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We derive an automatic procedure for generating a set of highly localized, nonorthogonal orbitals for linear
scaling quantum Monte Carl@MC) calculations. We demonstrate the advantage of these orbitals for calcu-
lating the total energy of both semiconducting and metallic systems by studying bulk silicon and the homo-
geneous electron gas. For silicon, the improved localization of these orbitals reduces the computational time by
a factor of 5 and the memory by a factor of 6 compared to localized, orthogonal orbitals. For jellium at typical
metallic densities, we demonstrate that the total energy is converged to 3 meV per electron for orbitals
truncated within spheres with radir4 opening the possibility of linear scaling QMC calculations for realistic
metallic systems.
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In recent years, one of the most promising developmentapproximately five times faster than previous linear scaling
in the field of electronic structure calculations has been th@MC calculationg and requiring one sixth the memory. In
development of algorithms whose cost grows as the firsaddition, we demonstrate that while orthogonal Wannier
power of the system size. These linear scaling algorithmsunctions for metallic systems cannot be truncated within a
have been developed for several electronic structure tectpractical volume, nonorthogonal orbitals constructed via our
niques, including tight bindingdensity functional theofy®  procedure can be truncated within a practical cutoff radius.
(DFT), coupled clustef, and quantum Monte Caftd Our QMC calculations use a linear scafingersion of the
(QMC). In all these approaches, extended Bloch orbitalscagino (Ref. 19 code with a standard Slater-Jastrow trial
e are transformed into localized Wannier-like orbitals. Thewave function, W(R).16 The Slater determinants are con-
speedup provided by the trar]sformation to localized orbi'tal tructed from :a set of truncated, localized linearly indepen-
depends on the extent to which the orbitals can be localize ent orbitalsD;; = ¢ (r,)®;(r ), where are the nonorthogo-

and subsequently truncated. Therefore, improved metho . . : o
q y b nal orbitals and® are the truncation functions. In principle,

for constructing localized orbitals have attracted intense at - ) .
tention in recent year9-12 one can optimize the shape of the truncation functions, how-

In QMC calculations, truncated, localized orbitals can be€Ver. for the systems studied here, we find that spherical step

used to introduce sparsity into the Slater determinant part dunctions are a simple and stable solution where,

the trial wave function. As the calculation of the orbitals used . St

to construct this determinant is the dominant cost of QMC O'(nN=1, [r-R|<R

calculations, this transformation yields a near linear scaling =0, |[r-R/|>R (1)
QMC algorithm. In our approach to linear scaling QMC ' ! b

calculations the Slater determinant was constructed from &The truncation function®' are defined by two parameters
set of orthonormal Wannier functions. This choice of orbitalsy, o off radiiR”! and the center®;. These parameters are:
produces a near linear scaling algorithm, which has succesgyimi e iteratively using a procedure designed to minimize

fully been applied to calculatiqns of the total energies angy,q computational cost of the QMC calculation. The nonor-
optical gaps of a variety of semiconductor systéfiSHow- 0000 orbitals ¢, associated with eac' are obtained
ever, this method is only applicable to systems where th%luring the iterative process.

Wannier functions _decay rapldIYex_ponenUally, le., it The computational cost of a typical QMC calculation is

works well for semiconductors and insulators, but it is noty.onqrional to the number of orbital evaluations required to
appllpable to metallic systems where orthonormal Wannietngiryct the Slater determinant for each configuration of
functions decay polynomialfy. electron coordinatesR=(ry,r,...ry). The cost is therefore

rtlhn th'ﬁ pl?rpenr \]ﬁverrgetri'vﬁ arf\cir:jergf)nsgratﬁ)itthle utshertujn\}/ ; the product of the probability¥+(R)[?, of sampling a given
orthogonaltranstormation of the bloch orbitals that over- configuration,R, and the cost of evaluating each of the non-
comes this limitation. This transformation is based on algo-

rithms developed for linear scaling DFT calculatibisand zero elements in the Slater determinant produced by that

) . L : ; , configuration. For each elemer(r;), if r; falls within the
is designed to minimize a cost function associated with th%runcation function®. this adds 1 to the cost. i.e
total number of orbital evaluations required in a linear scal- e T

ing QMC calculation. For representative semiconductor sys- N
tems, the orbitals obtained from this nonorthogonal transfor- Cost :J dR[W(R)2D O4(r)). )
mation are significantly more localized and smoother than i J

orthogonal Wannier functions, and can typically be truncated
in one sixth of the volume of the equivalent orthogonal func-By integrating out all but one electron coordinates, Ej.
tion without sacrificing accuracy. This produces an algorithmcan be expressed in terms of the dengfty) as
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(a) Bulk Silicon increases the computational cost in Eg). Therefore, we
1.0 adjust the cutoff radiuR™ to achieve a target norm, e.g.,

X=0.999. Repeating this diagonalization procedure for each
truncation function®' generates an associated set of nonor-
thogonal orbitalg¢}. This procedure for generating a set of
nonorthogonal orbitals associated with a set of truncation
regions is similar to those adopted in linear scaling density
functional calculations®>#8and recently in a QMC calcula-
tion of MgO? Next, we extend this procedure to automati-
cally optimize the centers of the truncation functions for sys-
tems where they cannot be guessegriori.

(i) Updating the truncation center§he cost function in
Eq. (3) can be rewritten as

—— Orthogonal
—==- Non-Orthogonal

o
©
T

o
[

Norm of truncated function

o
~

0.6

0 14

Cost :NX+Z f drp(r) = |i(r)[?]®i(r), ©)

1.0
whereN is the number of orbitals and is defined in Eq(4).
The first term in Eq.(5), NX, cannot be reduced without
losing accuracy. Therefore the only way to reduce the com-
putational cost is to minimize the second term in Eg).by
placing the truncation centers whepér)—|¢;(r)|? is mini-
mum. Since p(r)=|¢;(r)|?, this is minimized in regions
where ¢; is most localized and therefore closesiptarhere-
fore for the next iteration, we move the truncation centers
towards the center of mass of the;(r)|> for the current
iteration. To ensure linear independence, we orthogonalize
the sef{ ¢} with a polar decomposition before calculating this
pos 08 5  center of mass. ‘
Ro@-0) This updated set of truncation function®!, with new
centersR;, is then used to generate a new set of nonorthogo-
nal orbitals using the procedure (i) above and the process
orbitals in(a) bulk silicon and(b) a HEG at the same, The error is repeated. Starting from a random choice of centers, 10-15

bars show the spread in norm. The insets compare the orthogongfe:jat'ons are typl(r:]ally required to find a mmlmlém of Ea)
and nonorthogonal localized orbitals. The truncation potential jcand to converge the centers. If one USes a goo _startlng se.t of
labeled®. centers, such as the centers of maximally localized Wannier

functions!® the ®; converge in one or two iterations.
To analyze the properties of these nonorthogonal orbitals
Cost=> J dr p(r)@;(r). (3 Wwe first compare their Iocz_alization properties v_vith an equiva-
i lent set of orthogonal orbitals. We then examine the conver-
gence of the total energy in quantum Monte Carlo calcula-
We find a satisfactory minimum of E@3) by starting from  tions using these orbitals. Comparisons are made for the
an initial choice of®; and iteratively updating first the cutoff prototypical semiconductor and metal systems, silicon, and
radii R™ and then the centerR;. the homogeneous electron gas.

(i) Generating optimal nonorthogonal orbitals and cutoff  In Fig. 1 the norm contained within a spherical truncation
radii. Each truncation function®;, can be considered as a region of the orthogonal and nonorthogonal localized orbitals
potential acting on the Hilbert space of Bloch orbitals. In theare compared as a function &, Figure 1a) compares
inset to Fig. 1a) this potential is shown with a blue line. If orbitals constructed for bulk silicon. The input states were
one constructs the matrix elements of the Bloch orbitals withobtained from a 64-atom local-density approximatibBA )
this potential,@}k:<¢}3'°Ch|®'(r)|¢E'°°'}, then the eigenstate calculation'” using a norm-conserving Hamann pseudopo-
¢; of O with the largest eigenvalue is the most localizedtential and a 35-Ry cutoff. The nonorthogonal orbitals were
state within the truncation region. This is the orbital with theconstructed using the iterative procedure described above,
maximum truncated nornX, defined as where the desired nornX, was varied from 0.5 to 0.999 99

to construct the plot. The orthogonal states were obtained by
erforming a final polar decomposition orthogonalization
X:j dr|g(r)[?@4(r). ) gtep. Dueg to symm[()etry all the rl?onorthogonalgorbitals are
equivalent. Within a given radius, the nonorthogonal orbitals
IncreasingR™ increases the above value Xf reducing the  contain significantly more charge; e.g., 99.9% of the norm is
resulting truncation error in the QMC calculation, but alsocontained within a sphere of radius 5.5 a.u. compared to
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FIG. 1. (Color onling Comparison of the norm of orthogonal
(red, solid line and nonorthogonablack, dashed lingdocalized
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orthogonal orbitals which requi_rg an 1l-a.u. sphe_re to cap (a) Bulk Silicon
ture the same charge. The origin of this dramatically im- !

proved localization is shown in the inset to Fida)l which
shows a line plot through the center of tRg,=5 orbitals.
While the nonorthogonal states converge smoothly to zer
with minimal oscillations, the orthogonal orbitals oscillate
around zero fore>5 a.u. after initially crossing zero to main-

tain orthogonality between states. While the amplitude ol —r— ~
these oscillations is small compared to the central peak, th  10%F |. ... Non-Orthogonal (R,,=5) Sl ]
r? prefactor leaves a significant amount of charge in thesg 10¢ L |~ Non-Orthogonal (Sef-Consistent) S~
oscillations. g
. . . . 107 2 L 1 1
Comparing the orthogonal orbitals shown in Figa)l 5 - " . " 10

with maximally localized(MLW) orbitals constructed ac-

'm of truncated funct

cording to Ref. 10, which essentially finds the localized (b) Homogeneous Electron Gas (r ,=2)
eigenstates of the>™'- operator, we find the centers of our 5 191 S 1
nonorthogonal and orthogonal states are identical to thg 102 F "-"_'*' ” i .
MLW function centers due to symmetry. Additionally, the = | "‘-,‘{ }
shape and norm convergence of our orthogonal states is & i T
most identical to the MLW functions. It therefore appears 10°[ e ERSEs
that the shape obrthogonallocalized orbitals is relatively 108 b '\\ .
insensitive to the choice of operator used to localize the | [—e— Orhogona S |
states. —-:-- Non-Orthogonal (Selffonsistent) ‘\\‘
Figure 1b) shows orthogonal and nonorthogonal orbitals 10 L= o P ~
constructed for the homogeneous electron 4EG) with 1014} . , , E
r<=2 (same as silicon The input states were the lowest 1935 0 5 10 15 20

plane waves in a 50-a.u. cubic box. The norm of the orthogo- Rou(a-u)

nal orbitals slowly approaches 1.0 as the radius is increased, FIG. 2. (Color onling Comparison of the truncated norm of

as would be e)_(peCt?d given.the Slov;/HSpolynomial decay Ot)rthogonal(red, solid lines, circles self-consistent, nonorthogonal
orthogonal orbitals in metallic systemsIn contrast, the (black, dashed lines, squajesand fixed radius, nonorthogonal

nonorthogonal orbitals rapidly approach 1. For example, ujye, dotted lines, trianglgdocalized orbitals in(@) bulk silicon
nonorthogonal orbital optimized foR;,=7 a.u. contains and () HEG (r.=2).

99.9% of the norm withirR,, while even the largest sphere
inscribed within the superce(P5 a.u. radiuscontains only  orbital€ indicated that the norm of localized orbitals was a
94% of the norm of the orthogonal orbitals. Note, the non-good predictor of the truncation error in a QMC calculation
orthogonal orbitals are still less localized than those in sili-of the total energy. For silicon we found that a truncation
con, where 99.9% of the norm is contained within a sphergegion large enough to capture 99.9% of the norm was suf-
of radius 5.5 a.u. compared to the 7 a.u. required for jelliumficient to produce a converged total energy. On this basis, the
As in silicon, the inset plot shows pronounced, long-rangemproved localization properties of optimal nonorthogonal
oscillations in the orthogonal orbitals and a much smootheorbitals shown in Figs. 1 and 2 suggest that these orbitals can
convergence of the nonorthogonal orbitals with minimal os-be used to perform QMC calculations with smaller trunca-
cillation. tion radii than those used for previous orthogonal orbitals,
Figure 2 compares the truncated norm of orthogonal andvithout sacrificing accuracy. However, the truncated norm of
nonorthogonal localized orbitals for bulk silicon and thethe localized orbitals in a given representation does not pre-
HEG, where the truncated norm is defined as 1 minus thélict the truncation error in the density matrix and how
norm contained within a sphere of radi&s As expected electron-electron correlation will be affected. This is particu-
from Fig. 1, Fig. 2 shows that the optimal nonorthogonallarly relevant for metals where the nonorthogonal orbitals
orbitals(black dashed lingsonverge to 1 more rapidly than can be reoptimized for each radius, producing an effective
the equivalent orthogonal orbitaleed solid lineg. Figure 2 exponential decay, but the density matrix is known to decay
also illustrates that to obtain maximum localization within apolynomially. To fully evaluate the properties of these non-
given volume, the nonorthogonal orbitals must be reopti-orthogonal orbitals we have performed diffusion Monte
mized for each value d®.. The blue dotted line in Fig.(B)  Carlo (DMC) total energy calculations of bulk silicon and
shows the truncated norm of a nonorthogonal orbital optithe HEG to evaluate the convergence of the total energy with
mized to be maximally localized in @ function withR,,;  the truncation radii of the localized orbitals.
=10. ForR.,=10 the optimized and fixed nonorthogonal or-  Figure 3a) compares the convergence of the DMC total
bitals are identical. For all other values Bf,, the orbital energy of the same 64-atom, bulk silicon system shown in
optimized withR ;=10 (blue, dottedl is no longer the opti- Figs. Xa) and 2a), using orthogonal and nonorthogonal in-
mal orbital for that choice o function. ForR>10, this  put orbitals. It shows that the DMC energy converges more
suboptimal orbital decays polynomially, similar to orthogo- rapidly using nonorthogonal orbitals. To converge the total
nal orbitals. energy to within 0.01 eV per atom using orthogonal orbitals
Our previous work with orthogonal, truncated, localizedrequiredR.,=11 a.u.(Ref. 8 while using nonorthogonal or-
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(a) DMC Total Energy of Bulk Silicon truncation of the orbitals. This curve shows that the total
-107.2 | n DMC energy is approximately converged for truncation radii
S 10741 R ::__ gﬁ?]'og:g?ma' of 7-& 4. These converged values are in excellent agreement
g -107.6 - S~ o9 with the original values from Ceperley and Ald&There-
g -107.8 fore, while the slower polynomial decay of the density ma-
L%' -108.0 trix of metallic systems requires a larger truncation radius to
o 1082 converge the total energy than for semiconductors with
-108.4 equivalent density, the above procedure for generating non-
; R (au) é 10 orthogonal ork_JitaIs opens the possibility that chalized orpit-
020 cut < alsI for :cnetlglllc syst?ms C(I)ulclj tl_oe trulnca(tj((a;_jt_ln a;hpragtlcal
5 ¢ - volume for linear scaling calculations. In addition, the above
ﬁ 0.15 .(b) DMC Truncation error of HEG procedure for generating these nonorthogonal orbitals does
© not require the high symmetry of the HEG and therefore this
R 010} approach could be equally applied to linear scaling DMC
< calculations of realistic metallic systems. For example, in a
5 005 . . ;
5 calculation forr,=2, Fig. 3b) predicts that the nonorthogo-
T 0.00 nal orbitals can be truncated withiR,,=7 A and incur a
-.g truncation error of 2 meV per electron, similar to the fixed
= 005} node error. We also note that the HEG is likely to be among

3 4 5 6 7 8 the most difficult metallic systems to obtain a localized-basis
set for because the noninteracting wave functions and den-

FIG. 3. (Color onling (a) Convergence of DMC total energy of Sty have no internal structure to assist localization.
bulk silicon with truncation radius for orthogonal and nonorthogo- I conclusion, we derive a simple, automatic preprocess-

nal orbitals.(b) Convergence of DMC total energy of the HEG as a iNg procedure for generating nonorthogonal localized orbit-
function of R/ rs. als, with optimized shapes and centers, which minimize the

total computational cost of linear scaling QMC calculations.

bitals, equivalent accuracy can be obtained VRh=6 a.u.  \We demonstrate the application of these orbitals in DMC
This results in a factor of 5 increase in speed and a factor of|culations of silicon and the HEG. For silicon the increased
6 reduction in memory. ) localization reduces the computational time by a factor of 5
Figure 3b) compares the convergence Wil of the 504 the memory by a factor of 6 compared to orthogonal

?g"% tgtal ed”i(r)%; tha E(énéogﬁneous erllectronlgaz_ Wlithf localized orbitals. In the HEG, we demonstrate that practical
=L 2,9, an -Inthe t » the nonorthogonal orbitals 10 nation of orbitals for linear scaling metallic calculations
all rg values can be obtained by scaling the 1 orbital. The is possible

kinetic energy scales a§2. To enable us to plot all values of
rs on the same plot, we rescale both axes and plot the frac- The authors would like acknowledge G. Galli, R. Needs,
tional DMC truncation error, defined as ErnBg,) R. Hood, and D. Prendergast for helpful discussions and
=[E(Rew) —E«J/E.. as a function oR./r.. After this rescal- comments. This work was performed under the auspices of
ing the convergence plots for each value gfall on a simi-  the U.S. Department of Energy by the University of Califor-
lar curve. Note, the negative truncation error arobgl/rs  nia, Lawrence Livermore National Laboratory under Con-
=6 resulting from a loss of kinetic energy, due to abrupttract No. W-7405-Eng-48.
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