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The backscattering of medium energy electrons from solid surfaces is investigated by analysis of a linearized
Boltzmann-type kinetic equation. A closed expression is derived for the Green’s function in an infinite medium
valid for a spherically symmetric potential describing the interaction with the ionic subsystem. The solution is
expressed in terms of fluctuations of the energy loss and scattering angles and the collision statistics associated
with them. Since the fluctuation part is independent of the boundary conditions of the considered problem,
solution of the backscattering problem requires an appropriate treatment of the collision statistics. In this
context, the exact solution for the Oswald–Kasper–Gaukler model is derived and its limitations are analyzed.
An exact approach is presented and implemented in an efficient Monte Carlo scheme based on the trajectory
reversal technique. The resulting procedure is faster than the conventional Monte Carlo algorithm by several
orders of magnitude. Results for the angular distribution are compared with conventional Monte Carlo calcu-
lations and perfectly agree with the latter within their statistical uncertainty. A second approximate algorithm is
also given. The approximation involved in this second procedure turns out to be very reasonable: deviations
from direct Monte Carlo calculations remain below,5% for energies exceeding 200 eV. The integral elastic-
backscattering coefficient for normal incidence for a large number of materials in the energy range
50 eV–10 keV is found to approximately exhibit a universal dependence on the ratio of the inelastic and the
transport mean free paths, the so-called scattering parameter.
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I. INTRODUCTION

When a medium-energys50 eV–10 keVd electron hits a
solid surface, it strongly interacts with the ionic and elec-
tronic subsystems. The long-range part of the screened Cou-
lomb potential of the ionic cores mainly affects the details of
the small-angle part of the elastic-scattering cross section
that are less important for the particle transfer. Therefore,
when coherent scattering is insignificant, for example in
polycrystalline or amorphous solids, the elastic cross section
can be establishedab initio on the basis of appropriately
chosen potentials forfree atoms.1–6 Since the probability for
smultipled scattering increases monotonically with the path
length traveled inside the solid, the probability for back-
scattering without energy loss depends not only on the elastic
scattering cross section, but also on the value of the electron
inelastic mean free pathsIMFPd. Since the former quantity
can be calculatedab initio, the IMFP can be calibrated by
measurements of the intensity of the peak of elastically back-
scattered electrons.

The potential of backscattering experiments for measure-
ment of the IMFP was first recognized by Schilling and
Webb.7 Later, the importance of this techniquefcommonly
referred to as Elastic Peak Electron SpectroscopysEPESdg
for nano-scale calibration by means of electron beam attenu-
ation was realized by other authors and the technique was
further investigated and developed.1,2,8–11It turns out that the
elastic reflection coefficient depends approximately linearly
on the IMFP11 and the relative error in the IMFP is compa-
rable to the relative error in the experimental reflection co-
efficient. To avoid absolute calibration of the experimental
apparatus, which is a difficult task, the reflection coefficient
is usually measured together with that for a reference mate-

rial for which the IMFP is assumed to be known. In this way,
the experimental error can be kept below 5% without much
effort and the experimental contribution to the final uncer-
tainty in the IMFP compares favorably with other experi-
mental techniques to calibrate the IMFP, such as the over-
layer method.3,12–14

On the theoretical side, an accurate model relating the
experimental reflection coefficient to the IMFP is needed, as
well as reliable data for the elastic scattering cross section
which is needed as the only input parameter of such a model.
In the present paper the focus will be on the model for elastic
backscattering in noncrystalline solids assuming reliable data
for the elastic cross section to be available.

The Monte CarlosMCd technique is a convenient method
to study transport phenomena within the framework of a
Boltzmann-type kinetic equation where diffraction effects
can be disregarded.15 The MC technique is simple to imple-
ment and completely flexible with respect to the input pa-
rameters and, most importantly, with respect to the boundary
conditions that can be arbitrarily complex. A disadvantage of
this technique is that the influence of the input parameters on
the outcome of a simulation is not physically evident and,
most importantly, accumulation of the required statistical ac-
curacy requires considerable computational effort. This is
particularly problematic if the solid angle of the detector in
the simulation is small, since then a large fraction of the
simulated trajectories are generated in vain when they leave
the solid in a direction not matching the analyzer acceptance
angle. In the case of emission problems, this difficulty may
be overcome by invoking the symmetry properties of the
kinetic equation, the so-called reciprocity relationships for
linear transfer.16 One of these relationships can be interpreted
to state that instead of simulating the electron from its point
of emission inside the solid, and following the particle’s path
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until it eventually escapes from the surface in a direction not
necessarily matching the analyzer acceptance angle, the tra-
jectory can be generated in reverse, starting in the analyzer
from where its history is traced back in the solid. By means
of this trajectory reversal technique,17–19 the angular distri-
bution of Auger- or photoelectrons can be rapidly calculated
for an arbitrarily small acceptance angle leading to an en-
hancement in computational efficiency of typically several
orders of magnitude. Unfortunately, it is not straightforward
to apply this procedure to reflection problems since the an-
gular divergence in the electron source is usually even
smaller than the detector acceptance angle.

Exact analytic solutions of the transport equation are very
complex20,21 and one is usually forced to make appropriate
approximations. Several approximate analytical models for
elastic backscattering have been published in the past.22–28

Recently,4 these models were critically evaluated and a com-
parison with MC calculations showed that the model by Os-
wald, Kasper, and GauklersOKGd sRefs. 2 and 26d gives the
best agreement with the MC results. It was therefore recom-
mended that the OKG model be used for determination of
the IMFP by means of EPES. The OKG model is based on
the assumption that only one of the elastic processes taking
place in electron backscattering gives rise to a large deflec-
tion angle. OKG were able to find an analytic solution of
their model by making the additional assumption that the loci
of elastic collisions are equidistant, the length between them
being equal to the total mean free path. Although this simple
model works surprisingly well, significant deviations be-
tween the OKG and the MC approach have been observed
that may exceed 30% in certain cases4 and can be attributed
to a deficiency in the treatment of multiple scattering in
OKG’s approach.

Recently, an alternative numerical approach based on the
invariant embedding method was proposed29 and was later
successfully applied to elastic electron reflection.30 This pro-
cedure is similar to the MC method in that it gives the exact
solution within the numerical accuracy of the implementa-
tion. However, convergence is attained much faster than with
the MC technique. The accuracy attainable in a practical cal-
culation is much higher than with the MC technique and
therefore it represents an atractive alternative to MC simula-
tions, at least for cases with simple boundary conditions.

Another important aspect of the electron-backscattering
process is the occurrence of surface excitations as the elec-
tron passes the solid-vacuum boundary on its way into and
out of the solid,29,31–33 leading to additional energy losses
that must be accounted for in order to extract the proper
inelastic mean free path for volume scattering from elastic-
peak data. The surface-excitation probability depends on the
distance from the surface in- and outside the solid, and there-
fore the electron-solid interaction parameters depend on the
depth. Among the methods discussed above, the only one
that can cope with such a situation is the MC technique
which suffers from the inherent drawback of long computa-
tion times for practical calculations.

In the present work this problem is resolved by studying
the kinetic equation and bringing it into a general form con-
venient for the application to electron-backscattering prob-
lems. In this way, the OKG model is solved exactly. Further-

more, an exact solution is given and implemented in a fast
algorithm based on the trajectory-reversal principle. A sec-
ond algorithm that involves an approximation is also derived.
The accuracy of the approximation turns out to be reason-
able: for energies exceeding 200 eV, the differential back-
scattering coefficient typically differs by less than 5% from
results of direct MC calculations, while it is much faster.
Therefore the proposed algorithms may be useful for the de-
termination of the IMFP by means of EPES. Finally, the
integral elastic-backscattering coefficient was calculated for
normal incidence for a large number of materials in the en-
ergy range 50 eV–10 keV and was found to depend approxi-
mately universally on the ratio of the inelastic and the trans-
port mean free paths, the so-called scattering parameter.

II. THEORY

A. Formal solution of the kinetic equation

Since the transport equation is linear, the solution satisfy-
ing the boundary conditions and source function for a spe-
cific problem can be found by superposition once the Green’s
function for the problem is known. In the present context, the
Green’s function is often referred to as thesgeneralizedd loss
function Gss,T,md that describes the distribution of energy
lossesT and net deflection anglesu=arccosm after traveling
a path lengths= ux−x8u in the solid. The Green’s function
will be derived for an infinite medium subject to the initial
condition Gss=0,T,md=dsTddsmd /4p. Here and below the
dependence on the azimuth will be suppressed since it is
assumed that the scattering potential is radially symmetric,
giving rise to a cylindrical symmetry of scattering. Keeping
these assumptions in mind, standard arguments34 can be used
to write the kinetic equation for the generalized loss function
in the form:

]G

]s
= −

1

l
E

−`

+` E
4p

hGss,T,md

− Gss,T1,m1djwsT2,m2ddV2dT2. s1d

The energy loss and angular variables beforesT1,m1d, during
sT2,m2d and aftersT,md the collision are related via

T2 = T − T1,

m2 = m1m + n1n cossf − f1d. s2d

The symbolsm ,n are a shorthand notation for the cosine and
sine functions of the polar direction respectively,f1 and f
are the azimuths, anddV2=dm2df2. The quantitywsT,md
=lWsT,md is the normalized inverse differential mean free
path for scatteringsi.e., the distribution of scattering angles
and energy losses in individual collisionsd andl is the total
mean free path

1

l
=E

−`

+` E
4p

WsT,mddVdT. s3d

Note that at this stage, no distinction has been made between
different types of scattering such as elastic and inelastic scat-
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tering. In consequence the interaction parameters referred to
in the above, such as the differential inverse mean free path
wsT,md and the total mean free pathl pertain to collisions of
any kind.

Equations1d is readily solved in Fourier-LegendresFLd
space.35 The expansion coefficientsG̃lspd are found by mul-
tiplying with e−ipTPlsm2d, where Plsmd are the Legendre
polynomials, and integrating overT andV2. This yields:

]G̃lspd
]s

= −
G̃lspd

l
h1 − w̃lspdj, s4d

where the quantitiesw̃lspd represent the FL-expansion coef-
ficients of the normalized differential mean free path. The

solution satisfying the initial condition in FL-spaceG̃lsp,s
=0d=1 reads:

G̃lspd = e−s/lh1−w̃lspdj. s5d

Going back to real space results in

Gss,T,md = o
l=0

`
2l + 1

8p2 PlsmdE
−`

+`

eipT−s/lh1−w̃lspdjdp. s6d

To bring this expression into a more tractable form, the ex-
ponent is expanded with respect to its last term

Gss,T,md = o
N=0

`
e−s/l

N!
S s

l
DN

o
l=0

`
2l + 1

8p2 PlsmdE
−`

+`

eipTw̃ l
Nspddp,

s7d

whereN denotes the number of collisions of any type. The
second sum represents thesN−1d-fold self-convolution of
the differential mean free path, denoted byGNsT,md. Intro-
ducing the collision number distributionWNssd, that de-
scribes theN-fold scattering probability as a function of the
traveled path length,

WNssd =
e−s/l

N!
S s

l
DN

, s8d

one can write the loss function in the form

Gss,T,md = o
N=0

`

WNssdGNsT,md. s9d

Physically, Eq. s9d states that the distribution of energy
losses and deflection angles after a certain path length can be
expressed in terms of the fluctuations in the energy loss and
deflection angles afterN losses, described by the self-
convolution of the mean free pathGNsT,md, and weighted
with the collision statistics, i.e., the probabilityWNssd thatN
collisions occur for the considered path length.

If the interaction is characterized by large energy transfers
accompanied by small momentum transfers and vice versa,
the energy loss and scattering angles in Eq.s9d can be de-
coupled, by making a distinction betweenelasticand inelas-
tic collisions. For medium energy electrons in solids, this is
always justified since the recoil energy loss in an elastic col-
lision swhen elastic scattering is defined as an interaction

with the ionic subsystem of the solidd, is orders of magnitude
smaller than any energy loss suffered during interaction with
the electronic subsystem. Then the angular and energy parts
of the interaction can be separated by writing the normalized
differential mean free path in the following form:

wsT,md =
l

li
wisTd

dsmd
4p

+
l

le
wesmddsTd. s10d

Here the subscripts “i” and “e” indicate inelastic and elastic
scattering,le and li denote the elastic and inelastic mean
free path, respectively,wisTd is the usual normalized differ-
ential inverse inelastic mean free path, andwesmd is the nor-
malized elastic scattering cross section.

Inserting the above expression into Eq.s9d and using the
well known identity

Wnss1 + s2d = o
k=0

n

Wkss1dWn−kss2d, s11d

the loss function can be written as

Gss,T,md = o
ni=0

`

Wni

i ssdGni

i sTd o
ne=0

`

Wne

e ssdGne

e smd, s12d

wheresnid andsned denote the number of inelastic and elastic
collisions afterNs=ni +ned arbitrary collisions, respectively.
Here and below, the superscripts “i” and “e” are used to
make the distinction between inelastic and elastic scattering,
respectively. The functionsWni

i ssd andWne

e ssd correspond to
the stochastic processes for inelastic and elastic scattering
that are given in the quasielastic regime by Eq.s8d by replac-
ing the total mean free pathl by li and le, respectively.
Likewise, the functionsGni

and Gne
now represent the self-

convolutions of the inelastic and elastic terms of the total
differential mean free path. The second factor represents the
path length distribution in an infinite medium,Qss,md,36

Qss,md = o
ne=0

`

Wne

e ssdGne

e smd s13d

and the formal solution of the kinetic equation reads

Gss,T,md = o
ni=0

`

Wni

i ssdGni

i sTdQss,md. s14d

The form Eq.s12d of the solution of the transport equation
makes it clear that the influence of the boundary conditions
is reflected only through the collision statistics: the energetic
fluctuations depend on the respective differential mean free
paths and collision number only. Since the collision statistics
depend on the traveled path length only, it suffices to find the
path length distribution. If the path length distribution is
known for a particular problem, the above expression allows
us to find the specific solution by superposition. However,
deriving an expression for the path length distribution for a
particular set of boundary conditions in general represents a
formidable task and often one is forced to resort to numerical
calculations or simplifying assumptions, as discussed in the
next sections.
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Introducing the partial intensitiesCni
as the number of

electrons that arrive in the detector after experiencing a cer-
tain number of inelastic collisions for the specific boundary
conditions and taking into account the linearity of the kinetic
equation

Cni
=E

0

`

Wni

i ssdQssdds, s15d

the observed spectrum can be written in the convenient form

YsEd = o
ni=0

`

Cni
Gni

i sTd ^ f0sE + Td, s16d

where f0sEd is the energy distribution at the source and the
symbol ^ denotes a convolution over the energy variable.

B. The Oswald–Kasper–Gaukler (OKG) model

Oswald, Kasper, and Gaukler2,26 observed that the major
contribution to the elastic backscattering coefficient comes
from trajectories that only participate in a fewsne,1–3d
elastic collisions, their relative intensity rapidly decreasing
with the order of elastic scattering. According to Eq.s13d the
net deflection in a backscattering process is then mainly de-
termined by the first order term, the elastic scattering cross
section, since forne=0 no backscattering occurs. This im-
plies that all elastic processes, except one, lead to a negli-
gible deflection. This single large–angle scattering model due
to OKG is schematically illustrated in Fig. 1. In their ap-
proach to evaluate this model, OKG were forced to make an
additional approximation in order to arrive at a closed ex-
pression for the partial backscattering coefficienthne

after
ne-fold elastic scattering. To integrate Eq.s28d in Ref. 26, it
was assumed that the path length between any two succes-
sive elastic events is equal to the total mean free pathl
=1/sle

−1+li
−1d sp. 75 in Ref. 2d. Although Oswald’s deriva-

tion is distinctly clear,2 it is rather lengthy and the effect of
the additional assumption made is not obvious. Since it has
been recommended to use this approach for quantitative ap-

plication in EPES,4 it seems worthwhile to investigate this
model in more detail.

Within the formalism outlined in the present work, there
is no need to make any additional assumptions and the par-
tial reflection coefficient is easily obtained in closed form.
This is possible since for the OKG model, a fixed relation-
ship exists between the depth of backscattering and the cor-
responding path lengthssee Fig. 1d.

Any reflected trajectory in whichne collisions occur is
characterized bym elastic collisions on the way in, one col-
lision at the depthz andne−m−1 collisions on the way out.
Obviously, ne different values ofm are possible. From Eq.
s13d it follows that the probability for reaching the depthz in
the direction V8 after m-fold scattering is just
Wm

e fs1szdgGm
e sV0,V8d. Likewise, for an electron starting at

the depthz in the directionV9, the probability to escape in
the direction V after ne−1−m collisions is given by
Wne−1−m

e fs2szdgGne−1−m
e sV9 ,Vd. Here s1szd and s2szd are the

path lengths traveled along the in- and outgoing part of the
trajectory. Since the probability for a directional change
sV8→V9d is justG1

esV8 ,V9d /le, the partial path length dis-
tribution Qne

for ne-fold elastically scattered electrons is
given by

Qne
ssszd,V0,Vd =

1

ne
o
m=0

ne−1

Gm
e sV0,V8dWm

e fs1szdg

^
G1

esV8,V9d
le

^ Gne−1−m
e sV9,VdWne−m−1

e fs2szdg.

s17d

Note that here and belowV0=sarccosm0,f0d and V
=sarccosm ,fd are used to indicate the incoming and outgo-
ing direction of motion, while in the preceding sectionm was
used to indicate a directionalchangeduring a deflection. The
convolutions in Eq.s17d, denoted by the symbol̂ concern
the polar and azimuthal angular variables integrated over the
unit sphere.

At this stage, the two main implications of the OKG
model assumptions come into play:s1d since only one colli-
sion is assumed to contribute significantly to the net deflec-
tion, all deflection angles alongs1 ands2 are small and equal
for any value ofm. Then, the angular terms may be taken
outside the sum and combined into a factorGne

sV0,Vd; s2d
The path length elongation alongs1 ands2 due to the finite
scattering angles is neglected, leading to a drastic simplifica-
tion of the relationship between the traveled path length and
the depthssee Fig. 1d:

s1szd < b1z,

s2szd < b2z, s18d

whereb1=1/um0u, b2=1/umu, andb=b1+b2. Then, the par-
tial elastic reflection coefficienthne

=Cne,ni=0sV0,Vd is found
by inserting the average path length distribution into Eq.s15d
with ni =0:

FIG. 1. Schematic illustration of the single large-angle collision
model for elastic backscattering of Oswald, Kasper, and Gaukler
sRef. 26d.
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hne
sV0,Vd =

1

um0u

Gne

e sV0,Vd

le

3E
0

`

W0
i sbzd

1

ne
o
m=0

ne−1

Wm
e sb1zdWne−m−1

e sb2zddz,

s19d

where the factor 1/um0u accounts for flux conservation at the
surfacessee Fig. 1d. Using the quasielastic expression for the
stochastic processfEq. s8dg and performing the elementary
integration leads to the result

hne
sV0,Vd =

umu
um0u + umu

Gne

e sV0,Vd

ne
S l

le
Dne

. s20d

This is identical to expressions31d in Ref. 26. Thus it turns
out that the additional approximation of equal step-lengths,
made in Oswald’s derivation, leads to the exact solution of
the OKG model.

C. Trajectory reversal approach

In the OKG model an effective approximation of the func-
tion sszd gives rise to an analytic expression for the partial
reflection coefficient that is reasonably accurate. If a higher
accuracy is required, the functionsszd must somehow be es-
tablished numerically and inserted in Eq.s17d. Note that the
latter equation is exact. Since the explicit form ofsszd is not
of main interest, it is convenient to introduce the notation
cmsz,V0,V8d andcne−m−1

* sz,V ,V9d for the exact depth dis-
tribution functionsWm

e fs1szdgGm
e andWne−m−1

e fs2szdgGne−m−1
e in

the following. The functioncmsz,V0,V8d describes the
probability for an electron incident on the surface in the di-
rectionV0 to arrive at the depthz with the directionV8 after
m elastic collisions. Conversely,cm

* sz,V ,V9d represents the
probability distribution for an electron that starts at the depth
z in the directionV9 to reach the surface with a directionV
afterm collisions. For the following it is essential to note that
by virtue of the reciprocity theorem for one-speed
transport,16 the in- and outgoing depth distributions are re-
lated by

cm
* sz,V8,Vd = um8ucmsz,V,V8d, s21d

wherem8=sV8 ·nzd is the polar emission direction andnz is
the unit vector along the surface normal. Each trajectory can
be divided into an in- and outgoing part separated by a scat-
tering event at the depthz, characterized by the directionsV8
andV9 before and after the collision. Note that this depth is
not necessarily the largest depth reached by the particle, as in
the OKG model. With the aid of the depth distributions, the
formula for the partial path length distributionfEq. s17dg can
be rewritten as

Qne
ssszd,V0,Vd =

1

ne
o
m=0

ne−1

cmsz,V0,V8d ^
G1

esV8,V9d
le

^ cne−m−1
* sz,V,V9d. s22d

This equation is exact and ideally suited for calculation by

means of a rapid MC algorithm based on the trajectory re-
versal technique. The resulting proceduresreferred to as Al-
gorithm I belowd is exactly equivalent to the conventional
MC procedure, but is faster by typically several orders of
magnitude, in particular for small detector solid angles.

A simplifying assumption can be made at this stage which
does not lead to a serious loss of accuracy and gives rise to
an effective approximationsreferred to as Algorithm II be-
lowd. It consists of replacing the depth distribution
cmsz,V0,V8d by its average overV8, denoted ascmsz,V0d,
multiplied with the angular fluctuation factorGm

e sV0,V8d,

cmsz,V0,V8d < cmsz,V0dGm
e sV0,V8d. s23d

An equivalent expression holds for the function
cm

* sz,V ,V9d. Then, the expression for the partial path length
distribution becomes

Qne
ssszd,V0,Vd =

Gne

e sV0,Vd

nele
o
m=0

ne−1

cmsz,V0dcne−1−m
* sz,Vd,

s24d

which is exact forne=1 since in this case one always has
V0=V8 andV9=V. Furthermore, the neglect of the proper
angular correlation in Eq.s23d is expected to be approxi-
mately justified also for higher order scattering since the
elastic cross section is strongly peaked in the forward direc-
tion. Thus the approximation involved in Algorithm II ac-
counts for the path length elongation along the trajectory due
to finite scattering angles, but neglects the proper angular
correlations along the trajectory. Since the OKG model ne-
glects both the angular correlation as well as the path length
elongation, Algorithm II is expected to be more accurate than
the OKG model. Inserting the sum of the partial path length
distributions into Eq.s15d, the elastic reflection coefficient
within Algorithm II is finally found as

hesV0,Vd = o
ne=1

`

Bne
sV0,VdGne

e sV0,Vd, s25d

where the coefficientsBne
sV0,Vd are given by

Bne
sV0,Vd =

1

lene
E o

m=0

ne−1

Cmsz,V0dCne−1−m
* sz,Vddz

=
1

lene
E o

m=0

ne−1

W0
i fs1szdgcmsz,V0dW0

i

3fs2szdgcne−1−m
* sz,Vddz. s26d

Recalling thatW0
i fs1szdg ·W0

i fs2szdg=W0
i fsszdg, it is seen that

the latter expression is very similar to the OKG result Eq.
s19d. The essential difference is that Eq.s26d accounts for the
path length elongation along the trajectory and is therefore
expected to yield a better description of multiple scattering
than the OKG model.

III. NUMERICAL IMPLEMENTATION

The OKG model as well as Algorithm I and II proposed in
the present work were implemented and compared with con-
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ventional Monte Carlo calculations for electrons in the en-
ergy range 100–5000 eV backscattered from Be, Al, Cu, and
Au surfaces. The angular distribution was calculated in the
plane of incidence in 4° steps for an analyzer with a circular
aperture described by a full polar opening angle of 4°. Cal-
culations were performed for normal as well as oblique inci-
dences60° and 75°d.

The input parameters are the same for the three models
and comprise the electron inelastic mean free path calculated
by the TPP-2M formula37 and the elastic scattering cross
section that was calculated using the computer code of Ref.
38 for a Thomas–Fermi–Dirac potential. The resulting in-
elasticslid, elasticsled and transport mean free pathssltrd as
well as the scattering parameterx=li /ltr are shown for the
investigated materials in Table I.

The algorithm for the conventional Monte Carlo simula-
tions has been described in detail before,5,11 it is merely
noted here that 107 trajectories were required to accumulate
reasonable statistics for Cu and Au, while for Be and Al, that
have a significantly lower reflection coefficient in this energy
range, 108 trajectories were simulated.

For the implementation of the OKG model, multiple self-
convolutions of the elastic cross section need to be per-
formed. In the present work, this was achieved by expanding
the cross section in a series of Legendre polynomials. The
ne-fold convolution of the cross section is then given by the
Legendre back-transform of thene-th power of the expansion
coefficients.4,9,35

For the approximate model proposed in this worksAlgo-
rithm IId, the coefficientsBne

fEq. s26dg need to be calculated
in addition. In principle, this can be done by establishing the
path length distribution using Eq.s24d and applying the for-
malism outlined in the theory section. However, it is more
convenient to directly calculate the coefficientsBne

. This can
be achieved with a Monte Carlo technique by generating a
set of trajectories in the usual way, keeping track of the trav-
eled path length along the trajectory as well as the number of
elastic processesm that has taken place. The trajectory is
terminated when the contribution toBm becomes insignifi-
cant, i.e. when the traveled path length exceeds the inelastic
mean free path by a factor 53ne, or when it leaves the solid
again. The solid is divided into thin slabs of thicknessDz. In

each depth intervalk penetrated by the particle, the contri-
bution to the coefficientCm,k is directly evaluated via

DCm,k =
1

mk
exps− sszkd/lid,

where the polar direction along thekth intervalmk accounts
for flux conservation andsszkd is the total path length trav-
eled when reaching thekth depth, respectively. In other
words, instead of explicitly calculating the depth distribu-
tions, the product of the depth distribution and the inelastic
collision statistics is directly evaluated by this algorithm

Cm,ksVd = W0
i fsszkdgcmszk,Vd. s27d

In this way, one of the most difficult aspects of transport
problems is circumvented: the conversion between depth and
traveled path length. The outgoing depth distribution is cal-
culated in exactly the same way, starting the trajectory in the
detector and tracing it back into the solid. The starting direc-
tions for the outgoing probabilityCm,k

* sVd are uniformly
sampled from directions aroundV that lie within the detec-
tor solid angleDV. Afterwards this in-going depth distribu-
tion is converted into an outgoing one by invoking the reci-
procity relationship Eq.s21d. The histograms for the in- and
outgoing probabilities are eventually combined to give the
required coefficients

Bne
sV0,Vd =

DzDV

lene
o
k=0

kmax

o
m=0

ne−1

Cm,ksV0dumuCne−1−m,ksVd/Ntraj
2 ,

s28d

where the number of trajectoriesNtraj and solid angle of de-
tection DV ensure proper normalization. The factorumu ef-
fects the trajectory reversal of the outgoing distribution. For
all results in the present paperNtraj=104 trajectories were
sufficient to achieve the required statistical accuracy of
,1%.

To obtain the elastic reflection coefficient by means of
Algorithm I, the path length distribution Eq.s22d is inserted
into Eq. s15d. Thus, the matrixCm,ne

defined through

TABLE I. Parameters describing the elastic and inelastic interaction for medium energy electron transport in Be and Au. The elastic,
inelastic, and transport mean free paths are denoted byle, li, and ltr, respectively, and are given in units of Å, whilex=li /ltr is the
scattering parameter in the quasielastic energy regime.

EseVd

Be Al Cu Au

le li ltr x le li ltr x le li ltr x le li ltr x

100 2.9 5.5 9.9 0.56 3.3 5.3 7.9 0.67 4.1 4.1 7.0 0.59 2.0 5.6 10.4 0.54

150 3.9 6.7 17.9 0.37 4.0 6.4 11.9 0.54 4.2 4.7 7.4 0.63 2.5 6.1 18.1 0.34

300 6.8 10.1 53.1 0.19 6.1 9.8 27.0 0.36 5.2 6.8 10.6 0.64 3.8 8.3 18.6 0.45

500 10.6 14.5 124 0.12 8.5 14.0 53.1 0.26 6.6 9.5 16.7 0.57 5.4 11.3 16.7 0.68

1000 20.3 24.5 414 0.06 13.8 23.7 143 0.17 9.4 15.5 37.1 0.42 7.6 18.2 23.8 0.77

2000 39.5 42.7 1418 0.03 23.4 41.2 416 0.10 13.7 26.5 94.2 0.28 10.2 30.7 47.0 0.65

5000 95.9 91.5 7401 0.01 49.8 87.8 1888 0.05 23.6 55.5 367 0.15 15.5 63.4 146 0.43
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Cm,ne
=E

0

`

W0
i fsszdgcmsz,V0,V8d ^

G1
esV8 · V9d

le

^ cne−m−1
* sz,V,V9ddz s29d

needs to be evaluated. The quintuple integration in Eq.s29d
can also be carried out by means of an efficient trajectory
reversal Monte Carlo procedure. This can be done by gener-
ating trajectorypairs in the usual wayssee Fig. 2d and real-
izing that every step of trajectory I between themth and
sm+1dst collision gives a contribution to the depth distribu-
tion cmsz,V0,V8d at anydepthzmøzøzm+1, while the same
is true for trajectory II that contributes to the outgoing depth
distributioncne−m−1

* sz,V ,V9d at anydepth penetrated by the
sne−m−1dth step. Combining trajectories at any depth
reached by both of them is effected by multiplying with the
probability G1

esV8 ·V9d /le for a directional change fromV8
to V9. For a given trajectory pair, all possible combined
trajectories are found by determining the overlapping step
segments for all steps taken by trajectory I. For the consid-
ered step shown in Fig. 2 this gives a contribution tone=4
for the in-going andne−m−1=4 for theoutgoing part of the
trajectory. Two additional contributions for the fourth step of
the in-going trajectory come fromne−m−1=1 andne−m
−1=2 of theoutgoing trajectory. Thus, each trajectory pair is
ultimately combined into an infinite numbersat least one for
each overlapping depthd of reflected trajectories with differ-
ent collision orders. For each overlapping trajectory pair seg-
ment, the total contribution to the elastic reflection coeffi-
cient can be calculated analytically. For any overlapping
segment with scattering ordersm,ned, the contribution to the
matrix Cm,ne

is given by

DCm,ne
=

G1
esV8 · V9d
leum8uum9u E0

Dz

W0
i fsszdgdz, s30d

whereDz= uzbeg−zendu is the depth interval of the step of tra-
jectory I and the factorum8uum9u accounts for flux conserva-
tion of the overlapping segment pair. The integral along each
overlapping segment in Eq.s30d is easily evaluated analyti-
cally since the traveled path length for any depth joining the
pair is given by a simple linear relationship:

E
0

Dz

e−sszd/lidz=
− li

Sdsszd
dz

D ue−sszd/liu0
Dz, s31d

giving

DCm,ne
=

G1
esV8 · V9d
leum8uum9u

lie
−sL1+L2d/li

b − a
fe−aDz/li − e−bDz/lig,

s32d

whereL1 andL2 denote the path lengths traveled before the
considered segment. The parametersa andb depend on the
directions of the trajectory pair along the overlapping seg-
ment and are given in Table II. Finally the elastic reflection
coefficient is evaluated via

he ; C0 =
umuDV

Npair
o
ne=1

`

o
m=0

ne−1 Cm,ne

ne
, s33d

where the factorumu again effects the trajectory reversal of
the outgoing part of each trajectory. The number of trajectory
pairsNpair was chosen 104 for Au and Cu, and 105 for Al and
Be.

IV. RESULTS AND DISCUSSION

The angular distributions of electrons of several energies
backscattered from Be and Au surfaces calculated with the
approaches discussed above are compared in Fig. 3 and Fig.
4 for normal incidencesleft panelsd and for oblique incidence
of 75° with respect to the surface normalsright panelsd. The
latter incidence angle corresponds to an emission angle of
−75° in Fig. 3 and Fig. 4.

The oscillations with emission angle seen in the curves
for Au are a consequence of the shape of the differential
elastic-scattering cross section that exhibits quantum me-
chanical interferences between the incoming wave and the
scattered wave. This phenomenon is similar to the famous
Ramsauer–Townsend effect when the elastic cross section for
scattering from noble gas atoms even entirely vanishes for a
given energy.39 These oscillations in the cross section, that
are sometimes referred to as generalized Ramsauer–
Townsend oscillations, are more pronounced for low ener-
gies and high atomic numbers.

The results of the conventional MC calculations are rep-
resented by open circles, while the data generated with Al-

TABLE II. Parametersa andb of Eq. s32d for different combi-
nations of the polar directionsm8 andm9 of overlapping segments
of a trajectory pair.

m8 m8 ·m9 a b

ù0 ù0 0 1/ um8u + 1/ um9u
ù0 ,0 1/ um9u 1/ um8u
,0 ,0 1/ um8u 1/ um9u
,0 ù0 1/ um8u + 1/ um9u 0

m9 sm9d2 1/ um8u 0

FIG. 2. Illustration of the evaluation of overlapping segments of
a trajectory pairssee textd.
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gorithm I are plotted as filled circles. These two data sets are
difficult to distinguish except for cases with significant sta-
tistical fluctuations, demonstrating that the two approaches
coincide within the statistical uncertainty inherent to MC cal-
culations. This is as expected since the two approaches are
essentially equivalent.

The agreement of the OKG model with the MC results is
seen to be reasonable in all studied cases, but significant
deviations are nonetheless observed for all energies for both
materials. For normal incidence and for low energiess100
and 150 eVd where multiple scattering is more significant,
the deviations exceed 30%. Note that the importance of mul-
tiple scattering is indicated by the value of the scattering
parameterx.5 For values ofx of the order of unity or higher,
a significant multiple scattering contribution is expected,
while for sx!1d, multiple scattering becomes less signifi-
cantssee Table Id. For the other energies where the scattering
parameter is smallx!1 the deviations are smaller but still of
the order of 10% as a rule. For off-normal incidence, the
agreement between the OKG model and the MC results is
excellent for any energy except for emission angles close to
the incident direction where deviations of the order of 10%
are again observed.

The results of Algorithm II for normal incidence are seen
to agree significantly better with the conventional MC results
than the OKG model: for low energies the deviations remain
below 10% while for energies above 150 eV the deviations
are typically less than 5%. It should be noted that the case of
100 eV electrons normally incident on a Au surface exhib-
ited the largest deviations observed for all materialssinclud-
ing Cu and Ald, energies and scattering geometries studied.
Since the single scattering term is exact for both the OKG
model and Algorithm II, this improvement of the results is
attributable to the treatment of multiple scattering. For ob-
lique incidence, Algorithm II and the OKG model are in very
close agreement in all cases and compare excellently with
the conventional MC results except for scattering geometries
corresponding to a deep minimum in the cross section and
along the incident direction. This behavior has a clear physi-
cal explanation: the elastic cross section always exhibits a
strong peak in the forward direction, resembling the Ruther-
ford cross section for a screened Coulomb potential that de-
creases as~1/s1−msd2 with the cosine of the scattering
anglems. Therefore the cross section for geometries corre-
sponding to small net scattering angles is always rather high

FIG. 3. Differential reflection coefficients for electrons of various energies reflected from a Be surface for normal incidencesleft panelsd
and for an incidence angle of 75°scorresponding to an emission angle of −75°, right panelsd. Open circles: conventional Monte Carlo
calculationssMCd. Filled circles: Algorithm I proposed in the present work. Solid lines: Algorithm II proposed in the present work. Dashed
lines: Oswald–Kasper–Gaukler ModelsOKGd.
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and the single-scattering term dominates, which is treated
exact in both discussed modelsssee also Fig. 5d. For back-
scattering along directions close to the incident direction, the
value of the cross section is much lower so that more elastic
events are required for the electron to attain the proper emis-
sion direction. In other words, here the multiple scattering
term becomes more important which is only treated approxi-
mately in both models. This trend can be clearly distin-
guished in Figs. 3–5, and explains the larger deviations for
these geometrical configurations.

In Fig. 5, results of conventional Monte CarlosMCd cal-
culations for backscattering from a Cu surface are compared
with the OKG modelsdashed curvesd as well as Algorithm II
proposed in the present workssolid curvesd. The data points
are the results of conventional Monte Carlo calculations,
circles represent the total solution, while diamonds are the
contribution of electrons that are deflected only once and the
triangles represent the sum of the higher-order scattering
contributions. These calculations were performed for an in-
cidence angle of −60° with respect to the surface normal,
corresponding to an emission angle of +60°. The single-
scattering contribution of the OKG model perfectly matches
the MC data, since the OKG model is exact for this case.
Note that the single-scattering contribution constitutes by far
the largest part of the reflection coefficientsexcept for scat-
tering angles where the cross section exhibits a deep mini-
mumd, which is typical for medium-energy electrons. The

higher-order contribution is slightly underestimated by the
OKG model. This can be understood by noting that, due to
finite deflection angles, the path length for a given depth is
always larger thanbz used in Eq.s17d. Since the probability
for multiple scattering increases with the traveled path
length, this implies that the OKG model underestimates the
multiple scattering probability for any particular depth and
consequently also for the total reflection coefficient, as com-
monly recognized.4 Nonetheless the agreement of the total
reflection coefficient within the OKG model with the MC
data is very good: the deviations for the considered case do
not exceed 8%.

The multiple-scattering contribution obtained with Algo-
rithm II agrees better with the direct Monte Carlo result
while the single-scattering contribution is also exact. In con-
sequence, the total reflection coefficient agrees better with
the direct Monte Carlo approach than the OKG result.

The essential difference between the OKG model and Al-
gorithm II, the neglect of the path length elongation due to
small-angle scattering, is illustrated in detail in Fig. 6 that
shows the quantityCne

sz,Vd for 100 eV electrons normally
incident on a Au surface; this is the case for which the largest
deviations are observed between the two models. The solid
lines are the present approach, calculated with the MC tech-
nique, the dashed lines are the result in the OKG model,
described by

FIG. 4. Same as Fig. 3 for
Au.
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Cne,ni=0sz,Vd = sz/lemdne
e−z/lm

ne!
. s34d

For the straight-line termsne=0d the two approaches coin-
cide, while for higher orders the path length elongation ow-
ing to elastic scattering leads to a significant increase of the
contribution of multiple scattering, as given by the area un-
der these curves.

As a final result, Fig. 7 displays the total fraction of
medium-energy electrons backscattered into the hemisphere
above the sample as a function of the scattering parameter

for a large number of elemental solidssLi, Be, B, C, Mg, Al,
Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As,
Se, Rb, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te,
Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tv, Dy, Ho, Er, Tm, Yb,
Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bid. The con-
sidered energies were: 50 eV, 100–1000 eV in 100 eV steps
and 1000–10000 eV in 1000 eV steps. The calculations
were performed for normal electron incidence. Benefiting
from the high computational efficiency of Algorithm I, all of
these calculations could be performed within 30 min on a
PC. The results are shown as open circles in Fig. 7.

For the integral inelastic backscattering coefficient,
Tilinin40 found a universal dependence on the scattering pa-
rameters in the continuous slowing down regime:

hi
tot =

Î1 + s − 1
Î1 + s + 1.9

, s35d

where s=R/ltr represents the scattering parameter in the
continuous-slowing-down approximation andR is the linear
range, i.e., the path length traveled by the particle until its
energy is dissipated in the solid. Expressions35d is shown as
a function of the quasielastic scattering parameterx as the
solid curve in Fig. 7. For large values ofx scorresponding
mainly to low energiesd the elastic reflection coefficient, rep-
resented by the circles, is seen to closely match this universal
curve. Note that for low energies one hasli <R and, further-
more, that the elastic peak makes up a significant fraction of
the total backscattered intensity. The elastic-backscattering
coefficient also approximately exhibits a universal depen-
dence on the quasielastic scattering parameter: the spread of
the reflection coefficient does not exceed a factor of 3 for any
value of the scattering parameter while the rms deviation is
much less. Therefore, the following empirical formula for the
integral backscattering coefficient is proposed that may serve
as a guide to estimate this quantity for any material and
energy:

FIG. 5. Differential reflection coefficients for 500 eV electrons
reflected from a Cu surface for an incidence angle of −60°scorre-
sponding to an emission angle of +60°d. Circles: Monte Carlo cal-
culations for the total reflection coefficient. Diamonds: contribution
of electrons which experienced a single elastic collision. Triangles:
contribution of higher order elastic scattering. Solid lines: Algo-
rithm II proposed in the present work. Dashed lines: Oswald–
Kasper–Gaukler ModelsOKGd.

FIG. 6. Escape probabilitiesCne
sz,Vd fEq. s27dg for 100 eV

electrons normally incident on a Au surface and for normal emis-
sion. These quantities are the probability distribution for an electron
to escape from the depthz afterne elastic and no inelastic collisions
into the specified direction. The solid curves represent the escape
probabilities evaluated with the MC algorithm described in the text,
the dashed curves are the result of the OKG model, given by Eq.
s34d.

FIG. 7. Total reflection coefficient for a large number of mate-
rials and electron energies as a function of the scattering parameter
x=li /ltr ssee textd. The solid curve represents Tilinin’s universal
relationship for the totalinelastic backscattering coefficient, given
by expressions35d. The dashed curve is the fit of the data to the
empirical relationship for the totalelasticreflection coefficient pro-
posed in the present workfEq. s36dg.
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he
tot = a1xa2

Î1 + x − 1
Î1 + x + 2x

. s36d

The dashed line represents the best fit of the data points to
this function. The values of the parameters giving the best fit
are:a1=0.96±0.02,a2=0.65±0.01.

V. SUMMARY AND CONCLUSIONS

Backscattering of medium energy electrons has been stud-
ied theoretically. Analysis of the kinetic equation for radially
symmetric scattering potentials shows that the Green’s func-
tion for an infinite medium can be expressed in terms of
fluctuations in the energy losses and deflection angles on the
one hand and the associated collision statistics on the other
hand. Although the Green’s function was derived for an in-
finite medium, the form of the solution demonstrates that
satisfying the boundary conditions is always possible for an
arbitrary problem by finding the appropriate collision statis-
tics since the fluctuation part of the Green’s function is inde-
pendent of the boundary conditions.

For medium-energy electrons, of special interest for the
present work, the interaction with the electronic and ionic
subsystem can be decoupled and the loss function is further
simplified. On this basis it was possible to find the exact
solution of the elastic backscattering problem, Eq.s22d, that
was introduced as Algorithm I. An effective approximation is
obtained by introducing the approximate angular correlations
fEq. s23dg. The ensuing procedure to calculate the back-
scattering coefficientfEq. s24dg is introduced as Algorithm
II. An additional approximation can be made in which the
path length elongation due to small-angle scattering is ne-
glectedfEq. s18dg. Combining the two approximations ad-
dressed above leads to the Oswald–Kasper–GauklersOKGd
model26 fEq. s19dg.

While the OKG model can be integrated analytically lead-
ing to a closed expression for the partial elastic-reflection
coefficientfEq. s20dg, Algorithm I and II can be implemented
in an efficient MC procedure based on the trajectory-reversal
technique. The computational speed is independent of the
detector acceptance angle, which constitutes a significant ad-
vantage over conventional MC algorithms where the effort of
calculation increases drastically for small detector solid
angles. Comparison with results of conventional MC calcu-
lations demonstrates that Algorithm I is exactly equivalent to
the conventional MC procedure, while the computational ef-
ficiency of the latter is several orders of magnitude higher.
The approximate algorithm turns out to be quite accurate,
always leading to a significant improvement over the OKG
model. Deviations with conventional MC calculations are
typically less than 5% for energies exceeding 200 eV. Since
the experimental error in EPES is of the same order of mag-
nitude, both presented algorithms may be used for determi-
nation of the IMFP by means of EPES. Although this was not
explicitly demonstrated, both algorithms are applicable to ar-
bitrary surface morphologies and can cope in a simple way
with depth-dependent interaction characteristics such as sur-
face excitations.

The integral backscattering coefficient for normal inci-
dence was found to follow a universal relationship with the
scattering parameter to a good approximation, making it pos-
sible to estimate this quantity for an arbitrary energy and
material in a simple way.
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