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The A3C60 fullerides sA;alkali metald are of considerable interest both experimentally and theoretically.
One important consideration in understanding many of the observed results is the Jahn-TellersJTd coupling
between vibrations of C60

3− anions and their electrons, and also of cooperative JT coupling between these anions.
To understand the effects of these intermolecular and intramolecular couplings, it is necessary to have a good
theoretical description of the JT effect experienced by isolated C60

3− anions in both unstrained and strained
environments. In this paper, we will determine analytical expressions for the energies and eigenstates of an
isolatedsunstrainedd C60

3− anion in terms of the JT coupling strength and the splitting between two different
molecular terms. We will then look at the effect of strain as a perturbation on these states.
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I. INTRODUCTION

Much research has been undertaken on the fullerene mol-
ecule and its compounds. One particular area of interest is in
the effect of the strong coupling between the motion of the
electrons and vibrations of the fullerene molecule. For iso-
lated molecules, this leads to a dynamic Jahn-TellersJTd
effect.1 The molecule will locally distort into one of a num-
ber of equivalent lower-symmetry configurations, but tunnel-
ing between the equivalent configurations restores the origi-
nal icosahedral symmetry of the C60 molecule. For fullerene-
based solids, coupling to intermolecular vibrations between
molecules can also be strong, leading to a cooperative JT
effect.1–3 In this case, distortions of neighboring molecules
can be locked in place resulting in a macroscopic distortion
of the solid as a whole at low temperatures.4 At higher tem-
peratures, the correlations between distortions are destroyed
by thermal effects, leading to the possibility of structural
phase transitions.5,6 Indeed, structural phase transitions are
seen in a number of fullerene materials.5–7 Although not all
of the observed structural changes will be due to JT effects, it
is nevertheless important to investigate the possible JT ef-
fects that could occur in these systems.

Estimates of the JT coupling in a given fullerene material
can be calculated8,9 or deduced from experimental data,10–12

but these are all obviously subject to certain assumptions. It
is, therefore, important to calculate the quantum-mechanical
states of an isolated ion and their energies as a function of
the JT coupling strength. The results can be used to explain
various se.g., spectroscopicd data as well as used in further
calculations

In this paper, we will consider the JT effects experienced
by isolated C60

3− anions. These ions occur in materials such as
the A3C60 fullerides swhereA is an alkali metald, which are
of particular interest in fullerene research as they can be
superconducting at relatively high temperatures.5 Various
mechanisms have been proposed to help explain the ob-
served superconductivity, and vibronic coupling involving
the C60

3− anions is an important feature of many of these mod-
els. The system may change from a Mott-Hubbard insulator
to a band insulator through a JT effect.13 Also, as the alkali

atoms sit in symmetric positions within theA3C60 lattice,
vibronic hopping matrix elements may largely cancel, and
the band gap may be widened due to a combination of
electron-correlation and electron-phonon interactions.14 In
addition to being superconducting, theA3C60 fullerides can
also exhibit orientational phase transitions to states with
merohedral disorder, in which rotations take place about an
axis which is aligned in one of two standard orientations.15

The motion of the JT system experienced by C60
3− ions can

be understood by examining the lowest adiabatic potential
energy surfacesAPESd formed due to vibrational and JT po-
tential energy termssand any electronic term splittingsd. This
is a five-dimensional surface containing points of minimum
energy in two dimensions and troughs of equivalent-energy
points in the other three.16–18 We will assume that the JT
coupling is sufficiently strong that the potential barriers be-
tween the minimum-energy points are sufficiently high to
localize the motion around the minimum-energy positions,
then the motion can be described in terms of two vibrations
and three pseudorotations.sIt should be noted that “rotation”
here refers to rotation of a distortion of a fullerene molecule
rather than real rotations of the molecule itself.d

Our basic formalism for specifying the Hamiltonian and
identifying the vibrations and rotations follows that of
O’Brien,17,18 which in turn carries on from the original work
of Auerbachet al.16 These three works then used numerical
diagonalization methods to determine the spectrum of lower-
lying energy levels as a function of the JT coupling strength.
We will take a different approach, in which analytical ex-
pressions for the vibronic states are obtained in terms of
integrals over all points on the lowest APES. The energies of
the states are then determined by evaluating related integrals
numerically. This work complements that on C60

2− and C60
4−

anions already published.19

In order to understand the cooperative JT effects linking
motion of individual C60 molecules in fullerene solids,2,3 it
will be necessary to understand JT effects experienced by
ions in a distorted environment. Such distortions can be
modeled as an effective strain.20 We will, therefore, use our
results for the undistorted case to predict the behavior of a
system subject to a weak strain as a perturbation on the un-
distorted case.
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II. THE HAMILTONIAN

The three electrons in a C60
3− ion occupy triplet electronic

statest1u. These are coupled tohg-type vibrations in what can
be referred to as ap3 ^ h JT effect.17,18 The angular-
momentum notationp for the t1u state is chosen because
when linear JT couplings only are considered, the system has
SOs3d symmetrysas proved in general terms by Pooler21d.
This is accidentally higher than theIh symmetry of the C60
molecule. Furthermore, all angular momentum states up to
L=2 are not split under the icosahedral group.17,18 Angular
momentum notation provides the most convenient way to
allow for interelectron Coulomb energies, which competes
with the JT interaction to determine the ordering of energy
levels.17

In general, we will take the total HamiltonianH to be

H = Hint + Hvib + Hterm+ Hstrain, s1d

where Hint is the JT interaction,Hvib represent the vibra-
tional terms,Hterm is a contribution to account for any split-
ting between different terms andHstrain is a distorting strain.
For the real C60

3− ion, it may be necessary to include both
first-order and higher-order contributions toHint. However, it
is expected that a good indication of the behavior can be
obtained by restricting the calculations to linear coupling
only, and this is the approach we will adopt in this paper.

Before developing a theory for thep3 ^ h JT system, it is
first necessary to define some notation to label the five com-
ponents of the vibrationalhg mode. We will follow Ref. 22
and use the labelshQu ,Qe ,Q4,Q5,Q6j to represent the col-
lective displacements, which correspond to the labels
hQ1,Q4,Q5,Q2,Q3j used in Refs. 17 and 18. Due to the ac-
cidental SOs3d symmetry in linear coupling, it is irrelevant
whether aC2 axis or aC5 axis is defined as thez-axis of the
icosahedron.

In units in which the reduced mass of the mode, the mode
frequency and" are set to unity, the vibrational term is

Hvib =
1

2o
l

sPl
2 + Ql

2d, s2d

wherel is summed over all of the components of the vibra-
tional mode and thePl are the momenta conjugate to theQl.
The electronic terms arising from ap3 ^ h JT interaction are
4S, 2D, and2P. As the high spin state is anSstate, there is no
JT coupling and this state need not be considered any further.
It is also found that there is no JT coupling within either the
2D or the 2P states as all the required matrix elements are
zero, but there is a nonzero coupling between the2P and2D
states.17,18,23,24To first order, the resulting interaction Hamil-
tonianHint can be written in the form

Hint = ko
l

Qlsl, s3d

where thesl are electronic operators whose representation in
terms of 838 matrices can easily be deduced from Refs. 17
and 18, noting that our coupling constantk is equivalent to
Î3k in these referencessas theirk is that applicable to the
T^ h for p1 ^ hg JT systemd. An alternative but equivalent
form for the Hamiltonian in terms of a coupling constantg

and coordinatesQm that transform as the spherical harmonics
Y2m is given in Ref. 26.

We will take the the2P term to be at an energyd above
the 2D term, so thatHterm is a diagonal matrix with the first
three diagonal elements having the valued and the remaining
values zero. Recent calculations25 indicate that the2P term is
around 0.191 eV above the2D term, so we will use this
value ford in plots of our final results. However, the results
themselves apply for any value ofd.

Due to the SOs3d invariance of the linear JT Hamiltonian,
all directions inQ space are equivalent. A transformation of
coordinates27 can be used to convert the general Hamiltonian
representing a strain in any direction into a Hamiltonian for a
strain in theu direction. We, therefore, only need to consider
the case of a strain in theu direction, with a strain Hamil-
tonian

Hstrain= − wsu, s4d

where the coefficientw can be positive or negative. A strain
in any other direction can be made equivalent to this by a
rotation of the electronic and vibrational operators.28 If
higher-order coupling terms were to be considered in the
Hamiltonian, then this equivalence would no longer hold and
strains in different directions would need to be considered
explicitly.

III. ADIABATIC POTENTIAL ENERGY SURFACES

As in Refs. 18 and 17, we start by examining the potential
energy terms in the Hamiltonian to determine the structure of
the adiabatic potential energy surfacessAPESsd around
which the motion of the system will be based, using a pa-
rametrization involving a radial coordinateQ and four
angles,u, f, g, and a to rewrite theQl. This is the usual
parametrization inu and f for d-state functions, with the
additional anglesg and a added to reflect the full five de-
grees of freedom. In Refs. 17 and 18, it was shown that a
series of rotations in each of the four angles could then be
used to reduce the potential to a form involving the anglea
and the term splittingd only snoting some errors in their
original matrices19d. When the result is diagonalized, it is
found that two of the eight APES energies are zero, and the
remaining six are of the form

V = 1
2sQ2 + d ± Î4k2Q2 sin2 b + d2d, s5d

whereb=a, a+p /3, anda−p /3. The values ofa andQ are
chosen to minimizeV. The APESs are independent ofu, f,
andg. This corresponds to troughs of equivalent minimum-
energy points. If the results depended on these angles, we
would need to choose specific values of the angles to deter-
mine positions of minimum energy. The orientation of the
trough is determined by the value ofa.

The value ofQ;r for which V is a minimum can now be
determined. It is found that whend8;d /k2,2,

r = kÎ1 − d82/4, s6d

resulting in a minimum in energy of
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V = −
1

8
k2sd8 − 2d2. s7d

When d8.2, the minimum is at the originsQ=0d. As this
corresponds to a term splitting much larger than the JT inter-
action, we will not consider this case any further in this
paper, although this factor does determine the range of cou-
plings over which results can be obtained. An equivalent
result for the existence of a finite JT distortion was also
found in Ref. 26.

When there is no strain, values ofa can be chosen to
make any of the three APESs in Eq.s5d with the negative
sign a minimum. In Ref. 17,a=p /2 was chosen as the sim-
plest solution. Although this lies outside the 0øa,p /3

range, it just represents a different copy of phase space.
However, the strain termHstrain does not affect all of the
APESs in the same way. In fact, the solution witha=p /2 is
unaffected by au-type strain. We could circumvent the prob-
lem by choosing the strain to be in a different direction.
However, it would be much more difficult to convert the
general problem of a strain in an arbitrary direction into this
new problem as the known five-dimensional rotation
matrix27 favors theu direction. We will, therefore, choose a
different value ofa so that a different eigenvalue is the low-
est in energy. We will, therefore, seta=p /6, even when
there is no strain present. The APES involving sinsa+p /3d
then determines the minimum energy, and the electronic state
at a pointV;su ,f ,gd on the lowest APES is

cgsVd =
1

21
Î2 − d8scosg cosu cosf − sing sinfd
Î2 − d8scosg cosu sinf + sing cosfd

− Î2 − d8cosg sinu

Î3s2 + d8d
2

sin 2u sing

− Î2 + d8scos 2u cosf sing + cosg cosu sinfd
Î2 + d8sinuscosg cos 2f − cosu sing sin 2fd

− Î2 + d8sinuscosu cos 2f sing + cosg sin 2fd
Î2 + d8scosg cosu cosf − cos 2u sing sinfd

2 . s8d

IV. KINETIC ENERGY

When a=p /2, the kinetic energy part ofHvib has been
shown to have the form17,18

HKE = −
1

2
F 1

Q

]

]Q
SQ

]

]Q
D +

1

Q2

]2

]a2 +
9

4Q2G +
1

8Q2f4lx
2

+ 4ly
2 + lz

2g s9d

where hlx,ly,lzj are the three components of an angular
momentum operator in the subspace involvingu, f, andg.
sNote that Refs. 17 and 18 erroneously give the wrong sign
for the angular momentum terms.d The first line is the Hamil-
tonian for two vibrations and the second line is the Hamil-
tonian for a symmetric top. The motion in the five-
dimensional space of theh vibrations is, therefore,
comprised of vibrations in two directions and pseudorota-
tions in three directions. This is different from the motion in
the otherpn ^ h JT systems,16–19where there are vibrations in
three directions and pseudorotations in two directions. Alter-
natively, in order to distinguish the rotational directions from
the vibrational ones, the Hamiltonian can be written in terms
of rotating coordinates

Qn8 = o
m

Dmnsu,f,g,adQm, s10d

where theDmnsu ,f ,g ,ad are rotation matrix elements.27 Set-
ting Qu8=Q and taking the inverse recovers the parametriza-
tion of the Ql8, so Qu8 is clearly a vibrational coordinate.
Using the method of Öpik and Pryce29 and considering the
conjugate momenta, it can be shown thatQe8 is the other
vibrational coordinate andQ48, Q58, andQ68 are the pseudoro-
tations.

The wave functions for a symmetric top are well known.30

They are functions of the same anglesu, f, andg used in the
parametrization of theQl8, which are related to the represen-
tations of finite rotations. The states, whose form can be
found in Refs. 17 and 18, will be written asFsL,M,KdsVd,
whereL, M, and K are integer quantum numbers withuMu
øL and uKuøL. sIt should be noted that Refs. 17 and 18
erroneously state that the required eigenstates involve cosKg
or sinKg rather thaneiKg.d Now the electronic state changes
signs under the transformationg→g+p, so the pseudorota-
tional state must also change signs under this transformation.
Also, the electronic state is invariant under the inversion op-
erationsu→p−u, f→f+p, and g→−g and so the pseu-
dorotational state must also be invariant.17,18 As a result,K
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must be even and the required eigenstates areF1
sL,M,Kd for L

odd andF2
sL,M,Kd for L even, where

F1
sL,M,Kd = 5FsL,M,0d for K = 0

1
Î2

sFsL,M,Kd + FsL,M,−Kdd otherwise6
F2

sL,M,Kd =
1
Î2

sFsL,M,Kd − FsL,M,−Kdd. s11d

This means that the states forK=0 only exist for oddL. The
rotational energy of these statesfi.e., of the final term in Eq.
s9dg is17,18

EsL,Kd =
1

2Q2FLsL + 1d −
3

4
K2G . s12d

The above formula gives the results whena=p /2. How-
ever, we have already stated that strain does not affect this
solution so we should instead consider the case whena
=p /6. Using the parametrization of theQl8 and after some
algebra, it is found that the kinetic energy can still be written
in a form equivalent to Eq.s9d but with slx

2+4ly
2+4lz

2d in-
stead ofs4lx

2+4ly
2+lz

2d. This is still the Hamiltonian for a
symmetric top but with the axis of quantization along thex
axis instead of thez axis. The energies of the eigenstates are
EsL ,Kd as for thez-axis top, but the states are linear combi-
nations of statess11d for the z-axis top involving different
values ofK. This is analogous to the more familiar three-
dimensional angular momentum operators, where eigenfunc-
tions of lx are linear combinations of those oflz but the
energies of the eigenstates remain the same. The invariance
and inversion relationships in this case require that the re-
quired combinations involve oddsrather than evend values of
K. The resulting eigenstates will be labeledFrot

sL,M,KdsVd,
whereK is even as for thez-axis top, even though the states
involve linear combinations of statesFi

sL,M,Kd with K odd.

The required linear combinations can be easily found by
simple matrix diagonalization. The states up toL=6 are
given in Table I, with the corresponding rotational energies
being given by Eq.s12d. The algebraic form of the states in
terms ofu andg is also given omitting the common factors
eiMf cosg sinu for L odd andeiMf sing sin 2u for L even.

V. THE WAVE FUNCTION

The wave function at pointV on the trough of minimum-
energy points consists of a vibronic part to take account of
the coupling between the electrons and the vibrations, and
the rotational partFrot

sL,M,Kd discussed above. To apply to both
the ground and excited states, the vibronic part must take
account of excitations in the vibrational directionsQu8 andQe8
snoting that the excitations only have meaning in the rotating
coordinate systemd. If we suppose that there arer excitations
in Qu8 ands excitations inQe8, we can write the vibronic wave
function in the formucvibsVd ;u8re8sl. As all points on the
trough are equivalent, the total wave function must, there-
fore, take account of all points equally. Thus, it will be writ-
ten in the form

CsL,M,K,r,sd =E ucvibsVd;u8r,e8slFrot
sL,M,KdsVddV.

s13d

As the trough can be mapped onto the surface of a sphere in
which u andf take their usual polar definitions, the volume
elementdV=sinududfdg. However, for this wave function
to be of use, it is necessary to derive a more explicit form for
the vibronic wave function. This can be achieved using a
unitary transformationUsVd to displace the origin of the
phonon coordinates to the bottom of the trough.27 In the
rotating coordinates, only theu8 mode is shifted. The re-
quired form of the transformation at a pointV on the trough
is thus19

TABLE I. EigenstatesFrot
sL,M,Kd of the x-axis symmetric topslx

2+4ly
2+4lz

2d /8Q2 with K even. The algebraic form given must be
multiplied by the common factoreiMf cosg sinu if L is odd andeiMf sing sin 2u if L is even. Note that the states are a linear combination
of the odd-K eigenstatesFi

sL,M,Kd of the correspondingz-axis top.

L K Wave functionFrot
sL,M,Kd Algebraic form

1 0 F2
s1,M,1d 1

2 2 F1
s2,M,1d 1

3 0 −Î3/8F2
s3,M,1d+Î5/8F2

s3,M,3d 3−5 cos2 g sin2 u

3 2 Î5/8F2
s3,M,1d+Î3/8F2

s3,M,3d cos 2u+cos2 g sin2 u

4 2 −Î1/8F1
s4,M,1d+Î7/8F1

s4,M,3d 1−7 cos2 g sin2 u

4 4 Î7/8F1
s4,M,1d+Î1/8F1

s4,M,3d cos 2u+cos2 g sin2 u

5 0 1/8Î2fÎ30F2
s5,M,1d−Î35F2

s5,M,3d+3Î7F2
s5,M,5dg 15−70 cos2 g sin2 u+63 cos4 g sin4 u

5 2 1/4Î2f−Î14F2
s5,M,1d+Î3F2

s5,M,3d+Î15F2
s5,M,5dg cos 2u−cos2 g sin2 us2+3scos2 g−2dsin2 ud

5 4 1/8Î2fÎ42F2
s5,M,1d+9F2

s5,M,3d+Î5F2
s5,M,5dg 1+sin2 us3 cos 2g−5d+sin4 uscos4 g+8 sin2 gd

6 2 1/16fÎ10F1
s6,M,1d−9F1

s6,M,3d+Î165F1
s6,M,5dg 1−18 cos2 g sin2 u+33 cos4 g sin4 u

6 4 1/4Î2f−Î6F1
s6,M,1d+Î15F1

s6,M,3d+Î11F1
s6,M,5dg 1−sin2 us7+5 cos 2gd−11 cos2 g sin4 uscos2 g−2d

6 6 1/16f3Î22F1
s6,M,1d+Î55F1

s6,M,3d+Î3F1
s6,M,5dg 3+sin2 us5 cos 2g−11d+sin4 us3 cos4 g+16 sin2 gd
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UsVd = expfau8sbu8
† − bu8dg, s14d

whereau8 is a variational parameter, andbu8
† andbu8 are pho-

non creation and annihilation operators, respectively, for the
modeu8. These can be defined in terms of operators in the
nonrotating coordinates in the same manner as Eq.s10d for
the Qs. Fixing the value ofau8 to displace the origin of co-
ordinates to the bottom of the trough gives the resultau8
=−r. The vibronic wave function is thus

ucvibsVd;u8r,e8sl = cgsVdUsVduu8r,e8sl, s15d

where ther ands in uu8r ,e8sl again signify the number ofu8
ande8 excitations, respectively.

VI. EVALUATION OF THE ENERGY

We will now use the wave function given in the previous
section to determine the energies of this JT system. This
involves the evaluation of matrix elements and overlaps be-

tween a pointVl ;sul ,fl ,gld with phonon excitation num-
bershp,qj and a pointVr ;sur ,fr ,grd with excitation num-
bers hr ,sj. Care must be taken in evaluating these factors
since the meaning of excitations in the rotating coordinates is
different at different points on the trough. It is possible to
carry out the calculation by converting all quantitiessin U
and in the phonon excitationsd back to the fixed coordinate
system. However, the result is very complicated. A simpler
result can be obtained by evaluating the overlap in the rotat-
ing coordinates using appropriate commutation relations be-
tween phonon operators at different points on the trough.19

The resulting overlap between the phonon parts of the wave
function at two points on the trough can be obtained from
Eqs.s19d ands21d of Ref. 19sobtained for thep2 ^ h systemd
putting f = t=0, giving

Osp,q,r,sd = ku8p,e8quUsVld†UsVrduu8r,e8sl, s16d

where

Osp,q,r,sd = e−r2/2o
i=0

`

o
j=0

`

o
l=0

p

o
m=0

r s− 1di+jS r

Î2
D i+j+l+m

Îr!p!sr − m+ jd!sp − l + id!

i! j ! l!m!sr − md!sp − ld!
ku8p−l+i,e8quu8r−m+j,e8sl s17d

with

ku8p,e8quu8r,e8sl = o
j=0

minsq,rd

o
m=0

minss,q−jd

Îp!q!r!s!Auu
r−jAue

s−m

3Au6
p−r+j−s+mAeu

j Aee
mAe6

q−j−mdsp + q,r + sd,

s18d

whered is the Kroneckerd function andAmn
i =sXmndi / i!, with

Xmn= o
l

DmlsVldDnlsVrd. s19d

The overlap between the electronic states at pointsVl and
Vr can be written as

cgsVld*cgsVrd ; Z = s2 − d8dZ1 + s2 + d8dZ2 s20d

whereZ1 andZ2 are functions of the angular variablessbut
not d8d and relate to theT andH parts of the electronic states,
respectively. The total overlap integral involving the state in
Eq. s13d with itself is thus

OL,M,K
tot sr,sd = s2 − d8dOL,M,KsZ1,r,s,r,sd

+ s2 + d8dOL,M,KsZ2,r,s,r,sd, s21d

where

OL,M,KsG,p,q,r,sd =E GFrot
sL,M,Kd*sVldFrot

sL,M,KdsVrd

3Osp,q,r,sddVldVr . s22d

The matrix elements ofH are somewhat more compli-
cated to calculate. When evaluating the terms in the rotating
coordinate system it is necessary to include “excitations” in
Q48, Q58, and Q68 for the purposes of the calculation, even
though these modes correspond to rotations. After some al-
gebra, it is found that the matrix elements ofHint are

M int =
k
Î2

Î4 − d82FÎrOL,M,KsZ12,r,s,r − 1,sd

+ Îr + 1OL,M,KsZ12,r,s,r + 1,sd + ÎpOL,M,Kss1 − Xuud

3Z12,r − 1,s,r,sd − ÎqOL,M,KsXeuZ12,r,s− 1,r,sd

−
r

Î2
OL,M,Kss3 − XuudZ12,r,s,r,sdG , s23d

whereZ12=Z1+Z2, the matrix element ofHvib is

Mvib = S5

2
+ r + s+

r2

2
DOL,M,KsZ,r,s,r,sd

−
r

Î2
fÎrOL,M,KsZ,r,s,r − 1,sd

+ Îr + 1OL,M,KsZ,r,s,r + 1,sdg, s24d

and the matrix element ofHterm is

Mterm= ds2 − d8dOL,M,KsZ1,r,s,r,sd. s25d

The energies of the states are thus
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EL,M,Ksr,sd =
ML,M,K

int sr,sd + ML,M,K
vib sr,sd + ML,M,K

term sr,sd
OL,M,K

tot sr,sd
.

s26d

We now have analytical expressions for the energies of
the rotational-vibronic states in terms of integrals overVl
;hul ,fl ,glj and Vr ;hur ,fr ,grj. In fact, the integrals all
involve sfl −frd and not sfl +frd. This leaves five-
dimensional integrals which must be evaluated numerically.
The integrals depend upon the trough radiusr, which in turn
depends upon both the coupling strengthk and the term split-
ting d. Hence the integrals must be evaluated separately for
different values ofk and d. We evaluate the integrals using
standardsNAGd numerical library routines implementing an
adaptive quadrature method. Most of the integrals can be
evaluated to an accuracy of 0.001 without any difficulties.
However, the integrals required for some of the higher ex-
cited states contain high order trigonometric functions of the
angular parameters and are thus highly oscillating, especially
for states with higher quantum numbers. This means that the
results are rather unstable for certain values ofk, resulting in
very different answers when the requested accuracy is
changed or when the value ofk is varied slightly. This is
clearly not physical. Fortunately, it is clear from the results
where such instabilities cause difficulties.

VII. RESULTS

In order to understand the complicated results for this JT
system, we will first look at the case of zero term splitting.
We will present results for a range of lower-lying excited
states, although it should be noted that energies have been
obtained for many more excited states than those shown in
the figures in this paper. Figure 1 shows the energies as a
function of the coupling constantk for states with no vibra-

tional excitationsshr ,sj=h0,0jd. The results plotted are for
the lowest possible value of the rotational quantum number
K for a givenL, namelyKmin=0 for L odd and 2 forL even.
The results are calculated forM =0, although the energies do
not depend on the value ofM. Results forL from 1 to 5 are
plotted relative to the energy at the bottom of the trough
given in Eq.s5d in units "v=1. It should be noted that the
shift transformation method upon which the results are based
is targeted for solving strongly coupled JT problems, and the
states do not all tend to appropriate limits in weak coupling.
Similar behavior has been seen previously in other JT sys-
tems analyzed using the shift transformation method.19,27

However, it can be seen that the ground state starts at a
relative energy of52"v in weak coupling and progresses to a
relative energy of"v in strong coupling. These are the ex-
pected zero-point energies for the two limits, which corre-
spond to five vibrations and two vibrations plus three rota-
tions, respectively. The excited rotational states also all
converge towards the limit of"v in strong coupling. This is
expected as these states are vibrational ground statesshr ,sj
=h0,0jd in this limit. As the coupling strength weakens but
before the model breaks down, it can be seen that the excited
states are tending towards limits which are integral numbers
of "v above the ground state. This is because the states are
excited vibrational states in weak coupling, where there is no
JT effect and simply a five-dimensional potential well cen-
tered on the origin. Figure 2 shows equivalent results to Fig.
1 for states withL=1, K=0 and up to four phonon excita-
tions in strong coupling. It can be seen that the curves with
phonon excitations roughly follow that of theh1,M ,Kminj
state with no excitations, again consistent with the rotation-
vibration interpretation.

We will now look at results for a finite value of the elec-
tronic term splittingd. An interesting feature of a nonzero
term splitting is that, as stated in Sec. III, the minimum po-
sition of the APES is at the origin inQ space ford8.2, and
hence for the weakly coupled region in whichk2,d /2. This
means that the JT effect is totally quenched by the presence

FIG. 1. Relative energies for some states with vibrational quan-
tum numbershr ,sj=h0,0j plotted as a function of the coupling
strengthk and in units of"v. The results shown are for the rota-
tional quantum numberL from 1 to 5, in ascending order according
to the values of energy in strong coupling, and with the lowest
possible value ofK in each casesnamelyKmin=0 for L odd and 2
for L evend.

FIG. 2. Relative energies for states with rotational quantum
numbersL=1 and K=0 plotted as a function of the coupling
strengthk and in units of"v. The smooth curves are for the vibra-
tional quantum numbershr ,sj=h0,0j, h1,0j, h0,1j, h2,0j, h1,1j, h0,2j,
h2,1j, h0,3j, andh1,3j in ascending order in strong coupling.
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of the electronic splitting term until the vibronic coupling is
sufficiently large to overcome it. For this reason, the energy
curves can only be calculated fork.Îd /2 sin units where
"v=1d. We will choosed=0.191 eV by reference to Table 9
smodel 3d of Nikolaev et al.,25 which corresponds tod
<5.9"v in terms of the accepted value of 260 cm−1 for the
vibrational frequency of the strongest coupled JT-activehg
mode. This means that the curves can be plotted fork.1.7.
However, the energies cannot be calculated reliably for val-
ues ofk close toÎd /2 so the curves are plotted fork.2 in
most cases, andk.2.5 for two of the higher-excited states.
Figure 3 shows results for the states with no vibrationssvi-
brational quantum numbershr ,sj=h0,0jd but rotational exci-
tations, and Fig. 4 shows results for the states with the lowest
rotational quantum numbersL=1 and K=0, and different
vibrational excitations.

The general behavior of the energy curves in strong cou-
pling is similar to that found in the absence of any term
splitting. This is because the JT coupling dominates over the
term splitting in this limit. However, the energies of those
states that have a significant component coming from theP
states increase quite substantially in weak coupling com-
pared to the case of no term splitting. This is where the JT
effect no longer dominates over the term splitting. In weak
coupling, theh2,0,2j state is higher in energy than theh1,0,0j
state. This is to be expected becaused has been taken to be
positive, and so theP state is higher in energy than theD
state with no JT coupling.

Very few other calculations have been made of the ener-
gies of thep3 ^ h JT system with which our results can be
compared. References 17 and 18 give results for the energies
of the lowest2P and 2D states. These correspond to our
hr ,sj=0 and hL ,M ,Kj=h1,M ,0j and h2,M ,2j states, re-
spectively. They calculate their results using a Lanczos nu-
merical diagonalization procedure, and give energies as a
function of the coupling constant both for zero term splitting
and for a term splitting corresponding tod=2"v. Unfortu-
nately, it is unclear exactly what the energies have been plot-
ted relative to in their figures, which makes a quantitative
comparison difficult. However, it can be seen that when the
term splitting is zero, the energies of their2P and 2D states
coincide at zero coupling and the difference in energy be-
tween these two states remains small at all couplings, with
the 2D state always above the2P state. This is the same
behavior we observe in Fig. 1. Their results with a term
splitting of d=2"v are also qualitatively similar to ours with
d=5.9"v; the 2P term is significantly higher in energy than
the 2D term in weak coupling, but the energies cross as the
coupling strength increases so that the2P state is slightly
lower in energy than the2D state in strong coupling. One
difference is that they plot their results down to a JT coupling
strength of zero, which as we explain above is not appropri-
ate with our method of calculation.

VIII. THE EFFECT OF STRAIN

We will now consider the effect ofHstrainas a perturbation
on the states in Eq.s13d. The dynamical nature of the JT
effect means that without any strains present, the average
kQll of onesor mored of the collective displacements will be
zero. Equivalently, the averageksll of the corresponding
electronic operatorsl will be zero.2,20,28According to stan-
dard results, the thermal average ofsl at a temperatureT can
be given by the expression

ksll =

o
n

kcnuslucnle−En/kBT

o
n

e−En/kBT
, s27d

wheren is summed over all of the statescn of the system
swith energyEnd. Thus we expect to findkcnuslucnl=0. In
our case, if strain is considered to zeroth order, the states
cn;cn

s0d are the wave functionsCsL ,M ,K ,r ,sd. Mathe-
matically it is found that the matrix elements

FIG. 3. Relative energies for states with vibrational quantum
numbershr ,sj=h0,0j calculated with the inclusion of term splitting
d=5.9 plotted with respect to coupling strengthk and in units of
"v. The rotational quantum numbers for these states are
hL ,M ,Kj;hL ,M ,Kminj with L from 1 to 5, in ascending order
according to the values of energy in strong coupling.

FIG. 4. Relative energies for states with rotational quantum
numbersL=1 andK=0 calculated with the inclusion of term split-
ting d=5.9 plotted with respect to coupling strengthk and in units
of "v. The vibrational quantum numbers for these states arehr ,sj
=h0,0j, h1,0j, h0,1j, h2,0j, h1,1j, h0,2j, h2,1j, h0,3j, and h1,3j in
ascending order in strong coupling.
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kCsL ,M ,K ,r ,sdusuuCsL ,M ,K ,r ,sdl are indeed zero, as ex-
pected to preserve the zero values for the thermal averages
in the absence of strain. One further consequence of this
is that strain can have no effect on the energies of the
states to first order in perturbation theory, as the perturba-
tion corrections contain the same matrix elements
kCsL ,M ,K ,r ,sdusuuCsL ,M ,K ,r ,sdl.

We will, therefore, calculate the energiesEn=En
s0d+En

s2d to
second-order perturbation theory, whereEn

s0d is the energy
without strain and

En
s2d = w2o

iÞn

zkcn
s0dusuuci

s0dlz2

En
s0d − Ei

s0d , s28d

wheren is summed over all allowed values ofL, M, j , r, and
s. The results forw.0 are shown in Figs. 5 and 6. It can be
seen that some of the energies increase with strain, some
decrease, and some are almost independent of strain. This is
because some points on the lowest APES increase their en-
ergy with strain, some decrease and some stay the same. It
should be noted that the energies are plotted relative to the
same energy zero as without strain. Results can also be ob-
tained forw,0, which need not be the same as forw.0 as
the matrix elements and energies in Eq.s28d can have differ-
ent values.

IX. CONCLUSIONS

In this paper, we have analyzed thep3 ^ h JT system using
a semianalytical method, whereby analytical expressions are
obtained for the energy levels and eigenstates which are then
evaluated numerically. The form of the wave functions al-
lows the motion of the system to be understood in terms of a
composition of vibrations and rotations. The method can be
used to determine energies of a wide range of states with
rotational and vibrational excitations over a range of cou-

pling strengths. These will be of use in interpreting the re-
sults of any experiments that probe the vibronic spectrum of
fullerene ions, such as various spectroscopic measurements.
A precise value for the strength of the intermlecular JT cou-
pling in fullerene anions is not yet known either experimen-
tally or theoretically. Although our method fundamentally
assumes strong coupling, reasonable results can be obtained
in intermediate coupling, and for some states even in weak
coupling. Hence our results can be expected to apply to these
real problems as long as the JT coupling is not significantly
smaller than the term splittingswhen there is no JT distortion
as shown in Sec. IIId. Also, they may apply to icosahedral
molecules other than C60. It will be interesting to compare
our results with numerical onesse.g., from a Lanczos diago-
nalizationd if they become available in the future.

The formulas as presented in this paper, are for coupling
to a singlehg mode only, whereas a real C60 molecule is
coupled to eight differenthg modes of vibration. If the JT
couplings are not too strong and the spread of frequencies is
not too large, it is possible to view the vibronic coupling
problem in terms of a single effective mode,31,32 in which
case our formalism is appropriate as it stands. However, in
fullerenes the JT couplings are of intermediate strength with
a wide spread of frequencies, and so it will be more appro-
priate to consider all eight modes explicitly.17,33 Our results
can easily be expanded to include all eight modes by intro-
ducing appropriate sums into the formulas. However, there
will then be eight coupling constants and eight frequencies,
which make the results much harder to interpret.

Our results considering the effect of strain are important
because cooperative JT effects between C60

3− anions can be
modeled as an effective strain. Cooperative effects can be
expected to result in a nonzero static distortionkQll and
equivalently a nonzero value forksll. When the statescn are
taken to second order in perturbation theorysor higherd, the
ksll are still zero forlÞu but ksul is nonzero. In other
ssimplerd JT systems, such as the cubicE^ e system, the

FIG. 5. Energy levels of states with rotational quantum numbers
hL ,M ,Kj=h3,M ,Kminj to second order in perturbation theory as a
function of positive strainw for a coupling constantk=3.5 and term
splitting d=5.9 in units of"v. The vibrational numbershr ,sj are
h0,0j, h0,1j, h1,0j, h1,1j, h0,2j, h2,0j, h0,3j, and h2,1j, respectively,
for the curves in an ascending order whenw=0.

FIG. 6. Energy levels of states with vibrational quantum num-
bershr ,sj=h0,0j to second order in perturbation theory as a func-
tion of positive strainw for a coupling constantk=3.5 and term
splitting d=5.9 in units of"v. The rotational numbershL ,M ,Kj are
h1,M ,0j, h2,M ,2j, h4,M ,4j, h3,M ,2j, h3,M ,0j, h5,M ,2j,
h5,M ,0j, andh6,M ,2j, respectively, for the curves in an ascending
order whenw=0.
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thermal average increases with increasing strain until it satu-
rates at a maximum value for large strains.20 Furthermore, a
larger strain is needed to produce the maximum thermal av-
erage at higher temperatures than at lower ones. Similar be-
havior can be expected in this system, although to do this it
is necessary to consider the whole range of strains from very
weak to very strongscompared to the strength of the JT
couplingd.

The general problem of a strained environment in a JT
system with a trough of minimum-energy points, as in C60

3−, is
difficult to solve accurately by theoretical means. The strain
will lower some of the minimum-energy points below others.
If the strain is strong, distinct wells will be produced and one
or more of the pseudorotational modes in the absence of
strain will be converted to a vibration. The system can then
be analyzed using well-developed techniques, including tak-
ing into account the effects of anisotropy in the wells, and

the results used to determine the thermal averageksul. How-
ever, for weaker strains the wells in the APES will be shal-
low and a description in terms of simple vibrations will not
be appropriate. The pseudorotations then become hindered
rotations in which there is a preference for the system to be
localized near one of the wells but the overall motion is still
a rotation. It is hoped that our results can later be combined
with results for a strong strain to give a full description of the
JT effects experienced by C60

3− ions in a strained environment.
This in turn will help explain some of the interesting features
of, for example, theA3C60 fullerides.
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