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Spin Hall conductivity of a disordered two-dimensional electron gas
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The spin Hall conductivity of a disordered two-dimensional electron gas has been investigated for a general
spin-orbit interaction. We have found that in the diffusive regime of electron transport, the dc spin-Hall
conductivity of a homogeneous system is zero due to impurity scattering when the spin-orbit coupling contains
only the Rashba interaction, in agreement with existing results. However, when the Dresselhaus interaction is
taken into account, the spin-Hall current is not zero. We also considered the spin-Hall currents induced by an
inhomogeneous electric field. It is shown that a time-dependent electric charge induces a vortex of spin-Hall
currents.
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Spintronics is a fast developing area using the electron We consider a typical 1l1-V semiconductor QW with only
spin degrees of freedom in electronic devitgsOne of the  the lowest subband occupied. The spin-orbit coupling of con-
most challenging goals of spintronics is to find a method toduction electrons has the form
manipulate spins by electric fields. The spin-orbit interaction Ho=he - o (1)
(SOI), which couples the electron momentum and spin, can so™ kT
serve as a spin-charge mediator. There have been sevelkdere o=(d*,0%,07) is the Pauli matrix vector, ant, a
suggestions to use the SOI in semiconductor quantum weliginction of the two-dimensional wave vectkr In general,
(QW) to create the electron and hole spin currents and tdk contains both the Dresselhaus and the Rashba terms. The
accumulate the spin polarization by applying an electric fielformer exists also in bulk crystaf$ while the latter appears
parallef-8 or perpendiculdr® to the QW. The spin current ONly in asymmetric QWS For a QW grown along thfo01] -
induced by the parallel electric field and flowing perpendicu-diréction, which is set as theaxis, the Dresselhaus SOl is

lar to it has been named the spin-Hall effesee also 9iven by

Ref. 1]). Since the prediction of this effect by Murakami ﬁ:gkx(ki_aZ),

et al® and Sinovaet al.° there have been much discussions

concerning the effect of nonmagnetic impurity scattering on hY=- Bky(kf -ad), 2)

the spin-Hall conductivity in systems with Rashba spin-orbit

coupling. Some groups predicted that the impurity scatteringnere Zthg parametea® is the average of the operator
should suppress the spin-Hall effect induced by a homogej(a/&z) with respect to the lowest subband wave function.

neous and static electric field;25 even if the mean scatter- | "€ Dresselhaus SOl in E) contains terms both linear
ing time 7 is much longer than 14, whereA is the spin-orbit and cubic ink. Usually, in heavily doped QWs, for electrons

splitting of the electron energyve seti=1). This result was at the_ Feé?' energy bOth terms are of the (ngi]ne order of
confirmed by an analysis of the sum rules in Ref. 16. YetmagnItUd = The Rashba interaction has the f
some other groups came to different conclusitn® h = ak,, hY = - ak. 3

In the present paper we use the diffusion approximation to L )
derive an expression of the spin Hall conductivity for a gen- -t us apply an electric field along theaxis, and express
eral SOI, including both Rashba and Dresselhaus terms. Fér@s the gradient of a scalar electric potentat —VV. This
pure Rashba SOI, as well as for linear Dresselhaus intera&@Uge is more convenient for studying the case of finite wave
tion, we found that the dc spin-Hall conductivity of the ho- NUMPErsQ in the Fourier expansion d. The one-particle
mogeneous system becomes zero even for a weak disord&in-current operator i&=(c'v!+vlo’)/4, where the particle
scattering, confirming thus the results of Refs. 12—16. On th¥elocity is
other hand, when the cubic terms of Dresselhaus SOI is in- O 9
cluded, a finite spin current is produced. In order to study the v'=—+—(he- o). (4)

; . o m* gk

effect of a spatially inhomogeneous electric field, our analy-
sis keeps finite frequend® and wave numbe® of the elec-  This definition has to be used with caution, since the spin
tric field. We found that fo) <DQ?, whereD is the elec- current is not conserving in systems with SOI, as discussed
tron diffusion constant, the flow of the spin-Hall currents isin Ref. 24. We are interested in calculating the spin current
dominated by the screening effects. Similar to formation ofpolarized in thez direction and flowing iry direction. Since
an electron screening cloud around an external charge, thg in Egs.(3) and(2) has noz components the spin-current
spin Hall currents form a vortex. operator is]§:olk>’/(2m*). We will calculate the correspond-
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ing spin Hall current within the standard linear-response V' =S TG (k. Er + Q) 0’ GA(k_, Ep) JZ]. (9)
theory?® and denote it ad. So, the initial expression fat is ” ’ o
do Ine(w) In Eq. (8) the superscriptsandj are summed ovex, y, and
J=-ieQ), | ————(Tr[G¥k_ k., ) z. The spin diffusion-relaxation propagat®'(Q,Q) de-
,J 27 Jdw ) PP . . )
kk scribes diffusion and relaxation of a spin density packet.
><J§G’(kﬁ,,k+,w+Q)]}V(Q,Q), (5) Therefore, this propagator satisfies the spin diffusion equa-

tion for spins polarized in thg direction when a source

wherek,k+Q/2, andng(w) is the Fermi distribution func- Creates s_pi_ns polgrized in thedirection. M! is the spin-
tion. In Eq.(5) the trace runs through the spin variables, andcharge mixing, defined as

the angular brackets denote the average over the random dis- . 1 .
tribution of impurities. The terms containing the products of M! = > TG (ky,Er + Q)G¥k_,Ep)d’], (10)
the formG®G? andG'G' are neglected since their contribu- 4mmNo”k
tion to the spin Hall current is smahft. For simplicity we

- et i whereNy=m"/(27) is the two-dimensional2D) density of
assume that in the vicinity of the Fermi enerfly, the am-  gia165 Mi makes the diffusion of spins polarized in the
plitude of impurity elastic scattering is isotropic and momen-_jrection dependent on the charge density distributids.
tum independent. In the quasiclassical approximation, whekig spin-charge coupling is weak and is proportional to the
Err>1, the average of the product of the retarded and adgp, | parameteh,/Er. Therefore, in Eq(8) we keep only
vanced Green functionS" andG* can be calculated pertur- g torms linear il It should be noticeitithatJ, is closely
batively. If we ignore weak localization effects, the perturba-g|ateq to the electric field induced accumulation of the in-

tion expansion of Eq(5) consists of the so-called ladder plane polarized spin densi§. For example, it can be shown
diagrams>2°For small) andQ these diagrams describe the 4, 3,=W'S /277N,

particle and spin diffusion processes. The spin diffusion also
includes the D’yakonov-Perel spin relaxat®nTherefore,
the spin-Hall current5) is determined by the combination of
spin and particle diffusion propagators. G'(k,E)=[G¥k,BE)]'=(E-E—he-a+il), (11
To calculate and to combine these propagators for arbi-

- —12 * .
trary hy, we will follow the formalism of Refs. 28 and 29. In wheref-l/(?;) and E=k*/(2m ). For the case of short
Eq. (5) the spin-current vertex])z, is coupled to the spin- range impurities and the constant density of states Bear

independent potentiaV. Such a spin-charge coupling has the scattering raté' is independent of momentufd.Using

two channels. In the first channélﬁ andV are coupled via Eq.(1D), for small{2 andQ, one gets from Eqs7), (9), and

the spin-independent particle diffusion propagator. This conglo)

tribution to the spin-Hall current is denoted as For () 17N ooy
<1/7 andveQ<1/7, whereuvr is the Fermi velocity, from V= ?éj QVhohvYZy,
Eq. (5) we obtain

After averaging over the impurity positions, the retarded
and advanced Green functions are obtained as

] e() \I’l == 7TN0€ImZUth]Zk,
‘]l: |Z\PD(Q,Q)V(Q,Q), (6)

M’ = = QM(VinheZ, 12
where D(Q,Q)=[{(~iQ+DQ?)] ™ is the particle diffusion or @ (Vi hicZi (12

A )
propagatof” The vertex¥ is where Z,=(I'?+h?)™* and ny=h,/h,. The overbar in(12)

denotes the average over directionkafhich has the mag-

nitudek=Kke. In Eq.(12) €™?is the antisymmetric tensor with

€¥*=1, and all doubly repeated superscripts should be

whereG"3(k,E) are the Green functions averaged over ran-Summed ovex, y, andz. S as0

dom impurity positions. D(Q,Q) satisfies the spin diffusion equatiéh3® For
The second coupling channel is more complicated. Th&Vr <hi. we can neglect in this equation the diffusion and

spin current couples first to the spin diffusion-relaxationSPin precession terms which are proportional to the gradient

propagator, which couples ¥ via the mixing of charge and ©f the spin propagator. We then have

spin diffusion processes. Th_e_mixing of theseﬂdiffusion_ pro- ~iQD™M(Q,Q) = 2I's™ - T™DY (0, Q), (13)

cesses was pointed out explicitly by Burkewval*’ The spin

Hall current due to this channel is denoted Bs and is whereI'™ is the spin relaxation matrix element. At low fre-

¥ =2 TG (ky, Ep + Q)GAK_,Ep) ], (7)
k

obtained as quency the relaxation term dominates and¥®(Q,Q) is
simply given by the inverse df™, and
J,= |Z—\P'D"(Q,Q)M'D(Q,Q)V(Q,Q), (8) ™ = 21 §™hi - h'h, 1Z,. (14)
a
This equation differs by a factdi’z, from the standard defi-
with the vertices nition of the spin relaxation matrix, for example, in Ref. 28.
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This factor is not unity because we consider the situation that
the spin splittingA =2h, can be comparable to the electron
elastic scattering ratel2

Let us first consider the case of Rashba $&I We then
setQY=0 andE=-iQ*V to calculate¥, Y, andMY from Eq.
(12). In this case both the spin relaxation matrix and the spin
diffusion-relaxation propagator are diagonal. Substituting the -4+ .
so calculatedV, WY, MY, andDYY into Egs.(6) and(8), the 6+ i

currentsJ; andJ, are obtained as 1 1
0 02 04 06 08 1 12 14

AZ Q a/krp
Ec—— 05 —, (15

8wl +A%(Q+iDQ FIG. 1. Spin Hall conductivity as a function ad/k- for
12/ gA¢E=10" 103, and 10%

Oy / (€/16T)

J]_:_JZZ

whereA=2ake. Hence, the total curreldt +J, vanishes even
for small impurity scattering rat&€ <A, in agreement with
the existing result$?®We should mention that in deriving ~ We would like to elaborate the nonanalytic behavior of
this result forQ <IYY, in the denominato(-iQ+IYY) of the  Eq. (16) when bothQ) and Q approach zero, a consequence
spin diffusion-relaxation propagator the frequency term ha®f the diffusion denominator id. WhenQ— 0 first, Eq.(16)
been removed. If we retaif?, J;, andJ, will cancel each gives the dc flow of the spin Hall current induced by the
other not exactly, but the accurdéys up toQ/I'YY. As was  spatially homogeneous electric field. At the opposite regime
pointed out by Mishchenket al,® near the sample bound- DQ?>(), we neglect the) in the denominator and rewrite
ariesJ, can also differ fromJ; because of the rapid spatial Eq.(16) in a coordinate independent form as

variation of the spin diffusion propagator. We have ignored 0o

this effect by neglecting the gradient terms in the diffusion J = —;HEJJ'ZEi, (17)
equation(13). If necessary, in our approach we can consider DQ

the boundary problem by substituting into Ef) the com-  ere 3 s the z-polarized spin current flowing along tHe
plete solutionD™(€2,Q) of the spin diffusion equatio?.  ,yis To arrive at Eq(17) we have assumed th@Q? is

Our main goal is, however, to show that the spin current iSyych less than the spin relaxation rate. Otherwise, the term
not zero in the bulk of the sample when the Dresselhaus SQhQ2 should be added to E¢13).

is taken into account. In this case the total spin accumulation gquation(17) yields the hydrodynamics of the spin Hall

near the sample edge will be determined by a direct inflow otyrrent flow. SinceE=-iQV is a longitudinal field, we have
the spin polarization from the bulk.

Let us assume that the SOI contains only the Dresselhaus v
interaction(2), which has terms both linear and cubickn

When the cubic interaction is ignored, there is no spin-Hall ) L . .
effect because the linear Dresselhaus SOI can be obtainé_(ﬁ‘e first equation indicates that the spin current is conserv-

from the Rashba SOl via a unitary transformation of the spifn9- The second equation tells us that in each spatial point the
operatord® For the complete Dresselhaus interactie flux is perpendicular to the local electric field, similar to the

following Egs. (6), (8), and(12)—(14), the calculation of the spin I_-|a|| effect in a homogeneogs field. In the field of
spin-Hall current is straightforward. We obtain the total spinSPherically symmetric potential a circular vortex flow of the

_ TsnV

320, (Vx),= (18)

currentd=J,+J, as spin current is thus in_duc_eq around a centra_l charge. The
physics of this effect is similar to the screening of scalar
Q potential by electric charges. To clarify this analogy, let us
J=Eosy—7=. (16) . . ~ ~
Q+iDQ introduce the conjugate curredy=J, andJ,=-J,, as well as

the vortex “charge” density defined by the continuity equa-
where o is the DC spin-Hall conductivity aQ—0. The g ¥ y yed

tion
calculatedoy/(e/16m) is plotted in Fig. 1 as a function of
alke, for three values of %/ 8%k€=107%, 103, and 10%. The eV= ap (19
ratio a/ke is a measure of relative strength of the linear to T oot

cubic terms in Eq.{2). As expected, thery vanishes for ] o

large a. It is important to notice the singular behavior at We can then rewrite the second equation in Bd) as

smallT" of oy in the vicinity of a/ke=1/y2 anda/kz=0. o

The singularities appear because at these points the spin- p=eFV, (20)

orbit splitting 2h, vanishes for certaik directions. As a re-

sult, in such angular integral ' — « when the elastic scat- which has the same form as the equation for the electrostatic
tering rateI’— 0. It is also interesting to notice that in the screening of the scalar potenthd) with eo,/D playing the
range 0<a/ke<1/v2, asI'—0 the spin Hall conductivity role of the inverse screening length.

has a plateau shape with the universal valuegf=3e/8. It should be noted that because of the above-mentioned
This plateau and the sharp change of siga/&-=1/y2 can  close relationship between the spin Hall effect and the
be useful in device applications. accumulation of in-plane spin polarization, the latter will

121308-3



RAPID COMMUNICATIONS

A. G. MAL'SHUKOV AND K. A. CHAO PHYSICAL REVIEW B 71, 121308R) (2009

also appear as a screening cloud around the external charge.In conclusion, within the quasiclassical perturbation

The in-plane polarization, in its turn, can give rise to atheory we have shown that, in agreement with existing re-
z-polarized component via the spin precession term of theults, impurity scattering reduces the dc spin Hall current to
diffusion equatior’® This precession is proportional t0 zerq if the SOI is due to the Rashba interaction. On the other

veQ/T, vlvhichdig, slgnea:ILISinct:he diffusio? a%proxima;iolT and hand, the spin Hall current remains finite for the Dresselhaus
was neglected in E18). Consequently, the spin Hall cur- SOI. Nevertheless, this current becomes zero if it is induced

rent turns out to be conserved, as one can expect in the . : e : :
absence of the relaxation af polarization. On the other y aspatiallyvarying dc electric field. The field must be time

hand, in the near vicinity of the vortex core, the precessiorfil€Pendentin order to produce a finite effect. In this case the
term becomes more important because of the larger gradiefifin-current flow in the field of a scalar potential has the

of the electric field. Hence, the accumulation of thpolar- ~ form of a vortex. The physics of this phenomenon is for-

ized spin density will be expected in the region of the coremally equivalent to the screening of external electric poten-
The detailed analysis of this phenomenon is outside théial by electrons.

scope of the present paper. It is worthwhile to notice that the i _ )
core has a macroscopic size abdwt/A, which is of the We acknowledge useful discussions with E. I. Rashba and

order microns. Therefore, the spin accumulation in the vortest- G- Mishchenko. This work was supported by the Swedish
core can be observed by, for example, the method of Faraddgoyal Academy of Science, the Russian Academy of Sci-

rotation3! ences, and the RFBR Grant No. 030217452.
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