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The optically induced indirect exchange interaction between spins in two quantum dots is investigated
theoretically. We give a microscopic formulation of the interaction between the localized spin and the itinerant
carriers, which is the basis of the indirect coupling, including the effects of correlation using a set of canonical
transformations. Correlation effects are found to be of comparable magnitude to the direct exchange. We give
quantitative results for the indirect spin-spin coupling for realistic quantum dot geometries and find the largest
couplings for one-dimensional systems.
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Control of spins in semiconductors has been intensively
investigated in recent years due to its potential for applica-
tions in spintronics and quantum computation.1 Coherent
coupling between localized spins is particularly sought after
because it is a key requirement in proposals for spin-based
implementations of quantum computation. Several coupling
mechanisms have been proposed for quantum gates between
spins in quantum dotssQDsd. They include direct wave func-
tion overlap using electric gates at small dot separations2 and
exchange of a cavity photon mode between spins in QDs for
large dot separations.3

Recently Piermarocchiet al. proposed an indirect mecha-
nism to couple the two QD spins at intermediate interdot
separations.4 Here the interaction is mediated by virtual de-
localized carrier excitations in the host material. The virtual
excitations are driven by an interband off-resonance laser
that provides optical control over the interaction. It effec-
tively reduces the band-gap energy, thus increasing the inter-
action. This approach provides ultrafast optical control and
long spin coherence times due to the virtual nature of the
excitations. Combined with Raman optical transitions via in-
termediate trion states for single qubit operations,5 this
mechanism provides the necessary set of universal gates for
quantum computing. This optically induced indirect spin ex-
change was considered in bulk semiconductors by Litvinov
et al.6 and is a variant of several analogous mechanisms,
including the Ruderman-Kittel-Kasuya-YoshidasRKKY d in-
teraction in metals,7 Bloembergen-Rowland coupling in
direct-gap semiconductors,8 superexchange mediated by two
holes in diluted magnetic semiconductors,9 sDMSd and mag-
netic exchange mediated by bound correlated states
sexcitonsd.10,11

The proposal in Ref. 4 used qualitative estimates for the
indirect coupling between spins. The purpose of the present
work is to give quantitative results for this coupling for
quantum dots. The key ingredient in all indirect spin cou-
pling mechanisms is the exchange interaction of a localized
spin with the mediating itinerant excitation. Here we give a
microscopic formulation of this interaction, including the hy-
bridization of continuum and dot states and the double occu-
pancy of the dot, and we provide quantitative results for the
spin coupling between QDs.

For the optically induced indirect interaction between
spins in quantum dots, the spin-spin coupling is obtained
from the self-energy correction in the continuum electron
propagator due to its Coulomb interaction with each of the
localized spins within second-order perturbation theory.4 The
result is a Heisenberg Hamiltonian for the localized spins,
with an effective positive exchange constant4
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where R is the distance between the dot centers,d is the
detuning of the laser from the electron-hole continuum,V is
the Rabi energy for the light coupling to the electron-hole
pair, andm is its reduced mass.Jsk ,k8d is the exchange
interaction between the electron spin in the quantum dot and
the itinerant electron.

To calculateJsk ,k8d we consider a Hamiltonian that in-
cludes the kinetic energy, the dot potential relative to the host
material, and the electron-electron Coulomb interactions:
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† d is the creation operator for a localizedsitiner-
antd electron,ns=cds

† cds, and the last term in Eq.s3ad is the
on-site Coulomb repulsion.HM represents the hybridization
of the localized and itinerant electrons where we include a
population-dependent hybridizationfsecond term in Eq.
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s3bdg. This term was not included in previous work on cou-
pling of localized and itinerant spins, and we find that it
makes an important contribution to the spin exchange inter-
action.H1 contains the spin-independent and spin exchange
Coulomb scattering; the latter gives rise to the Heitler-
London exchange contribution.12 The last term in Eq.s3cd
describes localized and continuum state mixing. We have not
included scattering between carriers in the continuum since
the corresponding effects are not relevant to the problem of
interest here.Vk=edrVdotwk

* sr dwdsr d is the tunneling ampli-
tude, wherewksrdfwdsrdg is the itinerantslocalizedd electron
wave function, which are also used in the various Coulomb
integrals in Eqs.s3ad–s3cd.

We aim to bring the HamiltonianH8=H0+HM to a form
similar to that of ans-d spin exchange Hamiltonian by using
a canonical transformation

H̄8 = eSH8e−S. s4d

The unitary operatorS is chosen to eliminateHM to first
order by requiringHM =−fS,H0g and given by

S= o
ks

fbk + sak − bkdn−sgcds
† cks − H.c. s5d

where
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This is a generalized form of the Schrieffer-Wolff transfor-
mation, which was used to establish the connection between
the Anderson and Kondo models.13 It produces a contribu-
tion to the spin exchange arising from the correlation and
hybridization terms inH8, which is given to first order by

Js1dsk,k8d =
1
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*g + fk ↔ k8g* . s7d

This contribution vanishes when correlation effects are ne-
glectedsU ,Tk→0d. We find that the first-order result, given
in Eq. s7d, is inadequate because it requires thatHM be a
small perturbation toH0, which is not the case generally. It is
therefore necessary to sum up the infinite series in the trans-
formed Hamiltonian
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wherefS,HMgn=fS,[S, . . . ,fS,HMg. . .]g. To this end we use
a method suggested by Chan and Gulácsi14 but employ a
different strategy using a set of nested transformations. The
first term in the series in Eq.s8d is
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whereJ1sk,k8d=2Js1dsk,k8d is given in Eq.s7d, and the rest
of the coefficients in Eq.s9d are P1sk,k8d= 1

2fakVk8
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*g. We find that the second-
order term has the same form asHM apart from higher-order
correlation terms. We estimate the magnitude of these con-
tinuum scattering terms by neglecting off-diagonal contribu-
tions and placing lower and upper bounds of zero and one on
the occupation numbers.15 This procedure brings all higher
odd orders in the series to the form of Eq.s9d, and we are
able to sum the series by solving the following set of recur-
sion relations for the several coefficients:
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Equationss10d are obtained from the lower bound in the
higher-order contributions, and a second set of equations is
obtained for the upper bound.

The exchange contribution is obtained from the odd or-
ders of the series in Eq.s8d. The odd orders also contain
additional terms that renormalize the original Hamiltonian
s3ad. The even orders also are summed up, and they renor-
malize the hybridization Hamiltonians3bd. Figure 1sad
shows the result of the series summation for the diagonal
part of the exchange,Jsk,kd. We find that it differs apprecia-
bly from the first-order result of Eq.s7d and therefore the
residual hybridization in the even orders need not be small,
as shown in Fig. 1sbd. Thus we need to perform a second
canonical transformation by applying Eqs.s5d ands6d to the
renormalized Hamiltonian. This second transformation elimi-
nates the next order in the hybridization terms and further
corrects the resulting exchange contribution. This process is
reiterated until we fully eliminate the hybridization part of
the Hamiltonian, as shown in Fig. 1sbd.
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This procedure of applying a set of nested Schrieffer-
Wolff transformations is essential to obtain quantitative re-
sults for the “kinetic” exchange interaction, which is the part
that results from the hybridization terms in Eq.s3bd. As seen
in Fig. 1sad, Jsk ,k8d is ferromagnetic after one transforma-
tion, which differs from other results for this kinetic ex-
change contribution, e.g., those in a renormalization group
approach.16 Only after a set of transformationsstypically
10–20d are the renormalized hybridization terms eliminated
and the antiferromagnetic nature of the kinetic contribution
to the interaction is restored, albeit with a modified magni-
tude compared to the first-order result. The results calculated
with the lower and upper bounds discussed above are re-
markably close to one another. We have verified that they
coincide within 10% for a wide range of geometries and dot
potentials; thus we believe that our summation represents the
complete Schrieffer-Wolff transformation with a good
accuracy.17 In our calculations we usedme=0.07m, andmh
=0.5m. The localized electron wave function was taken to be
Bessel functions in the lateral direction and a combination of
cosine and exponential functions in thez direction.

Since the kinetic exchange interaction that we calculate
from the transformedH8 is antiferromagnetic, it competes
with the ferromagnetic exchange given by the second term in
Eq. s3cd. An accurate evaluation of the former is important as
it can lead to an order of magnitude difference or even a
change of sign in the total spin exchange coupling between
localized and itinerant electrons. We point out that a full
transformation is also valuable in the case whereU+Ed.0,
leading to a divergence ofak in Eq. s6d. Here, the kinetic
exchange contribution is dominant and cannot be obtained
via a perturbative approach. This regime corresponds to dots
with small sizesRDø5 nmd and shallow potentialsbarrier

FIG. 1. sColor onlined sad Diagonal matrix elements of the spin
exchange interaction between localized and itinerant electrons in a
2D host. The figure gives the first-order result from Eq.s7d sdashed
lined, intermediate results after the summation in Eq.s8d sdotted
linesd, and final results obtained by performing a set of transforma-
tions ssolid linesd. sbd The corresponding hybridization terms: tun-
neling amplitudeVk and population-dependent hybridization term
Tk.

FIG. 2. sColor onlined sad Optically induced spin-spin exchange
coupling in a 2D host vs the distance between the centers of the
dots for dot radiusRD=10 nm, potential heightVe=150 meV and
several values of laser detunings. The dashed-dotted line corre-
sponds to the interaction without the kinetic exchange contribution
and is provided for comparison. The right axis shows the coupling
including excitonic effects discussed in the text.sbd The same as a
for a quasi-1D host and cylindrical dots withLz=10 nm, RD

=5 nm, and potential heightVe=80 meV.

FIG. 3. sColor onlined sad Spin-spin coupling in a 2D host at a
dot separation of 21 nm vs the dot potential for two dot radii. The
laser detuning isd=0.5 meV. The right axis shows the coupling
values after excitonic corrections.sbd The same as a for a quasi-1D
host and cylindrical dots withRD=5 nm and several dot heights.
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ø80 meVd, which are not typical for physical systems and
are not considered here.

In Fig. 2 we show the results for the spin-spin coupling
J12 fEq. s1dg, including both the kinetic and Coulomb poten-
tial exchange contributions.J12 calculated with the potential
exchange contribution alone is also shown in Fig. 2, and is a
factor of 2 larger thanJ12 calculated with the kinetic ex-
change contribution.18 Figure 2sad shows the spin coupling
for lateral cylindrical dots in a two-dimensional quantum
well. The results for vertically stacked cylindrical dots in a
quasi-one-dimensional wire are given in Fig. 2sbd. Here we
usedV=0.1 meV for the optical vertices. It is seen that the
spin coupling is more than an order of magnitude larger for
the one-dimensional case than for the two-dimensional case.

The Coulomb interaction between the intermediate virtual
electrons and holes results in an enhancement of the oscilla-
tor strength at both the optical and spin vertices due to the
exciton wave functions.4 We have evaluated the dominant
contribution of the electron-hole interaction toJ12. It results
in an increase of up to two orders of magnitude in the two-
dimensional case and roughly one order of magnitude in the
one-dimensional case right axes in Fig. 2d. Thus, the exci-
tonic effects reduce the difference inJ12 between the two
geometries.

Figure 3 shows the dependence of the spin-spin coupling
on the dot potential and size. Larger dots give larger cou-
plings but require larger separation to avoid overlap. The
increase in the coupling as the dot potential decreases is

mainly due to the reduction of the kinetic exchange contri-
bution, particularly evident in the one-dimensional case.

A technologically viable way to increaseJ12 is by using a
microcavity. This can be done by growing distributed Bragg
reflector layers on the top and bottom of the active semicon-
ductor layer containing the QDs. This can increase the elec-
tric field by orders of magnitude, and thus increases the Rabi
energy at the optical vertices in Eq.s1d.

We have shown that the effect of hybridization of con-
tinuum and dot states produces a sizable contribution to the
exchange coupling between localized and itinerant electrons.
For certain dot geometries this kinetic exchange can even
lead to a change of sign in the spin exchange interaction. A
set of canonical transformations with summations over
higher-order terms provides a useful tool to evaluate the spin
exchange interaction. Our transformation of the Hamiltonian
s2d captures the multiple scattering processes involved in the
interaction between the localized and itinerant carriers, and it
provides the first microscopic description that accounts quan-
titatively for the exchange interaction.19 Our formulation is
also applicable to other systems of localized spins coupled
by carriers, such as electrons bound to donors,20 magnetic
impurities,21 and nuclear spins.22
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