Ūsqd2 dq, s36d

wherehsxd is the Heaviside step function. Thus, although the
values ofgs0d afforded by this approximation appear to be
reasonable,8 with the high-density asymptotics

gs0d = s1/2d − s2/pdkF
−1 + . . . s37d

suffering from a 10%s0.6366 vs 0.7021d error in the term
proportional tokF

−1, the correlation contributionsec and tc
possess thers→0 limits of

ec = − tc = − s2/27p4d kF
3 + . . . = −s2/9p2dr + . . . ,

s38d

that are predictably devoid of the logarithmic terms. Even
worse, the approximate effect of electron correlation on the
momentum distribution is spuriously limited tok=0 and
kù1.

A lesser approximation that involves settingP=0 srather
than P=p=0 as aboved, brings back the singularities and
worsens the high-density asymptotics ofgs0d. Finally, it
should also be noted that a crude approximation toVsqd,
which allows for an explicit solution of Eq.s31d in terms of
Bessel functions,7 results in a serious underestimation of
gs0d sby as much as a factor of 2 atrs<5d8 and thus should
be avoided.

VII. CONCLUSIONS

Emphasizing a proper description of short-range interac-
tions, the LT is incapable of reliably reproducing any prop-
erty of the three-dimensional electron gas except for the cor-
relation function at the electron coalescence limitsthe on-top
densityd gs0d and the related large-k tail of the momentum
distribution nskd. However, because of the violation of the
cusp condition, poor accuracy of the predictedgsrd is ex-
pected for any nonvanishingr. Despite its nonvariational
character, the LT yields components of the correlation energy
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that satisfy the virial theorem for homogeneous interaction
potentials. However, in the case of the Coulomb potential all
the energy components turn out to be infinite. A straightfor-
ward analysis shows that any effort at alleviating this prob-
lem by introducing a long-range screening is bound to vio-
late the virial condition.

An approximate version of the LT, which avoids Coulomb
singularities, yields incorrect energy components and an
unphysical momentum distribution despite producing
reasonable values ofgs0d. Since lessening of the approxima-
tion worsens the accuracy of the high-density limit of

gs0d, this result appears to be due to a fortuitous cancellation
of errors.
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