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The A3Cq fullerides (A=alkali meta) are of considerable interest both experimentally and theoretically.
One important consideration in understanding many of the observed results is the JahTelkeupling
between vibrations of g,g anions and their electrons, and also of cooperative JT coupling between these anions.
To understand the effects of these intermolecular and intramolecular couplings, it is necessary to have a good
theoretical description of the JT effect experienced by isolatggje@ions in both unstrained and strained
environments. In this paper, we will determine analytical expressions for the energies and eigenstates of an
isolated (unstrained Cga anion in terms of the JT coupling strength and the splitting between two different
molecular terms. We will then look at the effect of strain as a perturbation on these states.
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[. INTRODUCTION atoms sit in symmetric positions within th&;Cg, lattice,
vibronic hopping matrix elements may largely cancel, and
Much research has been undertaken on the fullerene molhe band gap may be widened due to a combination of
ecule and its compounds. One particular area of interest is ilectron-correlation and electron-phonon interactidnin
the effect of the strong coupling between the motion of theaddition to being superconducting, thgCe, fullerides can
electrons and vibrations of the fullerene molecule. For iso2lso exhibit orientational phase transitions to states with
lated molecules, this leads to a dynamic Jahn-Telld) mgrohedral_disc_)rder, !n which rotations take place a_bout an
effect! The molecule will locally distort into one of a num- @xiS which is aligned in one of two standard orientatisns.
ber of equivalent lower-symmetry configurations, but tunnel- "€ motion of the JT system experienced B ©ns can
ing between the equivalent configurations restores the origit® understood by examining the lowest adiabatic potential
nal icosahedral symmetry of theggnolecule. For fullerene- energy surfacéAPES formed due to vibrational and JT po-

. . . S ential energy term&nd any electronic term splittingsThis
based solids, coupling to mtermolec_ular vibrations bet.weelg a five-dingl)e/nsionil surfa%:e containing poinR[s ofgminimum
molecllilses can also be_stror)g, Ieadlng to a cooperative ‘]fnergy in two dimensions and troughs of equivalent-energy
effect: In this case, distortions of neighboring molecules ,inisin the other thre¥-18 We will assume that the JT
can be locked in place resulting in a macroscopic distortionyq, hjing is sufficiently strong that the potential barriers be-
of the solid as a whole at low temperatufest higher tem-  yyeen the minimum-energy points are sufficiently high to
peratures, the correlations between distortions are destroygglalize the motion around the minimum-energy positions,
by thermal effects, leading to the possibility of structuralthen the motion can be described in terms of two vibrations
phase transition3® Indeed, structural phase transitions aregnd three pseudorotatior($t should be noted that “rotation”
seen in a number of fullerene materi&ité Although not all  here refers to rotation of a distortion of a fullerene molecule
of the observed structural changes will be due to JT effects, itather than real rotations of the molecule itself.
is nevertheless important to investigate the possible JT ef- Our basic formalism for specifying the Hamiltonian and
fects that could occur in these systems. identifying the vibrations and rotations follows that of

Estimates of the JT coupling in a given fullerene materialO'Brien,"*8which in turn carries on from the original work
can be calculatéd or deduced from experimental défa’?>  of Auerbachet all® These three works then used numerical
but these are all obviously subject to certain assumptions. diagonalization methods to determine the spectrum of lower-
is, therefore, important to calculate the quantum-mechanicd{ing energy levels as a function of the JT coupling strength.
states of an isolated ion and their energies as a function olVe will take a different approach, in which analytical ex-
the JT coupling strength. The results can be used to explaipressions for the vibronic states are obtained in terms of
various (e.g., spectroscopiaddata as well as used in further integrals over all points on the lowest APES. The energies of
calculations the states are then determined by evaluating related integrals

In this paper, we will consider the JT effects experiencechumerically. This work complements that orgCand G,
by isolated @, anions. These ions occur in materials such asanions already publishéd.
the A3Cq fullerides (whereA is an alkali metal which are In order to understand the cooperative JT effects linking
of particular interest in fullerene research as they can benotion of individual Gy molecules in fullerene solids? it
superconducting at relatively high temperatutedarious  will be necessary to understand JT effects experienced by
mechanisms have been proposed to help explain the oliens in a distorted environment. Such distortions can be
served superconductivity, and vibronic coupling involving modeled as an effective str&fh\We will, therefore, use our
the G, anions is an important feature of many of these mod-esults for the undistorted case to predict the behavior of a
els. The system may change from a Mott-Hubbard insulatosystem subject to a weak strain as a perturbation on the un-
to a band insulator through a JT efféétAlso, as the alkali distorted case.
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Il. THE HAMILTONIAN and coordinate®,, that transform as the spherical harmonics
Yom iS given in Ref. 26.

We will take the the’P term to be at an energ§ above
the 2D term, so thatH,m is a diagonal matrix with the first
three diagonal elements having the vadlend the remaining

The three electrons in agg:ion occupy triplet electronic
stated,,. These are coupled tg-type vibrations in what can
be referred to as g’®h JT effect!’'® The angular-
momentum notatiorp for the t;, state is chosen because - .
when linear JT couplings only are considered, the system hai@!ues zero. Recent calculatiéhindicate that theP term is
SO(3) symmetry(as proved in general terms by Podlker around 0.191 eV above t.h%D term, so we will use this
This is accidentally higher than tHe symmetry of the G value for § in plots of our final results. However, the results
molecule. Furthermore, all angular momentum states up t§1€mselves apply for any value éf o
L=2 are not split under the icosahedral gré@p® Angular D_ue t(_) the_S((B) invariance of_the linear JT Hamlltoman,
momentum notation provides the most convenient way t I dlrc_ectlons inQ space are equivalent. Atransformaplon .of
allow for interelectron Coulomb energies, which Competescoordmate%7 can be used to convert the general Hamiltonian

with the JT interaction to determine the ordering of energyrepresentlng a strain in any direction into a Hamiltonian for a

levelsl? strain in the# direction. We, therefore, only need to consider
In general, we will take the total Hamiltonia to be the case of a strain in the direction, with a strain Hamil-
' tonian
H= Hint + 7'[vib + Hterm + Hstraina (1)
Hstrain= — W0, (4

where H;,; is the JT interactionH,;, represent the vibra-
tional terms,Herm is @ contribution to account for any split- where the coefficientv can be positive or negative. A strain
ting between different terms arfdg,in is a distorting strain. in any other direction can be made equivalent to this by a
For the real ; ion, it may be necessary to include both rotation of the electronic and vibrational operatdtsif
first-order and higher-order contributionsg,.. However, it higher-order coupling terms were to be considered in the
is expected that a good indication of the behavior can bejamiltonian, then this equivalence would no longer hold and

obtained by restricting the calculations to linear couplingstrains in different directions would need to be considered
only, and this is the approach we will adopt in this paper. explicitly.

Before developing a theory for th##® h JT system, it is
first necessary to define some notation to label the five com-
ponents of the vibrationdiy mode. We will follow Ref. 22
and use the labelQ,, Q.,Q4,Qs,Qg} to represent the col-  Asin Refs. 18 and 17, we start by examining the potential
lective displacements, which correspond to the labelgnergy terms in the Hamiltonian to determine the structure of
{Q1,Q4,Q5,Q,,Qs3} used in Refs. 17 and 18. Due to the ac-the adiabatic potential energy surfacé&PES$ around
cidental S@3) symmetry in linear coupling, it is irrelevant which the motion of the system will be based, using a pa-
whether aC, axis or aCs axis is defined as theaxis of the  rametrization involving a radial coordinat® and four

I1l. ADIABATIC POTENTIAL ENERGY SURFACES

icosahedron. angles,f, ¢, y, and a to rewrite theQ,. This is the usual
In units in which the reduced mass of the mode, the modg@arametrization ind and ¢ for d-state functions, with the
frequency and: are set to unity, the vibrational term is additional anglesy and « added to reflect the full five de-
1 grees of freedom. In Refs. 17 and 18, it was shown that a
Hyp ==, (P2+Q2), (2)  series of rotations in each of the four angles could then be
2% used to reduce the potential to a form involving the angle

and the term splitting5 only (noting some errors in their
original matrice¥’). When the result is diagonalized, it is
found that two of the eight APES energies are zero, and the
remaining six are of the form

where\ is summed over all of the components of the vibra-
tional mode and th®, are the momenta conjugate to Q.
The electronic terms arising from@® h JT interaction are
43, 2D, and?P. As the high spin state is éBstate, there is no
JT coupling and this state need not be considered any further. _ 1,2 e
It is also found that there is no JT coupling within either the V=2(Q7+ o2 akQ i’ B+ &), )

%D or the ?P states as all the required matrix elements ar&yhereB=a, a+ /3, anda— /3. The values of andQ are
zero, but there is a nonzero couplmg.bet_vveenzﬂfnandzD _ chosen to minimiz&/. The APESs are independent @f ¢,
states'’18:2324Tp first order, the resulting interaction Hamil- 4.4 y. This corresponds to troughs of equivalent minimum-
tonian iy, can be written in the form energy points. If the results depended on these angles, we
=K ' 3 W(_)uld nee_:gl to choos_e_ specific values of thg angl_es to deter-
Hin % Qo © mine positions of minimum energy. The orientation of the
trough is determined by the value af

where theo,, are electronic operators whose representation in - The value ofQ= p for which V is a minimum can now be
terms of 8< 8 matrices can easily be deduced from Refs. 17jetermined. It is found that whesi = 5/k2< 2,

and 18, noting that our coupling constdnts equivalent to

V3k in these reference@s theirk is that_ applicable to the p=k\1-57%4, (6)
Teh [or pt®@h] JT system An alternative but equivalent

form for the Hamiltonian in terms of a coupling constant resulting in @ minimum in energy of
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1, ) range, it just represents a different copy of phase space.
V=-gki(d-2% (7) " However, the strain ternt,,, does not affect all of the
APESs in the same way. In fact, the solution with 77/2 is
When &’ >2, the minimum is at the origifQ=0). As this  unaffected by &-type strain. We could circumvent the prob-
corresponds to a term splitting much larger than the JT intelem by choosing the strain to be in a different direction.
action, we will not consider this case any further in thisHowever, it would be much more difficult to convert the
paper, although this factor does determine the range of cowgeneral problem of a strain in an arbitrary direction into this
plings over which results can be obtained. An equivalennew problem as the known five-dimensional rotation
result for the existence of a finite JT distortion was alsomatrix?’ favors theé direction. We will, therefore, choose a
found in Ref. 26. different value ofa so that a different eigenvalue is the low-
When there is no strain, values of can be chosen to est in energy. We will, therefore, set==/6, even when
make any of the three APESs in E@) with the negative there is no strain present. The APES involving(&if/3)
sign a minimum. In Ref. 17¢=/2 was chosen as the sim- then determines the minimum energy, and the electronic state
plest solution. Although this lies outside thes&x<<7/3  at a pointQ=(6, ¢,vy) on the lowest APES is

V2 — &' (cosycosf cose — siny sin ¢)
V2 — &' (cosycosfsin ¢+ sinycosqe)
— .
—\V2-46'cosysinéd

V3(2+9) .
1 ————sin 20sinvy
() = > 2 : (8)
-2+ &' (cos X cos¢ sin y+ cosy cosh sin ¢)

V2 + 8'sin A(cosy cos 2p — cosh sin y sin 2¢)
— V2 + §'sin 6(cosd cos 2p sin y+ cosy sin 2¢)
V2 + 8’ (cosy cosf cos¢ — cos Y sin y sin ¢)

"

When a=7/2, the kinetic energy part oft,;, has been
shown to have the forh18
where theD (6, ¢, v, a) are rotation matrix element$ Set-

119 3 1 P2 9 1 ting Q,=Q and taking the inverse recovers the parametriza-
Hyg = - —[——< —) e s —2] + —2[4)\5 tion of the Q;, so Qy is clearly a vibrational coordinate.
2[QdQ\ "dQ/ Q%da” 4Q°] 8Q Using the method of Opik and Pry@and considering the
+A2+)\2] (9) conjugate momenta, it can be shown ti@gt is the other
oo vibrational coordinate an®,, Qz, andQy are the pseudoro-
tations.

where {\,,\y,\;} are the three components of an angular The wave functions for a symmetric top are well kno¥fin.
momentum operator in the subspace involvihgp, andy.  They are functions of the same anglgsp, andy used in the
(Note that Refs. 17 and 18 erroneously give the wrong sigparametrization of th€;, which are related to the represen-
for the angular momentum termdhe first line is the Hamil-  tations of finite rotations. The states, whose form can be
tonian for two vibrations and the second line is the Hamil-found in Refs. 17 and 18, will be written aB&MK(Q),
tonian for a symmetric top. The motion in the five- whereL, M, andK are integer quantum numbers witl|
dimensional space of theh vibrations is, therefore, <L and|K|<L. (It should be noted that Refs. 17 and 18
comprised of vibrations in two directions and pseudorota-erroneously state that the required eigenstates involv& gos
tions in three directions. This is different from the motion in or sinKy rather tharg®”.) Now the electronic state changes
the othep"® h JT systems8-°where there are vibrations in signs under the transformatign— y+ 1, so the pseudorota-
three directions and pseudorotations in two directions. Altertional state must also change signs under this transformation.
natively, in order to distinguish the rotational directions from Also, the electronic state is invariant under the inversion op-
the vibrational ones, the Hamiltonian can be written in termserations— w—6, ¢— ¢+, and y——y and so the pseu-
of rotating coordinates dorotational state must also be invariaht® As a result,K
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TABLE |. Eigenstates{;;"" of the x-axis symmetric top(\2+4A2+4)%)/8Q? with K even. The algebraic form given must be

multiplied by the common facte@™ ¢ cosysin 4 if L is odd andé™¢ sinysin 20 if L is even. Note that the states are a linear combination
of the oddK eigenstated)i(L'M’K) of the corresponding-axis top.

L K Wave functiond)ﬁgt'M'K) Algebraic form

1 0 pGMY 1

2 2 PP 1

3 0 _\,%qﬂjv“"'lh V’%CD(;”M’S) 3-5coé ysir 0

3 2 \/%@(S'MJH V’%(IJ(Z&M'B) cos +co ysir? 6

4 2 -\nmcpg“v“”'% Vr%qws) 1-7 cog ysir? 6

4 4 \J%qil“'v“"’lh \y%dl“""‘ﬁ) cos 2+cog ysir? 6

5 0 1/8V2[\300M Y - 350 M I + 3,70 M ) 15-70 cod ysir? g+63 cod ysin' 0

5 2 1/ 42[~1400M D +3OEM I + 150 M 9 cos 2-cog ysir? 6(2+3(cos y-2)sir? 6

5 4 1/8V2[\420 MY + 9PN+ B SN 1+sir? 6(3 cos 2y-5) +sirt* f(cos y+8 sir? y)
6 2 1/16[1V100*M -9 *M 3+ 1650 (M) 1-18 cod ysir? 6+33 cod ysin' 6

6 4 1/ 42[~6d MY + 150 5M3 + 110 M 9] 1-sir? 6(7+5 cos )11 cog ysin’ 6(cos y-2)
6 6 1/16[3y220 %MV + [BEDEMI 1 |3 EM ] 3+sir? 6(5 cos 2y—11) +sirf 6(3 cod y+16 sirf y)

must be even and the required eigenstateshi}‘ré""() forL  The required linear combinations can be easily found by
odd andd-"" for L even, where simple matrix diagonalization. The states up ltg6 are
(LM.O) B given in Table I, with the corresponding rotational energies
ko e forK=0 being given by Eq(12). The algebraic form of the states in
PEMI =1 1 LMK 4 (LM—K) _ terms of ¢ and y is also given omitting the common factors
E((D P+ otherwise eM¢ cosysin 6 for L odd ande™¢ sin y sin 26 for L even.

BLMKI 2 i’_((D(L,M,K) _ M, D V. THE WAVE FUNCTION
V2 The wave function at poirf on the trough of minimum-

This means that the states #=0 only exist for odd_. The energy pqints consists of a vibronic part to take account of
the coupling between the electrons and the vibrations, and

rotational energy of these stafgs., of the final term in Eq. x i
(9)] ist?18 % & 9 the rotational par®-M* discussed above. To apply to both

L 3 the ground and excited states, the vibronic part must take
_ 9.2 account of excitations in the vibrational directioR$ and Q.
LK) = Z{L(L *1) 4K } ' (12 (noting that the excitations only have meaning insthe rotating
coordinate systejnlf we suppose that there arexcitations

in Qj ands excitations inQ., we can write the vibronic wave
Rinction in the form|isin(Q); 6’7 €’S). As all points on the
trough are equivalent, the total wave function must, there-
fore, take account of all points equally. Thus, it will be writ-
ten in the form

The above formula gives the results whea 7/2. How-
ever, we have already stated that strain does not affect th
solution so we should instead consider the case wien
=/6. Using the parametrization of tH@, and after some
algebra, it is found that the kinetic energy can still be written
in a form equivalent to Eq(9) but with (\;+4\J+4\2) in-
stead of(4\;+4\;+\2). This is still the Hamiltonian for a
symmetric top but with the axis of quantization along the
axis instead of the axis. The energies of the eigenstates are
E(L,K) as for thez-axis top, but the states are linear combi- (13
nations of state¢11) for the z-axis top involving different  As the trough can be mapped onto the surface of a sphere in
values ofK. This is analogous to the more familiar three- which 6 and ¢ take their usual polar definitions, the volume
dimensional angular momentum operators, where eigenfun@lementd( =sin 6dadgdy. However, for this wave function
tions of I, are linear combinations of those &f but the  to be of use, it is necessary to derive a more explicit form for
energies of the eigenstates remain the same. The invariang§e vibronic wave function. This can be achieved using a
and inversion relationships in this case require that the regnitary transformationJ(() to displace the origin of the
quired combinations involve oddather than evervalues of phonon coordinates to the bottom of the trodghn the
K. The resulting eigenstates will be Iabeléﬂf'(;gM'K)(Q), rotating coordinates, only thé’ mode is shifted. The re-
whereK is even as for the-axis top, even though the states quired form of the transformation at a poifiton the trough
involve linear combinations of stateb~""* with K odd. is thus?®

W(L,M,K,r,9) = f lhin(Q); 67, € HDEMK(Q)d().
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uQ) :ex;:[a"g(b;*— by)]1, (14) tween a point);=(6,, ¢, ) with phonon excitation num-
. L " . bers{p,q} and a pointQ}, =(6;, ¢, y;) with excitation num-
whereay is a variational parameter, amj’ andbj are pho-  porsrp o1 Care must be taken in evaluating these factors
non cre,at|on and ann|h|lat|qn operators, respectively, f_or th%ince the meaning of excitations in the rotating coordinates is
mode ¢". These can be defined in terms of operators in theyirerent 4t different points on the trough. It is possible to
nonrotatlr_\g_ coordinates in t’he same manner a_s(_Em).for carry out the calculation by converting all quantities U
the Qs. Fixing the value ot to displace the origin of €O~ 5,4"in the phonon excitationback to the fixed coordinate
ordinates to the bottom of the trough gives the restfft g siem  However, the result is very complicated. A simpler
==p- The vibronic wave function is thus result can be obtained by evaluating the overlap in the rotat-
| hin(Q); 07, €5 = g (U(Q)[ 07, €'9), (15)  ing coordinates using appropriate commutation relations be-
tween phonon operators at different points on the trodgh.
where ther andsin [¢'", €'%) again signify the number o’ The resulting overlap between the phonon parts of the wave

and e’ excitations, respectively. function at two points on the trough can be obtained from
Eqgs.(19) and(21) of Ref. 19(obtained for thgp? ® h system
VI. EVALUATION OF THE ENERGY putting f=t=0, giving
We will now use the wave function given in the previous O(p,g.r,s) = (0P, € UQ)TUQ)|0", €S,  (16)

section to determine the energies of this JT system. This
involves the evaluation of matrix elements and overlaps bewhere

i+ p i+j+|+m/ . :
= p r DY = vript(r =m+pt(p=1+i)!

o(p.gr9=e?2X >3 ’

N

— <0/p—|+i,€rq|0/r—m+j,6/s> (17)
i=0 j=0 1=0 M0 iHtmi(r=my!(p-1)!
[
with The matrix elements of{ are somewhat more compli-
min(g,r) min(s,g-j) cated to calculate. When evaluating the terms in the rotating
gP g €S = [olglrisl AT AS™ coordinate system it is necessary to include “exc_ltatlons" in
(P09 120 E’O VP 00" be Q. Qf, and Q; for the purposes of the calculation, even
Do H-SHA] AM AG-i-m though these modes correspond to rotations. After some al-
X Ao AcPePs  OP+a.r+s), gebra, it is found that the matrix elementsdf,, are
(18

Kk ——
; . =2 Ja—s2| Jr -
whereé is the Kroneckes function andA = (X,n)'/i!, with Mint = \5\‘4 o {\rOL'M'K(Zﬂ'r’S’r 1.9)

Xinn= 2 Dy ()Dn (€2,). (19 +\r + 10, yk(Ziat,ST+1,9) + \“'EOL,M,K((l —Xgo)
x

—
. XZ1or —1,5,1,5) —VqO, Xegli1o,V,S— 11,8
The overlap between the electronic states at pdhtand 12 ) = NAO mk(XeoZ2 )

(), can be written as
P Q) Yg( Q) =Z=(2-8)2,+(2+8)Z, (20

whereZ, andZ, are functions of the angular variablgsut ~ WhereéZi;=Z,+Z,, the matrix element ot., is
not §’) and relate to th& andH parts of the electronic states, 5 02

respectively. The total overlap integral involving the state in Myip = (— +r+s+ —)OL,M,K(Z,r,S,r,s)
Eq. (13) with itself is thus 2 2

- %OL,M,K((g ‘Xﬂe)zlzyr,S,f.S)] , (23
v

Ouk(r,9)=(2-8)0 m(Zyr,S1,9) - %[\“"FOL,M,K(Z,F,SJ -19
v

+(2+8)0 mk(Zyr,81,9), (21)

—
where +\r+ 10, yk(Zr,sr+1,9)], (24)

and the matrix element dfl;e,, iS

— (L,M,K)* (L,M,K)
OLux(Gpar9= | GO @i 1) Mem=82-8)0Luk(Zur.Sr9.  (25)

X0O(p,q,r,s)dQ,dQ),. (22)  The energies of the states are thus
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Energy

FIG. 1. Relative energies for some states with vibrational quan- FIG. 2. Relative energies for states with rotational quantum
tum numbers{r,s}={0,0} plotted as a function of the coupling numbersL=1 and K=0 plotted as a function of the coupling
strengthk and in units ofhw. The results shown are for the rota- strengthk and in units ofhw. The smooth curves are for the vibra-
tional quantum number from 1 to 5, in ascending order according tional quantum numbess,s}={0,0}, {1,0}, {0,1}, {2,0}, {1,1}, {0,2},
to the values of energy in strong coupling, and with the lowest{2,1}, {0,3}, and{1,3} in ascending order in strong coupling.
possible value oK in each casénamelyK,,,=0 for L odd and 2

for L even. tional excitations({r,s}={0,0}). The results plotted are for
the lowest possible value of the rotational quantum number
MM (r.s)+ MY (r.) + ME™ (r.s K for a givenL, namelyK,,=0 for L odd and 2 forL even.
ELmk(r,s) = Lin(:9) t';'tM'K( )+ M (1) The results are calculated fit=0, although the energies do
O wk(r,s) not depend on the value ®f. Results forL from 1 to 5 are

(26) plotted relative to the energy at the bottom of the trough
) ) ) iven in Eq.(5) in unitszw=1. It should be noted that the
We now have analytical expressions for the energies ot transformation method upon which the results are based
the rotational-vibronic states in terms of integrals O¥Br s targeted for solving strongly coupled JT problems, and the
=16, 1. nb and =10, ¢, ). In fact, the integrals all - geates do not all tend to appropriate limits in weak coupling.
involve (¢—¢) and not (#+¢). This leaves five- gimjlar behavior has been seen previously in other JT sys-
dimensional integrals which must be evaluated numericallyjems analyzed using the shift transformation metHdd.
The integrals depend upon the trough ragiuahich in turn - However, it can be seen that the ground state starts at a
depends upon both the coupling strengénd the term split-  (gative energy offiw in weak coupling and progresses to a
ting 8. Hence the integrals must be evaluat_ed separate_ly fYelative energy ofiw in strong coupling. These are the ex-
different values ok and 6. We evaluate the integrals using pected zero-point energies for the two limits, which corre-
standardNAG) numerical library routines implementing an gnonq to five vibrations and two vibrations plus three rota-
adaptive quadrature method. Most of the integrals can bfons respectively. The excited rotational states also all
evaluated to an accuracy of 0.001 without any dlfflculnes.com,erge towards the limit dfw in strong coupling. This is
However, the integrals required for some of the higher eXexpected as these states are vibrational ground st@tess
cited states contain high order trigonometric functions of th&—{0,0}) in this limit. As the coupling strength weakens but
angular parameters and are thus highly osci]lating, eSpeCia"%efore the model breaks down, it can be seen that the excited
for states with higher quantum num.bers. This means that th§‘tates are tending towards limits which are integral numbers
results are rather unstable for certain valuek,a€sulting in of #iw above the ground state. This is because the states are
very different answers when _the r_eques_ted aceuracy I3y cited vibrational states in weak coupling, where there is no
changed or whe_:n the value kf|s_v_ar|ed slightly. This is JT effect and simply a five-dimensional potential well cen-
clearly not P.hys'c"’?': _Fortunately,. Itis plear from the resur‘Stered on the origin. Figure 2 shows equivalent results to Fig.
where such instabilities cause difficulties. 1 for states withL=1, K=0 and up to four phonon excita-
tions in strong coupling. It can be seen that the curves with
phonon excitations roughly follow that of thid ,M, K.t
state with no excitations, again consistent with the rotation-
In order to understand the complicated results for this JTvibration interpretation.
system, we will first look at the case of zero term splitting.  We will now look at results for a finite value of the elec-
We will present results for a range of lower-lying excited tronic term splitting. An interesting feature of a nonzero
states, although it should be noted that energies have beésrm splitting is that, as stated in Sec. Ill, the minimum po-
obtained for many more excited states than those shown isition of the APES is at the origin i space foré’ >2, and
the figures in this paper. Figure 1 shows the energies as leence for the weakly coupled region in whikh< §/2. This
function of the coupling constamtfor states with no vibra- means that the JT effect is totally quenched by the presence

VII. RESULTS

115411-6



JAHN-TELLER EFFECTS IN THE FULLERENE ANION. PHYSICAL REVIEW B 71, 115411(2005

6 T ; T y T The general behavior of the energy curves in strong cou-
pling is similar to that found in the absence of any term
splitting. This is because the JT coupling dominates over the
term splitting in this limit. However, the energies of those

4l | states that have a significant component coming fromPthe
states increase quite substantially in weak coupling com-
pared to the case of no term splitting. This is where the JT

I ] effect no longer dominates over the term splitting. In weak
coupling, the{2,0,2 state is higher in energy than tkie0,G

2t & state. This is to be expected becaudeas been taken to be

positive, and so thé state is higher in energy than tlie
; state with no JT coupling.
L . L . L Very few other calculations have been made of the ener-
2 3 4 gies of thep*®h JT system with which our results can be
compared. References 17 and 18 give results for the energies
FIG. 3. Relative energies for states with vibrational quantumOf the lowest?P and °D states. These correspond to our
numbers{r,st={0, 0} calculated with the inclusion of term splitting {r,st=0 and{L,M,K}={1,M,0} and {2,M,2} states, re-
5=5.9 plotted with respect to coupling strend¢rand in units of ~ Spectively. They calculate their results using a Lanczos nu-
fiw. The rotational quantum numbers for these states arenerical diagonalization procedure, and give energies as a
{L,M,K}={L,M,Knint with L from 1 to 5, in ascending order function of the coupling constant both for zero term splitting
according to the values of energy in strong coupling. and for a term splitting corresponding & 2% . Unfortu-
nately, it is unclear exactly what the energies have been plot-
ted relative to in their figures, which makes a quantitative
%omparison difficult. However, it can be seen that when the
term splitting is zero, the energies of thé® and’D states
coincide at zero coupling and the difference in energy be-
tween these two states remains small at all couplings, with
the °D state always above th& state. This is the same
behavior we observe in Fig. 1. Their results with a term
splitting of 6=2Aw are also qualitatively similar to ours with
$=5.%w; the °P term is significantly higher in energy than
the °D term in weak coupling, but the energies cross as the
coupling strength increases so that fie state is slightly
lower in energy than théD state in strong coupling. One
difference is that they plot their results down to a JT coupling
saltrength of zero, which as we explain above is not appropri-
ate with our method of calculation.

Energy

of the electronic splitting term until the vibronic coupling is
sufficiently large to overcome it. For this reason, the energ
curves can only be calculated f&>+6/2 (in units where
fhiw=1). We will chooses=0.191 eV by reference to Table 9
(model 3 of Nikolaev et al,?®> which corresponds tad
~5.%w in terms of the accepted value of 260 ¢nfior the
vibrational frequency of the strongest coupled JT-actiye
mode. This means that the curves can be plottedkfol.7.
However, the energies cannot be calculated reliably for val
ues ofk close t0\8/2 so the curves are plotted f&r>2 in
most cases, anki>2.5 for two of the higher-excited states.
Figure 3 shows results for the states with no vibratifris
brational quantum numbef{s,s}={0,0}) but rotational exci-
tations, and Fig. 4 shows results for the states with the lowe
rotational quantum numberns=1 and K=0, and different
vibrational excitations.

sf ; ' ' VIIl. THE EFFECT OF STRAIN

TF We will now consider the effect df{q,inas a perturbation

6l on the states in Eq13). The dynamical nature of the JT

effect means that without any strains present, the average
=5T (Q,) of one(or more of the collective displacements will be
g 40 zero. Equivalently, the averager,) of the corresponding
w s electronic operatorr, will be zero?2%28According to stan-
i dard results, the thermal averageogfat a temperatur@ can
2t be given by the expression
T j > (Yl oy gye e
1 N 1 N 1 n
0 2 3 4 (on) = ) (27)

. S g ErkaT
n

FIG. 4. Relative energies for states with rotational quantumWheren is summed over all of the states. of the svstem
numbersL=1 andK=0 calculated with the inclusion of term split- o y

ting 6=5.9 plotted with respect to coupling strendgtand in units (with e”ergyEn)- .Th.us we .expect to fmd‘/’n|ﬂ|%>zo' In
of #iw. The vibrational quantum numbers for these statesm® ~ OUr case, if strain is considered to zeroth order, the states

={0,0, {1,0, {0, 2.0, {1,1}, {0.2, 2.1, {0,3, and{1,3 in  Yn=1s are the wave functions(L,M K,r,s). Mathe-
ascending order in strong coupling. matically it is found that the matrix elements
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FIG. 6. Energy levels of states with vibrational quantum num-
FIG. 5. Energy levels of states with rotational quantum numbersers{r,s}={0,0} to second order in perturbation theory as a func-
{L,M,K}={3,M,Kpin} to second order in perturbation theory as a tion of positive strainw for a coupling constank=3.5 and term
function of positive strainv for a coupling constark=3.5 and term  splitting §=5.9 in units ofiw. The rotational numberd.,M,K} are
splitting 6=5.9 in units ofhw. The vibrational numbergr,s} are  {1,M,0}, {2,M,2}, {4,M,4, {3,M,2}, {3,M,0}, {5,M,2},
{0,0, {0,1}, {1,0}, {1,1, {0,2}, {2,0}, {0,3, and{2,1}, respectively, {5,M,0}, and{6,M, 2}, respectively, for the curves in an ascending
for the curves in an ascending order whenrO. order whenw=0.

(W(L,M,K,r,9)|0W(L,M,K,r,9) are indeed zero, as ex- pling strengths. These will be of use in interpreting the re-
SR 0 o ' sults of any experiments that probe the vibronic spectrum of

ﬁ]e(t::wi-d ;gs%rr?csgrgl? ;?r(;‘ﬁergr:/:l?er?h?rr égi;gem;glceav;r?ﬁmlerene ions, such as various spectroscopic measurements.
: that strai h n. ff ut th quer f thl precise value for the strength of the intermlecular JT cou-
IS that strain can have no €effect on the energies o %Iing in fullerene anions is not yet known either experimen-

states to first order in perturbation theory, as the perturbat—aIIy or theoretically. Although our method fundamentally

tion corrections contain the same matrix elements . .
m ron ling, r nable resul n in
(TLMLK 9o WM, KT, 9). assumes strong coupling, reasonable results can be obtained

. ] 0 . =2 in intermediate coupling, and for some states even in weak
We will, therefore, calculate the energlE)§_= E, +E, 10 coupling. Hence our results can be expected to apply to these
second-order perturbation theory, whegg' is the energy real problems as long as the JT coupling is not significantly

without strain and smaller than the term splittingvhen there is no JT distortion
|<¢(0)|0 |¢_<0)>|2 as shown in Sec. IJI Also, they may apply to icosahedral

Eﬁf) =w2>, “(0)—‘9('0), (28) molecules other than & It will be interesting to compare

izn En —F our results with numerical ongs.g., from a Lanczos diago-

wheren is summed over all allowed values bfM, |, r, and nalization) if they become available in the future.
s. The results fow>0 are shown in Figs. 5 and 6. It can be The formulas as presented in this paper, are for coupling

seen that some of the energies increase with strain, so g a singlehy mode only, whereas a realsgmolecule is
g ' .nzz%upled to eight differenby modes of vibration. If the JT

ggg;iasie’sggisoor?n?saﬁ ?Lrgolzt\/\;ggfzinlzdse ?:lgrfez[gZ'Th;?'Zé%uplings are not too strong and the spread of frequencies is
P P\?t too large, it is possible to view the vibronic coupling

ergy with strain, some decrease and some stay the same.p oblem in terms of a single effective mo#e32in which

should be noted that th? energies are plotted relative to th ase our formalism is appropriate as it stands. However, in
same energy zero as without strain. Results can also be o

tained forw= 0. which need not be the same as for 0 as llerenes the JT couplings are of intermediate strength with

. C . a wide spread of frequencies, and so it will be more appro-
::,-hnet ?aallltjrééelements and energies in E2p) can have differ- priate to consider all eight modes explicith®® Our results

can easily be expanded to include all eight modes by intro-
ducing appropriate sums into the formulas. However, there
will then be eight coupling constants and eight frequencies,
which make the results much harder to interpret.

In this paper, we have analyzed tp&= h JT system using Our results considering the effect of strain are important
a semianalytical method, whereby analytical expressions afeecause cooperative JT effects betweglj &hions can be
obtained for the energy levels and eigenstates which are théRodeled as an effective strain. Cooperative effects can be
evaluated numerically. The form of the wave functions al-expected to result in a nonzero static distorti@,) and
lows the motion of the system to be understood in terms of £quivalently a nonzero value fés,). When the stateg, are
composition of vibrations and rotations. The method can béaken to second order in perturbation thetoy highey, the
used to determine energies of a wide range of states witbo,) are still zero for\ # 6 but (o) is nonzero. In other
rotational and vibrational excitations over a range of cou{simplep JT systems, such as the culic® e system, the

IX. CONCLUSIONS
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thermal average increases with increasing strain until it satuthe results used to determine the thermal avetage How-

rates at a maximum value for large straffig:urthermore, a  ever, for weaker strains the wells in the APES will be shal-
larger strain is needed to produce the maximum thermal avow and a description in terms of simple vibrations will not
erage at higher temperatures than at lower ones. Similar bge appropriate. The pseudorotations then become hindered

havior can be expected in this system, although to do this ifgtations in which there is a preference for the system to be
is necessary to consider the whole range of strains from very,cajized near one of the wells but the overall motion is still
weak to very strongcompared to the strength of the JT  (qation. It is hoped that our results can later be combined

coupling. _Iwith results for a strong strain to give a full description of the

s ;;2; gv?%ezriatlrguroﬁlg?m?riir?wusrgzrr]g: en\g{r?tr;m:gtaa;r&sa ITIT effects experienced byiTions in a strained environment.
ys g 9y P ' ' . This in turn will help explain some of the interesting features
difficult to solve accurately by theoretical means. The strain

will lower some of the minimum-energy points below others, OF Tor example, theAsCe fullerides.

If the strain is strong, distinct wells will be produced and one

or more of the pseudorotatio_nal _modes in the absence of ACKNOWLEDGMENT

strain will be converted to a vibration. The system can then
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