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A theoretical discussion is given of the diffuse scattering ofp-polarized electromagnetic waves from a
vacuum-dielectric interface characterized by a one-dimensional disorder in the form of parallel, Gaussian
shaped, dielectric ridges positioned at random on a planar semi-infinite dielectric substrate. The parameters of
the surface roughness are chosen so that the surface is characterized as weakly rough with a low ridge
concentration. The emphasis is on phase coherent features in the speckle pattern of light scattered from the
surface. These features are determined from the intensity-intensity correlation function of the speckle pattern
and are studied as functions of the frequency of light for frequencies near the dielectric frequency resonances
of the ridge material. In the first part of the study, the ridges on the substrate are taken to be identical, made
from either GaAs, NaF, or ZnS. The substrate for all cases is CdS. In a second set of studies, the heights and
widths of the ridges are statistically distributed. The effects of these different types of randomness on the
scattering from the random array of dielectric ridges is determined near the dielectric resonance frequency of
the ridge material. The work presented is an extension of studiesfA. B. McGurn and R. M. Fitzgerald, Phys.
Rev. B 65, 155414s2002dg that originally treated only the differential reflection coefficient of the diffuse
scattering of lightsnot speckle correlation functionsd from a system of identical ridges. The object of the
present work is to demonstrate the effects of the dielectric frequency resonances of the ridge materials on the
phase coherent features found in the speckle patterns of the diffusely scattered light. The dielectric frequency
resonances are shown to enhance the observation of the weak localization of electromagnetic surface waves at
the random interface. The frequencies treated in this work are in the infrared. Previous weak localization
studies have concentrated mainly on the visible and ultraviolet.
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I. INTRODUCTION

During the last three decades the scattering of electromag-
netic waves from weak randomly rough surfaces supporting
surface plasmon polaritons has been a topic of considerable
interest.1–14 In these systems surface plasmon polaritons4 act
as intermediary paths between electromagnetic waves inci-
dent on the surface and scattered waves radiating from the
surface.5–8 This increases multiple scattering processes at the
random surface and enhances the overall diffuse surface
scattering.6 In turn, the participation of surface plasmon po-
laritons allows for the use of surface scattering to probe the
nature of the surface plasmon-polaritons and the effects on
them of surface disorder.4,12 This is of particular interest in
the study of weak localization phenomena arising from the
interaction of surface plasmon polaritons with surface
disorder.12 Weak localization manifests itself in a number of
features observed in the differential reflection coefficient and
speckle correlations of light diffusely scattered from weakly
rough surfaces.

The focus of the discussion in this paper is on weak lo-
calizationsphase coherent multiple scatteringd effects on sur-
face plasmon polaritons and on the electromagnetic radiation
elastically and diffusely scattered from weak randomly rough
surfaces.5–8 It will be shown how these effects, as observed
in the speckle correlation functions for the light scattered
from rough surfaces,15–20 can be enhanced by the resonant
properties sfrequency resonancesd of dielectric materials
forming the surface.21–24 Results will be presented for spe-

cific systems that can be experimentally realized. The discus-
sion given complements previous work on weak localization
effects in the differential reflection coefficients from such
surfaces presented by us in Ref. 21.

Weak localization is observed as a backscattering en-
hancement in the diffuse scattering from bulk random media
or in the diffuse scattering from rough surfaces,2,5–8 arising
from phase coherent multiple scattering processes repre-
sented by maximally crossed diagrams. It is a precursor of
strongsAndersond localization5,6,8,25which occurs when the
backscattering is strong enough to confine excitations to a
bounded region of space.

Since multiply scattered radiation at a random rough sur-
face eventually radiates away from the surface, the localiza-
tion observed in surface scattering is always weak
localization.6,12 The observation of true weak localization
scattering enhancement peakssas distinct from shadowing
enhancement effects which are discussed below6d, however,
requires weakly rough surfaces. These are surfaces on which
the length scale characterizing the roughness perpendicular
to the mean surface is much less than that characterizing the
roughness parallel to the mean surface and than the wave-
length of the radiation. The small surface plasmon-polariton
scattering cross sections generally found on such surfaces
make the observation of weak localization difficult.6 On
strongly rough surfaces a backscattering enhancement can
arise independently of weak localization. This is due to
shadowing.6 sNote: The total backscattering enhancement on
strongly rough surfaces can be a combination of shadowing
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and weak localization effects.6 These, however, are hard to
distinguish from one another.d Shadowing does not involve
phase coherence but comes from the formation of patches of
surface that are weakly illuminated by lightsi.e., regions
covered by shadowsd. This gives rise to backscattering en-
hancement features in the diffuse scattering that are similar
to those due to weak localization.6 Surfaces that allow only
for the observation of weak localization in the scattered ra-
diation must be weakly rough surfaces that scatter radiation
strongly enough so that phase coherent multiple scattering
processes are important. In the following some ideas pro-
posed for the enhancement of strong localization effects in
bulk three-dimensional media are used to facilitate the obser-
vation of weak localization in surface scattering.

Recently, it has been suggested in the context of strong
localization22–24 that phase-coherent cross sections in bulk
three-dimensional media can be enhanced by the presence of
resonant scattering features in the bulk. Waves with frequen-
cies tuned to the resonance of the scattering features will
experience an enhancement of single and, consequently, mul-
tiple scattering effects. These resonant scattering ideas, how-
ever, can also be applied to the observation of weak local-
ization in the scattering from weakly rough surfaces.21

Surfaces composed of resonant dielectric features should ex-
hibit enhancement of weak localization effects near their
resonant frequencies. Examples of such types of dielectric
resonances that can be used are the transverse phonon Rest-
strahlsinfraredd resonances in ionic and semiconducting ma-
terials. A previous theoretical study21 has confirmed the
phase-coherent enhancement in the differential reflection and
transmission coefficients for a randomly rough surface com-
posed of dielectric ridges exhibiting a Reststrahl resonance.
The differential reflection coefficients in Ref. 21 were stud-
ied as functions of the frequency of light increasing up to the
dielectric resonant frequency and the frequency of light de-
creasing to the dielectric resonant frequency. The present pa-
per extends this treatment to consider weak localization ef-
fects in the speckle correlations of light scattered by rough
surfaces. A variety of phase-coherentsweak localizationd ef-
fects in the speckle of scattered light are enhanced by the
Reststrahl resonance and are measured by statistical correla-
tion functionssspeckle correlation functionsd involving aver-
ages of products of the scattered intensity of light from the
surface. Ridge materials used in the studies presented here
are GaAs, NaF, or ZnS. These all have well know Reststrahl
resonances. This is particularly interesting as experimental
studies of weak localization effects have not been made in
the infrared. Following our initial studies presented in Ref.
21, the substrate treated in this paper is CdS. This substrate
material supports surface plasmon polaritons at the dielectric
resonant frequencies of GaAs, NaF, or ZnS ridges.

The speckle correlation function,Csq,kuq8 ,k8d, is the
variance about its mean of the relative intensity of diffusely
scattered light, Isqukd.14–20,26–31 Formally, Csq,kuq8 ,k8d
=kIsqukdIsq8 uk8dl−kIsqukdlkIsq8 uk8dl whereIsq,kd is the in-
cident intensity of light with wave vector component,k, par-
allel to the mean surface divided into the scattered light in-
tensity with wave vector component,q, parallel to the mean
surface, and the angular bracketsk l denote an average over
the surface roughness. Generally, the speckle correlation

function is measured between two different sets of scattering
fi.e., sq,kd and sq8 ,k8dg from the rough surface. These are
separately defined for a pair of incidentsi.e.,k, k8d and a pair
of scattering directionssi.e., q, q8d. The correlation function
measures the statistical correlation of the bright and dark
features in the diffusely scattered light arising from the two
distinct scattering processes. A high degree of correlation
implies an increased similarity in the intensity patterns of the
two scattering processes being correlated. Phase coherent
multiple scattering processes associated with the occurrence
of weak localization, generally, are found to enhance the de-
gree of correlation and hence pattern similarity between two
speckle intensity patterns.14–20,24,26–31

While the diffuse scattering cross section is proportional
to the two-particle surface plasmon-polariton Green’s func-
tion, the speckle correlation function is related to a four-
particle surface plasmon-polariton Green’s
function.14–20,24,26–31The four-particle Green’s function is
formed from the product of the pair of two-particle Green’s
functions describing the two different diffuse scattering pro-
cesses being correlated. It has been shown18,19,26–31that the
speckle correlation function is a sum of successively higher
order contributions in a perturbation expansion in terms of
the surface roughness. The contributions toCsq,kuq8 ,k8d are
denotedCs1dsq,kuq8 ,k8d, Cs10dsq,kuq8 ,k8d, Cs1.5dsq,kuq8 ,k8d,
Cs2dsq,kuq8 ,k8d, and Cs3dsq,kuq8 ,k8d so thatC=Cs1d+Cs10d

+Cs1.5d+Cs2d+Cs3d.18,19 The most prominent of these contri-
butions are theCs1d ssee Ref. 20d andCs10d ssee Ref. 19d short
range correlations. These both occur in the lowest order of
the perturbation expansion. TheCs1d term contains the impor-
tant phase coherent effects, known as the memory and time-
reversed memory peaks.18,19,27–29,31 The presence of the
memory peaksi.e., a peak atk=k8d results from the high
degree of correlation in the speckle intensities that arises
from light traveling on nearly identical scattering paths. The
time-reversed memory peaksi.e., a peak atq=−k8d accounts
for the high correlation that exists between light traveling on
a given scattering path and light traveling in a time-reversed
manner along the same path. Other contributions are the me-
dium and long range correlations denoted byCs1.5d and
Cs2d,14,18,19,26–31respectively. These higher order terms con-
tain peaks arising from geometric effects in momentum
space and from the poles of the surface plasmon-polariton
single particle Green’s functions, not from phase-coherent
processes. Finally, the infinite range termCs3d is a smoothly
varying function of the incident and scattering directions.
The primary interest in this paper is in the short rangeCs1d

and Cs10d contributions. These are the dominant features of
the speckle correlation function and contain the phase-
coherent effects. For completeness and comparison results
for Cs1.5d, Cs2d, andCs3d are also given.

The model considered in the first set of studies presented
in this paper involves a surface exhibiting one-dimensional
disorder in the form of parallel, Gaussian shaped, dielectric
ridges positioned at random on a planar semi-infinite dielec-
tric substrate surface.21 The number of ridges per unit length
of the interface is chosen to be small enough that there is
only a small possibility of overlapping between the ridges.
The ridges are identical and made from either GaAs, NaF, or
ZnS, while the substrate material is always CdS. The differ-
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ential reflection and transmission coefficients of the diffuse
scattering for these systems were presented in Ref. 21. In this
paper the contributions to the speckle correlation functions
for the diffuse scattering computed as functions of the ridge
concentration are presented.

In a second set of studies, the ridges are no longer taken
to be identical. In addition to their positions on the surface,
the ridge widths and heights are statistically distributed. The
sensitivity of the speckle correlation function to parameters
characterizing this statistical distribution is determined. The
shape of the peaks in the correlation function is related to the
average and the standard deviation of the width and height
distributions. In addition, for these types of systemssnot
treated in Ref. 21d a study is presented of the effects of the
statistical distribution of ridge properties on the differential
reflection coefficients. The widths and heights of the en-
hanced backscattering peaks are related to the average and
standard deviation of the width and height distributions for
the ridges.

The calculation of the correlation functions and differen-
tial reflection coefficients of the diffuse scattering is done
using diagrammatic techniques.6,12,18,19,21Maxwell equations
are solved for a single ridge to leading order in terms of its
height and width, obtaining the electromagnetic scattering
potential of the ridge. This potential is generalized to de-
scribe the scattering from a surface with a low concentration
of randomly placed ridges. Using this, the speckle correla-
tion functions and differential reflection coefficients are ex-
pressed in terms of ladder and maximally crossed diagrams,
giving the multiple scattering contribution from the random
array of ridges at the surface. These are used to compute both
the two and four-particle Green’s functions. For the case in
which the ridge widths and heights are statistically distrib-
uted, the diffuse scattering and the speckle correlation func-
tion are averaged over both the ensemble of realizations of
the array of ridges along the surface and the statistical prop-
erties of the individual ridge widths and heights.

II. MODEL AND SPECKLE CORRELATION FUNCTION:
IDENTICAL SET OF RIDGES

In this section, a brief description of the rough surface is
given. This is followed by a treatment of the speckle corre-
lation functions for the diffusely scattered light from the sur-
face. The model of the scattering surface is that used in Ref.
21 to discuss resonance effects on the differential reflection
coefficient.

The random surface consists of an array of parallel Gauss-
ian cylinder shaped dielectric ridges of dielectric constante1
that are randomly placed on a semi-infinite substrate of di-
electric constante0. The surface of the substrate is located at
thex3=0 plane with the substrate in the regionx3,0. On the
substrate is the array of Gaussian ridges and above the ran-
dom surface formed by the array of Gaussian ridges is
vacuum. Thex3 axis is perpendicular to the substrate surface,
the x2 axis is parallel to the axes of the ridges, and the
x1-x3 plane is the scattering plane. The average number of
ridges per unit length on thex1 axis is such that the likeli-
hood of a strong overlap between two ridges is small, and the

positions of the ridges on the substrate surface are uncorre-
lated. The surface profile functionx3=zsx1d of the upper sur-
face of the Gaussian ridges is

zsx1d = Ao
j

e−ssx1 − x1jd/Rd2, s1d

whereA, R, andx1j are parameters characterizing the height,
width, and center position of thej th ridge.

For the results presented below the substrate material is
CdS while the ridge material is either GaAs, NaF, or ZnS. All
of these materials exhibit a characteristic Reststrahl reso-
nance at their transverse phonon frequencies. The general
form of the dielectric constant in the neighborhood of this
resonance is

esvd = e`

vL
2 − v2 − i

v

t

vT
2 − v2 − i

v

t

, s2d

wheree`, vL, vT, andt are constants characterizing the ma-
terial. sThe reader is referred to Ref. 21 for the values of
these constants.d The ridge materials have been chosen to
have dielectric resonances at frequencies for which CdS has
a dielectric constant less than −1. Under these conditions
surface plasmon polaritons exist on the CdS-vacuum inter-
face.

The surface plasmon polaritons are scattered on the inter-
face by the randomly positioned ridges. This surface scatter-
ing is enhanced for surface plasmon polaritons with frequen-
cies near the dielectric resonance of the ridge materials. This
increases the importance of phase-coherent multiple scatter-
ing effects at the surface. In addition, near the dielectric reso-
nance frequency, the coupling between the surface plasmon
polaritons and bulk electromagnetic modes above and below
the surface is increased.

In our scattering geometry, the surface is illuminated by a
p-polarized electromagnetic plane wave incident from
vacuum. The scattering amplitude is obtained by applying
electromagnetic boundary conditions to the solutions of the
Maxwell equations above the surface, inside the ridges, and
in the substrate material. In doing this the validity of the
Rayleigh hypothesis is assumed.6,12,21 The general form of
the x2 component of the magnetic field is21

H2
vacsx1,x3d = eikx1−ia0sk,vdx3 +E dq

2p
Rsqukdeiqx1+ia0sq,vdx3

s3d

for x3.zsx1d,

H2
ridsx1,x3d =E dq

2p
fAsqukdeiqx1+ia1sq,vdx3

+ Bsqukdeiqx1−ia1sq,vdx3g s4d

for 0,x3øzsx1d, and
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H2
subsx1,x3d =E dq

2p
Ssqukdeiqx1−iasq,vdx3 s5d

for x3ø0. Following Ref. 21, the horizontal components of
the incident and scattered wave vectors are denoted byk and
q, respectively, and the vertical wave vector components in
the three regions area0sp,vd=Îsv /cd2−p2, a1sp,vd
=Îe1svdsv /cd2−p2, andasp,vd=Îe0svdsv /cd2−p2. In Eqs.
s3d–s5d the real and imaginary parts ofa0, a1, and a are
positive.

By matching boundary conditions, the scattering ampli-
tudeRsqukd is found to be of the form21

Rsqukd = 2pdsq − kdR0sk,vd − 2iG0sq,vd

3TsqukdG0sk,vda0sk,vd. s6d

In Eq. s6d

R0sk,vd =
e0svda0sk,vd − ask,vd
e0svda0sk,vd + ask,vd

s7d

is the Fresnel coefficient for the reflection ofp-polarized
light at a flat dielectric surface, and

G0sk,vd =
ie0

e0a0sk,vd + ask,vd
s8d

is the single-particle surface plasmon-polariton Green’s func-
tion for a flat surface. The scattering matrixTsqukd is a so-
lution of4–8

Tsqukd = Vsqukd +E dp

2p
VsqupdG0spdTspukd, s9d

where Vsqukd is the scattering potential, given to leading
order in the Fourier transform of the surface profile function,

ẑspd=edx1zsx1dexps−ipx1d, by

Vsqukd <
e1 − 1

e1e0
2 fe0

2qk− e1asqdaskdgẑsq − kd. s10d

A useful function to consider in our formulation is the
Green’s function,Gsqukd, for surface plasmon polaritons on
the random interface. It is defined in terms of theT matrix of
Eq. s9d by21

Gsqukd = 2pdsq − kdG0skd + G0sqdTsqukdG0skd s11d

and can be studied by standard diagrammatic techniques. In
addition, using Eqs.s6d and s11d both the differential reflec-
tion coefficients and speckle correlation functions can be
written in terms ofGsqukd.

The scattering efficiency,Isqukd, is defined as the ratio of
the x3 component of the outgoing Poynting vector to thex3
component of the incoming Poynting vector5,12,21 above the
randomly rough interface. For the diffuse scattering from the
rough interface

Isqukd =
1

2pL

a0sqd
a0skd

uRsqukdu2 =
2

pL
a0sqda0skduGsqukdu2,

s12d

whereL is the length in thex1 direction of the surface. The
differential reflection coefficient,dRe/dus, is obtained by av-
eraging the scattering efficiency over the rough interface so
that21

dRe

dus
squkd = kIsqukdl

dq

dus
=

2

pL
a0

2sqda0skdkuGsqukdu2l.

s13d

The two-particle Green’s function,kuGsqukdu2l, containing
the physics in Eq.s13d is obtained as the solution of a Bethe-
Salpeter equation that is discussed below.

The speckle correlation function,Csq,kuq8 ,k8d, is
defined18,19 as

Csq,kuq8,k8d = kIsqukdIsq8uk8dl − kIsqukdlkIsq8uk8dl s14d

so that from Eqs.s6d, s11d, s12d, ands14d:

Csq,kuq8,k8d = S 2

pL
D2

a0sqda0skda0sq8da0sk8d

3 fkuGsqukdu2uGsq8uk8du2l

− kuGsqukdu2lkuGsq8uk8du2lg s15d

for diffuse scattering. Making the factorization approxi-
mation18–20

kuGsqukdu2uGsq8uk8du2l

< kuGsqukdu2lkuGsq8uk8du2l + kG*squkdGsq8uk8dl

3kGsqukdG*sq8uk8dl + kG*squkdG*sq8uk8dl

3kGsqukdGsq8uk8dl, s16d

Csq,kuq8,k8d = Fsq,kuq8,k8dfkG*squkdGsq8uk8dl

3kGsqukdG*sq8uk8dl + kG*squkdG*sq8uk8dl

3kGsqukdGsq8uk8dlg, s17d

where

Fsq,kuq8,k8d = S 2

pL
D2

a0sqda0skda0sq8da0sk8d. s18d

fNote: Equations16d is sufficient to treat the dominant fea-
tures of the diffuse scattering in our model, and the phase
coherent properties of the speckle correlation function for
weakly rough surfaces are reasonably well given. Section V
gives addition discussion of these points.g We now turn to a
discussion of the two-particle Green’s functions occurring in
Eqs.s13d and s17d.

The averages on the right-hand sides of Eqs.s13d, s16d,
and s17d are solutions of the Bethe-Salpeter
equations5,12,18,19,21
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kG*squkdGsq8uk8dl = 2pdsq − kdG*skd2pdsq8 − k8dGsk8d

+ G*sqdGsq8d

3E dr

2p
E ds

2p
kGsq,r uq8,sdl

3kG*sr ukdGssuk8dl, s19d

kGsqukdGsq8uk8dl = 2pdsq − kdGskd2pdsq8 − k8dGsk8d

+ GsqdGsq8d E dr

2p
E ds

2p
kG̃sq,r uq8,sdl

3kGsr ukdGssuk8dl. s20d

Here kGsqukdl=2pdsq−kdGskd while kGsq,r up,sdl and

kG̃sq,r up,sdl are appropriate irreducible four vertex func-

tions. To the lowest order inẑ4–7

kGsq,r up,sdl < kV*squrdVspusdl − kV*squrdlkVspusdl,

kG̃sq,r up,sdl < kVsqurdVspusdl − kVsqurdlkVspusdl. s21d

so that Eq.s10d gives

kGsq,r up,sdl < v*squrdvspusdfkẑ*sq − rdẑsp − sdl

− kẑ*sq − rdlkẑsp − sdlg,

kG̃sq,r up,sdl < vsqurdvspusdfkẑsq − rdẑsp − sdl

− kẑsq − rdlkẑsp − sdlg, s22d

where

vsqukd =
e1 − 1

e1e0
2 fe0

2qk− e1asqdaskdg. s23d

To compute the irreducible four vertex functions in Eqs.
s21d and s22d, the Fourier transform of the surface profile
function is needed. This is obtained21 by discretizing thex1
axis and taking the Gaussian ridges to be centered at the
vertices of the one-dimensional lattice given byx1n=nDx for
n running over the integers. For this discretizationDx!R.
Denotingcn as the occupation index of vertexn, cn=1 if a
ridge is centered atnDx andcn=0 otherwise. Upon averag-
ing over the surfacekcnl=kcn

2l=cav, and the average number
of ridges per unit length isN=cav /Dx. The Fourier transform
of the profile function is

ẑspd = ÎpARe−p2R2/4o
n

cne
−inpDx. s24d

From Eqs.s22d–s24d the average irreducible four vertex
function kGl to lowest order becomes

kGsq,r up,sdl = 2pdsq − r − p + sdG0sq,r up,sd s25d

with

G0sq,r up,sd <
p

Dx
scav − cav

2 dv*squrdvspusdA2R2e−sq − rd2sR2/2d.

s26d

Similarly kG̃l to lowest order becomes

kG̃sq,r up,sdl = 2pdsq − r + p − sdG̃0sq,r up,sd s27d

with

G̃0sq,r up,sd <
p

Dx
scav − cav

2 dvsqurdvspusdA2R2e−sq − rd2sR2/2d.

s28d

For a discussion of weak localization effects in the
speckle correlation functions the lowest order four vertex
function in Eqs.s25d and s26d must be modified to include
additional higher order terms in the scattering potential.
These are needed to obtain a more complete set of phase
coherent scattering processes, responsible for the so-called
time-reversed memory effects. In addition to the lowest order
term in kGsq,r up,sdl in Eq. s26d it is necessary to include at
least the lowest maximally crossed diagrammatic contribu-
tion to the irreducible four vertex. This is given by

G0
addsq,r up,sd =E du

2p
G0sq,q + s− uuu,sdG*sq + s

− udGsudG0sq + s− u,r up,ud. s29d

With the inclusion of the process in Eq.s29d, kGsq,r up,sdl
becomes

kGsq,r up,sdl < 2pdsq − r − p + sdfG0sq,r up,sd

+ G0
addsq,r up,sdg. s30d

sNote: A similar set of maximally crossed contributions to

the irreducible four vertexkG̃sq,r up,sdl does not lead to in-
teresting phase coherent effects and is not treated here.d For
the discussion of weak localization presented below, the ir-
reducible four vertex functionkGl is given by Eqs.s25d and

s30d and the irreducible four vertex functionkG̃l is given by
Eqs.s27d and s28d.

The average single-particle Green’s functionGskd in Eqs.
s19d, s20d, ands29d is given by5,12,18,19,21

Gskd =
1

G0
−1skd − Sskd

, s31d

whereSskd is the self-energy correction. We computeSskd,
in the coherent potential approximation,5,12,18,19,21as the so-
lution of the self-consistent integral equation

Sskd = V0skd +E dp

2p

G̃0sp,kup,kd
G0

−1spd − Sspd
s32d

whereV0skd=ÎpcavAR/Dxvskukd. Equations32d is solved by
iteration, usingSskd<V0skd as the lowest order approxima-
tion.
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III. RESULTS FOR IDENTICAL RIDGES

The Bethe-Salpeter Eqs.s19d and s20d are solved using
the method in Refs. 5, 12, 18, 19, and 21. ForCs1d, however,
we retain only contributions of the first two ladder diagrams
and the lowest maximally crossed diagram and forCs10d only
the lowest order ladder diagram. In terms of the surface
roughness,Cs1d andCs10d are both of orderz4L2. The speckle
correlation function within this approximation is written
as18,19

Csq,kuq8,k8d < Cs1dsq,kuq8,k8d + Cs10dsq,kuq8,k8d, s33d

where

Cs1dsq,kuq8,k8d = 2pLdsq − k − q8 + k8dC0
s1dsq,kuq8,k8d,

s34d

Cs10dsq,kuq8,k8d = 2pLdsq − k + q8 − k8dC0
s10dsq,kuq8,k8d,

s35d

with envelop functions

C0
s1dsq,kuq8,k8d = Hsq,kuq8,k8duL̂sq,kuq8,k8du2, s36d

C0
s10dsq,kuq8,k8d = Hsq,kuq8,k8duG̃0sq,kuq8,k8du2. s37d

In Eqs.s36d and s37d

Hsq,kuq8,k8d = Fsq,kuq8,k8duGsqdGskdGsq8dGsk8du2,

s38d

where

Fsq,kuq8,k8d = s2/pLd2sv/cd4 cosus cosui cosus8 cosui8.

In Eq. s36d L̂ is given by18,19

L̂sq,kuq8,k8d = G0sq,kuq8,k8d +E ds

2p
G0sq,q − q8 + suq8,sd

3G*sq − q8 + sdGssdG0sq − q8 + s,kus,k8d

+E ds

2p
G0sq,q + k8 − sus,k8dG*sq + k8

− sdGssdG0sq + k8 − s,kuq8,sd, s39d

whereG0sq,r up,sd is defined in Eq.s26d. The first and sec-
ond terms on the right hand side of Eq.s39d are the first two
ladder diagram contributions to the reducible four vertex of
the kG*Gl two-particle Green’s function. The memory effect
arises from the ladder diagram of the second term. The third
term on the right hand side of Eq.s39d is the maximally
crossed contribution to thekGl irreducible four vertex. This
was discussed in Eqs.s29d ands30d and is responsible for the
time-reversed memory effects.

From Eqs.s34d and s35d it is seen that theCs1d andCs10d

contributions to the correlation function are non zero only for
q−k−q8+k8=0 and q−k+q8−k8=0, respectively. These
conditions onq, q8, k, k8 are satisfied in the plots of the
envelop functionsC0

s1dsq,kuq8 ,k8d andC0
s10dsq,kuq8 ,k8d pre-

sented below. To facilitate the discussions, the horizontal

components of the wavevectorssq, k, q8, andk8d are written
in terms of the angles of incidencesui ,ui8d and scattering
sus,us8d where

k =
v

c
sinui, q =

v

c
sinus,

k8 =
v

c
sinui8, q8 =

v

c
sinus8. s40d

The components of the speckle correlation function are then
given in terms of the angle variables in Eq.s40d. Due to the
constraints on the sets of incident and scattered wave vectors,
fixing two anglessi.e., ui and usd allows us to study the
nonzero envelope functionsC0

s1dsq,kuq8 ,k8d sfor which q
−k−q8+k8=0d and C0

s10dsq,kuq8 ,k8d sfor which q−k+q8
−k8=0d as functions of a third anglesi.e., us8d. For a com-
parison of the speckle correlation functions with the differ-
ential reflection coefficients in Ref. 21, the parameters char-
acterizing the rough surface are taken to be the same as those
in Ref. 21. Specifically, the interface is characterized by
svT

ridge/cdDx=0.1, svT
ridge/cdA=0.05, svT

ridge/cdR=1.0, and
the average occupancy numbercav=0.001.

Plots of C0
s1dsq,kuq8 ,k8d and C0

s10dsq,kuq8 ,k8d for rough
surface geometries formed from GaAs, NaF, or ZnS on a
CdS substrate are presented, respectively, in Figs. 1 and 2 for
a selection of frequencies of light in the neighborhood of the
resonance frequency of the dielectric material of the ridges.
For these plots we have takenui =20° andus=−10° fixed,
allowing us8 to run from −90° to 90°.sThis angular param-
eterization facilitates comparison with results published on
other systems.18,19d TheCs1d andCs10d terms are the two larg-
est contributions to the speckle correlation function and are
both of the same magnitude for a given frequency of light.
Of the two, onlyC0

s1dsq,kuq8 ,k8d contains weak localization
effects. These are found as two peaks in the angular plot of
Cs1d occurring atus8=−10° andus8=−20°. These peaks are
known, respectively, as the memory effect and time-reversed
memory effect peaks and are clearly seen in the systems of
GaAs and NaF ridges. For the system of ZnS ridges the two
peaks overlap to form one as the dielectric resonance fre-
quency is approached from below. Above the dielectric reso-
nance frequency the ZnS ridges exhibit a single peak formed
from the overlap of the memory and time-reversed memory
peaks. In the plots presented in Figs. 1 and 2 curves are
shown for different frequencies approaching the resonant fre-
quencysi.e., v=vT of the ridge materiald both from above
and below. The areas under the curves are each normalized to
unity so that, for curves generated at different frequencies,
the relative importance of features associated with weak lo-
calization can be compared to the general diffuse correla-
tions. The localization effects are seen to be enhanced as the
resonant frequency is approached, being significant only in
the immediate neighborhood of the resonant frequency of the
ridge material. The frequency intervals, centered about the
resonant frequency, over which the weak localization peaks
in Cs1d are observable are similar to those for the weak lo-
calization peaks in the differential reflection coefficients ob-
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served in Ref. 21. Consequently, Fig. 1 indicates the useful-
ness of the dielectric resonance for the observation of weak
localization in speckle correlations in addition to the general
diffuse scattering cross sections. There are no weak localiza-
tion features inC0

s10dsq,kuq8 ,k8d, and Fig. 2 is presented for
completeness and comparison withC0

s1dsq,kuq8 ,k8d.
Each of the three ridge materials treated in Fig. 1 is char-

acterized by a range of frequencies over which the weak
localization effectssmemory effect from the second ladder
term and time-reversed memory effect from the maximally
crossed termd are significant compared to those of the slowly
varying backgroundsfirst ladder termd contribution. To quan-
tify this range, the ratio of the amplitudes of the phase-

coherent peaks to the background contribution as a function
of frequency is estimated. Specifically, the absolute value of
the ratio of the contributions toLsq,kuq8 ,k8d from the first
ladder diagram divided into the sum of the contributions of
the second ladder and first maximally crossed diagrams at
us8=−10° for the memory effect peak and atus8=−20° for the
time-reversed memory effect peak is studied. This gives a
reasonable indication of the relative importance of the phase
coherent and non phase coherent contributions toCs1d

3sq,kuq8 ,k8d. Results of this ratio for the memory effect and
time-reversed memory effect are presented in Fig. 3 as func-
tions ofv /vT

ridge. sNote: The results in Fig. 3 for the memory
effect and time-reversed memory effect cannot be distin-

FIG. 1. Plot ofCs1dsq,kuq8 ,k8d vs us8 for ui =20° andus=−10°. Results are shown forsad GaAs forv /vT
GaAs=0.968, 0.972, 0.976, 0.980,

0.984, 0.988sbottom to top between scattering angles of −30° and 0°d; sbd GaAs forv /vT
GaAs=1.010, 1.012, 1.014, 1.016, 1.018, 1.020stop

to bottom at the two localization peaksd; scd NaF for v /vT
NaF=0.968, 0.972, 0.976, 0.980, 0.984, 0.988sbottom to top between scattering

angles of −30° and 0°d; sdd NaF for v /vT
NaF=1.02, 1.03, 1.04, 1.05, 1.06sbottom to top at the two localization peaksd; sed ZnS for

v /vT
ZnS=0.956, 0.960, 0.964, 0.968, 0.972, 0.976, 0.980sbottom to top between scattering angles of −30° and 0°d; sfd ZnS for v /vT

ZnS

=1.020, 1.018, 1.016, 1.014, 1.012sbottom to top between −30° and 0°d. All curves have been normalized to have unit area under the curve,
andCs1dsq,kuq8 ,k8d is non-zero for −90°øus8ø28.97°. The resonance frequency isv /vT

ridge=1.0.
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guished on the scale of the figure.d Curves are shown for
each of the ridge materials in Figs. 1 and 2. In general, weak
localization peaks are easily observable for frequencies
within ±5% of vT

ridge. In the case of ZnS, the results in Fig. 3
are distorted due to the overlapping of the two enhancement
peaks.

The above considerations are for interfaces formed from
identical ridges. It is interesting to generalize these to treat
interfaces of ridges that have a statistical distribution of
widths and heights. The weak localization effects in such
systems depend on the statistical properties of the width and
height distributions characterizing the ridges on the interface.

IV. RESULTS FOR RANDOMLY SHAPED RIDGES

In this section the light scattered from an interface of
Gaussian ridges of identical dielectric medium but character-
ized by random height and width parameters is studied. As in
the previous section the axes of the ridges are parallel and
are randomly placed with a low ridge covering concentration

on the semi-infinite CdS substrate. The dielectric material of
the ridges differs from that of the semi-infinite substrate. The
ith ridge on the interface is characterized byAi andRi height
and width parameters, and thehAij and hRij for the ridges
along the interface are statistically independent random vari-
ables. The leading order effects of each of these types of
interface disorder on the speckle correlations are determined.

The averages in Eqs.s17d–s22d for the speckle correlation
function now involve the parametersAi and Ri associated
with the individual ridges as well as the positions of the
ridges on the interface. As a consequence, the background
and weak localization contributions to the speckle correlation
functions can be obtained by making some changes in the
formulation in Secs. II and III. This is done by changing the
irreducible four vertices and the Green’s function self-energy
in Secs. II and III to take into account the averages overAi
andRi. The vertexG0sq,r up,sd in Eq. s26d is replaced by

G0sq,r up,sd <
p

Dx
cavv

*squrdvspusdfkAi
2Ri

2e−sq − rd2Ri
2/2lr

− cavkAiRie
−sq − rd2Ri

2/4lr
2g

<
p

Dx
cavv

*squrdvspusdkAi
2Ri

2e−sq − rd2Ri
2/2lr

s41d

where k lr denotes an average over theAi and Ri and

G̃0sq,r up,sd in Eq. s28d is replaced by

G̃0sq,r up,sd <
p

Dx
cavvsqurdvspusdfkAi

2Ri
2e−sq − rd2Ri

2/2lr

− cavkAiRie
−sq − rd2Ri

2/4lr
2g

<
p

Dx
cavvsqurdvspusdkAi

2Ri
2e−sq − rd2Ri

2/2lr .

s42d

FIG. 2. Plot of Cs10dsq,kuq8 ,k8d vs us8 for ui =20° and us=
−10°. Results are presented forsad GaAs at the frequencies in Fig.
1sad slower bundle of six curves between scattering angles of 0° and
30°d and in Fig. 1sbd supper bundle of six curves between scattering
angles of 0° and 30°d and sbd ZnS at the frequencies in Fig. 1sed
slower bundle of seven curves between scattering angles of 0° and
30°d and the remaining five curves are at the frequencies of Fig.
1sfd. The ordering within each bundle is the same as in Fig. 1. All
curves have been normalized to have unit area under the curve, and
Cs10dsq,kuq8 ,k8d is non-zero for −28.97°øus8ø90°. Note: A simi-
lar relationship betweenCs1d andCs10d to those found for GaAs and
ZnS exists for NaF, but for brevity plots ofCs10d for NaF have been
omitted here.

FIG. 3. Plot of the absolute value of the ratio of the first ladder
diagram divided into the sum of the contributions of the second
ladder and first maximally crossed diagrams for the weak localiza-
tion peaks versusv /vT

ridge. Plots are shown forus8=−10° smemory
effectd and us8=−20° stime-reversed memory effectd where the re-
sults for the memory effect and time-reversed memory effect cannot
be distinguished on the scale of the plot. For these plotsui =20° and
us=−10°. The results forus8=−10° andus8=−20° cannot be distin-
guished on the scale of the plot. Curves are labeled for the various
ridge materials.
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The Green’s function self-energy in Eq.s31d, modified for
distributed Ai and Ri, is obtained from Eq.s32d taking
V0skd=ÎpcavskAiRilr /Dxdvskukd and using Eq. s42d for

G̃0sp,kup,kd. For the plots in this section, the Green’s func-
tion self-energy corrections due to surface scattering are ex-
tremely small and the plasmon-polariton lifetimes are domi-
nated by dielectric losses. As a result, the widths of the weak
localization peaksffrom Eqs.s36d ands39dg, which are set by
the Green’s function lifetimes, are overwhelmingly deter-
mined by the imaginary parts of the dielectric constants. The
primary effects ofAi andRi on the speckle correlation func-
tions then arise from the reducible four vertex functions of
Eqs.s19d, s20d, s25d, s27d, s28d, ands30d with Eqs.s41d and
s42d.

The statistical averagekAi
2Ri

2e−sr −sd2Ri
2/2lr is needed to

evaluate the irreducible four vertex terms in Eqs.s41d and
s42d. For Ai andRi statistically independent variables

kAi
2Ri

2e−sr − sd2Ri
2/2lr = kAi

2lrkRi
2e−sr − sd2Ri

2/2lr , s43d

so that the wave vector dependence enters through the sec-
ond factor on the right-hand side. The leading order effects
of height variations are wave vector independent, contribut-
ing a renormalization of the overall scattering intensity of
various multiple scattering process while affecting their an-
gular distribution to a lesser extent. For our case, in which
the Green’s function lifetimes are dominated by the imagi-
nary part of the dielectric constants, Eqs.s29d–s39d ands41d–
s43d give a simple dependence ofCs1dsq,kuq8 ,k8d and
Cs10dsq,kuq8 ,k8d on kAi

2lr. To leading order in the perturba-
tion theory,Cs1dsq,kuq8 ,k8d andCs10dsq,kuq8 ,k8d are propor-
tional to skAi

2lrd2 while the higher order weak localization
terms in Cs1dsq,kuq8 ,k8d first enter in orderskAi

2lrd3. This
indicates that increasingkAi

2lr facilitates the observation of
weak localization. For the opposite casesnot treated hered, in
which the Green’s function surface scattering self-energy
corrections dominate over lifetime effects from the imagi-
nary part of the dielectric constants, the localization effects
are of orderskAi

2lrd2. In this limit adjusting the height statis-
tics has little affect on the observation of weak localization.

The dependence of the bracketed term in Eq.s43d on Ri is

more complicated than that onAi. AveragingRi
2e−sr −sd2Ri

2/2

over Ri produces a function ofsr −sd2 that is not a simple
Gaussian. For example, for a mean valuekRil=R a Gaussian
distribution of the form f1/s2pd1/2sgexpf−sRi −Rd2/2s2g
gives

kRi
2e−q2Ri

2/2lr =
s2

s1 + s2q2d3/2F1 +
1

1 + s2q2

R2

s2G
3expF−

q2R2

2

1

1 + s2q2G s44d

while a Poisson distribution of the forms1/Rdexps−Ri /Rd
gives

kRi
2e−q2Ri

2/2lr =
1

2Ruqu3on=0

`
1

n!

s− 1dn

suquRdnGSn + 3

2
D . s45d

In the following we will concentrate on the more complexRi
dependence, only briefly mentioning some effects of a distri-
bution of Ai. In the numerical illustrations we will focus on
the Gaussian distribution in Eq.s44d.

Before discussing the speckle correlation function for a
system of ridges of random widths and heights it is necessary
to determine the differential reflection coefficient of the sur-
face. The differential reflection coefficient results presented
in Ref. 21 were for systems of identical ridges, but can be
modified to handle the case of a distribution of ridge widths
and heights. This is accomplished by making the same vertex
and Green’s function replacements as are made in the expres-
sions for the speckle correlation functions. An outline of the
required changes is given below. To shorten the presentation
below, only an interface of GaAs ridges on the CdS substrate
will be studied.

The differential reflection coefficient for the diffuse scat-
tering is given by12,21

dRe

dus
squkddif f =

2

p
a0

2sqda0skduGsqdu2uGskdu2tstdsqukd, s46d

wheretstdsqukd is the reducible four vertex function. In the
approximation that the reducible four vertex function is from
the first two ladder diagrams and the lowest maximally
crossed diagram and that the Green’s function is obtained
using the method discussed below Eqs.s41d and s42d:21

tstdsqukd = G0sq,kuq,kd +E ds

2p
G0sq,suq,sduGssdu2G0ss,kus,kd

+E ds

2p
G0sq,q + k − sus,kdG*sq + k − sd

3GssdG0sq + k − s,kuq,sd. s47d

The differential reflection coefficient of the GaAsuCdS in-
terface then follows from Eqs.s41d, s42d, s46d, ands47d. For
simplicity, in our discussions below, the parametersAi =A so
thatkAi

2lr =A2, and Eq.s44d is used to treat the randomness of
Ri. The geometry of the interface for both the differential
reflection coefficient results and the subsequent discussions
in this section of the speckle correlation function is given by
svT

GaAs/cdA=0.05, svT
GaAs/cdkRilr =1.0, and svT

GaAs/cdDx
=0.1 whilecav=0.001. Results for the differential reflection
coefficient and speckle correlation function near the dielec-
tric resonance frequency are studied as a function of the rms,
s, of the distribution ofRi.

The effects of a statistical distribution of ridge widths and
heights on the differential reflection coefficient are computed
for svT

GaAs/cds ranging from 0.0 to 0.5 at a fixed frequency
of light that is slightly below the dielectric resonance fre-
quency. In Fig. 4 plots are presented of the differential re-
flection coefficient of the GaAsuCdS interface as a func-
tion of us for ui =10° with v /vT

GaAs=0.988. The curves have
been normalized so that the area under each curve for
−90°øusø90° is unity. This facilitates the comparison of
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the enhancement peaks with the background contributions.
As our focus is on the weak localization effects, the scatter-
ing angleus has been limited to the interval −25° and 5°
centered about theus=−10° localization peak. It is seen from
Fig. 4 that increasings gradually washes out the backscatter-
ing sweak localizationd peak. At svT

GaAs/cds=0.4 the en-
hancement is essentially a shoulder on the diffuse scattering.
On the other hand, increasingA, as per our discussions
above, accentuates the backscattering peak. The width of the
backscattering peak, which is determined primarily by the
imaginary part of the dielectric constant of the CdS substrate,
is little affected bys.

The correlation functions for the random interface are ob-
tained from Eqs.s34d–s39d together withs41d and s42d. In
Fig. 5Cs1d vs us8 is presented for the system studied in Fig. 4.
Only theCs1d correlations are given as these contain the weak
localization effects. In Fig. 5 results forCs1d for svT

GaAs/cds
between 0.0 and 0.5 are shown computed forui =20° and
us=−10° fixed, allowingus8 to run from −45° to 0°. This
region of us8 includes the weak localization peaks atus8=
−10° smemoryd and us8=−20° stime-reversed memoryd.
These have the same widths as the weak localization peaks in

the differential reflection coefficients of Fig. 4 and are pri-
marily determined by the imaginary part of the CdS dielec-
tric constant. Increasings washes out the phase coherent
peaks in the speckle correlation function and increases the
peak widths. The variation in the geometric features charac-
terized by the ridge width parameter tends to disrupt the
phase coherence in the net scattering from the random inter-
face while increasingA enhances ridge scattering and tends
to accentuate the peaks of the phase coherent scattering. The
curves in Fig. 5 are all normalized to enclose unit area over
the interval −90°øus8ø90°. This has been done as we are
interested in the relative contrast between the weak localiza-
tion contributions to the speckle correlation functions with
those not related to weak localization. In general, the weak
localization effects in both the differential reflection coeffi-
cients and speckle correlation functions are relatively stable
against statistical variations in the width and height param-
eters characterizing the ridges on the interface.

V. STUDY OF THE C„1.5…, C„2…, AND C„3… SURFACE
POLARITON EFFECTS

In this section theCs1.5dsq,kuq8 ,k8d, Cs2dsq,kuq8 ,k8d, and
Cs3dsq,kuq8 ,k8d contributions to the speckle correlation func-
tion are briefly presented.18,19 These occur, respectively, in
ordersz6L, z8L, andz12L of the perturbation expansion, and
though they contain peaks as functions of the scattering
angleus8 these are related to the poles of the surface plasmon-
polariton Green’s function, not to weak localization effects.
The frequency dependence of the peaks near the dielectric
resonance frequency of the ridge material is studied and the
peak widths are found to be little affected by the resonance.
The widths are shown to be increasing functions of fre-
quency through the resonance. A sharp increase in the overall
intensity of theCs1.5d, Cs2d, andCs3d terms is found near the
resonance frequency. The results forCs1.5d, Cs2d, andCs3d are
presented here for completeness, with only the GaAsuCdS
interface of identical random ridges treated.

Typical diagrammatic contributions toCs1.5d, Cs2d, andCs3d

are shown in Figs. 6.sA complete enumeration of all the
diagrams used to compute these various contributions to the
speckle correlation functions are given in Figs. 2, 3, and 4 of
Ref. 18.d For the results in this paper, the diagrams in Figs. 6
along with those in the more complete enumeration in Ref.
18 are evaluated using the Green’s functions and irreducible
four vertex functions in Secs. II and III. In this notation the
diagram in Fig. 6sad, for example, is interpreted to give the
contribution

Ca
s1.5dsq,kuq8,k8d = LFsq,kuq8,k8duGsqdGskdG

3sq8dGsk8du2uGsk − k8 + q8du2 3 uG0sk − k8

+ q8,kuq8,k8du2G0sq,k − k8 + q8uq,k − k8

+ q8d. s48d

HereL is the length of the surface in thex1 direction, and the
subscripta on the left hand side indicates thatCa

s1.5d is one of
the terms summed over to giveCs1.5d. The presence ofuGsk
−k8+q8du2 in Eq. s48d, gives peaks from the Green’s function

FIG. 4. Plot of the differential reflection coefficient vs scattering
angleus for a GaAsuCdS system forp-polarized light atui =10°.
For this plotv /vT

GaAs=0.988. The curves aresfrom bottom to topd
for svT

GaAs/cds=0.0, 0.1, 0.2, 0.3, 0.4, and 0.5. The area under each
curve is normalized to unity over the interval −90°øus8ø90°.

FIG. 5. Plot ofCs1dsq,kuq8 ,k8d vs us8 for ui =20° andus=−10°
for the GaAsuCdS interface. Curves are presented forsfrom top to
bottomd svT

GaAs/cd /s=0.0, 0.1, 0.2, 0.3, 0.4, and 0.5. The frequency
is v /vT

GaAs=0.988. The area under each curve is normalized to
unity over the interval −90°øus8ø90°.
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poles atk−k8+q8= ±Ksp whereKsp is the wavenumber of the
surface plasmon-polariton.sSimilar pole contributions are
associated with the other diagrammatic contributions.18d The
width of the peaks inCs1.5d follows from the imaginary part
of the substrate dielectric constant and from the imaginary
part of the self-energy correction to the pole of the single-
particle Green’s function. The self-energy correction to the
Green’s function poles is primarily determined by the imagi-
nary part of the GaAs and CdS dielectric constants.

In Figs. 7 results are presented for theCs1.5dsq,kuq8 ,k8d,
Cs2dsq,kuq8 ,k8d, and Cs3dsq,kuq8 ,k8d contributions to the
speckle correlation function for the GaAsuCdS interface
studied in Sec. III. The contributions are plotted as functions
of us8 for fixed ui =20°, us=−10°, andui8=30°. fHere the same
angles as in Ref. 18 have been taken to facilitate a compari-
son of our results with those of Ref. 18 for scattering from a
different smetal-vacuumd type of interface.g Curves are
shown for a number of frequencies approaching the resonant
frequency atvT

GaAs from above and below. Our interest is in
the effects of the resonance on the peaked features ofCs1.5d

andCs2d so that the area below each curve is normalized to
unity. This aids in assessing the prominence of the peaked
features in each of these contributions to the speckle corre-
lation functions. As the resonance is approached, the scatter-
ing of surface plasmon-polaritons at the interface increases,
but the effects of this scattering on surface plasmon polari-
tons is in general smaller than the effects of the dielectric
losses that are modeled by the imaginary part of the dielec-

tric constant. The total surface plasmon-polariton losses due
to scattering and the imaginary part of the dielectric constant
show up as a broadening of the Green’s function poles and of
the correlation function peaks due to the decrease in the
plasmon-polariton lifetime. In general, these effects just in-
crease with increasing frequency through and past the reso-
nance.

As a final note we point out that, for the models treated in
this paper, there is a term neglected in the factorization of
Eq. s16d that contributes to the correlation functions to order
Lz4. This term dominates over theCs1.5d, Cs2d, andCs3d terms,
but it is continuous and displays no interesting features. It is
the singularities inCs1.5d andCs2d that are of interest and of

FIG. 6. A typical diagramssee Figs. 2, 3, and 4 of Ref. 18 for a
complete enumerationd for sad Cs1.5dsq,kuq8 ,k8d, sbd Cs2d

3sq,kuq8 ,k8d, andscd Cs3dsq,kuq8 ,k8d.

FIG. 7. Plots vs us8 of sad Cs1.5dsq,kuq8 ,k8d, sbd Cs2d

3sq,kuq8 ,k8d, andscd Cs3dsq,kuq8 ,k8d. Results are shown for GaAs
system in Fig. 1 for the frequenciesf =v /vT

GaAs=0.968, 0.988,
0.1010, and 0.1020 shown on the figures.sNote: The largest peak in
each figure is observed to decrease with increasing frequency.d The
plots are normalized to have unit area under each of the curves
presented.
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physical significance in our discussions. Specifically, to lead-
ing order, in the absence of the factorization approximation

kuGsqukdu2uGsq8uk8du2l

< uGsqdGskdGsq8dGsk8du2uvsqukdvsq8uk8du2

3
cav

Dx
Lp2A4R4e−fsq − kd2+sq8 − k8d2gsR2/2d, s49d

which contributes of orderz4L to Csq,kuq8 ,k8d through Eq.
s15d. In the previous sections, we have focused on terms in
the speckle correlation function arising from the factorization
approximation in Eq.s16d because the factorization approxi-
mation leads to a treatment of the properties ofCs1d andCs10d.
These are the dominant terms of the correlations function.
Away from the regions over whichCs1d and Cs10d are non-
zero, however, the smoothly varying contributions from Eq.
s49d must be included. These contributions, however, do not
mask the singularities in theCs1.5d andCs2d terms.

VI. SPECKLE FROM SURFACES THAT ARE PERIODIC
ON AVERAGE

An interesting case for the diffuse scattering of light is a
random surface that is periodic on average.32 Consider a pe-
riodic array of identical Gaussian ridges that are placed along
the x1 axis of a vacuum-CdS planar interface such that the
periodicity of the array has a lattice constanta and there are
N→` lattice sites on the surface. The array, then, is de-
scribed by Eq.s1d with x1j = ja. A random surface that is
periodic on average can be made by removing, at random
along the interface, a fractional concentration of ridges from
the lattice. The resulting random systems then has a concen-
tration cav of ridges remaining on the lattice.

The Fourier transform of the configuration average of the
random surface profile function along the interface is given
by

kẑspdl = cav
ÎpARe−p2R2/4o

n

2p

a
dSp −

2p

a
nD s50d

and the Fourier transforms of the correlation functions of the
surface profile function are given by

kẑ*spdẑsqdl = pA2R2e−sp2+q2dR2/4Fcav
2 o

n,m

2p

a
dSp

−
2p

a
nD2p

a
dSq −

2p

a
mD + cavs1

− cavdo
n

2p

a
dSp − q −

2p

a
nDG , s51d

kẑspdẑsqdl = pA2R2esp2+q2dR2/4Fcav
2 o

n,m

2p

a
dSp −

2p

a
nD2p

a
dSq

−
2p

a
mD + cavs1 − cavdo

n

2p

a
dSp + q −

2p

a
nDG .

s52d

If Eqs. s50d–s52d are used in the discussions given in Sec.
II and III, results are obtained for the differential reflection
coefficient and speckle correlation function of the diffuse
scattering from a random surface that is periodic on average.
The presence of a randomness that is periodic on average
gives rise to enhancement peaks in the differential reflection
coefficient that are found whenq+k+s2p /adn<0 for n an
integer. sRemember: For the random interface without an
average periodicity the differential reflection coefficient ex-
hibits only then=0, q+k=0, weak localization peak.d For
the speckle correlation functions of the periodic on average
systemCs1dsq,kuq8 ,k8d=s2p /adondfq−k−q8+k8−s2p /adng
3Cn

s1dsq,kuq8 ,k8d whereCn
s1dsq,kuq8 ,k8d is an envelop func-

tion and Cs10dsq,kuq8 ,k8d=s2p /adondfq−k+q8−k8
−s2p /adngCn

s10dsq,kuq8 ,k8d whereCn
s10dsq,kuq8 ,k8d is an en-

velop function. Not only are the number of envelop functions
increased inCs1d andCs10d, but, as we shall see below, addi-
tional phase coherent peaks are found in the envelop func-
tions of Cs1d. In the absence of an average periodicity only
the n=0 termsC0

s1d andC0
s10d survive and the results in Secs.

II and III are obtained. In the following we shall limit our
discussions to then=0 terms in theCs1d series for the peri-
odic on average surface.sA discussion of the other terms will
be presented elsewhere.d

Again, for the periodic on average system, theCs1d

3sq,kuq8 ,k8d term in the correlation function contains phase
coherent effects associated with weak localization. Consider-
ing the C0

s1dsq,kuq8 ,k8d envelop function of the periodic on
average system: We find that in the perturbation approxima-
tion of this paper the reducible four vertex for this envelop
function is expressed as the sum of three terms. The first is
from the single runged ladder diagram

2pdsq − k − q8 + k8dGp,0sq,kuq8,k8d. s53d

Here the lowest order four-vertex envelop function of the
periodic on average system forn=0 is given by

Gp,0sq,kuq8,k8d = p
cavs1 − cavd

a
v*squkdvsq8uk8d

3A2R2e−fsq − kd2+sq8 − k8d2gR2/4. s54d

The second is from the double runged ladder diagram given
by

2pdsq − k − q8 + k8do
m
E du

2p
Gp,0Sq,q − q8 + u

−
2p

a
muq8,uD s55d

G*Sq − q8 + u −
2p

a
mDGsudGp,0Sq − q8 + u −

2p

a
m,kuu,k8D

and the thirdsfrom the lowest order maximally crossed dia-
gramd term is given by
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2pdsq − k − q8 + k8do
m
E du

2p
Gp,0Sq,q + k8 − u −

2p

a
muu,k8D

G*Sq + k8 − u −
2p

a
mDGsudGp,0Sq + k8 − u −

2p

a
m,kuq8,uD .

s56d

ReplacingL̂sq,kuq8 ,k8d in Eq. s39d by the sum of Eqs.s53d,
s55d, and s56d and substituting into Eq.s34d gives theC0

s1d

3sq,kuq8 ,k8d envelop function for the periodic on average
surface.

In Fig. 8 results forC0
s1dsq,kuq8 ,k8d vs us8 for ui =20° and

us=−10° are shown for the case of GaAs ridges on a CdS
substrate. For the plots we have takensvT

ridge/cdA=0.05,
svT

ridge/cdR=1.0, svT
ridge/cda=4p, andcav=0.04p scav is the

average ridge concentration on the periodic interface sitesd.
Results are shown for a number of frequencies in the neigh-
borhood of the dielectric resonance of the ridge material. It is
interesting to note that, in addition to them=0 peaks atus8
=−10° sq8=q memory effectd andus8=−20° sq8=−k time re-
versed memory effectd, peaks fromm=1 and m=−1 are
found atus8<19.0° sm=−1 memory effectd, us8<−42.3° sm
=1 memory effectd, us8<9.1° sm=1 time-reversed memory
effectd, and us8<−57.4° sm=−1 time-reversed memory ef-
fectd. The additional peakssi.e., the peaks withmÞ0d arise
from phase coherent scattering processes that involve an in-
termediary Bragg reflection. Most of the additional peaks are
seen in Fig. 8, but some are masked by the shoulders near
us8=−65° and 25° in the single runged ladder contribution to
the diffuse scattering. All of the phase coherent peaks are

found to be enhanced near the dielectric resonance of the
ridge material.

VII. CONCLUSIONS

The effects of resonant dielectric material on weak local-
ization contributions to the speckle correlation function for a
random interface were determined. The scattering at the sur-
face is found to exhibit increased weak localization effects
near the dielectric resonance frequency of surface media for
Cs1d contributions to the speckle correlation function. The
enhancement of weak localization effects arises from the in-
creased coupling of bulk modes to surface modes and to the
increase of multiple scattering of surface modes on the scat-
tering interface. Increasing the disorder on the random inter-
face by allowing the ridges of resonant dielectric material to
have statistically distributed widths was shown to decrease
weak localization effects in the surface scattering. Peaks in
the higher orderCs1.5d and Cs2d contributions to the speckle
correlation function were found to be less affected by reso-
nant dielectric features, the primary effect being peak width
broadening due to the decrease in surface plasmon-polariton
lifetimes. The origin of these features are not dominated by
phase coherent multiple scattering processes to the extent
that the origin of weak localization features are but are domi-
nated by dielectric losses. They are less sensitive to the en-
hancement of multiple scattering. Treatment was also given
of random surfaces that are periodic on average. These sur-
faces exhibit additional weak localization peaks in their cor-
relation functions arising from Bragg reflections. Enhance-
ment of weak localization from surfaces with dielectric
resonances was also found for the periodic on average sys-
tems.

As a final point we note that the weak localization en-
hancement effects in both the scattering cross sections and
the speckle correlation functions are essentially phase coher-
ent effects. The resonance in the dielectric materials is only
used to accentuate these phase coherent effects. Far from the
resonance frequency weak localization enhancements are
still present in the systems, but they are very small. Phase
coherent effects of the type associated with weak localization
have a history that precedes their association with weak lo-
calization. Early in the study of multiple scattering in disor-
dered media, scattering processes now identified with both
ladder and maximally crossed diagrams were used to treat
diffuse scattering and backscattering enhancements from ran-
dom suspensions of particulates.6,8 The effects now associ-
ated with maximally crossed diagrams also show up in the
study of double passage effects.6,8,33The later association of
maximally crossed diagrams with weak localization and
strong localization effects was made by Gor’kovet al.34 and
Vollhardt and Wolfle35 in the late 1970s and early 1980s. See
also Refs. 6, 8, and 36 in this regard.

FIG. 8. Plot ofC0
s1dsq,kuq8 ,k8d of a periodic on average random

system vsus8 for ui =20° andus=−10° for a GaAsuCdS interface.
Results are shown forv /vT

GaAs=1.020, 1.016, 1.010, 0.988, 0.980,
0.972stop to bottom at theus8=−20° localization peakd. All curves
have been normalized to have unit area under the curve. The reso-
nance frequency isv /vT

GaAs=1.
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