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Curvature effects in surface plasmon dispersion and coupling
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We have studied the resonant coupling of surface plasmons in curved thin-film tunneling geometries by
obtaining the dispersion relations for the system. The surface plasmon dispersion relations are calculated for a
metal-coated dielectric probe above a dielectric half space with and without metal coating. The system is
modeled in the prolate spheroidal system, and the dispersion relations are studied as functions of the parameter
that defines the boundaries of the tip and the corresponding coating, and as functions of the involved coating
thicknesses. Using this type of probe-substrate configuration, the nonradiative surface plasmon coupling
mechanism is investigated in the visible spectrum at frequencies relevant to scanning probe microscopy. The
simulations of the results predict optical access to the resonant surface modes of the system.
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I. INTRODUCTION (PSTM). The finite transmitted amplitude in the probe me-

The quanta associated with the waves in bulk mattefium determines the amplitude of the acquired signal, which
(plasmong were discussed in the early 1950s by Bohm andcan be greatly influenced by the geometric factors of the
Pines in order to explain the characteristic peaks observed ifprobe-substrate system. In the case of collective electronic
the energy-loss spectrum of fast electrons penetrating metakcitations in metal probes and/or samples, this is closely
foils. The peaks were shown to correspond to plasmon gemnrelated to the availability of the resonant modes of the entire
eration in the foil. The quanta associated with the surfaceystem.
waves (surface plasmonswere described in 1957 by Classical nonretarded electrodynamics with a dielectric
Ritchi€? in order to explain the observation of the reduceddescription of a metal can provide valuable information re-
energy peaks in the energy-loss spectrum not accounted fgarding the possible plasmon modes of a systehwithin
by the plasmon concept alone. The observation of multiplehis framework, the dispersion relations are uniquely deter-
discrete energy losses was thus explained by invoking theined by the material properties and geometric characteris-
bulk and surface plasmon concept8ptical access to the tics of the system, and thus can offer important information,
surface plasmons and their susceptibility to the geometriin particular, with regard to the optical access to the resonant
parameters and dielectric properties of the surrounding menodes of a supporting medium and their dependence on
dium gave rise to a different series of applications, such asmooth or unsmooth curvature. For example, it can be shown
sensing and imaging. These applications typically involvethat the dispersion relation for surface plasmons on a statis-
excitations of surface plasmons on small metal partigdas- tically slightly rough surface displays a splitting that can lead
ticle plasmongor at the interfaces of a thin metal film. For to a double peak in the reflection measurenfeAnother
the surface plasmons on a plane-bounded semi-infinite metaxample is the optical excitation of surface plasmons in gold
the resonance occurs when the real part of the dielectritslands, which undergoes spectral variation as a result of
function is —1. For a sphere that is small compared to theeshaping the submicron gold particulates or changing the
wavelength, the dipolar resonance condition occurs at thanderlying substrat&€:1! This can be visually observed as a
frequency for which the real part of the dielectric function is change in the color of the thin gold film, or spectrally re-
equal to —2. Even more negative values are obtained focorded using a spectrophotometer. The discrete surface
prolate spheroids. In the case of a thin foil, the resonancenodes of the gold particulateésare responsible for such
condition depends on the wave vecioof the surface plas- spectral shifts. Thus, surface modéss opposed to bulk
mon and the foil thickness in a transcendental dispersiomode$ are strong mediators of size and geometry of the
relation. If the foil is curved, then its electronic resonancesmaterial media, as prescribed by the application of the
will change. Such variations can be important, for examplepoundary conditions imposed on the involved electromag-
in the context of scanning probe microscofPM). The netic fields. For these reasons, dispersion relations have been
quantum mechanical process of electron tunneling and thealculated to various degrees of geometrical complexity for a
phenomenon of photon tunneling associated with the frusvariety of material domains, such as a st&t3>multiple-film
trated total internal reflection are the well-known underlyingsystemsé1”metal gratings-2%ionic and metallic spherée?s,
principles of the operation of the scanning tunneling micro-spheroidal particle¥?? cones and double conés?® metal-
scope(STM) and the photon scanning tunneling microscope lic cylinder?'?425and metal-coated dielectric cylindr.
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Probe-sample interactions and experimental observatiosurface-fitting procedures to scanning electron microscope
of the stimulation and propagation of the surface plasmons iimages of a metal-coated probe tfOne of the most impor-
SPM systems have been reported in several wor88An  tant features of employing the spheroidal coordinate system
example can be found in the work of Kreen al,3® where  here is the possibility of coexistence of planar boundaries
optically excited localized surface plasmon coupling be-with hyperboloidal surfaces, appropriate for modeling sev-
tween a submicron gold particle and wire was observed useral “probe tip-substrate” configurations present in scanning
ing a PSTM. Theoretical models for various SPM probe-probe microscop§?++
sample configurations have been reported where the probe is The transformation between the Cartesian and the sphe-
approximated by a finite body residing close to or in the nearoidal systems is performed #y
field of a substrate. For example, Madrastoal 36 simulated
the probe as a two-dimensional cylinder within a few nanom-
eters above a metal surface with direct illumination. Simi-

X(¢,6,¢) =7y sinh sin 6 cose,

larly, Gonzélezet al®” reported a study of the optical forces y(£,6,¢) =2zpsinh{sinfsing,
exerted on a metal probe modeled as a two-dimensional sil-
ver cylinder above a substrate illuminated via total internal Z(¢,6,¢) =y cosh{ cos¥, (1

reflection. Recently, Portet al 38 investigated the interaction in the domain defined by
of a directly illuminated probe-substrate system by modeling
the probe as a metal sphere located a few nanometers above 0s{<w», Osfsm 0O0s¢s2m, 2

a metal substrate. with z5 being an overall scale factor, which also sets the focal

In this paper, we study the feasibility of the coupling of _ . . : ) :
oo ; points for the hyperboloids defined by fixéd(or spheroids
surface plasmons in thin metal films and the effect of curvayefine by fixed). In what follows, we will make the vari-
ture on such a coupling. We predict optical excitation of this

Lo X . able substitutions co with 1< 9<« and co¥=
coupling in geometries relevant to the physics of surface ith —1< <1 g7 7 H=p

hanostructures, and scanning p.robe microscppy. Such 9e0M- gince the system as a whole is electronically neutral, the
etries are |mpor.tant. when sj[udymg the nearjﬂeld or Iocallze%calar potential of the electric fieldb(Z,0,¢) satisfies
plasm_on excitation in submicron part@% field enhance- Laplace’s equatiodd =0, which is separable in the spheroi-
ment in surface-enhanced Raman scattefiriie geometric dal systenf® The fully retarded case is complicated in these

effects in the study of interacting thin metallic films at finite : . .
. . . . . .~ coordinates, due to the evaluation of radial and angular sphe-
interaction distances can also provide useful information

. - roidal wave functiong’#8 The general solution can now be
}{vhgn studying the Casimir and Van der Waals fofttsthe ._expanded as a Fourier series in the azimuthal varialae®
imit of vanishing film thickness, a closely related example is
found in the work of Sernelius and Bjofk,where the inter-
action energy for a pair of quantum wells was calculated by (7, ,0) = 2 o )G ) (2 = 8 cOSMep, Q)
treating them as two-dimensional metallic sheets. 0
Due to analytical difficulties, there is a trade-off betweenyyhere f and g, using the Laplacian in the spheroidal
the geometrical complexity with nonretarded approach andysten® and a separation constansatisfy
geometrical simplification with fully retarded approach. Nev- 5
ertheless, each approach can offer both quantitative and d (= l)dfm(ﬂ) __m . () =cf(n)
qualitative information about the system, in particular, with dyl dz A1 m T
regard to its limiting behavior in the context of dispersion,
resonances, and couplifigdere, we present the exact results d 5 dgn(1)
of the calculation of the dispersion relations for a system | A-u) d
composed of a hyperboloidal multilayered medium located H
above a multilayered Cartesian medium. Section Il A is de-The possibility of obtaining a continuous spectrum of real
voted to the description of the solutions of Laplace’s equa<€igenvalues and eigenfunctions relies on settirg(v+1),
tion, whereas in Il B the nonretarded dispersion relations argvith » given by the complex number= —%+iq, resulting in
derived within the local response approximation. Numericalcz-‘-ll-q{ whereq is a real continuous variablge [0,%[.
work and discussions of the results will be given in Sec. |||Th|s is appropriate for the infinite surface of a hyperbok)id as
Finally, a summary of the conclusions is presented in Secopposed to the discrete values ofarising in the case of
V. bounded surfaces, such as those of spheroids whésean
integer. The particular values of st—%, and Imv=qis a
Il. DISPERSION RELATIONS consequence of the necessary criteria for existence of the
eigenvalues and orthogonal eigenfunctidn® and result in
the finiteness of the scalar potential in the interior-exterior
We model the curved thin metal film by representing itsboundary value problem in potential theory. The discrete
boundary with the surface of a single-sheeted hyperboloid ofmodes of objects with finite volumes, such as an ellipddid,
revolution. The probe dielectric and the planar thin metalcan be envisioned as standing waves oscillating on the sur-
film interfaces are modeled by confocal hyperboloids. Theface of the particle. When one of the dimensions of the sys-
use of such surfaces can be justified computationally byem is allowed to be infinite, the corresponding eigenmodes

[

v
:| - 1- Mzgm(ﬂ) =-COn(w). (4)

A. Scalar potential of the electric field
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become continuous and this can alter the dispersion relations

dramatically and have consequences for the extension of en- u :lr;:lt:itric
ergy localization.

It can be showtf>*that Eqgs.(4) are solved by the asso-
ciated Legendre functions with continuous complex lower e
index (conical functiong P, ,,(2). The argument c—c..
ze |-, is set toz=7 to give the solution to the first
equation in(4), while it takes ore=+ u=+cos6 to generate €,=¢,

the two linearly independent solutions of the second equation

in (4). Using the recursion relations for the conical functions,

it can be shown that the differential equations (#) are FIG. 1. Geometric representation of a metal-coated dielectric
satisfied by the conical functions. It can be seen, from therobe above a metal-coated dielectric substrate in spheroidal system
asymptotic expansiGh>>5° of the conical function, in the in the ¢=0,7 planes, wherep is the azimuthal coordinate. The
limit of large argument, that the negative real part of —1/2probe tip boundary is defined hy,=cosé,, where the angl® is

makes these functions decay. We note that the surf8)in
runs only over positve m due to Py,

=ZqP/9+q(2), whereZi,m=0,1,2,... isdefined by the
ratic®’ of theI" functions

F<%+m—iq> 1 9
O F R G [ S
F(— -m- iq)
_1\2
x[qﬂ%} (5)

Also, with the above value for, bothPT, 5 ,;,(2) andZg' are

even inq, consistent with the faet that we do not need
to include the region of the eigenvalue spectrum beyond

Rev-1.
The following orthogonality relatiolf for the conical
functions with argument & n<<oo:

[ Zm
m — q o~
L Pr—n(1/2)+iq(7])P—(1/2)+iq'(7])d7]_ qtanhmq aq-q'),

(6)

will be useful in Sec. Il B. Finally, a superposition ingen-
erates for each azimuthal mode

7 Om(p) = f En(1/2)+iq(7])U31(M)dQ- ()
0

where
Ug (1) = Ar(@) Pl /214ig (1) + B @ Py jpy4ig(— 1) (8)

and where the functioné(q) and B,,(q) are to be deter-
mined by the boundary conditions.

measured from the symmetry axis of the hyperbolaidxis) to an
asymptote to the hyperboloid. The surface of the coating is given by
e The boundary of the substrate metal coatirg0 plane is set

by the hyperboloidus=cosés with 6;=7/2, while that of the sub-
strate is defined bg=-a. The dielectric functions characterizing
the involved materials in the five regions are labeledepyhrough

€5 defined in the figure.

Hm(qo—¢K):(2—5Onl)cosm((p—(pk), this is provided by the
following expansioff#459specialized foru=0:

&“R= Hule— @)

m=0

Xf T (k20)PT1/5)4iq(0) P4 /2y4ig(m)da,  (9)
0

where forx>0, andR in Xy plane

K-R= 2\ - 1 coge - @), (10)
) 2 qtanhmq
Tq(kZp) =i/ EOTKiq(KZO)u (11
q
andKi4(xzo) is the Macdonald’s functiof?’
The  computation of the conical functions

PT1/24iq(2c0s6) for m=0,1(m=2 are obtained from appro-
priate recursion relations using=0,1 functiong and -1
<u<1 can be performed using its integral representatfon.
Through a proper variable substitutfrthe infinite upper
limit of integration in the integral representation can be
transformed to a finite closed interval [@f,(7r/2)]. Here, for

g not too large, the integral was evaluated effectively using a
five-point Newton-Cotes integration meth®dFor largeq

the conical functions were expanded in terms of powers of

From this point on in our quasistatic model, we use theg1 and | (6q) Bessel function8>5 The values generated

Fourier transform of the electric scalar potenti&D(r,t)
—®(r,w) and note that the fieldE and D will then be
connected due to the local approximation @(r_,w)
:e(w)E(r_,w) at angular frequency. Since® andD adhere

to the standard quasistatic Dirichlet-Neumann boundary con-
ditions at regions where makes a jump, it is necessary to

here pass the Wronskian check and are in agreement with
those of Kolbig?® and Zhurinaet al 5263

B. Metal-coated dielectric probe above a metal-coated
dielectric substrate

Figure 1 depicts the projection onto thke 0,7 planes of

invoke a transformation between the solutions in the planathe modeling surfaces for the metal-coated tip above a metal-

regions and the hyperboloidal regiofsee Fig. 1 Setting

coated substrate configuration. The coating boundary, speci-
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fied by u=cosé.=pu., is confocal with the tip surface de- m _ mo "N mo
fined by u=u;>u.. The u=0 (xy plane separates the f3(1, @) = A PZ(1/2)4i (1) + Am( APy 1214i0(= 1),
substrate coating, which extends tg-a, from the free (14)
space above it. The distance between the apex of the coatin o o — _
hyperboloid and the.=0 surface iz=d=zyu. and between Whereag(uy), B, An(@), andAn(q) are all functions of
the tip and the coating is_.=zy(u— xo). Any variations in ~ material properties and, thus, frequenegyand are defined as
the shape of the tip or the coating will inherently be accom-
panied by a translation along tlzeaxis of the corresponding () = <£)Km(ﬂt),
hyperboloid within the distance<0z=<z,. a €ceq () — €&/ °

In Fig. 1, we will use gold or silver for the metallic re-

gions and quartz for the dielectric regions because these - €M)
. m _ Sic” €ictq\ M

compose the most commonly used material in the context of Bq (o) = e ™)

this work. We characterize the system with the following € €icfq

dielectric functions for each of the five regions defined in
Fi_g. 1. ¢=¢ for the probe,.ezz_etc _for the frequency_ A(g) =1+ €.~ 1 ~ ffmg (4ey) ,
w-dependent probe metal coating=e€,=1.0 for the gap re 1—eM(ue) K™(0)
gion, e,=¢ for the substrate metal coating, aegk e for q atte
the substrate. The imaginary part and the frequency depen-

dency of the dielectric functions of the tip and the substrate — = -~ _om 1- ftcsgm(,uc) _om
media have been neglected due to a small variation of these m(® = (Kq(ke) = aglp)| = —eM(0) Kq'kto),
quantities in the visible spectrum as is evident from the op- a 15
tical data® With these notations, the general solution to the (15)
Poisson equation will then be composed of the partial potenyhere we have defined
tials ®;, wherei=1,2, ...,5denotes the five regions of Fig.
1, respectively. Using3) and noting that the conical func- - PT1/2+iq(w) - 3,P1/2)4iq (1)
tions of negative arguments are singula®at0, the partici- Kg(w) = B =t Kg(m) = TP ()
pant partial potential; are written fori=1,2,3 as ~(1/2)+ig\ " K wE =124\ " K
I Km
DN =2 (2-&)cosm(e - ¢,) enlp) = A—:}M (16)
m=0 Kg ()
% AA(DT™(k2g)P™ 1 o (7) ™12, ). where d,, stands for partial differentiation of the conical
f @ a2 =iz igt WAL DA functions with respect to their argument. The Fourier fre-

(12 guencyw dependencies of the functions above have been left
out for clarity. The special values and the asymptotic forms
In order to satisfy the boundary conditions, that is, satisfyingof the relations in(16), which will be useful in the further
the continuity of the potential and the normal component ofwork, are given in Appendix AEgs.(A1)—(A4)].
the displacement field, we utilize the orthogonality of the For lower half space<0, we use the following Cartesian
azimuthal functionsH,, and relation(6) and write for the ansatz:
potential atu,

. V() = e5%*R >0, 17)
f lf (Py (met)Hm'd‘P] Pl 1/2siq (M7 which, when incorporating the boundary conditions for the
1 L0 z=-a, takes the following forms foi=4,5 (i.e., in the re-

gions -a<z<0 andz<-a):

[

where the inner integral eliminates time summation, and Oo(1) = Y (k) &% R, (18
changing the order of integration betwegrandq integrals, ) o

the outer integral eliminates tiegintegration by isolating the ~With v and y defined as

integrands ag’. Rewriting Eq.(13) for 6, and carrying out

27
f (P, (Fj|z9[)Hm’d€D:| P_m(1/2)+iq/(7])d77a -
0 (I)A(r—) - Y(K)[eKZ + ,ye—ZKae—KZ]elk'R,
(13

the same procedure for the displacement field,and 6., y= %C—_ES, y= 2€se , (19)
we obtain fori=1,2, 3 thefollowing: Esct € Esct €
M, ) = ﬂm(ﬂt)Pm(l/zw () andY (k) being a common amplitude fa=< 0. The continu-
1 q - |q 1

ity of the potential and the normal component of the dis-
. " " . placement field at the=0 interface requires using Eq®)
2 (1, 9) = Py j2)4iq(1) = aq () PZi1/2)4ig(— 1), and(17), and the following observations:
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E,u. ' V\I}|p,=0 = EZ ' V\I,|Z=Oi

~ 1
— ket Pl cotemp) = =3 Himle = @.)
20 m=0

Xf T (k20) P 1/2)4i(7)
0

X3, PY4 24iq()|u=0+da,  (20)

D41 1m0 = Y(R)[1 + 72" R= 3 H (- 0,)
m=0

x| TRt YL et
0

X Pr‘n(1/2)+iq(o)PT(1/2)+iq(77)dqy
39,040 =0~ = 2 Hinl@ = 0,0
m=0

><f Tq (k2o Y (k) [ye*? - 1]

PT(1/2)+iq(/~L)|p,:0'dq'
(21)

From now on, we only consider the case wheig(w)

X P /24iq(M) 3,

= ¢.(w)=€(w). Equating the above equations to their coun-
terparts foru— 0", expressing all the exponentials in terms

of hyperbolic cotangent and simplifying, we arrive at
-€ <e+ ESCOthKa)
Ag(uo) \ €+ € cothka
_ ) ~ Ko + g (mo Ko = ()]
() — K1) + el (K (11o) = @t

(22)
where we have set
1+K c m 1+KT c
)\m( c) _CIM gq Mc =—Aqﬂy
m(Mc) 1+ Kg](ﬂc)
— 1-K c
édc']n _QM (23)

- qun(MC)
For eachm, solving Eq.(22) for e results in the following
polynomial:
4

> c"(@)€(w,q) =0,

i=0

(24)

with the coefficients"(q) given by Eq.(B1) in Appendix B.
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FIG. 2. Surface modes of an isolated hyperboloid in vacuum as
a function of curvature. The top two graphs show 0, 1 reso-
nance modes, and the bottom two are the corresponding Drude
metal limit responses. The modésolid curve$ in each graph, in
the order of increasing curvature from top to bottom, show the
departure from a Cartesian interfaceégt /2. The dashed curve
represents the light dispersion relation. The energies have been ex-
pressed with reference to the bulk plasmon enesgy

(w) dependence of each mo@im,q). We thus note that, tak-
ing k as a parameter, eadlm,q) singles out a particular
solution of the system resulting in a particular potential
@'(r) and field -V @gl(r) distribution in the spacén, u, ¢).

Ill. RESULTS AND DISCUSSIONS
A. Surface modes of a probe

We begin our discussion by studying the resonance modes
of an isolated solid hyperboloid of a local dielectric function
€(w) in vacuum. With the definitions ifiL6), these are given
by the functionseg(w, ), m=0,1,2,...,which yield the
nonretarded surface plasmon dispersion relations for a hyper-
boloid atu=w,, and are shown in Figs. 2 and 3. Employing
the Drude model, the modes have also been displayed with
reference to bulk plasmon frequenay. For all other pur-
poses in this work, a plasma frequeftpf w p=Ck,=8.33
X 10' Hz for gold and 10.9% 10'° Hz for S|Iver (corre-
sponding to Re=0 in each casgewill be used® In the limit

-1.0 o=

1243
14 -
= =1
) -2
Ewcr -1.6 -3

1.8 =4

-2.0- :

0 10 20 30 40

FIG. 3. The various azimuthal modes of a probe with 6,

This result can now be studied numerically to simulate the=30°. As shown, in the limim— %, the modes approach the sur-

dispersion relations, that is, the roots(@#), which, in view

face plasmon dispersion of a vacuum-bounded metal half space for

of Drude’s dielectric function, will describe the frequency all g. All modes reach their asymptotic values fipe 20.
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q=10.552, m=0

FIG. 4. The projection onto
the ¢=0,7 planes of the relative
potential distributions of a probe
with 6,=30°. The various symme-
tries presented by the paim,q)
are shown by the equipotential
surfaces, where the dotted con-
tours  display ®¢'(r) <0, while

z [z,

-1 0 1 2 (Dg‘(FS>O is represented by the

(@) R [z] solid contours. In(b) and (d) the
effect of the azimuthal order on
q=10.552, m=1 the charge distributions is given

for the same eigenvalug, while
(c) and (d) show the effect as a
function of q for the same order.
The particular values of g
=1.0552,10.552 were extracted
from the dispersion of then=1
mode ate=-1.17 in Fig. 3. The
R simulated domain is defined by
-2 i 0 1 2 = R | 0 1 2 e[1,3], andp e[0,7/2].
© R [z] (d) R [z]

z [z,

6,— w2 (u;—0), we haveeg“(w,ut)ﬂ—l, that is, the non- asymptotic values, while all the higher modes start at higher
retarded dispersion relation of a simple Cartesian metalenergies below the surface plasmon energy and decrease to
vacuum interface. This limit is also approached by lange reach their asymptotic values. For a spherical metal patticle
values, as seen in Fig. 3. The lamyéorm of these functions (& special case of a spherpithe lowest mode is ab=0. In

(see Appendix A the case of an isolated metal cylinder in vacutthaving an
identical azimuthal symmetry as in our hyperboloidal case,
cot 6 the m=0 mode starts ab=0, while all the higher start at the
é;(“’,ﬂt)q;‘ 1- q (25 surface plasmon energw/cupzll\s"Z:O.?J), in close simi-

larity to the trend here as shown in Fig. 2. Tinelegeneracy
also yields, in the limitg— o, the Cartesian metal-vacuum is also observed in the high momentum regiop- ). At

result ég‘(w,,ut) —-1. such small scales, the collective oscillations cannot sense the
As a comparison, we first note that it can be seen from thggeometrical variations. From the well-like appearance of the
retarded metal-vacuum Cartesian interface modes m=1 modes in Figs. 2 and 3, each allowing two excitations

at the same energy, it can be seen that the wells get wider, the
higher the curvature, but that the minima of the wells reach
the limit o/ w,=0.64. For the sama, the q distributes the

- charges on tﬁe probe, such that lgwalues result in more
where \I=w/ck measures the retardation strength, so thatiniform distributions. This is illustrated by the simulations of
I=1 yields the photon dispersion in vacuum, that the nonrethe potential distributions of 8 =30° probe in Fig. 4, which
tarded modes=-1 (1=0) is pushed down below the photon also provides a physical interpretation of the eigenvalyes
dispersion relation and tangential to it in the small momen+igures 4a) and 4b) show the projection onto the=0,

tum limit as a result of the retardation. For a Drude metal ofplanes of the equipotential surfaces fan,g)=(0,0.0, and
resonance frequency,, in the small momentum regiok  (m,q)=(0,10.552, while Figs. 4c) and 4d) show the dif-
<k, it can be shown from(26) that w/w,~k/k,~q, and  ferences for the tway values, corresponding to the same
thus we expect that the inclusion of retardation will pull all e=-1.17 for them=1 mode shown in Fig. 3. Figure 4, thus,
the modedm,q) below the light line. However, retardation shows explicitly the different symmetries dictated by the
has no effect in the large momentum region as Ef) modes(m,q), where the eigenvalueg appear to play the
reaches its asymptotic value of the surface plasmon frerole of the surface plasmon wave vectors along the surface of
quencywp/\s"Z for k= 2k, It can also be seen from Fig. 2, the hyperboloid. This point will be rehashed in Sec. Il B
that for 6,— =/2, we encounter a degeneracynires a result  [Eq. (33)] in the context of surface plasmon propagation in a
of loss of curvature. The higher the curvature, the closer teCartesian thin foil. Experimentally, the relative excitation
zero the modes start; that i®°(q=0,6) —0 when §,—0.  probabilities of these modes will, therefore, depend on the
Thus, the sharper the tip, the larger the variation inihe polarization state of the incident field.

modes. It is interesting to note that, in the case of a Drude We also note that, although the solutioe[?(coset) are
metal spheroidal partict;®® the energies of the lowest formally valid anywhere in the system, the interpretation of
eigenmodes start close to 0 and increase to reach thehem physically, as the true surface modes of the metal-

(26)

1—|E(w)>l/2
1-1 ’

e(w):—<
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vacuum boundary, is more precise the closer we get to the

z
apex region as a result of our quasistatic assumption. We are s—dta ! €16
only interested in the apex region, where settiRg (x?
+y?)12 the curvature of the hyperboloid o d y—
drz(R) = RZY(R)cot 6,, (27)
changes appreciably. Thus, fe=>1, and whenz, sin 6; is 0 €s=€,
fixed we getdgz(R)—cot 6, (i.e., a constant and thus the A

hyperboloid behaves as a cone in this limit. To estimate when

the retardation becomes significant, we calculate the radius gig. 5. A cartesian multilayered system in thelirection. This

of curvature of the probe apex by fitting a sphere to it. For a&onfiguration is composed of a semi-infinite dielectric medieg,

focal point 0fz,=10.0 nm and a probe angle @=7/6 ina interfaced with aa’=35 nm thin gold film(e,), and another semi-

medium e=e,, we get for the radius of the sphere infinite dielectric medium(es), interfaced with aa=45 nm thin

r=7.5 nm. It can be shohthat, as long a& >27r\e,, we  metal film (e;) separated by a free spacs) gap(d) from the first

can neglect retardation. This is clearly satisfied for our hy-one. This system can be considered as the limiting aksed,

perboloidal probe surrounded by vacudeg=1). — /2 to the system in Fig. 1. The system is stimulated by an
Also noteworthy is that, the modé$6) adhere to the sum optical field of momentunk=2x/\ incident at angles.

rules for the surface modes of the complementarily divided

spaces as formulated by Apeit al®® In the case of an iso- we expect in the isolated curved metal foil case, i.e., with

lated solid hyperboloidwith frequencieswy,), the comple- 0< ¢,< 6,, that the modes in Fig. 2 multiply. Similarly, we

mentary space is a hyperboloidal vaisith frequencieso,),  expect that in the limi#,— 6., the dispersion relations enter

and thus the sum rule automatically generates the surfaage two-dimensional2D) plasmori® (sheet plasmonbehav-

modes of the voidsuch as the modes of a metal nanohole,jor, In the absence of the>0 structures in both Figs. 1 and

for which experimental observation of curvature-dependens, we are left with the Kretschmaffhconfiguration. Then,

transmission, has been repontédThus, for a Drude metal, Eq. (C1), in the limit of ¢=¢€.— 1, generates the retarded

if Eq. (16) has the right symmetry, the transformatigp— and nonretardedc— =) modes shown in Fig. (&) for an

- should yield the surface plasmon frequencies of the voidindamped Drude metal. The decoupling of the two modes

from w?=w,~wf, which can easily be confirmed frofi6)  and their degeneration to surface plasmon energy in the non-

because(wp)e(w,)=1. Finally, for the particular case of the retarded case, and to the retarded dispersion of a single metal

modes of an isolated hyperboloid, further comparisons cainterface are seen from the gray scale.

be made, for finite curvatures, to the case of an isolated solid The symmetric and antisymmetric modes, shown in Fig.

paraboloid of revolution, and in the limj;— 1, to the case 6(a), will each split into two(close-laying modesf we bring

of an isolated solid cone, for which the solutions to thea metal-coated dielectric medium from above, as shown in

Laplace equation are knovfrf? Fig. 5. This is demonstrated for a Drude metal in Figh)6
for the nonretarded case and in Figc)efor the retarded
B. Surface modes of a complex probe case, where the modes are again pushed down below the

i ) light line in the small momentum region. Excluding the vir-
By resorting to the fully retarded Cartesian cases, We eXg a1 modes for the dispersion relation of the coupled system
tend the above considerations to the multilayer systems if, Fig. 5, there are four branches describing the possible
the hyperboloidal cases. In particular, as a limiting case tQqatarded modes of resonance. These are grouped into two

the system in Fig. 1, we extend the simple metal'vacgu”&ateg_ories, one above the reduced bulk plasmon frequency
Cartesian interface analogy to the multilayer system deplcteg)p/\;2 and one below it. Optical access to these modes, in

in Fig. 5 In domg.so, we 99”97';“"-‘ for tipepolarized pho- the arrangement shown in Fig. 5, is governed by the inter-
tons,;smg a matnlx forma;hsﬁ:]’; the reta.rd('a:q surface plas- gection of the light dispersion line with these modes. This
mon dispersion relations for the system in Fig. 5,b9nve-  oqyicts the number of accessible modes for a particular

niently) solving for the metal separation distandeusing wavelenath. propagation anale of the incident photon field
Egs.(C)—C3). We note that Eq(CY) is transcendental due 414 the gelécf)tedpﬁ?m thicknegsses. P '

to inclusion of retardation, and, though it may be rewritten ™ \\ia how continue by analyzing the possible eigenmodes
differently, it can only be reduced to polynomial form when ¢ 1,6 configuration depicted in Fig. 1. We first note that,
retardation is neglected. The propagation length of the sur

face plasmons is limited by damping in the metal, which issettlng
ignored in the free-electron model. In what follows, we will m c'(q)
also use the real part of the complex dielectric functions for i () = Cm_()
gold and silver, obtained by interpolation in the repofted 21
experimental data, heretofore referred to as the experimenttiie strength of a coefficief"(q), in Eq. (24) describes the
dielectric functions. relative energy of the modes at the interface that corresponds
In analogy with the splitting of the degenerate thick Car-to that coefficient’s degree, for1,2,3,4labeling the inter-
tesian film dispersion relation, into symmetric and antisym-faces from top to bottom. These coefficients are smooth
metric modes, as a result of a reduction of the film thicknessfunctions ofg and are shown in Fig. 7. Fa € [Umin: Omax

i=0,1,2,3,4,
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1.0 /0, a m—
0.8 /
3 0.6
N
3 0.4
50.0 nm
0.2 .
0.0 40.0 nm
0.0 0.5 1.0 1.5 2.0 2.5 3.0
(a) k/k,

I 255.0 nm

0.0 nm

0.0 05 1.0 1.5 20 25 3.0

®) o/ FIG. 7. (a) Coefficientsc™(q) andd™(q) of the dispersion func-

tion [Eq. (30)] for m=0, 1 for anisolated hyperboloidal foil. Little
or no variation is observed fay>10. (b) Coefficients of the poly-
a' I nomial[Eq. (24)] describing the relative magnitudes of the resonant

E values ofe corresponding ton=0, 1 for thesystem shown in Fig. 1.
——— There is little or no variation in these coefficients for essentiglly
>2.

I 255 nm 2mangsin 0

)
with N=632.8 nm, ns=1e,, 6#=46°, and a=45 nm. This

cothka = coth ) (29

0.0 nm

0.0 05 1.0 1.5 2.0 25 3.0

© k/k would then correspond to a realistic polarization charge sepa-
’ ration in the substrate medium. Based on experimental ob-

FIG. 6. Retarded and nonretarded dispersion relations corre3€rvation we set,=100 nm, allowing a coating thickness of
sponding to symmetri€wy) and antisymmetri¢w,) surface modes Zt—c:?{O nm for6;=0.45 and@t?o-ga which, in turn, gives a
of a Drude metal(a) For the two surfaces of a thin gold film 9gap size ol=59.8 nm. Equation&4) and(30) are indepen-

(sketched in the insgtthe two nonretarded modésxtending to the ~ dent ofz,; the only distance dependency is due to the par-

left of the light lin® are clearly pushed down all the way below the ticular choice ofu; and .

light line (dashed lingas a consequence of inclusion of retardation.  Before discussing the general case of Fig. 1, we consider

The dashed-dotted line represents the surface plasmon frequentlye important limiting case of an isolated hyperboloidal foil

wp/\2. The gray scale represents film thicknesses in the range in vacuum and its Cartesian counterpart of an isolated planar

€[40.0,50.0 nm. For the arrangement of Fig. 5 witir45 nmand  foil in vacuum. The former can be achieved from E(&})
a’'=35 nm in Eq.(C1), the nonretarded dispersion relations(im and (B1) after some algebra in the limd—0 and e,— 1,
are similarly pushed down due to retardation as showtinThe  which reduceg24) to
gray scale represents the air gap interda [0, 255 nm.

e +c"(q)e+d™(qg) =0, (30)
and gmin=0, Eg. (24) was solved numerically using La- with the coefficients given by
guerre’s metho8! Thus, for thisq interval, we solve Eg. A A
(24) for m=0,1, which gives the roots(q), r=1,2,3,4 [2Kg (o) — Kg(ue) Jeq () = KG'(pee)

c™(q) - -
such that [KG (o) = KG (o) Jeq (o)

€@ =¢'q) =<0, Ogmpr. (28)

Ki() = Kl eq(sa,)
] ] dm( ): q Mc q Mt 8q Mt

In all the numerical evaluations of these roots, we have q [km( ) - km( )]e™( )’
assumed thak, in Eq. (B1), takes on the value of the wave q M) ™ g )18 L

vector of the surface plasmons excited on the coating of thand shown in Fig. 7. Now specializing Eq#1)—(A3) for
substrate without the presence of the coated tip m=0 in the above equations, we get
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1.0

0.9
3 antisymmetric
0.8
o ]

0.7

o(q)/®
o@)/o,

0.6

0.57

0.4

o(q)/o

(b) q

FIG. 8. Nonretarded surface plasmon resonance values for the (b)
symmetric and antisymmetric modes for orders0, 1, assuming
(a) a Drude model andb) the experimental dielectric function of FIG. 9. The four brancheea{“, i=1,2,3,4representing the non-
gold for the metal-coated probe above a dielectric substrate COolfatarded surface plasmon resonance values for the nmog@s 1,
figuration. The higher energy modes' correspond to thex: inter-  assuming(a) a Drude model andb) the experimental dielectric
face, whereaw}' represent the modes pf interface. The horizon-  fynction of gold for the metal-coated probe above a metal-coated
tal gray band is the visible band corresponding to the spectral ranggie|ectric substrate configuration shown in Fig. 1. The appearance
[400, 700 nm. Retardation effects are expected, in analogy with thegf the two additional modesTm compared to Fig. 8, is a result of
Cartesian case, to pull the smalfegion of these spectra below the the presence of the coated substrate. Simulations were performed
light line in view of Eq.(33). for substrate thicknesa=45 nm, with tip and coating boundaries

set t06,=0.45 andf.=0.93, respectively. The horizontal gray band

0 g d(m=26) 4 a=a(m-26) is the visible band, and the reference energyjs5.47 eV.
¢ (Q)q;lze—qw—zoc) — g2
experimental dielectric functiong. This can be accom-
() ~ 1 plished by searching the frequencies at which there is a
q 1 match in the dielectric functions or, more efficiently, by writ-

ing w=w(e€) and interpolating ire at locations presented by
the solutions to Eq(24).
€ +2cothq(d.— 6)]e+1=0. (31) The results of Fig. 8 show that, although the overall red-
o o _ ] ) ~shift of all modes in the experimental dielectric function case
Identnfymg this dispersion equat!on with the correspondlng[pig_ 8b)] is clear, in the small momentum region< 1, the
equation for the planar case derived fr¢@i), m=0 modes are slightly blueshifted in comparison to the
&+2 cothka)e+1=0 (32) Drud% metal case of Fig.(8. Despitg the al:_)rupt c_hange in
the w, mode, caused by the nonuniform distribution of the
yields the equivalence betweenand the surface plasmon experimental dielectric values over the frequency range en-
momentumk countered, the overall structure of the modes is preserved.
q(6. - 6) ~ ka. (33) The discontinuous appearance of tbgemode can be readily
smoothed out by an averaging algorithm such as the boxcar
With this interpretation ofg, the two modes of a metal- technique.

coated dielectric probe over a dielectric substrate are shown Finally, the dispersion relations for the system in Fig. 1
in Fig. 8. Here, symmetric and antisymmetric modes com-are displayed in Figs.(8) and 1@a) for a Drude metal, and
prise the relative distributions of electrons on the two hyperin Figs. 9b) and 1@b) for the experimental dielectric func-
boloidal bounding surfaces of the metal coating. The fretion for gold and silver, respectively. As in the Cartesian
quency dependencew(q) of the dispersion relations cases of Fig. 6, there are four branchesi=1,2,3,4 cor-
[satisfying Eq.(24)] was obtained by matching them to the responding to the four metal interfaces, two Cartesian and

and rearranging puts EQ30) in the following form:
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sult of an increase in the value of the dielectric functions.
The depolarization effect of large substrate and probe dielec-
tric constantge;=¢>1) are observed to have the effect of
suppressing to zero the two lower frequency modes in Figs. 9
and 10, belonging to the inner curved metal surfiae®) and
lower planar metal surfac@»"), both in direct contact with
the dielectric media. The nature of this suppression is similar
to the redshift in surface plasmon energy experienced by the
simple Cartesian metal-vacuum interface when the vacuum
is replaced by a dielectri® The two higher frequency
modes belonging to the outer curved surface and upper pla-
nar surface only undergo a slight redshift in energy.

As a final limiting case, we consider the following situa-
tion: es—1, a—0, and 6,5 6, (i.e., a curved 2D metallic

3 — m=0 system in vacuum In this limit, ' — wp, ;'—0 as aresult
08 --- m=t of a— 0, and the normal hyperboloidal modxé‘—wp, while
a7 the tangential modes]' approach a 2D plasmon. Here the
S E o o, normal and tangential refer to the field distribution inside the
g e —— foil and correspond to antisymmetric and symmetric polar-
Il @ ization charge distributions, respectively. If we further let
o I - 6,< 6,572, vy becomem degenerate and approach the
/ o™ mode of a Cartesian 2D plasmon. The variation of such a
0.2 mode with the plasmon momentum is kndwo have a
oy Ty T T square-root dependence and is confirmed graphically in our
(b) q simulations by visual inspection and, numencally, by fitting

the function(0.058249+0. 000131q to J.
FIG. 10. Dispersion of surface plasmons in the system of Fig. 1

for (a) a Drude metal andb) experimental dielectric function of
silver. A large redshift of the higher energy modes is observed in the IV. CONCLUSIONS
case of the experimental dielectric function of silver as compared to

the Drude model. The reference energysjs=7.23 eV. In summary, we have presented an exact quasistatic cal-

culation for the dispersion relations of curved metal-
two hyperboloidal. However, in the case of gold, the modeglielectric multilayer structures within the framework of a
of the Cartesian interfaceso],) appear to be blueshifted, local dielectric function. We have demonstrated that, by fol-
whereas those of the curved surfa¢es';) are mostly red- lowing the movements of the loci representing the resonance
shifted in close similarity to the case of Fig. 8 when employ-values of the surface modes of the multilayer system, the
ing the experimental dielectric function. On the other hand| effect of curvature can be studied explicitly without resorting
in the case of silver, the higher energy modes are severelp any geometric approximations.
redshifted. Furthermore, in all Figs. 8-10, a squeezing of the All the dispersion relations for the hyperboloidal cases
modes into the visible region is observed in comparison taonsidered in this work adhere to the fact that at higher plas-
the Drude model. mon momenta, there is little or no variation in the resonance

In a series of limiting considerations in the simulationsvalues. In particular, fog> 4 fixed substrate film thickness
of the results in Eq(24) [such as the following casgsr  and fixed 6,— 6., all the modes converge rapidly to their
a combination theregf e,—1,; a—0,%; 6—0,7/2;  asymptotic values. This would correspond, in the case of Eq.
6.—0,7/2; 6;— 6] we can arrive at several interesting con- (32), to the thick foil limit wheree—-1 (or w— w /\2)
cIu5|0ns regarding the behavior of the dispersion relations ofhus, for fixedq bulk behavior enters faster with mcreasmg
the systemor its subsystemsshown in Fig. 1 as compared coating thickness. For a typical probe coating of 30 nm and
to those of the systertor its subsystemsn Fig. 5. We can  substrate coating of 45 nm, the dispersion relations presented
identify the lowest frequencyw?) and highest frequency in this work suggest the possibility of optical excitation.
(wy) modes in Figs. 9 and 10 to belong to the thin CartesiarGiven an available frequency range of interest, it is possible,
film (symmetric and antisymmetric modes, respectiyely invoking the approach here, to seek the appropriate physical
whereasw3 and »4' correspond to the two surfaces of the parameters for the probe and the involved coatings, and the
curved metal film(symmetric and antisymmetric mode#f choice of the involved metal and dielectric media, including
we, in our simulations, lea— 0 systematically, we note that the gap region. Comparisons of the existence of resonance
wy — wp, whereasw'— 0. The presence of the planar metal frequencies at the typical experimental visible wavelengths
film elevates the energy of the modes of the inner surface 0f=632.8, 515.0, and 442.0 nm incident at anghes46.0°,
the probe. For 6,<6,<m/2, this resembles Otto's 50.0°, and 55.0{corresponding to peak absorptjoran be
geometry’® made from Figs. 8-10.

As another example, we can also simulate the effect of the An experimental verification of this result would entail, in
involved dielectric media. All modes are redshifted as a rethe case of SPM, that the metal-coated probe tip be placed
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within a few nanometers above a metal-coated substrate to

m .\ — pem m __em —
record the exponentially decaying signal in the constant C3(@) = Kq kol (@) = eidq o) = 1]

height mode of the operation, upon which the wavelength . et?n(/-”c) .
can be scanned while monitoring the coupling signal. +Kq (o) ?ﬂ(ﬂ—) - Qq(ka)
q t
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APPENDIX A o
O7(xa) = cothxka A1) 7 120) + el 110)],
The asymptotic form of the defined ratios

KM = Plumual#) 980 taN6= 4P+ 1 QM(xa) = cothral e+ A uo)]. (B2)
o Pl1/24iq(— ) a1 8qtan 6+ 4m? -1
(A1) APPENDIX C
T2+ 1 Uy Ty + Ugo,T.
km(,u,) _ aMP_(1/2)+|q(/-L) _ e—q(w—29)3 - 8qtané d(k,w) = E < In— UqUp 1 + Ugup 2, (C1)
‘ IuPY12)4iq(— M) a1 3+8qtane’ 3 V1V T3+ Uila Ty
(A2)  where
- koa'
KD T1 = UNUs + 0ng22
=1 g (A3)
Kalw)® T, = UpUa? 2 + pyp4e? @)
Equations(Al) and (A2) evaluated a#=m/2
A — k ’
Ki0)=1, KJ(0)=-1, Ogm. (A4) T3 = Uywg + U2,
APPENDIX B T, = Upv €222 + ppUge?e(@td) (c2)

Functionsc'(q) representing the coefficients of the poly- \ith the frequency-dependent functions
nomial (24)

Co (@) = eserhg (1 )[km( ) - M} Ui = €aa(@)ki + €(w)kisg,
0(Q) = €€l (e m 7

&g () v;i = €41(0)K; — g(w)Kiyq,

c(@) = KN u{ €Q(k@) — €M (uo[L + el (o)}

N kan(,uc) GSEt)\g](Mc) g?(/"*c)
831 ()

wz 1/2
ki(k,w) = [kz— ei(w)?] , i=1,... N, (C3

wherei=1 refers to the first medium, whereisN denotes
et(_lm(xa) the last medium. This is equivalent to ]etting t(rmpplari.za-
+Kg(uo) | e = —m—— | tion) reflectance p(k,w) — o for the entire system in Fig. 5,
€q () which results in a transcendental equation for the resonance
modes of the systeri?. When computingC1), the principal

col(q) = k?(/.l,t)[et - €Qq'(ka) - ﬁg“(xa) + e\ g (1e) g (e)] branch of the natural logarithm is selected as the argument is
Qm complex. Equation(C1), in the limit a’ —0, ¢— 1.0 (see
n km(ﬂc){ & g(Ka) _ Eskm(ﬂc)gm(ﬂc)] Fig. 6) describes the dispersion of surface plasmons in the
I 821(,%0 a a Kretschmann configuration, which feg=1.0, &= €(w), and
. {_m & c— (ki—Kk) is given by
+ KMo | QM(ka) - : (B1)
A £q (1) €(w) + cothkd(es+ 1.0 e(w) + €= 0. (CoH
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