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We derive an automatic procedure for generating a set of highly localized, nonorthogonal orbitals for linear
scaling quantum Monte CarlosQMCd calculations. We demonstrate the advantage of these orbitals for calcu-
lating the total energy of both semiconducting and metallic systems by studying bulk silicon and the homo-
geneous electron gas. For silicon, the improved localization of these orbitals reduces the computational time by
a factor of 5 and the memory by a factor of 6 compared to localized, orthogonal orbitals. For jellium at typical
metallic densities, we demonstrate that the total energy is converged to 3 meV per electron for orbitals
truncated within spheres with radii 7rs, opening the possibility of linear scaling QMC calculations for realistic
metallic systems.
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In recent years, one of the most promising developments
in the field of electronic structure calculations has been the
development of algorithms whose cost grows as the first
power of the system size. These linear scaling algorithms
have been developed for several electronic structure tech-
niques, including tight binding,1 density functional theory1–6

sDFTd, coupled cluster,7 and quantum Monte Carlo8,9

sQMCd. In all these approaches, extended Bloch orbitals,
cnk, are transformed into localized Wannier-like orbitals. The
speedup provided by the transformation to localized orbitals
depends on the extent to which the orbitals can be localized
and subsequently truncated. Therefore, improved methods
for constructing localized orbitals have attracted intense at-
tention in recent years.10–12

In QMC calculations, truncated, localized orbitals can be
used to introduce sparsity into the Slater determinant part of
the trial wave function. As the calculation of the orbitals used
to construct this determinant is the dominant cost of QMC
calculations, this transformation yields a near linear scaling
QMC algorithm. In our approach to linear scaling QMC
calculations,8 the Slater determinant was constructed from a
set of orthonormal Wannier functions. This choice of orbitals
produces a near linear scaling algorithm, which has success-
fully been applied to calculations of the total energies and
optical gaps of a variety of semiconductor systems.13,14How-
ever, this method is only applicable to systems where the
Wannier functions decay rapidlysexponentiallyd, i.e., it
works well for semiconductors and insulators, but it is not
applicable to metallic systems where orthonormal Wannier
functions decay polynomially.11

In this paper we derive and demonstrate the use of anon-
orthogonal transformation of the Bloch orbitals that over-
comes this limitation. This transformation is based on algo-
rithms developed for linear scaling DFT calculations1–6 and
is designed to minimize a cost function associated with the
total number of orbital evaluations required in a linear scal-
ing QMC calculation. For representative semiconductor sys-
tems, the orbitals obtained from this nonorthogonal transfor-
mation are significantly more localized and smoother than
orthogonal Wannier functions, and can typically be truncated
in one sixth of the volume of the equivalent orthogonal func-
tion without sacrificing accuracy. This produces an algorithm

approximately five times faster than previous linear scaling
QMC calculations8 and requiring one sixth the memory. In
addition, we demonstrate that while orthogonal Wannier
functions for metallic systems cannot be truncated within a
practical volume, nonorthogonal orbitals constructed via our
procedure can be truncated within a practical cutoff radius.

Our QMC calculations use a linear scaling8 version of the
CASINO sRef. 15d code with a standard Slater-Jastrow trial
wave function,CTsRd.16 The Slater determinants are con-
structed from a set of truncated, localized linearly indepen-
dent orbitalsDij =fisr jdQisr jd, wheref are the nonorthogo-
nal orbitals andQ are the truncation functions. In principle,
one can optimize the shape of the truncation functions, how-
ever, for the systems studied here, we find that spherical step
functions are a simple and stable solution where,

Qisr d = 1, ur − Riu , Ri
cut

= 0, ur − Riu . Ri
cut. s1d

The truncation functionsQi are defined by two parameters,
the cutoff radiiRi

cut and the centersRi. These parameters are
optimized iteratively using a procedure designed to minimize
the computational cost of the QMC calculation. The nonor-
thogonal orbitals,fi, associated with eachQi are obtained
during the iterative process.

The computational cost of a typical QMC calculation is
proportional to the number of orbital evaluations required to
construct the Slater determinant for each configuration of
electron coordinates,R=sr 1,r 2…r Nd. The cost is therefore
the product of the probability,uCTsRdu2, of sampling a given
configuration,R, and the cost of evaluating each of the non-
zero elements in the Slater determinant produced by that
configuration. For each element,fisr jd, if r j falls within the
truncation function,Qi, this adds 1 to the cost, i.e.,

Cost =E dRuCTsRdu2o
i j

N

Qisr jd. s2d

By integrating out all but one electron coordinates, Eq.s2d
can be expressed in terms of the densityrsr d as
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Cost =o
i
E drrsr dQisr d. s3d

We find a satisfactory minimum of Eq.s3d by starting from
an initial choice ofQi and iteratively updating first the cutoff
radii Ri

cut and then the centersRi.
sid Generating optimal nonorthogonal orbitals and cutoff

radii. Each truncation function,Qi, can be considered as a
potential acting on the Hilbert space of Bloch orbitals. In the
inset to Fig. 1sad this potential is shown with a blue line. If
one constructs the matrix elements of the Bloch orbitals with
this potential,Q jk

i =kf j
BlochuQisr dufk

Blochl, then the eigenstate
fi of Qi with the largest eigenvalue is the most localized
state within the truncation region. This is the orbital with the
maximum truncated norm,X, defined as

X =E dr ufisr du2Qisr d. s4d

IncreasingRi
cut increases the above value ofX, reducing the

resulting truncation error in the QMC calculation, but also

increases the computational cost in Eq.s3d. Therefore, we
adjust the cutoff radiusRi

cut to achieve a target norm, e.g.,
X=0.999. Repeating this diagonalization procedure for each
truncation functionQi generates an associated set of nonor-
thogonal orbitalshfj. This procedure for generating a set of
nonorthogonal orbitals associated with a set of truncation
regions is similar to those adopted in linear scaling density
functional calculations1,3,4,6 and recently in a QMC calcula-
tion of MgO.9 Next, we extend this procedure to automati-
cally optimize the centers of the truncation functions for sys-
tems where they cannot be guesseda priori.

sii d Updating the truncation centers.The cost function in
Eq. s3d can be rewritten as

Cost =NX+ o
i
E dr frsr d − ufisr du2gQisr d, s5d

whereN is the number of orbitals andX is defined in Eq.s4d.
The first term in Eq.s5d, NX, cannot be reduced without
losing accuracy. Therefore the only way to reduce the com-
putational cost is to minimize the second term in Eq.s5d by
placing the truncation centers wherersr d− ufisr du2 is mini-
mum. Sincersr dù ufisr du2, this is minimized in regions
wherefi is most localized and therefore closest tor. There-
fore for the next iteration, we move the truncation centers
towards the center of mass of theufisr du2 for the current
iteration. To ensure linear independence, we orthogonalize
the sethfj with a polar decomposition before calculating this
center of mass.

This updated set of truncation functions,Qi, with new
centers,Ri, is then used to generate a new set of nonorthogo-
nal orbitals using the procedure insid above and the process
is repeated. Starting from a random choice of centers, 10–15
iterations are typically required to find a minimum of Eq.s3d
and to converge the centers. If one uses a good starting set of
centers, such as the centers of maximally localized Wannier
functions,10 the Qi converge in one or two iterations.

To analyze the properties of these nonorthogonal orbitals
we first compare their localization properties with an equiva-
lent set of orthogonal orbitals. We then examine the conver-
gence of the total energy in quantum Monte Carlo calcula-
tions using these orbitals. Comparisons are made for the
prototypical semiconductor and metal systems, silicon, and
the homogeneous electron gas.

In Fig. 1 the norm contained within a spherical truncation
region of the orthogonal and nonorthogonal localized orbitals
are compared as a function ofRcut. Figure 1sad compares
orbitals constructed for bulk silicon. The input states were
obtained from a 64-atom local-density approximationsLDA d
calculation,17 using a norm-conserving Hamann pseudopo-
tential and a 35-Ry cutoff. The nonorthogonal orbitals were
constructed using the iterative procedure described above,
where the desired norm,X, was varied from 0.5 to 0.999 99
to construct the plot. The orthogonal states were obtained by
performing a final polar decomposition orthogonalization
step. Due to symmetry all the nonorthogonal orbitals are
equivalent. Within a given radius, the nonorthogonal orbitals
contain significantly more charge; e.g., 99.9% of the norm is
contained within a sphere of radius 5.5 a.u. compared to

FIG. 1. sColor onlined Comparison of the norm of orthogonal
sred, solid linesd and nonorthogonalsblack, dashed linesd localized
orbitals insad bulk silicon andsbd a HEG at the samers. The error
bars show the spread in norm. The insets compare the orthogonal
and nonorthogonal localized orbitals. The truncation potential is
labeledQ.
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orthogonal orbitals which require an 11-a.u. sphere to cap-
ture the same charge. The origin of this dramatically im-
proved localization is shown in the inset to Fig. 1sad, which
shows a line plot through the center of theRcut=5 orbitals.
While the nonorthogonal states converge smoothly to zero
with minimal oscillations, the orthogonal orbitals oscillate
around zero for.5 a.u. after initially crossing zero to main-
tain orthogonality between states. While the amplitude of
these oscillations is small compared to the central peak, the
r2 prefactor leaves a significant amount of charge in these
oscillations.

Comparing the orthogonal orbitals shown in Fig. 1sad
with maximally localizedsMLW d orbitals constructed ac-
cording to Ref. 10, which essentially finds the localized
eigenstates of theei2pr /L operator, we find the centers of our
nonorthogonal and orthogonal states are identical to the
MLW function centers due to symmetry. Additionally, the
shape and norm convergence of our orthogonal states is al-
most identical to the MLW functions. It therefore appears
that the shape oforthogonal localized orbitals is relatively
insensitive to the choice of operator used to localize the
states.

Figure 1sbd shows orthogonal and nonorthogonal orbitals
constructed for the homogeneous electron gassHEGd with
rs=2 ssame as silicond. The input states were the lowest 1935
plane waves in a 50-a.u. cubic box. The norm of the orthogo-
nal orbitals slowly approaches 1.0 as the radius is increased,
as would be expected given the slow polynomial decay of
orthogonal orbitals in metallic systems.11 In contrast, the
nonorthogonal orbitals rapidly approach 1. For example, a
nonorthogonal orbital optimized forRcut=7 a.u. contains
99.9% of the norm withinRcut, while even the largest sphere
inscribed within the supercells25 a.u. radiusd contains only
94% of the norm of the orthogonal orbitals. Note, the non-
orthogonal orbitals are still less localized than those in sili-
con, where 99.9% of the norm is contained within a sphere
of radius 5.5 a.u. compared to the 7 a.u. required for jellium.
As in silicon, the inset plot shows pronounced, long-range
oscillations in the orthogonal orbitals and a much smoother
convergence of the nonorthogonal orbitals with minimal os-
cillation.

Figure 2 compares the truncated norm of orthogonal and
nonorthogonal localized orbitals for bulk silicon and the
HEG, where the truncated norm is defined as 1 minus the
norm contained within a sphere of radiusR. As expected
from Fig. 1, Fig. 2 shows that the optimal nonorthogonal
orbitalssblack dashed linesd converge to 1 more rapidly than
the equivalent orthogonal orbitalssred solid linesd. Figure 2
also illustrates that to obtain maximum localization within a
given volume, the nonorthogonal orbitals must be reopti-
mized for each value ofRcut. The blue dotted line in Fig. 2sbd
shows the truncated norm of a nonorthogonal orbital opti-
mized to be maximally localized in aQ function with Rcut
=10. ForRcut=10 the optimized and fixed nonorthogonal or-
bitals are identical. For all other values ofRcut, the orbital
optimized withRcut=10 sblue, dottedd is no longer the opti-
mal orbital for that choice ofQ function. ForR.10, this
suboptimal orbital decays polynomially, similar to orthogo-
nal orbitals.

Our previous work with orthogonal, truncated, localized

orbitals8 indicated that the norm of localized orbitals was a
good predictor of the truncation error in a QMC calculation
of the total energy. For silicon we found that a truncation
region large enough to capture 99.9% of the norm was suf-
ficient to produce a converged total energy. On this basis, the
improved localization properties of optimal nonorthogonal
orbitals shown in Figs. 1 and 2 suggest that these orbitals can
be used to perform QMC calculations with smaller trunca-
tion radii than those used for previous orthogonal orbitals,
without sacrificing accuracy. However, the truncated norm of
the localized orbitals in a given representation does not pre-
dict the truncation error in the density matrix and how
electron-electron correlation will be affected. This is particu-
larly relevant for metals where the nonorthogonal orbitals
can be reoptimized for each radius, producing an effective
exponential decay, but the density matrix is known to decay
polynomially. To fully evaluate the properties of these non-
orthogonal orbitals we have performed diffusion Monte
Carlo sDMCd total energy calculations of bulk silicon and
the HEG to evaluate the convergence of the total energy with
the truncation radii of the localized orbitals.

Figure 3sad compares the convergence of the DMC total
energy of the same 64-atom, bulk silicon system shown in
Figs. 1sad and 2sad, using orthogonal and nonorthogonal in-
put orbitals. It shows that the DMC energy converges more
rapidly using nonorthogonal orbitals. To converge the total
energy to within 0.01 eV per atom using orthogonal orbitals
requiredRcut=11 a.u.sRef. 8d while using nonorthogonal or-

FIG. 2. sColor onlined Comparison of the truncated norm of
orthogonalsred, solid lines, circlesd, self-consistent, nonorthogonal
sblack, dashed lines, squaresd, and fixed radius, nonorthogonal
sblue, dotted lines, trianglesd localized orbitals insad bulk silicon
and sbd HEG srs=2d.
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bitals, equivalent accuracy can be obtained withRcut=6 a.u.
This results in a factor of 5 increase in speed and a factor of
6 reduction in memory.

Figure 3sbd compares the convergence withRcut of the
DMC total energy of a homogeneous electron gas withrs
=1, 2, 5, and 10. In the HEG, the nonorthogonal orbitals for
all rs values can be obtained by scaling thers=1 orbital. The
kinetic energy scales asrs

−2. To enable us to plot all values of
rs on the same plot, we rescale both axes and plot the frac-
tional DMC truncation error, defined as ErrorsRcutd
=fEsRcutd−E`g /E` as a function ofRcut/ rs. After this rescal-
ing the convergence plots for each value ofrs fall on a simi-
lar curve. Note, the negative truncation error aroundRcut/ rs
=6 resulting from a loss of kinetic energy, due to abrupt

truncation of the orbitals. This curve shows that the total
DMC energy is approximately converged for truncation radii
of 7–8rs. These converged values are in excellent agreement
with the original values from Ceperley and Alder.18 There-
fore, while the slower polynomial decay of the density ma-
trix of metallic systems requires a larger truncation radius to
converge the total energy than for semiconductors with
equivalent density, the above procedure for generating non-
orthogonal orbitals opens the possibility that localized orbit-
als for metallic systems could be truncated in a practical
volume for linear scaling calculations. In addition, the above
procedure for generating these nonorthogonal orbitals does
not require the high symmetry of the HEG and therefore this
approach could be equally applied to linear scaling DMC
calculations of realistic metallic systems. For example, in a
calculation forrs=2, Fig. 3sbd predicts that the nonorthogo-
nal orbitals can be truncated withinRcut=7 Å and incur a
truncation error of 2 meV per electron, similar to the fixed
node error. We also note that the HEG is likely to be among
the most difficult metallic systems to obtain a localized-basis
set for because the noninteracting wave functions and den-
sity have no internal structure to assist localization.

In conclusion, we derive a simple, automatic preprocess-
ing procedure for generating nonorthogonal localized orbit-
als, with optimized shapes and centers, which minimize the
total computational cost of linear scaling QMC calculations.
We demonstrate the application of these orbitals in DMC
calculations of silicon and the HEG. For silicon the increased
localization reduces the computational time by a factor of 5
and the memory by a factor of 6 compared to orthogonal
localized orbitals. In the HEG, we demonstrate that practical
truncation of orbitals for linear scaling metallic calculations
is possible.
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