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Applicability of the ladder theory to the three-dimensional homogeneous electron gas
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Emphasizing a proper description of short-range interactions, the ladder thi€byyis incapable of
reliably reproducing any property of the three-dimensional electron gas except for the correlation function at
the electron coalescence linfthe on-top densityg(0) and the related largk-ail of the momentum distribu-
tion n(k). Because of the violation of the cusp condition, poor accuracy of the predi¢i¢ds expected
for any nonvanishingr. Although the LT yields components of the correlation energy that satisfy the
virial theorem for homogeneous interaction potentials, in the case of the Coulomb potential these components
turn out to be infinite. A straightforward analysis shows that any effort at alleviating this problem by introduc-
ing a long-range screening is bound to violate the virial condition. A commonly employed approximate version
of the LT, which avoids Coulomb singularities, yields incorrect energy components and an unphysical momen-
tum distribution despite producing reasonable valueg(6j. Since lessening of the approximation worsens
the accuracy of the high-density limit @f0), this result appears to be due to a fortuitous cancellation of
errors.
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[. INTRODUCTION an exactly solvable one-dimensional fermion system with re-
) pulsive s-function interactiond® comparison of the RPA and

The recent advances in quantum Monte Ca@VC) | T energies with the exact ones reveals a clear superiority of
techniques have brought about a dramatic improvement ithe |atter approack On the other hand, the two published
the accuracy of energy computations for the threesets of the LT energies of the two-dimensional HEGre
dimensional homogeneous electron ¢gab HEG).! On the  mutually inconsistent.
other hand, being less amenable to stochastic simulations, Thus far, the issue of potential merits and drawbacks of
other properties of the 3D HEG are usually obtained fromthe ladder theory applied to the description of the 3D HEG
approximate treatments of electron correlation. Among thoséas not been properly addressed, the published calculafions
properties, the momentum distributioitk) and the correla- employing crude approximations and concerning only one
tion functiong(r) are of particular importance to the devel- property, namelyg(0). Prompted by this state of affairs, we
opment and calibration of density and density matrix func-have studied the applicability of the LT to the 3D HEG by
tional theorieg. examining whether the solutions of its equations satisfy such

Present QMC calculations are capable of yielding reasonfundamental relations as the cusp conditfoand the virial
ably accurate values af(r) only for the interelectronic dis- theoremt® The results of this study are compiled in this pa-
tancer that is of the same order of magnitude as the Wigneryper.
Seitz parameter,2 The currently available estimates gffr)
at shorter distances, afforded by its high-dengity— 0)
asymptotics, various implementatiod$ of the Overhauser Consider the three-dimensional homogeneous gas with
model® approximations to the ladder thedr§, and densityp consisting of fermions interacting through a poten-
hypernetted-chain equatichexhibit unacceptable scatter. tial specified by its Fourier transforii(p)=V(-p) with the
Even worse situation is encountered fitk), for which the  large-momentum asymptotics of ljm..p? V(p)=4. Here
high-density random phase approximati@PA) asymptot- and in the following, all the momenta are expressed in units
ics is known to be twice the correct value fg{ﬁlarge magni-of k:
tudes ofk due to the neglect of exchange effe€tattempts _ 1/3 _ _ 1/3
at systematically correcting this deficieAtyield results in ke =35 akers=1, a=(4/9m™, @
poor agreement with those of other theoretical treatmielits, whereas all the potentials are in units kgf. In the ladder
whereas the published QMC estimafesre of doubtful qual-  theory, the correlation energy density of such a spin-
ity. This lack of reliable data hampers the construction ofunpolarized gas is given by
interpolation schemes fax(k) valid over entire ranges &
andrg e, = - (647974 f dP dp f A(P,p,q)

While the RPA formalism is tailored towards the descrip- Q(P,p) Q(P,q)
tion of the direct component of long-range electron-electron N
interactions, the ladder theoyT) deals primarily with both X[2V(g-p) - V(q+p)] U(P,p,q) dd, 2
the direct and exchange parts of short-range correlationsyhere the effective potentidU(P,p,q) solves the Bethe-
which become important at larger values gf In the case of ~ Goldstone equation

Il. THE LADDER THEORY
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U(P,p,q) =V(q-p) —(2w)‘3kElf A(P,p,q")
QP,q")
xXV(q-qg’) U(P,p,q’) dqg’ (3

that ensues from an infinite summation of ladder diagrams.

In Egs.(2) and(3),
Qp.g)=lp+a[=1Nn[p-q/=1,
Qp.a)=[p+g[<1nfp-gl<1 (4)

and[note that in factA(P,p,q) depends only omp andq],

A(P,p,q) =[e(P+q) +&(P-q)-&s(P+p)-s(P-p)]™
=(@-p), (5)
where
&(p) = (1/2)p°. (6)

Because of its complexity, Eg3) cannot be readily solved
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as expected At this point it is convenient to define a differ-
ent quantity

&P,p) = Airr;U(P.p,q)/V(q -p)

=1-2m3kimV(g-p)™*
q*)OC
XJ A(P,p,q") V(a—-q') U(P,p,q’) dq’
QP,q")

A(P,p,q") U(P,p,q’) dg’

9

that measures the reduction of interaction strength due to
short-range screening and allows one to write 8).in a
compact form

=1-(27) 3Kt f

QPg’)

&P,p)? dP dp = 0.
Pp)

g(0) = (9/472) f - (10)
QO

even with numerical approaches. However, many properties

of its solutions can be determined without difficulty.

Ill. THE CORRELATION FUNCTION AND THE CUSP
CONDITION

Functional differentiation ofe, with respect toV
yields the correlation contributio®,(k) to the static structure
factor

Su(k) = 2p™"kz S/ SV(k)
=— (3/4n*)k* f B

Q(P,p)
XU(P,p,q){2[25(q-p—-k) - &g +p-k)]

- (2m) 3Kk:* J

Q(P.a’)

dP dpf dg A(P,p,q)
Q(P,q)

dq’ A(P,p,q")[2 U(P,p,q’)

-U(P,-p,q)]s(g-q" -k)}.

Consequently

(7

9(0) = 1/2 +p™(2m) ¢ f S(k) dk

=1/2 —(9/327°)k* f

Q(P.p)

dP dp
xf dq A(P,p,q) U(P,p,q)
Q(P,a)
xlz—(zw)‘3kﬁlf dq" A(P,p,q’) U(P,p,q’)]
QPq’)

=(9/473) | {1—(277)‘3k,§1f A(P,p,q)

Q(P,p) QP,q)

2
xU(P,p,q) dq] dP dp, (8)

At the largek limit

Sk) = 1=S(k) = - (3/4m*)k:* J_

Q(P.p)

dP dp

X{Z[Z AP,p,k +p) UP,p,k +p)
~A(P,p,k =p) U(P,p,k = p)] - (2m) %"

Xf A(P,p,q) U(P,p,q) A(P,p,q—k)
Q(P,q)

X[2 U(P,p,q-k)-U(P,-p,q- k)]dq}

(11

as it is always possible to find a combination of vectors that
simultaneously satisfy the conditions imposed by the delta
functions and the integration domains. Combining E§$.

(9), and(11) with the assumed asymptotics \@tk) yields

lim K1 -S(k)]
= (3/7°) ket f B

[1+&(P,p)]&(P,p) dP dp,
Q(P,p)

(12
from which it follows that®
g'(0) = dg(r)/dr|,—g = (37/8) ke lim k1 - S(k)]
k—o0

=(9/8%) | _  [1+&P,p)] &P,p) dP dp
(Pp)
=g(0) + (9/8ﬂ2)f_ [1-¢&(P,p)] &P,p) dP dp
Pp)
=g(0), (13
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the equality being attained only whef(P,p)=1. Thus,  u = de./dp=(ke/3p) d e Ikg

the ladder theory violates the cusp conditforior g(r),
approaching it only asymptotically at therg—0 =(3p)t 4ec+(64779)'1k§J dp dpj A(P,p,q)
limit. aPp) O(P.q)
IV. THE MOMENTUM DISTRIBUTION AND ITS x[2U(P,p,q) - U(P,-p,q)] U(P,p,q) dq}- (18)
ASYMPTOTICS

. L Hence, the virial theoretd
The correlation contributionn.(k) to the momentum

distribution is also available through functional differentia- Bpuc=4e.+t; (19

tion . N
° demands that the correlation compongmf the kinetic en-

ergy density equals
n.(k) = (1/2) de./de(k) ay y eq

_ _ t :(64779)_1k3f dP dpf A(P,p,q)
=(1287°) 1ka dP dpfmpq) dq U(P,p,q) ¢ e AP

Q(P,p)
X[2 U(P,p,q) —U(P,—p,q)JU(P,p,q)dg. (20)
On the other hand

X[2 U(P,p,q) = U(P,— p,a)I[A(P,p,k = P)?
x 8-k +P)+AP,p,P-k)? 8(q+k—P)

- - 2 -
A(P.k=P.q)? 8(p -~k +P) te=(47%) 7l J e(k)nc(k)dk
-AP,P-k,q)? 8(p+k-P)]. (14)
_ 9y-11,3 _
Inspection of the integration domains in Ed4) readily pro- =(32m) kFJ(—Z(P : dP dpL o [e(P+q)-&(P+p)]
duces P P9
XA(P,p,q)?U(P,p,a)[2U(P,p,q) - U(P,~p,q)]dg,
(21)
ne(k) = — (87°) k2 f AP,k -P,q)?
Q(P.q)N|2P-k|<1 which, by virtue of Eq.(5), affords Eq.(20) after a trivial
_ _ manipulation. Thus, despite its nonvariational character, the
XU(P,k -P,q)[2 U(P,k -P,q) ladder theory is consistent with the virial theorem.
-U(P,P-k,q)JdPdg fork<1 (15
VI. THE CASE OF THE COULOMBIC POTENTIAL
and AND APPROXIMATE SOLUTIONS
In the particular case of the Coulombic potential
ne(k) = (87°) 'k J_ A(P,p,k - P)? — 4 ql-2
¢ F Q(P,p)N[2P—k|=1 V(q) = 4mlq|™, (22)
XU(P,p,k =P)[2U(P,p,k = P) the integral
-U(P,-p,k=P)]dP dp fork=1. (16)
0)=|_ dpP dpf A(P,p,q) V(q - p)*dq (23
Combining Egs.(5), (9), (10), and (16) with the assumed ER) P
asymptotics ol(k) yields diverges due to the well-known singularity gt p.?* Conse-
quently, although the Bethe-Goldstone E3).can be iterated
for small values of ¢ (large values okg), e. does not possess
lim k8 nc(k):(2/7r4)k;2f_ &P,p)? dP dp a power expansion in terms of. Still, one may inquire
ko Q(P,p) whether the summation of ladder diagrams leads to a f&gite
— (8/9772)k,_:2 9(0) (17) (a_s it does in the case of ring dia_gra?ﬁ)s_ln order ?q answer
this question, one isolates the singularity by writing
as expected U(P,p,q) =V(q - p) + W(P,p,q) (24)
and substitutingM(P,p,q) into Eq. (3), which yields
V. THE CHEMICAL POTENTIAL, THE VIRIAL 31
THEOREM, AND THE KINETIC ENERGY W(P,p,p) = = (2m) ™" k' [11(P,p) + W(P,p,p)I2(P,p)].
(25

The correlation contribution. to the chemical potential
reads Both
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| _ 2 ) — -2 O I N L W e A
1(P,p) = A(P,p,q) V(q-p)° dq (26) U(a) =47 q™° - (mkeq) q'"In ;| U(@) da’,
QP,a) 1 a-q9
and (31)
15(P,p) = f APp,a)V(@-p) dq,  (27) £=£0,0) = (4m)tlim q?U(q), (32
Q(P.q) e
which can be readily computed, diverge fpep. Next, one —
examines the finiteness of the intedradmpare Eqs(2), (3), g(0) = (1/2)¢7, (33
and(25)]:
g'(0) = (1/4)(1 + )¢, (34)
I(ke)=|_ dP dpf A(P,p,q) V(q - p)U(P,p,q) dq
Q(P,p) Q(P.,g)

ne(K) = (3674 K2 p(k - 1) U(k)%K*

=- 2773kf W(P,p,p)dP d ©__
G |y PPIP P — (@) 2 f U@2q2dgek), (35
1

~ J_ 11(P.p)[1 +(2m) 3" 1,(P,p)] "dP dp. (28)  and
Q(P,p)

Numerical experiments with varying quadrature grids indi- tc:(72776)-1k§f U(q)Z dq, (36)
cate thatl(kg) is infinite. Therefore, unlike the RPA ap- 1
proach, the ladder theory does not yield a finite correlationW
energy.

Consider the high-density limit af(0) obtained by sub-
stituting V(q—p) for U(P,p,q) in Eq. (8) and retaining only
the term linear irk;l: g(0) = (1/2) - (2/7r)k;1+ (37)

suffering from a 10%(0.6366 vs 0.7021Lerror in the term

here(x) is the Heaviside step function. Thus, although the
values ofg(0) afforded by this approximation appear to be
reasonablé,with the high-density asymptotics

- -3;,-1
9(0) = (9/4m) aPp) [1-22m)Ke12(P.p)] dP dp + .. proportional tokz?, the correlation contributions, and t,
' possess the,— 0 limits of
=(1/2) —(9/1en5)kElf Io(P,p)dP dp + ... &= 1=~ (227 IR+ ... =-(20m)p+ ..,
Q(P.p) (39
=(1/2) - 5m) {72+ 6 In2—3k,§1+ o (29) that are predictably devoid of the logarithmic terms. Even

worse, the approximate effect of electron correlation on the

This limit turns out to be identical with the leading term in momentum distribution is spuriously limited tk=0 and
the exact asymptotiés-an expected result taking into ac- k=1.
count that the lowest-order ring and ladder diagrams coin- A lesser approximation that involves settiRg0 (rather
cide. On the other hand, inspection of E¢$5) and (16) than P=p=0 as abovg brings back the singularities and
shows thain.(k) diverges ak=1. worsensthe high-density asymptotics af(0). Finally, it

In principle, the divergences i, t., w. andnc(k) could  should also be noted that a crude approximatiorv(q),
be remedied by incorporating a long-range screening in thevhich allows for an explicit solution of Eq31) in terms of
CoulombicV(q), i.e., altering it in such a way that it remains Bessel functions, results in a serious underestimation of
finite at —0. However, the dependence of the resultingg(0) (by as much as a factor of 2 af~5)8 and thus should
V(q) on ke required by a proper description of such screen-be avoided.
ing would give rise to violation of the virial theorepcom-
pare Eq.(18)].22

The singularity atq=p is also avoided(although in a
spurious way in an approximation, employed in all the LT~ Emphasizing a proper description of short-range interac-
calculations on the 3D HEG performed to dafethat con-  tjons, the LT is incapable of reliably reproducing any prop-
sistently replacesJ(P,p,q) with U(q)=U(0,0,q) in Egs. erty of the three-dimensional electron gas except for the cor-
(3) and(9) by inserting the factof272/9)8(P)&(p) in front relation function at the electron coalescence litlie on-top
of dP dp in Egs.(2), (10), (13), (14), and(21). The resulting  density g(0) and the related largk-tail of the momentum

VII. CONCLUSIONS

approximate equations read distribution n(k). However, because of the violation of the
- cusp condition, poor accuracy of the predicigd) is ex-
e.= - (187°) 3 f q? U(q) daq, (30)  pected for any nonvanishing Despite its nonvariational
1 character, the LT yields components of the correlation energy
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that satisfy the virial theorem for homogeneous interactiorg(0), this result appears to be due to a fortuitous cancellation
potentials. However, in the case of the Coulomb potential albf errors.

the energy components turn out to be infinite. A straightfor-

ward analysis shows that any effort at alleviating this prob-

lem by introducing a long-range screening is bound to vio- ACKNOWLEDGMENTS

late the virial condition.
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