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The Seebeck coefficient of the Ti3SiC2 compound has recently been measured and found to be constant and
negligible over a wide range of temperature. Materials with essentially zero thermopower allow us to measure
the absolutethermopower of another material and could therefore be considered as reference material in
thermoelectric measurements. In this paper we analyze the origin of this unusual behavior. The thermopower
is calculated fromab initio electronic structure in the framework of Boltzmann transport theory. Under the
Mott approximation for the relaxation time, we found the thermopower negative along thez axis and positive
in the basal plane. The very small value which is experimentally observed can be ascribed to a compensation
between the nonequivalent crystallographic axes.

DOI: 10.1103/PhysRevB.71.121104 PACS numberssd: 72.20.Pa, 72.10.Bg, 71.15.Mb

Ti3SiC2 is a ternary carbide which has recently received
attention since it exhibits intermediate properties between a
metal and a ceramic. It has a high melting point, high
Young’s coefficient, and low Vickers hardness. The combi-
nation of a high melting point, large electrical and thermal
conductivity, and good machinability makes it a candidate
for numerous applications. It also has very unusual electronic
properties. In particular, the thermopowerS is almost zero
over a wide range of temperature.1–5 This compound could
therefore be used as a reference material in thermoelectric
measurements. The reasons for this vanishingly small ther-
mopower are still unclear. In this paper the thermopower is
calculated using a realistic electronic band structure accord-
ing to Boltzmann transport theory. The results suggest that
the small value observed for the thermopower is due to the
anisotropy in the thermoelectric tensor or more precisely by
a compensation between the crystallographic components of
the thermoelectric tensor.

Ti3SiC2 crystallizes with a hexagonal structure with space
group P63/mmc. The experimental lattice parameters are
a=b=5.793 a.u. andc=33.315 a.u. There are two inequiva-
lent Ti atoms, which we call Tis1d and Tis2d, at position 2a
and 4fsz=0.365d, respectively. The C atoms are in 4f posi-
tion with z=0.572 and Si atoms are in 2b positions. The
structure is shown in Fig. 1 of Ref. 6.

The structure for Ti3SiC2 is calculated using theWIEN2K

program,7 in the framework of density-functional theory. The
exchange correlation potential is computed with the general-
ized gradient approximationsGGAd using the functional of
Perdewet al.8 The structure has been optimized and the equi-
librium lattice parameters are found arounda=5.785 a.u. and
c=33.936 a.u. The freez parameter for C and Tis2d atoms
are 0.572 03 and 0.370 83, respectively. The self-consistency
cycle was achieved with 1000k points in the first Brillouin
zone and we use muffin tins with radiiR=1.85 a.u. for C and
Ti atoms andR=2.4 a.u. for Si. The electronic structure we
obtain ssee Fig. 1d is quite similar to those previously re-
ported in the literature.6,9 The low-lying states comes froms
andp states of C and Si. Higher in energy, we find a metallic
network which arise from asC pd-sSi pd-sTi dd bonding. At

the Fermi level the states are predominantlyd states from
Tis2d atomssFig. 7d with an important contribution from the
interstitial region.

The electronic structure is used to calculate the ther-
mopower. The usual formula of Boltzmann transport theory10

is used with 100 000k points in the Brillouin zone and the
relaxation time is evaluated according to the Mott approxi-
mation for transition metals11: tsEd~1/gsEd. In this approxi-
mation, we neglect thek-k8 dependence of the scattering
matrix elements. The only anisotropy that is taken into ac-
count comes from the distribution of velocities at the Fermi
surface.

The resulting Seebeck coefficient as a function of tem-
perature is presented in Fig. 2. For each temperature the

FIG. 1. sColor onlined Total density of states for Ti3SiC2 com-
pound and for pure Ti. The latter is used in the discussion.
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chemical potential is calculated in such a way that the inte-
gral of the occupied density of states convoluted by the
Fermi-Dirac distribution is equal to the total number of elec-
trons. This leads to a varying position of the Fermi energy
with temperature. In addition a small shift, constant with
temperature, is introduced to best fit the experimental data
sFig. 3d. This correction found to be lower than 2 mRy could
originate from numerical instabilities in calculations or de-
fects in the crystal as suggested by Barsoumet al.2 The ac-
curately determined position of the Fermi level is shown in
the inset of Fig. 1. In Fig. 2,Sxx=Syy are the components of
the thermoelectric tensor in the basal plane andSzz is the
component along thez axis. They are opposite in sign andSzz
is about twice as large asSxx. Since the experimental mea-
surements in Fig. 3 are performed on polycrystalline
samples, the observed valueS should be compared to the

average value of the theoretical thermoelectric tensorS% sS
= 1

3 Tr S% d reported in Fig. 2. Thus, in agreement with the
experimentally observed behavior, our model predicts a van-
ishingly small value for the Seebeck coefficient which
clearly originates from a compensation between the “in
plane” andz components of the thermoelectric tensor. So far
we have shown that the small value for the thermopower is
due to a compensation between its components but the physi-
cal reasons for it are not yet clear.

In this respect we notice that within the metallic approxi-
mation, in the orthonormal frame where the thermoelectric
tensor is diagonal its components can be rewritten as

Sii ~ −
ṡiismd
siismd

=
ġsmd
gsmd

−
j̇iismd
jiismd

, s1d

where the dots indicate the derivative with respect to energy
and i stands forx, y, andz. With vWk

n being the velocities of
the electrons, the tensorj is defined as

j = o
nk

vWk
nvWk

nds« − «k
nd.

In Fig. 1 we compare the density of states of Ti3SiC2 and
pure titanium. In the case of Ti3SiC2, the Fermi level falls in
a minimumssee the inset in Fig. 1d and therefore in Eq.s1d
the j̇ /j term easily dominates. Even if most of the states
around the Fermi level come from Ti in Ti3SiC2, the picture
is very different for pure titanium. In particular, the ther-
mopower does not average to zero. The Fermi level falls in a
region where the density of states is rapidly increasing and
therefore the first term in Eq.s1d dominates. In our model,

the anisotropy comes from thej̇ /j term. It is therefore hid-
den for pure titanium whereas it dominates for Ti3SiC2. This
may explain why the compensation is apparent for Ti3SiC2 in
Fig. 3 and not for titanium.

FIG. 2. sColor onlined Calculated thermoelectric tensor for
Ti3SiC2. Sxx=Syy andSzz are the components of the thermoelectric
tensor in the basal plane and along thez axis.

FIG. 3. sColor onlined Experimental thermopower for Ti3SiC2

and pure Ti. The figure is reproduced from Ref. 1.

FIG. 4. sColor onlined Bands decomposedj function: in plane
components. The smallestj functions corresponding to bands 51 to
54 are not labeled in the figure.

FIG. 5. sColor onlined Bands decomposedj function: z compo-
nent. The smallestj functions corresponding to bands 51 to 54 are
not labeled in the figure.
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From the above comment it appears, from a qualitative
point of view, that we can restrict the discussion of the ther-
mopower to thej̇ /j term in the Ti3SiC2 compound. In Fig. 4,
we show the band decomposition of the tensorj in the plane
xy and in Fig. 5 along thez axis. The bands are numbered
according to Fig. 7 which also show their atomic character.
Along thez axis band 56 gives the negative sign and band 55
dominates the contributions in thexy plane. At the Fermi
level, other bands contributes51,52,53,54d but their role is
not fundamental as shown in Figs. 4 and 5. The particular
role of band 55 and 56 is also seen on their Fermi surface.
They are represented on Fig. 6 separately. The Fermi surface
of the band 56 is very flat and is located around thez=c/2
plane. Since the velocities are normal to the Fermi surface
they are mainly along thez direction. It explains the pre-
dominant role of this band along thez component of the
functionj and its relatively minor role in the basal plane. On
the other hand, the normals to Fermi surface of band 55 have
large components in thexy plane and therefore contribute to
the component of thej function in the basal plane.

To summarize we have shown that the small value for the
thermopower comes from a compensation between the crys-
tallographic components of the thermoelectric tensor. This
compensation can be attributed to the particular behavior of
band 55 and 56. Band 55 is holelike at the Fermi level and
contributes mostly along thexy axes while band 56 is elec-
tronlike and contributes mostly along thez axis. Such behav-
ior may also exist in otherMn+1AXn nanolaminatessMAX d,
but the near perfect compensation found in Ti3SiC2 polycrys-
tals is probably quite unique. Further studies are being pur-
sued.
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FIG. 6. sColor onlined Fermi surfaces for bands 55 and 56.

FIG. 7. sColor onlined Characters energy bands in Ti3SiC2. The
different plots show, respectively, the projection on Tis1d, Si, C,
Tis2d and for the interstitial part. Darker symbols indicates a larger
contribution to the bands. The bands 55 and 56 are indicated. The
others bands which crosses the Fermi level correspond to bands
from 51 to 54.
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