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Trajectory reversal approach for electron backscattering from solid surfaces

Wolfgang S. M. Werner
Institut far Allgemeine Physik, Vienna University of Technology, Wiedner HauptstraBe 8-10, A 1040 Vienna, Austria
(Received 2 September 2004; published 15 March 2005

The backscattering of medium energy electrons from solid surfaces is investigated by analysis of a linearized
Boltzmann-type kinetic equation. A closed expression is derived for the Green’s function in an infinite medium
valid for a spherically symmetric potential describing the interaction with the ionic subsystem. The solution is
expressed in terms of fluctuations of the energy loss and scattering angles and the collision statistics associated
with them. Since the fluctuation part is independent of the boundary conditions of the considered problem,
solution of the backscattering problem requires an appropriate treatment of the collision statistics. In this
context, the exact solution for the Oswald—Kasper—Gaukler model is derived and its limitations are analyzed.
An exact approach is presented and implemented in an efficient Monte Carlo scheme based on the trajectory
reversal technique. The resulting procedure is faster than the conventional Monte Carlo algorithm by several
orders of magnitude. Results for the angular distribution are compared with conventional Monte Carlo calcu-
lations and perfectly agree with the latter within their statistical uncertainty. A second approximate algorithm is
also given. The approximation involved in this second procedure turns out to be very reasonable: deviations
from direct Monte Carlo calculations remain belevb% for energies exceeding 200 eV. The integral elastic-
backscattering coefficient for normal incidence for a large number of materials in the energy range
50 eV-10 keV is found to approximately exhibit a universal dependence on the ratio of the inelastic and the
transport mean free paths, the so-called scattering parameter.
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I. INTRODUCTION rial for which the IMFP is assumed to be known. In this way,

the experimental error can be kept below 5% without much

When a medium-energgs0 eV—10 keV electron hits a  effort and the experimental contribution to the final uncer-

solid surface, it strongly interacts with the ionic and elec-tainty in the IMFP compares favorably with other experi-
tronic subsystems. The long-range part of the screened CofPental techniques to calibrate the IMFP, such as the over-

lomb potential of the ionic cores mainly affects the details oflayer metho‘f-'lz_u, ) ,

the small-angle part of the elastic-scattering cross section On the theoretical side, an accurate model relating the
that are less important for the particle transfer. Therefore€XPerimental reflection coefficient to the IMFP is needed, as
when coherent scattering is insignificant, for example inwell as reliable data for the elastic scattering cross section
polycrystalline or amorphous solids, the elastic cross sectioﬁvhICh is needed as the only Input parameter of such a mOdel'
n the present paper the focus will be on the model for elastic

can be establ!sheelb initio onl_tﬁhe. basis of apprqpnately backscattering in noncrystalline solids assuming reliable data
chosen potentials fdree atoms.~° Since the probability for for the elastic cross section to be available

(multiple) scatter_ing_ increases'monotonically .With the path The Monte CarldMC) technique is a convenient method
length _trave_led inside the solid, the probability for back-_to study transport phenomena within the framework of a
scattering without energy loss depends not only on the elaSt'Soltzmann-type kinetic equation where diffraction effects
scattering cross section, but also on the value of the electroggn pe disregardeéd. The MC technique is simple to imple-
inelastic mean free patiMFP). Since the former quantity ment and completely flexible with respect to the input pa-
can be calculatedb initio, the IMFP can be calibrated by rameters and, most importantly, with respect to the boundary
measurements of the intensity of the peak of elastically backeonditions that can be arbitrarily complex. A disadvantage of
scattered electrons. this technique is that the influence of the input parameters on
The potential of backscattering experiments for measurethe outcome of a simulation is not physically evident and,
ment of the IMFP was first recognized by Schilling and most importantly, accumulation of the required statistical ac-
Webb! Later, the importance of this techniqieommonly  curacy requires considerable computational effort. This is
referred to as Elastic Peak Electron SpectroscdES]  particularly problematic if the solid angle of the detector in
for nano-scale calibration by means of electron beam attenuthe simulation is small, since then a large fraction of the
ation was realized by other authors and the technique wasimulated trajectories are generated in vain when they leave
further investigated and develop&dé®-1It turns out that the  the solid in a direction not matching the analyzer acceptance
elastic reflection coefficient depends approximately linearlyangle. In the case of emission problems, this difficulty may
on the IMFP! and the relative error in the IMFP is compa- be overcome by invoking the symmetry properties of the
rable to the relative error in the experimental reflection cokinetic equation, the so-called reciprocity relationships for
efficient. To avoid absolute calibration of the experimentallinear transfet® One of these relationships can be interpreted
apparatus, which is a difficult task, the reflection coefficientto state that instead of simulating the electron from its point
is usually measured together with that for a reference matesf emission inside the solid, and following the particle’s path
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until it eventually escapes from the surface in a direction notnore, an exact solution is given and implemented in a fast
necessarily matching the analyzer acceptance angle, the tralgorithm based on the trajectory-reversal principle. A sec-
jectory can be generated in reverse, starting in the analyzeind algorithm that involves an approximation is also derived.
from where its history is traced back in the solid. By meansThe accuracy of the approximation turns out to be reason-
of this trajectory reversal techniqdé&;'® the angular distri-  aple: for energies exceeding 200 eV, the differential back-
bution of Auger- or photoelectrons can be rapidly calculatedscattering coefficient typically differs by less than 5% from

for an arbitrarily small acceptance angle leading to an enregyits of direct MC calculations, while it is much faster.

hancement in computational efficiency of typically severaltnerefore the proposed algorithms may be useful for the de-
orders of magnitude. Unfortunate]y, it is not Stra_ightforwardtermination of the IMFP by means of EPES. Finally, the

to apply this procedure to reflection problems since the angyeqra) elastic-backscattering coefficient was calculated for

gular divergence in the electron source is usually EV€hormal incidence for a large number of materials in the en-

smaller than the detector acceptance angle. .
Exact analytic solutions of the transport equation are veryergy range 50 eV—10 keV and was found to depend approxi

complexX®21 and one is usually forced to make appropriatemately universally on the ratio of the inelastic and the trans-

approximations. Several approximate analytical models foPOrt mean free paths, the so-called scattering parameter.
elastic backscattering have been published in the 32%t.

Recently* these models were critically evaluated and a com- Il. THEORY
parison with MC calculations showed that the model by Os- '
wald, Kasper, and GaukléOKG) (Refs. 2 and 2Bgives the A. Formal solution of the kinetic equation

best agreement with the MC results. It was therefore recom-  gice the transport equation is linear, the solution satisfy-

mended that the OKG model be used for determination Of,g the houndary conditions and source function for a spe-

the IMFP by means of EPES. The OKG model is based oRific nroblem can be found by superposition once the Green’s

tion angle. OKG were able to find an analytic solution of ¢ \nction G(s, T, w) that describes the distribution of energy

their quel by making the a.d(.jitional assumption that the IOC.iossesT and net deflection angles=arccosu after traveling
of elastic collisions are equidistant, the length between the

bei to th | ; h. Althouah this si Irﬁ path lengths=|x—x'| in the solid. The Green’s function
eing equal to the tqtq mean Iree .pat' .' t ougr t. IS SIMPI&Gyii| be derived for an infinite medium subject to the initial
model works surprisingly well, significant deviations be-

condition G(s=0,T, u)=8(T)8(u)/47. Here and below the
tween the OKG and the MC approach have been Observe&@pendence on the azimuth will be suppressed since it is

o - .
that may exceed 30% in certain caSead can be attributed assumed that the scattering potential is radially symmetric,

to a deficiency in the treatment of multiple scattering 'ngiving rise to a cylindrical symmetry of scattering. Keeping

OKG's approach. these assumptions in mind, standard arguni¢og be used

Recently, an alternative numerical approach based on tq% : . : : -
: : ’ . write the kinetic equation for the generalized loss function
invariant embedding method was propcSeand was later q g

successfully applied to elastic electron reflecti®ithis pro- in the form:

cedure is similar to the MC method in that it gives the exact JG 1+

solution within the numerical accuracy of the implementa- E:_Xf f {G(s,T,n)

tion. However, convergence is attained much faster than with A

the MC technique. The accuracy attainable in a practical cal- — G(S,Tq, 1) }W(T5, 1) dQdT,. (1)

culation is much higher than with the MC technique and i ,
therefore it represents an atractive alternative to MC simulal Ne energy loss and angular vgr_lables befd—ﬁeﬂl)_, during
tions, at least for cases with simple boundary conditions. (T2:#2) and after(T, u) the collision are related via

Another important aspect of the electron-backscattering T.=T-T
process is the occurrence of surface excitations as the elec- 2 b
tron passes the solid-vacuum boundary on its way into and
out of the solicf®31-33|eading to additional energy losses M2 = pap+ 11 COSP— ¢y). 2
that must be accounted for in order to extract the properhe symbolsu, v are a shorthand notation for the cosine and
inelastic mean free path for volume scattering from elasticsine functions of the polar direction respectivey, and ¢
peak data. The surface-excitation probability depends on thgre the azimuths, andQ,=du,d¢,. The quantityw(T, )
distance from the surface in- and outside the solid, and there=\w(T, 1) is the normalized inverse differential mean free
fore the electron-solid interaction parameters depend on thgath for scatteringi.e., the distribution of scattering angles

depth. Among the methods discussed above, the only onghd energy losses in individual collisionend \ is the total
that can cope with such a situation is the MC techniquenean free path

which suffers from the inherent drawback of long computa-
tion times for practical calculations. [
In the present work this problem is resolved by studying N f_m AWW(T"“)deT' 3
the kinetic equation and bringing it into a general form con-
venient for the application to electron-backscattering probNote that at this stage, no distinction has been made between
lems. In this way, the OKG model is solved exactly. Further-different types of scattering such as elastic and inelastic scat-
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tering. In consequence the interaction parameters referred teith the ionic subsystem of the solids orders of magnitude
in the above, such as the differential inverse mean free patbmaller than any energy loss suffered during interaction with
w(T, «) and the total mean free pakhpertain to collisions of the electronic subsystem. Then the angular and energy parts

any kind. of the interaction can be separated by writing the normalized
Equation(1) is readily solved in Fourier-Legendi@&L)  differential mean free path in the following form:
space®® The expansion coefficient,(p) are found by mul- Sw)
tiplying with €PTP(u,), where P/(nx) are the Legendre w(T,u) = n wi(T 4—+)\— Wel() 8(T). (10
polynomials, and integrating ov@rand €2,. This yields: : ™ €
—_ _ Here the subscripts™and “€” indicate inelastic and elastic
dG(p) _ _M{l WP} @ scattering,\, and \; denote the elastic and inelastic mean
s A P free path, respectivelwi(T) is the usual normalized differ-

e . ential inverse inelastic mean free path, angdw) is the nor-
where the quantiti€s;(p) represent the FL-expansion coef- ; . . pat )
malized elastic scattering cross section.

ficients of the normalized differential mean free path. The Inserting the above expression into &8) and using the
solution satisfying the initial condition in FL-spa&&(p,s  well known identity
=0)=1 reads:

Gy(p) = e ML)} (5) Wi(s1 + ) = kE Wi(s)Wh(S), (11)
=0

Going back to real space results in the loss function can be written as

1=0

csti=3 4 P [ erenvi GsT.0= S WO M S WO (0, (12)
ni=0 ng=0

To bring this expression into a more tractable form, the ex-

ponent is expanded with respect to its last term where(n;) and(n,) denote the number of inelastic and elastic

collisions afterN(=n;+n,) arbitrary collisions, respectively.
e/ g 2l +1 Here and below, the superscripts’ ‘and “e” are used to
G(sT.w=2 NI (X) > 8.2 P|(,u)f "W (p)p,  make the distinction between inelastic and elastic scattering,
N=0 T 1=0 respectively. The functlonw (s) and W2 (s) correspond to
(7)  the stochastic processes for inelastic and elastic scattering
whereN denotes the number of collisions of any type. Thethat are given in the quasielastic regime by B} by replac-
second sum represents th—1)-fold self-convolution of Nd the total mean free path by A; and A, respectively.

the differential mean free path, denoted By(T, ). Intro- Likewise, the functiond’, andI',, now represent the self-
ducing the collision number distributiolV(s), that de- convolutions of the melastlc and elastic terms of the total

X ) : . ; differential mean free path. The second factor represents the
tsr(;r\'/zlej dtgi\tlhf?g:];t%atte”ng probability as a function of the path length distribution in an infinite mediur@(s, u),%¢

©

e—s/)\ s N
Wi(s) = —(—) : (8 Qls,p)= 2 WE (9T (w) (13
NI AN ng=0 ¢ ¢
one can write the loss function in the form and the formal solution of the kinetic equation reads
G(s,T, ) = 2 Wy(S)TN(T, ). 9) G(sT, )= > WL (9T (T)Q(s, ). (14)
N=0 ni=0 1 1

Physically, Eq.(9) states that the distribution of energy The form Eq.(12) of the solution of the transport equation
losses and deflection angles after a certain path length can bgakes it clear that the influence of the boundary conditions
expressed in terms of the fluctuations in the energy loss ani reflected only through the collision statistics: the energetic
deflection angles afteN losses, described by the self- fluctuations depend on the respective differential mean free
convolution of the mean free patf\(T,u), and weighted paths and collision number only. Since the collision statistics
with the collision statistics, i.e., the probabiliyy(s) thatN  depend on the traveled path length only, it suffices to find the
collisions occur for the considered path length. path length distribution. If the path length distribution is

If the interaction is characterized by large energy transfer&nown for a particular problem, the above expression allows
accompanied by small momentum transfers and vice versas to find the specific solution by superposition. However,
the energy loss and scattering angles in £&.can be de- deriving an expression for the path length distribution for a
coupled, by making a distinction betweelasticandinelas-  particular set of boundary conditions in general represents a
tic collisions. For medium energy electrons in solids, this isformidable task and often one is forced to resort to numerical
always justified since the recoil energy loss in an elastic colealculations or simplifying assumptions, as discussed in the
lision (when elastic scattering is defined as an interactiomext sections.
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I plication in EPES!, it seems worthwhile to investigate this

0 model in more detail.

-u Within the formalism outlined in the present work, there
Wo is no need to make any additional assumptions and the par-
tial reflection coefficient is easily obtained in closed form.
This is possible since for the OKG model, a fixed relation-
ship exists between the depth of backscattering and the cor-

/ Z - ;
responding path lengttsee Fig. 1
Any reflected trajectory in whichn, collisions occur is
4 characterized byn elastic collisions on the way in, one col-
2 8=§,+S,= lision at the deptlz andn,—m-1 collisions on the way out.
=z/luol+2z/lul Obviously, n, different values ofm are possible. From Eq.
=z(B,+B,) (193 it follows that the probability for reaching the deptfin
=z the direction Q' after m-fold scattering is just

Wels (9115 (00, Q). Likewise, for an electron starting at
FIG. 1. Schematic illustration of the single large-angle collisionthe depthz in the direction€)”, the probability to escape in
model for elastic backscattering of Oswald, Kasper, and Gauklethe direction Q after n,—1-m collisions is given by
(Ref. 26. V\/ﬁe_l_m[sz(z)]l“ﬁe_l_m(ﬂ”,Q). Here s;(z) and sy(2) are the
path lengths traveled along the in- and outgoing part of the
Introducing the partial intensitieétni as the number of trajectory. Since the probability for a directional change
electrons that arrive in the detector after experiencing a cef 2’ — Q") is justT'{(Q’,Q")/\, the partial path length dis-
tain number of inelastic collisions for the specific boundarytribution Q, for ne-fold elastically scattered electrons is
conditions and taking into account the linearity of the kineticgiven by
equation

nge—1
1 e
= 2),Q0,Q)=— 2, T (Qe, Q)W s,(Z
Cy = J W, (9)Q(s)ds, (15) On(2): 0. 2) nemEZ0 (€2, )Wl 51(2)]
0
. . ) i(ﬂl,ﬂ,,)
the observed spectrum can be written in the convenient form ® N
e
~ . e "
Y(E)= X I (T @ fo(E+T), (16) &I 1 Q" W, i a[s:(2)].
e (17)

wherefy(E) is the energy dist.ribution at the source qnd thenote that here and below2,=(arccosug, ¢y) and Q
symbol® denotes a convolution over the energy variable. =(arccosu, ¢) are used to indicate the incoming and outgo-
ing direction of motion, while in the preceding sectiarwas
B. The Oswald—Kasper—Gaukler (OKG) model used to indicate a directionaehangeduring a deflection. The

convolutions in Eq(17), denoted by the symbab concern

6 .
Oswald, Kasper, and Gauklér® observed that the major e polar and azimuthal angular variables integrated over the
contribution to the elastic backscattering coefficient comeg, ;¢ sphere.

from trajectories that only participate in a fet,~1-3 At this stage, the two main implications of the OKG
elastic collisions, their relative intensity rapidly decreasingyggel assumptions come into playt) since only one colli-
with the order of elastic scattering. According to E#3) the  gjon is assumed to contribute significantly to the net deflec-
net Qeflectlon in a backscattering process is then malnly decTon, all deflection angles alorg ands, are small and equal
termined by the first order term, the elastic scattering crosg,, any value ofm. Then, the angular terms may be taken

section, since fon,=0 no backscattering occurs. This im- 4 tside the sum and combined into a fadiar(Q,, Q); (2)

plies that all elastic processes, except one, lead to a negh’l-he path length elongation alorsg ands, due to the finite

gible deflection. This single large—angle scattering model du‘§cattering angles is neglected, leading to a drastic simplifica-

to OKG is schematiqally lllustrated in Fig. 1. In their ap- tion of the relationship between the traveled path length and
proach to evaluate this model, OKG were forced to make ath e depth(see Fig. 1

additional approximation in order to arrive at a closed ex-

pression for the partial backscattering coefficiemg after $1(2) = B12,
ne-fold elastic scattering. To integrate E@8) in Ref. 26, it
was assumed that the path length between any two succes- $(2) ~ Byz (18)

sive elastic events is equal to the total mean free path

=1/(\;*+ N (p. 75 in Ref. 2. Although Oswald's deriva- where 8y=1/|uo|, B=1/|u|, and 8=, +B,. Then, the par-
tion is distinctly cleaf it is rather lengthy and the effect of tial elastic reflection coefficieny, =C,_n =o(€0,€2) is found
the additional assumption made is not obvious. Since it haby inserting the average path length distribution into @&)
been recommended to use this approach for quantitative agith n;=0:
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1 T8 (Q0,Q) means of a rapid MC algorithm based on the trajectory re-
7 (e, Q)= — —— versal technique. The resulting proced@referred to as Al-
‘ |20l e gorithm | below is exactly equivalent to the conventional
© et MC procedure, but is faster by typically several orders of
xf Wh(B2) = >, WE(B12WE _. 1(B,2)dz, magnitude, in particular for small detector solid angles.
0 Nem=0 ¢ A simplifying assumption can be made at this stage which

(19) does not lead to a serious loss of accuracy and gives rise to
) an effective approximatiofreferred to as Algorithm Il be-
where the factor 11| accounts for flux conservation at the |ow). It consists of replacing the depth distribution

surface(see Fig. 1. Using the quasielastic expression for the ;. (7 Q") by its average ove®’, denoted as,(z, Qo),
stochastic proces€q. (8)] and performing the elementary multiplied with the angular fluctuation factdit (€, Q"),

integration leads to the result
P2, 20, Q") = iz, QI (Q0, Q). (23

| TR(Q0Q) [\ \ne _ . _
€ — . (20) An equivalent expression holds for the function
ol + |1 Ne e I(2,Q,9Q"). Then, the expression for the partial path length

This is identical to expressiof81) in Ref. 26. Thus it turns ~ distribution becomes
out that the additional approximation of equal step-lengths, e ng-1
made in Oswald’s derivation, leads to the exact solution of F”e(no’ﬂ) S y

’ Qn(5(2,020.0) = ——— 2 (200, -1-m(2Q),
the OKG model. e Nehe  meo ¢

C. Trajectory reversal approach (24)

In the OKG model an effective approximation of the func- Which is exact forne=1 since in this case one always has
tion s(2) gives rise to an analytic expression for the partial{2o=€" andQ"=£Q. Furthermore, the neglect of the proper
reflection coefficient that is reasonably accurate. If a higheRngular correlation in Eq(23) is expected to be approxi-
accuracy is required, the functia) must somehow be es- mate.ly justified a}lso'for higher order scattering smce.the
tablished numerically and inserted in H47). Note that the  ©lastic cross section is strongly peaked in the forward direc-
latter equation is exact. Since the explicit formstf) is not ~ tion. Thus the approximation involved in Algorithm 11 ac-
of main interest, it is convenient to introduce the notationcoUNts for the path length elongation along the trajectory due
(2, Q0,9Q") and l!f; . 1(z, 2, Q") for the exact depth dis- to finite scattering angles, but neglects the proper angular

e

o . e e . correlations along the trajectory. Since the OKG model ne-
tribution functionsWils,(2) I and\/\ﬁe—m—l[SZ(z)]F”e—m—l n glects both the angular correlation as well as the path length

the following. The functiony(z,€0, Q') describes the gjongation, Algorithm Il is expected to be more accurate than
probability for an electron incident on the surface in the di-the OKG model. Inserting the sum of the partial path length
rection{), to arrive at the deptl with the directionQ)’ after  gjstributions into Eq(15), the elastic reflection coefficient
m elastic collisions. Conversely,(z,2,Q") represents the \yithin Algorithm 11 is finally found as

probability distribution for an electron that starts at the depth
zin the direction€)” to reach the surface with a directi&®
afterm collisions. For the following it is essential to note that
by virtue of the reciprocity theorem for one-speed
transport® the in- and outgoing depth distributions are re-where the coefficientBne(Qo,Q) are given by
lated by

77I’le(‘(2’01 ﬂ) =

[

Ue(ﬂo,ﬂ) = 2 Bne(ﬂo,ﬂ)rﬁe(ﬂo,ﬂ), (25)

ne=1

ng-1
Uz, Q) = | [4(2.02,Q), (21) Bo (o)) = 20 V(2 Q)W -1z 2)dz
m=
whereu’=(€Q'n,) is the polar emission direction amg is ne-1
the unit vector along the surface normal. Each trajectory can - 1 > Wifs (2142, Q)W
be divided into an in- and outgoing part separated by a scat- NeNe J meo o=t m& 2RI
tering event at the depth characterized by the directioy’ .
and Q" before and after the collision. Note that this depth is X[82(2) ] -1-m(z.Q)dZ. (26)

not necessarily the largest depth reached by the particle, as
the OKG model. With the aid of the depth distributions, the
formula for the partial path length distributi¢kqg. (17)] can

be rewritten as

Recalling thatWi[s,(2)]-Wi[s,(2)]=Wi[s(2)], it is seen that
the latter expression is very similar to the OKG result Eq.
(19). The essential difference is that Eg6) accounts for the
path length elongation along the trajectory and is therefore

et reQ’, Q") expected to yield a better description of multiple scattering
Qn(8(2).20,02) =~ 2 Un(2.00,Q) ® )\' than the OKG model.
e m=0 e
* " IIl. NUMERICAL IMPLEMENTATION
® zpne_m_l(z,ﬂ,ﬂ ). (22

The OKG model as well as Algorithm | and Il proposed in
This equation is exact and ideally suited for calculation bythe present work were implemented and compared with con-
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TABLE |. Parameters describing the elastic and inelastic interaction for medium energy electron transport in Be and Au. The elastic,

inelastic, and transport mean free paths are denoteN.b¥;, and \,, respectively, and are given in units of A, whije=\i/\; is the
scattering parameter in the quasielastic energy regime.

Be Al

Cu Au

E(ev) Ne A A X Ne A A Ne N A X Ne Aj A X

100 2.9 55 9.9 0.56 3.3 5.3 7.9 0.67 4.1 4.1 7.0 0.59 2.0 5.6 104 0.54

150 3.9 6.7 17.9 0.37 4.0 6.4 11.9 0.54 4.2 4.7 7.4 0.63 25 6.1 18.1 0.34

300 6.8 10.1 53.1 0.19 6.1 9.8 27.0 0.36 5.2 6.8 10.6 0.64 3.8 8.3 18.6 0.45

500 10.6 145 124 0.12 8.5 140 53.1 0.26 6.6 9.5 16.7 0.57 54 11.3 16.7 0.68
1000 20.3 245 414 0.06 13.8 237 143 0.17 9.4 155 371 0.42 7.6 18.2 238 0.77
2000 395 427 1418 0.03 234 41.2 416 0.10 13.7 265 942 0.28 10.2 30.7 47.0 0.65
5000 959 915 7401 001 498 878 1888 0.05 23.6 555 367 0.15 155 634 146 0.43

ventional Monte Carlo calculations for electrons in the en-each depth intervak penetrated by the particle, the contri-
ergy range 100—5000 eV backscattered from Be, Al, Cu, antiution to the coefficientV,, is directly evaluated via

Au surfaces. The angular distribution was calculated in the
plane of incidence in 4° steps for an analyzer with a circular
aperture described by a full polar opening angle of 4°. Cal-
culations were performed for normal as well as oblique inci-

dence(60° and 75F. where the polar direction along thkh interval u, accounts
The input parameters are the same for the three modetsr flux conservation and(z,) is the total path length trav-
and comprise the electron inelastic mean free path calculatesled when reaching th&th depth, respectively. In other
by the TPP-2M formul¥ and the elastic scattering cross words, instead of explicitly calculating the depth distribu-
section that was calculated using the computer code of Refions, the product of the depth distribution and the inelastic

38 for a Thomas—Fermi-Dirac potential. The resulting in-collision statistics is directly evaluated by this algorithm
elastic(\;), elastic(\¢) and transport mean free pattdg,) as

well as the scattering parametes\;/\,, are shown for the Vo Q) =Wb[5(2k)]lﬂm(2klﬂ)- (27)
investigated materials in Table I.

The algorithm for the conventional Monte Carlo simula- In this way, one of the most difficult aspects of transport
tions has been described in detail befoté,it is merely  problems is circumvented: the conversion between depth and
noted here that TOtrajectories were required to accumulate traveled path length. The outgoing depth distribution is cal-
reasonable statistics for Cu and Au, while for Be and Al, thatculated in exactly the same way, starting the trajectory in the
have a significantly lower reflection coefficient in this energydetector and tracing it back into the solid. The starting direc-
range, 18 trajectories were simulated. tions for the outgoing probability¥,, () are uniformly

For the implementation of the OKG model, multiple self- sampled from directions arour@ that lie within the detec-
convolutions of the elastic cross section need to be petor solid angleAQ). Afterwards this in-going depth distribu-
formed. In the present work, this was achieved by expandingion is converted into an outgoing one by invoking the reci-
the cross section in a series of Legendre polynomials. Therocity relationship Eq(21). The histograms for the in- and
ne-fold convolution of the cross section is then given by theoutgoing probabilities are eventually combined to give the
Legendre back-transform of timg-th power of the expansion required coefficients
coefficients93%

For the approximate model proposed in this woikgo-
rithm II), the coefficientd3,, [Eq. (26)] need to be calculated Bne(QO,Q) =
in addition. In principle, this can be done by establishing the
path length distribution using E424) and applying the for-
malism outlined in the theory section. However, it is more
convenient to directly calculate the coefficieBs. This can  where the number of trajectorid,; and solid angle of de-
be achieved with a Monte Carlo technique by generating dection AQ) ensure proper normalization. The factpd ef-
set of trajectories in the usual way, keeping track of the travfects the trajectory reversal of the outgoing distribution. For
eled path length along the trajectory as well as the number ddll results in the present papét,,=10* trajectories were
elastic processes that has taken place. The trajectory is sufficient to achieve the required statistical accuracy of
terminated when the contribution 8, becomes insignifi- <1%.
cant, i.e. when the traveled path length exceeds the inelastic To obtain the elastic reflection coefficient by means of
mean free path by a factorsn,, or when it leaves the solid Algorithm I, the path length distribution E@22) is inserted
again. The solid is divided into thin slabs of thicknéss In  into Eq. (15). Thus, the matrix¥, ,_defined through

1
AW = — exp(=s(zd/N),
Mk

Kmax Ne—1
AZAQ &<
E E Im,k(!20)|:uf| ! ne—l—m,k(!n/ ‘Itzrajv

e'le k=0 m=0

(28)
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Trajectory | Trajectory |l TABLE Il. Parametersy and 8 of Eqg. (32) for different combi-
nations of the polar directiong’ and u” of overlapping segments
of a trajectory pair.

M! M! 'M” % B
=0 =0 0 1/ || +1/ |1
=0 <0 1/ || /||
<0 <0 1/ || /||
<0 =0 WAPRES VA 0
n (:“”)2 l/‘ILL,| 0
FIG. 2. lllustration of the evaluation of overlapping segments of
a trajectory pair(see text Az N
f e SDN\igz= i e SN 821 (31)
o e ’ " 0 dS(Z)
i o T - Q) —
\Pm,ne: WO[S(Z)]I,Dm(Z,QO,Q ) ® N dz
0 e
me1(2.9,Q")d (29) gving
® wn ~m-1\Z, 22, ")dz
e O’ ” —(Aq+ AN
. r{Q’ - Q") et [e a2\ — gBAZN ]
needs to be evaluated. The quintuple integration in(28). e New/llw| B-ea
can also be carried out by means of an efficient trajectory (32

reversal Monte Carlo procedure. This can be done by gener-
ating trajectorypairs in the usual way(see Fig. 2 and real- whereA; and A, denote the path lengths traveled before the

izing that every step of trajectory | between theéh and gpnsidered ?eﬁment_. The para_tmelmmndhﬂ depelnd on the
(m+1)st collision gives a contribution to the depth distribu- irections of the trajectory pair along the overlapping seg-

tion (2,0, Q') atanydepthz,<z<z.,, while the same ment and are given in Table Il. Finally the elastic reflection

is true for tra*jectory Il that contributes to the outgoing depthcoefﬂment is evaluated via
distribution Jzne_m_l(z,.(),,ﬂ”) atany depth penetrated by the U AQ coely

(ne—m-1)th step. Combining trajectories at any depth Ne=Co="—— 2, >

(33
Npair ne=1 m=0 Ne

reached by both of them is effected by multiplying with the
probability I'f(Q" - Q") /\ for a directional change fro’  where the factofu| again effects the trajectory reversal of
to Q”. For a given trajectory pair, all possible combined the outgoing part of each trajectory. The number of trajectory
trajectories are found by determining the overlapping stepairsN,,; was chosen X0for Au and Cu, and 10for Al and
segments for all steps taken by trajectory I. For the considBe.
ered step shown in Fig. 2 this gives a contributiomie4

for the in-going andh,—m-1=4 for theoutgoing part of the
trajectory. Two additional contributions for the fourth step of

the in-going trajectory come frome—m-1=1 andn.—m  The angular distributions of electrons of several energies
—1=2 of theoutgoing trajectory. Thus, each trajectory pair is packscattered from Be and Au surfaces calculated with the
ultimately combined into an infinite numbéat least one for approaches discussed above are compared in Fig. 3 and Fig.
each overlapping deptiof reflected trajectories with differ- - 4 tor normal incidencéleft panel$ and for oblique incidence

ent collision orders. For each overlapping trajectory pair segdpf 75° with respect to the surface norntaght panels. The

ment, the total contribution to the elastic reflection coeffi-|5iter incidence angle corresponds to an emission angle of
cient can be calculated analytically. For any overlapping_7ge i Fig. 3 and Fig. 4.

IV. RESULTS AND DISCUSSION

segment with scattering ordém,ne), the contribution to the The oscillations with emission angle seen in the curves
matrix ¥, is given by for Au are a consequence of the shape of the differential
elastic-scattering cross section that exhibits quantum me-
reQ’ - Q") Az chanical interferences between the incoming wave and the
A= T Wols(2)]dz, (30)  scattered wave. This phenomenon is similar to the famous
elwllw’l Jo Ramsauer—Townsend effect when the elastic cross section for

scattering from noble gas atoms even entirely vanishes for a
whereAz:|zbeg—zen(J is the depth interval of the step of tra- given energy® These oscillations in the cross section, that
jectory | and the factofu'||”| accounts for flux conserva- are sometimes referred to as generalized Ramsauer—
tion of the overlapping segment pair. The integral along eaciownsend oscillations, are more pronounced for low ener-
overlapping segment in E¢30) is easily evaluated analyti- gies and high atomic numbers.
cally since the traveled path length for any depth joining the The results of the conventional MC calculations are rep-
pair is given by a simple linear relationship: resented by open circles, while the data generated with Al-
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&
= ] ]
8 0 .
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2x10°® 1000 eV}
2x107™ f
1x10° ¢
1x10* |
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-50 0 50 -50 0 50

emission angle (degrees)

FIG. 3. Differential reflection coefficients for electrons of various energies reflected from a Be surface for normal ingefepaaels
and for an incidence angle of 7%€orresponding to an emission angle of —75°, right panédpen circles: conventional Monte Carlo
calculations(MC). Filled circles: Algorithm | proposed in the present work. Solid lines: Algorithm 1l proposed in the present work. Dashed
lines: Oswald—Kasper—Gaukler Mod@KG).

gorithm | are plotted as filled circles. These two data sets are The results of Algorithm Il for normal incidence are seen
difficult to distinguish except for cases with significant sta-to agree significantly better with the conventional MC results
tistical fluctuations, demonstrating that the two approacheghan the OKG model: for low energies the deviations remain
coincide within the statistical uncertainty inherent to MC cal-pejow 10% while for energies above 150 eV the deviations
C”|at'°nS”' This is Ias expected since the two approaches ae wypically less than 5%. It should be noted that the case of
essTehnna y equwa}[er;tt.h OKG model with the MC Its i 100 eV electrons normally incident on a Au surface exhib-
seen etoa%rg err(?z:sijonoableein all gﬁdiezadwl;ase: but rgif;%if?cgg d the largest deviations observed for all materiaisiud-
deviations are nonetheless observed for all energies for bo@%c%utr?gdsiﬁglsgigtz?ir?gn?e‘:‘r%aggegzgc??g:nsgtﬁ Sthséuglﬁg'
materials. For normal inciden nd for low energi . o .
aterials. For normal incidence and for low energie80 model and Algorithm I, this improvement of the results is

and 150 eV where multiple scattering is more significant, X i .
the deviations exceed 30%. Note that the importance of mul@ttributable to the treatment of multiple scattering. For ob-

tiple scattering is indicated by the value of the scatteringidue incidence, Algorithm Il and the OKG model are in very

parametery.5 For values ofy of the order of unity or higher, close agreement in all cases and compare r—;xcellently Wlth
a significant multiple scattering contribution is expected,the conventional MC results except for scattering geometries
while for (y<1), multiple scattering becomes less signifi- corresponding to a deep minimum in the cross section and
cant(see Table)l For the other energies where the scattering2long the incident direction. This behavior has a clear physi-
parameter is smaj}<1 the deviations are smaller but still of cal explanation: the elastic cross section always exhibits a
the order of 10% as a rule. For off-normal incidence, thestrong peak in the forward direction, resembling the Ruther-
agreement between the OKG model and the MC results i#rd cross section for a screened Coulomb potential that de-
excellent for any energy except for emission angles close tereases as<1/(1-ug?® with the cosine of the scattering

the incident direction where deviations of the order of 10%angle us. Therefore the cross section for geometries corre-
are again observed. sponding to small net scattering angles is always rather high

115415-8



TRAJECTORY REVERSAL APPROACH FOR ELECTRON PHYSICAL REVIEW B 71, 115415(2005

0=0° 0=75°
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and the single-scattering term dominates, which is treatetligher-order contribution is slightly underestimated by the
exact in both discussed moddkee also Fig. b For back- OKG model. This can be understood by noting that, due to
scattering along directions close to the incident direction, théinite deflection angles, the path length for a given depth is
value of the cross section is much lower so that more elastiglways larger thagz used in Eq(17). Since the probability

events are required for the electron to attain the proper emigor multiple scattering increases with the traveled path
sion direction. In other words, here the multiple scatteringlength, this implies that the OKG model underestimates the
term becomes more important which is only treated approximyltiple scattering probability for any particular depth and
mately in both models. This trend can be clearly distin-consequently also for the total reflection coefficient, as com-
guished in Figs. 3-5, and explains the larger deviations fop, gy recognized. Nonetheless the agreement of the total
these geometrical configurations. reflection coefficient within the OKG model with the MC

In_F|g. >, results of cqnvenUonaI Monte CarbIC) cal- ata is very good: the deviations for the considered case do
culations for backscattering from a Cu surface are compare ot exceed 8%

with the OKG modeldashed curvgsas well as Algorithm Il The multiple-scattering contribution obtained with Algo-

proposed in the present wofkolid curve$. The data points . 4 )
are the results of conventional Monte Carlo calculations,rlthm Il agrees better with the direct Monte Carlo result

circles represent the total solution, while diamonds are thd/hile the single-scattering contribution is also exact. In con-
contribution of electrons that are deflected only once and th§8duence, the total reflection coefficient agrees better with
triangles represent the sum of the higher-order scatterin§e direct Monte Carlo approach than the OKG result.
contributions. These calculations were performed for an in- 1 he essential difference between the OKG model and Al-
cidence angle of —-60° with respect to the surface normalgorithm Ii, the neglect of the path length elongation due to
corresponding to an emission angle of +60°. The singlesmall-angle scattering, is illustrated in detail in Fig. 6 that
scattering contribution of the OKG model perfectly matchesshows the quantity', (z, 2) for 100 eV electrons normally
the MC data, since the OKG model is exact for this caseincident on a Au surface; this is the case for which the largest
Note that the single-scattering contribution constitutes by fadeviations are observed between the two models. The solid
the largest part of the reflection coefficigieixcept for scat- lines are the present approach, calculated with the MC tech-
tering angles where the cross section exhibits a deep minhique, the dashed lines are the result in the OKG model,
mum), which is typical for medium-energy electrons. The described by
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FIG. 7. Total reflection coefficient for a large number of mate-
rials and electron energies as a function of the scattering parameter
X=\i/\ (see text The solid curve represents Tilinin’s universal

FIG. 5. Differential reflection coefficients for 500 eV electrons relationship for the totainelastic backscattering coefficient, given
reflected from a Cu surface for an incidence angle of -@0fre- by expression(35). The dashed curve is the fit of the data to the
sponding to an emission angle of +G0Circles: Monte Carlo cal-  empirical relationship for the totalasticreflection coefficient pro-
culations for the total reflection coefficient. Diamonds: contributionposed in the present woflEg. (36)].
of electrons which experienced a single elastic collision. Triangles:
c_ontribution of high_er order elastic scattering. Soli_d Iir?es: Algo- for a large number of elemental solidls, Be, B, C, Mg, Al,
rithm 1l proposed in the present work. Dashed lines: Oswald—.. . .
Kasper-Gaukler ModglOKG). Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As,

Se, Rb, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te,
Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tv, Dy, Ho, Er, Tm, Yb,
Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, BiThe con-
sidered energies were: 50 eV, 100—1000 eV in 100 eV steps
and 1000-10000 eV in 1000 eV steps. The calculations
For the straight-line ternin,=0) the two approaches coin- were performed for normal electron incidence. Benefiting
cide, while for higher orders the path length elongation ow-from the high computational efficiency of Algorithm I, all of
ing to elastic scattering leads to a significant increase of théhese calculations could be performed within 30 min on a
contribution of multiple scattering, as given by the area unPC. The results are shown as open circles in Fig. 7.
der these curves. For the integral inelastic backscattering coefficient,

As a final result, Fig. 7 displays the total fraction of Tilinin“? found a universal dependence on the scattering pa-
medium-energy electrons backscattered into the hemispherametero in the continuous slowing down regime:
above the sample as a function of the scattering parameter

emission angle 6 (degrees)

e_ﬂ)\/.L
\I’nevnFO(Z-Q) = (Z\ep)" nt (34)

|
e

|
Vi+o-1

V1+0+1.9

tot _
=

(35

where o=R/\;, represents the scattering parameter in the
continuous-slowing-down approximation aRds the linear
range, i.e., the path length traveled by the particle until its
energy is dissipated in the solid. Express{8B) is shown as
a function of the quasielastic scattering paramegtexs the
solid curve in Fig. 7. For large values gf (corresponding
mainly to low energiesthe elastic reflection coefficient, rep-
resented by the circles, is seen to closely match this universal
curve. Note that for low energies one has=R and, further-
more, that the elastic peak makes up a significant fraction of
the total backscattered intensity. The elastic-backscattering
FIG. 6. Escape probabilitie¥, (z,Q) [Eq. (27)] for 100 eV coefficient also ap.proximately e>_<hibits a universal depen-
electrons normally incident on a Au surface and for normal emis-d€nce on the quasielastic scattering parameter: the spread of
sion. These quantities are the probability distribution for an electrorth€ reflection coefficient does not exceed a factor of 3 for any
to escape from the deptraftern, elastic and no inelastic collisions Vvalue of the scattering parameter while the rms deviation is
into the specified direction. The solid curves represent the escag@uch less. Therefore, the following empirical formula for the
probabilities evaluated with the MC algorithm described in the text,integral backscattering coefficient is proposed that may serve
the dashed curves are the result of the OKG model, given by Ecas a guide to estimate this quantity for any material and
(34). energy:

v (z,u)

depth z (A)
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1+y-1 While the OKG model can be integrated analytically lead-

tot_ , a, V=" X . : i X .

Ne =12 Myt 2y (36) ing to a closed expression for the partial elastic-reflection
VLT XY T e

coefficient{ Eq. (20)], Algorithm I and Il can be implemented

The dashed line represents the best fit of the data points # an efficient MC procedure based on the trajectory-reversal
this function. The values of the parameters giving the best fitechnique. The computational speed is independent of the

are:a;=0.96+0.02,a,=0.65+0.01. detector acceptance Qngle, which cqnstitutes a significant ad-
vantage over conventional MC algorithms where the effort of
V. SUMMARY AND CONCLUSIONS calculation increases drastically for small detector solid

angles. Comparison with results of conventional MC calcu-
Backscattering of medium energy electrons has been studations demonstrates that Algorithm | is exactly equivalent to
ied theoretically. Analysis of the kinetic equation for radially the conventional MC procedure, while the computational ef-
symmetric scattering potentials shows that the Green’s fundiciency of the latter is several orders of magnitude higher.
tion for an infinite medium can be expressed in terms ofThe approximate algorithm turns out to be quite accurate,
fluctuations in the energy losses and deflection angles on thgways leading to a significant improvement over the OKG
one hand and the associated collision statistics on the othefiodel. Deviations with conventional MC calculations are
hand. Although the Green’s function was derived for an in-typically less than 5% for energies exceeding 200 eV. Since
finite medium, the form of the solution demonstrates thathe experimental error in EPES is of the same order of mag-
satisfying the boundary conditions is always possible for amitude, both presented algorithms may be used for determi-
arbitrary problem by finding the appropriate collision statis-nation of the IMFP by means of EPES. Although this was not
tics since the fluctuation part of the Green'’s function is inde-explicitly demonstrated, both algorithms are applicable to ar-
pendent of the boundary conditions. bitrary surface morphologies and can cope in a simple way
For medium-energy electrons, of special interest for thawith depth-dependent interaction characteristics such as sur-
present work, the interaction with the electronic and ionicface excitations.
subsystem can be decoupled and the loss function is further The integral backscattering coefficient for normal inci-
simplified. On this basis it was possible to find the exactdence was found to follow a universal relationship with the
solution of the elastic backscattering problem, E), that  scattering parameter to a good approximation, making it pos-
was introduced as Algorithm |. An effective approximation is sible to estimate this quantity for an arbitrary energy and
obtained by introducing the approximate angular correlationgnaterial in a simple way.
[Eg. (23)]. The ensuing procedure to calculate the back-
scattering coefficienfEq. (24)] is introduced as Algorithm
[I. An additional approximation can be made in which the ACKNOWLEDGMENTS
path length elongation due to small-angle scattering is ne-
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