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Localized two-vibron bound-state dynamics in a molecular lattice with a defect:
Resonances between bound, localized, and free states
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The two-vibron dynamics in a molecular nanowire with a local defect is characterized. The integration of the
time dependent Schrodinger equation has revealed the occurrence of two singular behaviors. When the defect
frequency shift is close to the intramolecular anharmonicity, a resonance between the localized two-vibron
bound state and the two-vibron free states continuum takes place. The resonance breaks the localized vibron
pair and two independent vibrons are emitted on each side of the defect so that an exponential decay of the
defect vibrational population occurs. By contrast, when the defect frequency shift is almost twice the anhar-
monicity, a resonance occurs between the localized two-vibron bound state and the continuum formed by a
vibron trapped on the defect and a second vibron delocalized along the nanowire. In that case, the trapped
vibron enhances the hopping constant experienced by the second vibron near the defect so that two localized
states occur in which the two vibrons are trapped around the defect. Due to the superimposition of these two
localized states, the vibrational population is strongly localized around the defect and exhibits oscillations
similar to that occurring in a classical discrete breather.
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I. INTRODUCTION H/C(111),' CO/NaCl100,!” and CO/R(001)'8-?? using
optical probes. Bound states in the system H1Nl1) were

Since the pioneer works of Davydov devoted to the vibrajnvestigated via high resolution electron energy loss
tional energy flow in protein$,the nonlinear dynamics of spectroscop§? Moreover, a recent experiment based on fem-
classic lattices was studied in numerous theoretical papers. bosecond infrared pump-probe spectroscopy, has clearly es-
this context, the formation of intrinsic localized modes, ortablished the existence of TVBS im-helix proteing*
discrete breathers, has been the subject of intense theoreticalln a series of recent papers, it has been suggested that
research during the last decader a recent review, see for vibrons, and especially TVBS, could provide an alternative
instance Refs. 294Discrete breathers, which correspond toto the electronic transport in adsorbed molecular
highly localized vibrational excitations in anharmonic lat- nanowires1%:2526Following this idea, the present work ad-
tices, do not require integrability for their existence and stadresses a new question related to the influence of a local
bility. They are not restricted to one-dimensional lattices anddefect on the two-vibron dynamics with a special emphasis
it has been suggested that they should correspond to quitn the mechanism responsible for energy localization/
general and robust solutioRSince discrete breathers yield a delocalization.
local accumulation of the energy which might be pinned in In an adsorbed nanostructure, a defect can be created by
the lattice or may travel through it, they are expected to be ofising a scanning tunneling microsco(@r'M). Indeed, it has
fundamental importance for both energy storage and transseen shown by Avouris and co-workérs®that even under
port. Unfortunately, in spite of the great interest that breathnnormal operating conditions, the electric field in the STM-
ers have attracted, no clear evidence has yet been found feubstrate junction is high, i.e., typically of about
their existence in real molecular lattices. 0.1-0.5 V/A. This field is comparable to the internal fields

By contrast, bound states involving two high frequencythat electrons experience inside atoms and molecules so that
vibrational excitons, also called vibrons, have been observeid can cause significant changes in the local electronic struc-
in several molecular structures. In that case, the intramolecuure and bonding. In particular, the authors have shown that
lar anharmonicity breaks the vibron independence and favorhe vibrational frequency of some molecule-surface stretch-
the formation of bound statés!3A bound state corresponds ing modes strongly depends on the applied bias voltage be-
to the trapping of the two quanta over only a few neighbor-tween the STM and the sample. As a consequence, in a hano-
ing molecules with a resulting energy which is less than thewire, the molecule located under the STM tip behaves as a
energy of two quanta lying far apart. The lateral interactionlocal defect exhibiting a frequency shift when compared with
yields a motion of such a state from one molecule to anothethe frequency of the other molecules. Therefore, the STM
thus leading to the occurrence of a delocalized wave packgirovides a powerful tool to control the strength of the defect
with a well-defined momentum. Since two-vibron boundfrequency shift simply by tuning the bias voltage between
states(TVBS) are the first quantum states which experiencethe STM and the substrate.
the nonlinearity, they can be viewed as the quantum counter- In that context, it is well-known that a defect breaks the
part of breathers or solitoifsThe formation of TVBS was translational invariance of the nanowire and favors the oc-
observed in molecular adsorbates such as HA3),'4'>  currence of a localized state when a single vibron is excited.
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This state, which is located below or above the single vibrorthe two-vibron wave function is expanded as

band depending on the sign of the shift, disappears when this

frequency shift is set to zero. When two vibrons are excited, W)= X Py,nyt)n,ny, 2
the physics is more elaborate because of the various kinds of N1N2=ny

states involved in the dynamics. _Indeed, in addition to two-yhere {ln;,n,)} denotes a local basis set normalized and
vibron bound states and two-vibron free stald3/FS),  symmetrized according to the restricting=n, and where a
which appears naturally in a perfect anharmonic lattice, theyarticular vector|n;,n,) characterizes two vibrons located
defect is responsible for the occurrence of a localized twognto the sites); andn,, respectively. This basis set generates
vibron bound statéLTVBS) in which the two vibrons are he entire two-vibron subspace which the dimension
trapped on the defect. In addition, it allows for states inN(N+1)/2 represents the number of ways for distributing
which a single vibron is localized, i.e., a localized single ,q indistinguishable quanta onté sites.

vibron state(LSVS), whereas the second vibron is delocal- | this context, the time dependent Schrodinger equation
ized according to a continuum of single vibron free stategjepends on the nature of the basis vectors involved. Indeed,
(SVFS. Therefore, in marked contrast with the single vibron,ynan the two vibrons are far apart and far from the defect,

dynamics, we expect resonances between these different \yhenn, +n,+ n,, the Schrodinger equation is expressed
two-vibron states so that the vibrational energy could be eixg

ther localized or delocalized, even for a nonvanishing fre-

guency shift of the defect. 0W(ng,ny,t)
The present paper is thus organized as follows. In Sec. Il, '™ 5 = JW(ny + 1,np,8) + Wiy — 1.nz, )]
the model Hamiltonian describing the vibron dynamics in a
molecular nanowire is first introduced. Then, the time depen- +JW(n,np+ 1.t + W(ngn, — 1,h)]
dent two-vibron Schrodinger equation is established within + 20g¥ (g, Ny, ). (3)

the number states method. In Sec. I, the simulation of the ] ) )
Schrodinger equation is performed and the numerical resulté/hen the first vibron is located on the defect whereas the
are presented. These results are finally discussed and int&€cond vibron is far from the defect, i.e., whes>n;=n,,

preted in Sec. IV. the Schrodinger equation is written as
. al];r(nO! n21t) _
Il. MODEL HAMILTONIAN AND TWO-VIBRON I - JW(no+ 1,np,t) + W(ng—1,ny,t)]
DYNAMICS

. . . . + ‘][\Ij(noi n2 + 11t) + \I,(n01 n2 - 11t)]
To model the vibron dynamics in a rather simple way, let
us consider a set dff molecules adsorbed on the surface of + (2w + A)W(ng, Ny, t). (4)

a well-organized substrate. These molecules form a 1D laiyote that a similar equation is obtained when the second
tice where the site position is denotedras1,2,...,N. We  yjpron is on the defect whereas the first vibron lies far from
thus assume that each moleculebehaves as a high fre- he gefect, i.e., when; < n,=n,. When the two vibrons, ly-

quency internal oscillator described by the standard vibromng far from the defect, are located on the same site, i.e.,

operatorsb,, and b,. The intramolecular anharmonicity of \yhen ny=n,# Ny, the Schrodinger equation is expressed as
each molecule is taken into account according to the model
of Kimball et al® so that the resulting HamiltoniaH is J¥(n,n,t)
essentially a Bose version of the Hubbard model with attrac- ! ot =V20[W(ny - 1, 0) +W(ng,ny + 1.0)]
tive interactions, asusing the conventioh =1)
+ (209 = 2A) W (N, Ny, ). (5
_ T _ ApRT22 +

H= % O A‘sfmo)bnbn Abyy + J[brbi + h.0J. (1) Finally, when the two vibrons are located on the defect, i.e.,

whenn;=n,=n,, the Schrodinger equation is written as

In Eq. (1), h.o. denotes the Hermitian operateg, stands for

the internal frequency of each molecul,is the positive iw - \s’E\][\P(nO— 1,n0,t) + ¥(ng, Ny + 1,)]
anharmonic parameter arddrepresents the vibron hopping ot
constant between nearest neighbor admolecules. The defect, + (209 + 2A = 2A) W (No, No,t) (6)

located onto thength site, corresponds to a molecule which
the internal frequency exhibits a shift with respect to the Note that all the other elements of the Schrodinger equation
other molecules. Note that long range lateral interactiongre obtained by symmetry due to the Hermitian nature of the
may affect the vibron dynamics but these effects are exHamiltonianH.
pected to be rather weak in a 1D lattice. At this step, let us mention the following picture which
To characterize the two-vibron dynamics, the correspondprovides an intuitive way to understand and to interpret the
ing time dependent Schrodinger equation has to be solvedwo-vibron dynamics. Indeed, as discussed in detail in Refs.
Since the Hamiltoniatd [Eq. (1)] conserves the number of 9-13, Eqs(3)—(6) clearly show the equivalence between the
vibrons, this can be achieved by using the number statesvo-vibron dynamics and the dynamics of a single fictitious
method which was successfully applied to molecular particle moving quantum mechanically on the 2D lattice dis-
adsorbateés™ and a-helix proteinst?2 Within this method, played in Fig. 1. Within this equivalence, the two-vibron
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:: ;tates(TV_FS), connected to the dglocalization of thg ficti-
B so20-22422 5 tious particle far from the defect sites of the 2D equivalent
‘ 1. 20 44 lattice (circles in Fig. 3, form an energy continuum around

Y — I 2w,. States corresponding to the localization of the first vi-
(O sz20, bron and to the delocalization of the second vibron
Q S3: 20, (LSVS+SVFS correspond to the localization of the ficti-
[ ] s4:20,-24 tious particle in the vicinity of the sites;<n,=n, and

n;=ny<n, (diamonds in Fig. L These states form an energy
band around @,+A. The localized two-vibron bound state
(LTVBS), connected to the localization of the fictitious par-
ticle around the siten;=n,=n,, is a discrete state located
around 2vg+2A-2A.

Therefore, the 2D equivalent lattidgig. 1) provides a
helpful picture allowing a comprehensive representation of
the two-vibron energy spectrurfFig. 2). This spectrum

no s clearly shows the ability to have resonances between the dif-
ferent kinds of states depending on the value taken by the

FIG. 1. 2D lattice for the equivalence between the two-vibronfreCIuenCy shiftA. The next section is thus devoted to the
dynamics and the tight-binding model for a single fictitious particle ., 5racterization of these resonances through the numerical
(see the tejt resolution of the time dependent Schrodinger equation, Egs.

n0

wave functionW(n;,n,,t) can be viewed as the wave func- (3)6).
tion of the fictitious particle. According to Eq$3)—(6), its
dynamics is described by a tight-binding Hamiltonian char- IIl. NUMERICAL RESULTS
acterized by self energies located on each site and hopping
matrices which couple nearest neighbor sites. Both the in- In this section, the numerical integration of the time de-
tramolecular anharmonicity and the presence of the defect ipendent two-vibron Schrodinger equation is performed
the real nanowire are responsible for the occurrence of dewithin the fourth order Runge-Kutta meth&tTo realize the
fects in the 2D lattice leading to a shift of the correspondingsimulation, typical values for molecular adsorbates are used
self-energies. These defects discriminate between localizefdr the parameters enter E(l). Indeed, for small adsorbed
states and delocalized states for the fictitious particle, whichnolecules, the anharmonic parameter, usually close to the
in turn, correspond to localized, bound or free states for thgas phase value, ranges between 10-40'omhereas the
two vibrons. vibron bandwidth is typically less than or about 10 ¢nfor

As illustrated in Fig. 2, the nanowire exhibits basically instance, for the CO/Ru systefsee Ref. 11 and references
four kinds of different eigenstates. The two-vibron boundinside, the anharmonicity is equal td=15.56 cm? and the
states(TVBS), which refer to a localization of the fictitious hopping constant is equal ta)=3.82 cmil. For the
particle close to the sitas =n, # n, (open squares in Fig)l  H/Si(111) system, the vibron bandwidth is equal to 10ém
form an energy band aroundvg—2A. The two-vibron free and the anharmonicity was found to Be=34 cnT'l14 As
pointed out in the Introduction, the defect frequency shift
is considered as a free parameter which can be controlled

N

\

g experimentally. Note that in the present paper we consider

F LTVBS positive A values, only, and other situations will be ad-

E LSVS+SVFS dressed in a forthcoming work.

2 i A $4J To understand the influence of the defect onto the two-

5 2(A-A) yipron dynamics, we thus assume that the two quanta are
A initially located on the defect so that the two-vibron state at

time t=0 is expressed as
TVFS
PIG - 8JI ........................... A AN, AN W(ny,n,t=0) = 5n1,n05n2,n0- (7)

Among the different observables which can be extracted

2A from our simulation, we essentially focus our attention on
the behavior of the vibron population along the nanowire.
The population represents a key observable to describe the
vibrational energy flow and allows us to discriminate be-
tween both energy localization and delocalization. Therefore,
in terms of the two-vibron wave functio®(nq,n,,t), the

FIG. 2. Representation of the two-vibron energy spectrum in aPopulation at siter and at timet, p(n,t)=(¥(t)|blb,[ ¥ (1)), is
molecular nanowire with a defect. expressed as

TVBS |
——

~
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200 rsoom’ @ place after about 20 ps. The defect population evolves be-
175 A p tween 1.0 and 1.4 so that the average amount of energy lo-
' A=10cm calized on the defect is about 60%. Finally, when
1.50 - A=15 cni?, the defect population behaves in a fully differ-
ent way. Indeed, after exhibiting fast damped oscillations, the
. 1251 population drastically descreases according to an exponential
21004 law with a decay rate about 1.07 thnNote that this decay
[ A=30cm™ rate y is obtained by fitting the defect population according
0.75 to p(ng,t)=a+b exp(—t). After 30 ps, it reaches a constant
value equal to 0.09 so that 95.5% of the initially localized
0.50 4
energy have left the defect.
0.25 - A=15em" To clarify the previous features, Fig(I8 represents the
=1oCm . .
average value of the defect population as a function of the

0.00 T 0 30 a0 20 0 70 80 s frequency shiftA. Note that the figure also shows the fluc-
20 30 40 %0 60 70 80 %0 100 tuations of the population around its average value. For a
time (ps) e — =1
200 strong frequency shift, i.eA=50 cnT+, the average popula-
' b) tion is important whereas the fluctuations almost vanish. This
1.75 1 feature indicates a rather strong localization of the two vi-
150 | brons onto the defect site. When decreases, the average

population decreases and the fluctuations slowly increase.
125 4 When the shift reaches the region aroutd 30 cni?, the

A

fa 1.00 | average population reaches a minimum value equal to 1.20

& whereas the fluctuations are maximum. Such a behavior oc-
0.75 1 curs whenA ranges typically between 25 and 35 ¢nand
0.50 indicates the occurrence of oscillations in the defect popula-
025 | tion. However, b_y decregsing again the frequency shift, the
' average population now increases to reach a maximum value
0.00 < , . . . r r r . equal to 1.5 whem\=23 cni™. In that case, the fluctuations

1015 20 25 30 35 40 45 50 have disappeared. Then, whaAnreaches the region located

A (em™) around 15 critt, the average population strongly decreases to
reach 0.07 and the population does not exhibit any fluctua-
tion. Such a behavior occurs when ranges typically be-
tween 12 and 18 cm and indicates that the two vibrons
have left the defect. Finally, wheA decreases again, the
average population increases again.
N The time evolution of the population of thle[differena lat-
tice sites is shown in Figs. 4. Whex=15 cm~ [Fig. 4a)],
p(n.t) = E_l\\lf(nl,n,t)\2+ E_ [ (n,ng, 0. ®  the exponential decay of the defect population is accompa-
= neh nied by the propagation of the vibrational energy along the
In Fig. 3(a), the evolution of the defect populatiqing, t) lattice. Indeed, as the defect population decreases, two popu-
versus time is shown for differemt values. The anharmo- lation wave packets are emitted on each side of the defect
nicity and the hopping constant are equalte15 cnitand  with a velocity about one site per ps. Nevertheless, a part of
J=3 cnil, respectively, and the lattice size is setNe131. the vibrational energy stays localized on the defect. When
The figure clearly shows the occurrence of different behavA=30 cni?, the site population is displayed in Fig(b4.
iors depending on the strength of the frequency shift. For although the results concerning the oscillations of the defect
strong shift, i.e.,A=50 cni?, the population exhibits two population are recovered, the figure shows that the popula-
regimes. Indeed, in the short time limit, the population firsttion of the neighboring sites of the defect exhibits oscilla-
decreases from its initial value equal to 2 and exhibits fastions, but with smaller amplitudes. In that case, the main part
damped oscillations with a period about 1.4 ps. Then, thef the vibrational energy is trapped over a few sites around
oscillations disappear and the population reaches an almotte defect according to a solution which is spatially localized
constant value equal to 1.85. In other words, 92.5% of thend time periodic. Note that the emission of a few parts of
vibrational energy is localized on the defect. For a ratheithe energy takes place so that small amplitude population
small frequency shift, i.eA=10 cnT?, the defect population wave packets propagate on each site of the defect. Finally,
shows a similar behavior. Nevertheless, the almost constamthenA=50 cni?, Fig. 4(c) clearly shows that the main part
value reached in the long time limit is equal to 1.60 so thatof the energy is localized on the defect although a very small
80% of the energy is localized on the defect. By contrastpart of the energy is emitted along the lattice.
when A=30 cnT?, the defect population exhibits undamped Let us now focus our attention on the exponential decay
oscillations in the long time limit. The period of these oscil- of the defect population. In Fig. 5, the defect population vs
lations is equal to 2.4 ps and the corresponding frequency ime is shown whenJ=2.5 cn! and A=A=15 cn1? (full
equal to 13.8 cril. Note that this permanent regime takesline), A=A=20 cni? (dashed ling andA=A=25 cn1* (dot-

FIG. 3. (a) Defect vibrational population vs time for differeft
values and fod=3 cntt, A=15 cn?, andN=131.(b) Average and
fluctuations of the defect population \s The average is performed
between 40 and 100 ps.

n
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P(No.t)

60 80 100 120
time (ps)

FIG. 5. Defect vibrational population vs time fd=2.5 cntt
and for A=A=15 cm7? (full line), A=A=20 cmi! (dashed ling
andA=A=25 cnm! (dotted ling.

the emission of three different wave packets. The wave
packet which moves along the directiop=-n, describes
two vibrons propagating in the opposite direction on each
side of the defect. This feature reveals that the two vibrons
initially localized decay in a subspace of the continuum of
the two-vibron free states, the subspace connected to two
independent vibrons with opposite momenta. Note that the
wave packet develops a complex structure as the time in-
creases and spreads out along the hipe—n,. In addition,

two small wave packets are emitted along the directions
n,=ngy and n,=n,, respectively. Along then,=n, direction,

the wave packet refers to the free propagation of a single
vibron on the right side of the defect whereas the other vi-
bron is localized on the defect. Similarly, along thg=n,
direction, the wave packet describes the propagation of one
vibron on the left side of the defect whereas the other vibron
is localized on the defect site. This latter effect corroborates
the behavior of the long time limit of the defect population
which reaches a nonvanishing constant value.

Finally, in Figs. 7, the behavior of the population of
the neighboring sites of the defect is shown when
A=2A=30 cnit andJ=3 cnil. The time scale has been re-

FIG. 4. Vibrational populations vs time féa) A=15 cnit, (b) ~ duced between 40 and 60 ps so that the features previously
A=30 cni?, and (c) A=50 cni®. The anharmonicity is equal to Observed in Figs. @) and Fig. 4b) appear more clearly.
A=15 cni?, the hopping constant is setde3 cni?, and the lattice ~ Figure @) shows that the oscillations of the defect popula-
size is equal taN=131. tion are accompanied by oscillations in the population of the

neighboring sites. All the curves display the same frequency,
ted ling. The figure clearly shows that the exponential decayi.e., about 13.8 ciit, and the populations of two nearest
takes place whem\=A. As the frequency shift increases, neighbor sites exhibit oscillations in phase opposition. How-
both the decay rate and the amount of localized energy in thever, although the defect population oscillates between 1.0
long time limit decrease. For instance, the decay rate is equaind 1.4, all the other populations vary between zero and a
to 0.69 cm! when A=A=15 cni! whereas it is equal to maximum value which decreases as the distance with the
0.44 cm* whenA=A=20 cntt and finally reaches 0.3 ¢cth  defect increases. In Fig.(y), the vibron population versus
whenA=A=25 cnil. Note that the decay rate seems to in-the site position is shown for two typical times. The vibra-
crease asl increases since it was found to be 1.07°¢m tional population appears strongly localized around the de-
whenJ=3 cnmt andA=A=15 cni! [Fig. 3a)]. fect and exhibits an exponential decay with respect to the

In Figs. 6, the square modulus of the two-vibron wavedistance with the defect position. However, the figure clearly
function is represented on the 2D equivalent lattice forshows that such a localized object has an internal dynamics
t=10 ps[Fig. 6(@)], t=20 ps[Fig. 6(b)], t=30 ps[Fig. 6(c)]  similar to a breathing motion. In other words, the vibrational
andt=40 ps[Fig. 6(d)]. The parameters used for this simu- population is not trapped in a conventional localized mode
lation areA=A=15 cni! and J=3 cnil. The figures show but appears as the quantum counterpart of a well-known
that the excitation of the defect sitetatO is accompanied by classical discrete breather.
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1.0 =
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FIG. 7. Vibrational population fod=3 cnit, A=30 cni?, and
A=15 cnil. (a) Population vs time for the defect site and its neigh-
boring sites.(b) Vibrational population vs the site positions for
t=41.12 ps(full circles) andt=42.32 ps(full squares.

IV. INTERPRETATION AND DISCUSSION

A. General features and Green’s function calculation

The previous numerical results clearly show that the pres-
ence of a defect in the nanowire strongly modifies the two-
vibron dynamics. Indeed, the defect breaks the translational
invariance and favors the occurrence of a localized two-
vibron bound statLTVBS) in which the two quanta are
trapped on the defect site. The vibrational population of the
defect tends to a significant value which appears time inde-
pendent in the long time limit.

However, singular behaviors take place when the defect
frequency shift reaches regions located around lotnd
2A. More precisely, when is close to the anharmonicit,

Fig. 2 shows that a resonance between the LTVBS and the
TVFES continuum occurs. The two vibrons initially located

on the defect tend to decay on the TVFS continuum. The
defect population exhibits an exponential decay and two

FIG. 6. Representation of the square modulus of the tWo'VibrorbopuIation wave packets are created and propagate on each

wave function on the 2D equivalent lattice féa) t=10 ps, (b)
t=20 ps, (c) t=30 ps, and(d) t=40 ps. The parameters used are

J=3 cmtandA=A=15cnL.

side of the defect. By contrast, when the defect frequency
shift is twice the anharmonicity, a resonance between the
LTVBS and the LSVS+SVFS continuum takes plasee

Fig. 2. In that case, a spatially localized and time period
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object is created corresponding to the trapping of the two (0= Hy)Gyo— V1G9~ VusGz0=0. (12

vibrons on few sites around the defect. As in a classical

breather, the vibrational populations exhibit oscillationsAlthough Eq.(12) can be solved easily to obtain the required

around average values which decrease exponentially as tligreen’s operator, a complete understanding of the numerical

distance with the defect increases. results can be achieved from the knowledge of the projection
Understanding these features requires a perfect descrifsg, only. This projection characterizes the probability am-

tion of the two-vibron dynamics through the resolution of theplitude to find the two vibrons on the defect at titnand is,

corresponding time dependent Schrodinger equation. Thitherefore, strongly connected to the vibrational population of

can be achieved either in the time domain or in the frequencthe defect. After performing some algebraic manipulations,

domain by applying the well-known evolution operator this projection is expressed as

method. Within this method, the two-vibron state at titig

expressed in terms of the initial state at timwe0 as Gog(®) = Po(w — Hy = So(w)) 2Py, (13

d . where the self-energy, is defined
|W(t)) = :J 2—w2 Im G(w %i0%)|W(0))e™,  (9) %o
—oo &TT _

So(w) = Voi(w = Hy = 34(w)) V. (14
whereG(w) denotes the two-vibron Green’s operator def'nedThe self-energys, represents the correction of the Hamil-
as tonianH, due to the interaction betweeély andS; (see Fig.

Gw) = (- H)L, (10) 1). It is expressed in terms of the corrected Green’s operator

. of the sublatticeS,, i.e.El(w):(w—Hl—El(w))‘l, in which
To calculate the two-vibron Green’s operator, the two-the self-energys,; characterizes the correction bff, due to

vibron subspace represented by the 2D equivalent lattice ighe coupling betweei$, and all the other sublattices. It is
partitioned in five sublattice§, i=0, 1,..., 4 (see Fig. 1L expressed as

The sublatticeS, reduces to the single site;=n,=ng

which describes the two vibrons localized on the defect. The S, (w) = V,5(1 = G3V34G4Vaa) "2Ga(Vay + VaiGaVay) + Vi1
sublattice S;, formed by the two chains;<n,=n, and

n;=ny<n, corresponds to the LSVS+SVFS continuum. = GaV43G3V39)~'Ga(Var + VagFaVa1) + V12G,Vo,

The sublatticeS, is the square lattice containing the sites (15)
n, <ny<n, which describes the TVFS subspace connected

to two independent vibrons on each side of the defect. Twavhere G;(w)=P;(w—H;)"'P; stands for the unperturbed
vibrons on the same side of the defect are characterized hgreen’s operator connected to the sublatice

the sublattices; formed by the two domains; <n,<ng and The behavior of the projected Green's opera@y, is
Ny<ny<n,. Finally, the sublatticeS,, formed by the two governed by the self-enerdy,. Although this quantity can-
chainsn;=n, # ny, corresponds to TVBS. not be calculated exactly, approximated values can be ob-
In that context, the vibron Hamiltonian can be expressedained, especially when the defect frequency shift reaches
as regions located around and 2A. These calculations are il-

lustrated in the following sections.

H=2 Hi+ 2V, (11)
! 17 B. Resonance between LTVBS and TVFS
whereH;=P;HP; andV;;=P;HP; and whereP; denotes the When the value of the defect frequency shifts close to
projector on the sublattic§. Note that the coupliny;; con-  the anharmonic parametéy, the energy of the LTVBS is
nects the different sublattices according to the links distesonant with the TVFS continuum. Therefore, to simplify
played in Fig. 1. our discussion, we assume that these two kinds of states are

Since the two vibrons are initially located on the defect,isolated from the other two-vibron states. In other words,
the evolution equation, Eq(9), can be solved from the | SvS+SVFS and TVBS are supposed to lie, respectively,
knowledge of the projectionG;,=P;GPy, only. Therefore, it above and below the TVFS. Note that whar=A, this as-
is straightforward to show that these projections satisfy th&umption requires to have an intramolecular anharmonicity
following system of equations: greater than the single vibron bandwidth, and appears rea-

sonable for a low-dimensional molecular adsorbate.

In that context, the effective Green’s operati(w) of
the sublattices;, involved in the definition of the self-energy
(w=HpGipo= 2i£1V1iGip =0, 2o [Eg. (14)], does not exhibit any resonance in the
frequency range of the TVFS continuum. As a result, it
corresponds to a localized propagator so that the subl&tice
can be restricted to its two side sites=(ny,ny+1) and
B=(ny—1,ny) to describe its coupling with the sublattig.
(0= H3)Ggz0— V3:G10— V34G40=0, The self-energy, is thus expressed as

(@ = Hg)Ggo~ V01G10= Po,

(0= Hp) G0~ V21G10=0,
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30(0) = 204G+ Ela/} + alﬁa + Elﬂﬁ) : (16) 20 4 (a)

Within this restriction, Fig. 1 shows that the two side sites of
the sublatticeS; are coupled to both sublatticés and S,.
However, in the frequency range of the TVFS continuum,
only the coupling betwee8,; andS, contributes significantly
to the self-energy,; so that®, = V;,G,V, [Eq. (15)]. There-
fore, within the subspacéw, ) of the two side sites, the 51

effective Green’s operat@1 reduces to th€2 X 2) matrix
expressed as

—o— A=18 cm’"
—=— A=20 cm’”
—— A=22cm’’

(w - 2wo—A- JZQZW - JZQZW )_1 0.3 { ()
-3G,,, w=2wo~A=-3G,,,)
(17) :52 0.2 1
where G,,, defines the diagonal element in the site E
y=(ng—1,ny+1) of the unperturbed Green’s operator of the 01

sublatticeS,. Note that sinceS, represents a 2D square lat-
tice, the corresponding Green’s function can be computed

easily. At this step, by inserting EQL7) into Eq. (16), it is 0.0 —
straightforward to show that the Green’s operasgg is ex- -0 -8 6 4 -2 0 2 4 6 8 10
pressed as 0-20,
Gog(®) = 1 (19) FIG. 8. (a) Imaginary part of the LTVBS Green’s function
00 0—2w0y—2(A-A) -3y(w)’ for J=2.5cm?!, A=20cm?, and for A=18 cnit (circles,
) i A=20 cm! (squarel and A=22 cni?® (triangles. (b) Imaginary
where the self-energy, is defined as part of the LTVBS self-energy.
So() = o 19
O 0= 200- A - 28%G, () B A
- . o 5‘_(3)2 (27 (20)
To illustrate the behavior of the projectid®y, the re- 2 3

sponse function -2 Iy(w+i0"), corresponding to the At this step, by inserting Eq20) into Eq. (18) and by
Fourier transform of the evolution operatfEqg. (9)], is integrating Eq.(9), the wave function connected to the two
shown in Fig. 88 for A=20 cni!, J=2.5 cm* and for  vibrons located on the defect is expressed as

A=18, 20, and 22 ciit. The response function exhibits a et 2AA-A) Tt

single peak in the frequency range of the TVFS continuum W(no,Ng,t) = €750 e (21)

defect frequency shifA. The peak position is blueshifted as the vibrational population of the defect, E(@), is finally
A increases and the linewidth, given by the imaginary part ofyritten as

the self-energy —InXy(w+i0"), decreases ad increases ort
[Fig. 8b)]. This linewidth depends on the frequency and p(no,t) ~ 2€™". (22
exhibits a maximum value at the center of the TVFS con- | perfect agreement with our numerical simulations, the

tinuum whereas it almost vanishes at the sides of that consrevious theoretical approach shows that the exponential de-
tinuum. o _ cay of the defect population results from the indirect cou-
As d|sp|ayeq in Fig. &), thg response functlon_shOWS_ an pling between the LTVBS and the TVFS mediated by inter-
almost Lorentzian lineshape in which both the linepositionyggiate states located in the LSVS+SVES continuum.
and the linewidth can be characterized by neglecting the frerhdeed, the LTVBS experiences nonresonant interactions
quency dependence of the self-enelfw). Therefore, ac-  \yith states corresponding to the localization of the first vi-
cording to the result displayed in Fig(t8, the self-energy is  pron on the defect whereas the second vibron is located ei-
approximated by its value at the center of the TVFS conther on the left side or on the right side of the defect. Such
tinuum so thay(w+i0%) =2 o(2wy+i0") =5-il". Moreover,  states can evolve according to three different ways leading to
at the center of the TVFS continuum, it is straightforward tothe full delocalization of the second vibron, to the trapping of
show that the unperturbed Green's operator of the squarge first vibron on the second vibron, and to the delocaliza-
sublatticeS, has no real part and is expresseddas,(2awy  tion of the first vibron in the opposite direction of the second
+i0")=-8i/3mJ. Therefore, from Eq(19), the parameterd  vibron. This latter process is the main mechanism when the

andI’ are written as resonant conditiol = A is satisfied. As a consequence, the
16 J LTVBS decays on the subspaeg of the TVFS continuum
= — 55, corresponding to two independent vibrons propagating in an
3m(2)7+(2) ponding | _
2 37 opposite direction on each side of the defect. Note that the
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two independent vibrons are emitted according to an en- © 20070 (w-Zwo—A)Z_l
tangled state due to their indistinguishable nature. The Grpelw) = —2—— 2) , (24)
Lorentzian lineshape of the response function shows that the J

TVFES involved in the process are those centered around thghere the sign + is chosen to ensure the regularity of the
frequency 2, +2(A-A)+ 5 over a frequency range of about Green's function at the infinity. Therefore, SiNGs5=G10a

2. by symmetry, the self-energy, [Eq. (23)] can be calculated

As shown in Eq.(20), the decay ratd’ decreases as the gjsijly and the Green’s operator projected on the LTVBS, Eq.
defect frequency shiff increases and it increases with the (13) ‘is finally written as

hopping constand. This behavior characterizes the fact that

the strength of the coupling between the LTVBS and the O+p+26° -1, if 6>1;
intermediate LSVS+SVFS continuum is proportional to the G (w)= ———1 g+ 5+ 2i\1- ¢, if | <1;
hopping constand whereas it decreases as the energy differ- 23D(6) —_—

ence between the two kinds of states, proportional tan- 0+ np-2vP-1, if 6<-1;
creases. Note that wheh=2.5 cm'l, the decay rate 2 for (25)

the defect population is equal to 0.87, 0.50, and 0.33'cm
when A=15, 20, and 25 cil, respectively, in rather good Where the reduced parameter=(w-2w,-4)/2] and
agreement with the numerical values discussed in Sec. lI. To=(A-2A)/2] have. been introduced and Wh@é@:%z
conclude this section, let us mention that the propagation 276~ 7°~4. Equation(25) shows that the behavior of the
along the sublattic&, has been neglected in the present ap-Projected Green's operator depends on whether the fre-
proach. However, because the intermediate LSVS+SvFguencyw lies inside the LSVS+SVFS energy band or not.
participate in the LTVBS decay, the probability for such aAS @ result, the response function, -2 Bgo(w+i0%), is the
propagation, even small due to the nonresonant nature of tH&im of three contributions as

intermediate states, does not vanish exactly. As a conse- 2 J1-¢2
quence, a few parts of the vibrational energy stays localized- 2 Im Gyg(w +i0") == ——————(h(6+ 1)
on the defect so that the defect population does not strictly 33(6-6.)(6-6.)
tend to zero in the long time limit. T 27
-h(6-1))+ —|1-—=—=
3J \ 772 +3
C. Resonance between LTVBS and LSVS+SVFS X8(6-6-)(L-h(n-1))
When the value of the defect'frequency slzﬁ_fts close to + 1(1 +— 27 )5(9_ 0.)h(n+ 1),
2A, the energy of the LTVBS is resonant with the LSVS 3J VP +3
+SVFS continuum(see Fig. 2 As previously, to simplify (26)

our discussion, we assume that these two kinds of states are

isolated from the other two-vibron states so that both TVFSwvhereh(x) denotes the Heavisde step function and wkgre

and TVBS are supposed to lie below the LSVS+SVFS.  which are the zeros of the functid(6), represent the poles
In that context, Eq(15) clearly shows that all the inter- of the Green'’s function as

actions defining the self-energy of the sublatti#einvolve

nonresonant states. As a consequence, we assume the self- 0, = 7, 2\5'77 +3. (27)

energy>, negligible so that the corrected Green’s operator -3 3

G, can be approximated by the corresponding unperturbed As illustrated in Fig. @) for J=2cm! and
Green's operatorG;. The self-energy connected to the A=2A=40 cnt?, the response function, E¢R6), exhibits a
LTVBS [Eq. (14)] is thus expressed as nonvanishing continuous part in the frequency range of the
LSVS+SVFS band which extends froar2wy+A—-2J (i.e.,
#=-1) t0 w=2wy+A+2J (i.e., 6=1). In addition, the re-
So(@) = 234G 100+ Gupp)- (23)  sponse function shows two delta peaks located, respectively,
below and above the band. These two peaks occur at the
frequencies of the two poles,. of the Green’s function de-
In others words, by neglecting the interactions betw8gn fined in Eq.(27). As displayed in Fig. @), the shape of the
and all the sublattice§, i # 0, the 2D equivalent lattice de- continuous part depends on thevalues. For instance, al-
scribing the two vibron dynamics reduces to a linear chairthough it is almost uniform whe=2A, the response in-
formed by the two sublattice§, and S;. The discrete state creases in the vicinity of the low frequency band edgeé\as
LTVBS represented by the single sifg is thus coupled to increases to develop a divergence wh&r2A+2], i.e.,
the side sitegr and B of the two semi-infinite chains defining when n»=1. However, as increasinyy again, the divergence
the sublatticeS,. Within this picture, the procedure intro- finally disappears. The same behavior takes place at the high
duced by DobrzynsR? to calculate the response function of frequency band edge wheh decreases and a divergence
superlattices and composite materials can be applied and it @&ccurs whenA=2A-2J (i.e., when »=-1). As shown in
straightforward to show that the Green’s functign,, is  Figs. 10, this behavior is strongly correlated to the evolution
expressed as of the two poles of the Green’s function. Figure(d0dis-
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FIG. 10. (a) Position and(b) amplitude of the high frequency
FIG. 9. (a) Imaginary part of the LTVBS Green'’s function for (open circles and low frequencyfull circles) peaks of the imagi-
J=2 cnit, A=20 cnil, andA=40 cnT?. (b) Representation in the nary part of the LTVBS Green’s function vs thgparameter(see
frequency range of the LSVS+SVFS continuum for differént the texj.

values. Note thaby has been used as the origin of the frequency so . .
that wy=0. In that context, the presence of defects in the equivalent

1D chain is responsible for the occurrence of both extended
plays the frequency of the delta peaks versus the reducestates and localized states, for the fictitious particle. The ex-
parametern whereas Fig. 1®) shows the intensity of tended states, which belong to the energy band defined by
the delta peaks. It is shown that the low frequencythe sublatticeS,, are responsible for the continuous part of
peak occurs whem<1, i.e., whenA -2A<2J, whereas the the response function. They correspond to states in which a
high frequency peak takes place when>-1, i.e., when vibron is trapped on the defect whereas the other vibron is
A-2A>-2]. As a result, the two peaks occur simulta- fully delocalized along the nanowire. In addition, it is
neously when —-i <1, only. Note that the disappearance straightforward to show that the 1D chain supports localized
of a delta peak corresponds to a divergence in the continuougates which produce the delta peaks in the response func-
part of the response. , _ tion. These states, which the frequencies are specified by the
To understand the behavior of the response function, lefs|es of the Green’s function, are strongly localized on the
us remain that whem is close to 2, the 2D equivalent  qjio 5 However, the number of localized states depends on
lattice reduces to a 1D chain formed by the combination of,;,ther the LTVBS lies in the LSVS+SVES band or not, as

t/?k?r;vr;lc;tzﬁcj:slatttrlw?seaa?r?%iéﬁﬁ:slztﬁé E;ag]pitr?gr;n;? :Litt\)l\rlgn ol result of the competition between the two kinds of defects
the defect whereas the other vibron is allowed to propagatI the 1D chain. When the LTVBS is located in the band, two

along the nanowire. The chain exhibits two kinds of defects ocaIi;ed states occur essc_er]tially due to the singularity of the
First, the frequency of the sitg, equal to 2sy+2(A-A), hopping process in the vicinity of the defect. By contrast,
differs from the frequency of the sites of the sublattie when the LTVBS lies abovéx>1) or below (7<-1) the
equal 2v+A. Then, two defects correspond to a singularitybanq, a single localized state remains due to the influence of
in the hopping constant, equal {®J, betweenS, and the the intramolecular anharmonicity. In_both_cases, a Iocgllzed
two side sites of the sublattic®. From a physical point of State corresponds to a bound state in which the two vibrons
view, these defects in the equivalent lattice originate from theare trapped around the defect site. These features are illus-
fact that when a vibron is trapped on the real defect, it moditrated in Fig. 11 which displays the high frequency and the
fies the dynamics of the other vibron in the vicinity of this low frequency wave function of the 1D chain for
latter defect. Due to the intramolecular anharmonicity, it isJ=2 cnmit and A=20 cnil. When A=2A [Fig. 11(a)], the

first responsible for a frequency shift when the two vibronschain exhibits two localized states centered on the Sjte

are localized on the defect. Then, it enhances the hoppinglthough both wave functions exhibit an exponential decay,
constant of the process involving the hop of the other vibrorthe low frequency state shows spatial oscillations so that two
on the defect site. nearest neighbor sites are characterized by amplitudes in
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08 1 | 2(3+577) + (3 - 3p2)cod &\ 77 + 3t
06 | (a) A=40cm p(ngt) =~ 1 + _( )+ ( 277 ) 3 772 ) ,
e 04] 9 n°+3
B 02 (29
5 o0
E 02 ] when|7| <1 whereas it is expressed as
]
2 -04 1 2 2
06 1 p(ne,t) = 1+ —{1 + J_| U } : (30
08 | 9 V7 +3
038 A
06 {®) A=46cm” when| | > 1. . L
. B When |7/ <1, i.e., when the LTVBS lies in the LSVS
2 .l o +SVFS band, the two vibron wave functioh(ng,ng,t) re-
§ 0:0 ] MNWWWWWWWWWWWVMWWWWWM duces to the coherent superimposition of the two localized
E.) 02 1 states. As a result, the defect population shows oscillations
e o4/ which the frequency is equal to the frequency difference be-
06 tween the two localized states. In particular, at the resonance
0.8 1 7=0, i.e., whenA=2A, the defect population oscillates be-

tween 1 andl+4/9=1.44 according to the frequencW&@
_ equal to 13.85 cnt when J=3 cnit. These results are in
site number perfect agreement with the numerical results shown in Figs.
FIG. 11. High frequencydotted ling and low frequencyfull 3,4,and 7(s¢e Sec. il Note that.the spatla.I dependence of
line) wave function for the fictitious particle along the 1D chain the two Iocallzed_ state$ig. 11(a)] is responSIbI_e for the_fact
formed by the combination of th&, and S, sublatices for ~that the population between two nearest neighbor sites ap-
J=2 cnt! and A=20 cntl. () When A=40 cnt, the chain sup- Pears in phase opposition. By contrast, whei> 1, a single
ports two localized states centered on the Sge (b) When A localized state remains so that the defect population appears
=46 cnt, only the high frequency localized state remains. time independent. Note that whel=3 cnit, A=15 cni?,
andA=50 cni?l, Eq. (30) leads to a defect population equal

phase opposition. When=2A+4J [Fig. 11b)] only the to 1.85 in perfect agreement with the numerical results dis-
high frequency state remains localized. played in Figs. 3 and 4.

At this step, by integrating Eq9) from the knowledge of
the response function, E(R6), the wave function connected
to the two vibrons located on the defect is expressed as

20 40 60 80 100 120

D. Conclusion

In this paper, it has been shown that the presence of a
local defect in a molecular nanowire strongly modified the

W(ng,Ng,t) = We(Ng,Ng, t) two-vibron dynamics. Indeed, the defect breaks the transla-
2 1-h(n-1) tional invariance and favors the occurrence of a localized
+ e—i<2wo+A+2J9->{ 1-— 7 } 7 two-vibron bound statd TVBS) in which the two quanta are
VP +3 3 trapped on the defect site. However, the numerical integra-
tion of the time dependent two-vibron Schrodinger equation
i (2w +A+216,)t 27 |h(n+1) X . b
+ g 'lew0 YL+ , with two vibrons initially located on the defect has revealed
Vi +3 3 the occurrence of two singular behaviors.

(28) When the defect frequency shift is close to the anhar-
monicity A, a resonance between the LTVBS and the TVFS

o takes place mediated by nonresonant intermediate states lo-
where W (ng,ng,t) denotes the contribution of the responseated in the LSVS+SVFS continuum. As a result, the two

function in the frequency range of the LSVS+SVFS band. Inyibrons initially located on the defect decay on the subspace
the !ong time limit, such a contribution vam;hes. Indeed, itispf the TVES continuum corresponding to two independent
straightforward to show that when the continuous part of the;ibrons propagating in the opposite direction. In other words,
response is almost uniform, the integration of 8. over  the resonance breaks the localized vibron pair and two inde-
the LSVS+SVFS band leads ¥(ny,no,t)=sin(2J)/2Jt.  pendent vibrons are emitted on each side of the defect. By
By contrast, when a divergence takes place, @6) shows  contrast, when the defect frequency shift is almost twice the
that the response function behaves asét/1 so that the anharmonicity, a resonance between the LTVBS and the
integration of Eq.(9) over the LSVS+SVFS band leads to | SVS+SVFS occurs. In that case, it has been shown that a
We(ng,no,t) =1/VJt. Therefore, whatever the situation, vibron trapped on the defect modifies the dynamics of the
W (N, N, ) — 0 whenJt>1. second vibron. When the LTVBS lies in the LSVS+SVFS
Finally, since the two peaks refer to states strongly localband, the trapped vibron essentially enhances the hopping
ized on the sublattic&,, the long time limit of the defect constant experienced by the second vibron when this latter
population, Eq.(8), is given by p(ny,t)=1+|¥(ny,ny,t)|>  one realizes a hop on the defect. As a result, two localized
and is written as states occur in which the two vibrons are trapped over few
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sites around the defect. Starting with two vibrons on thefeature requires the ability to create two vibrons on the defect
defect, the wave function evolves in time and converges to and to control their dynamics by playing with the resonances
coherent superimposition of these two localized states. A spareviously described. For instance, such processes can be
tially localized and time period object is created in which theyealized by using simultaneously an infrared laser and a
vibrational populations exhibit oscillations around averagegty. Indeed, by creating a strong frequency shift of the

values which decrease exponentially as the distance with t ;
defect increases. When the LTVBS lies outside the LSV olecule located b?'OW the STM, two quapta can be excited
that molecule with an infrared laser which the frequency

+SVFS band, a single localized state remains essentially d diciously ch he vibrational is th
to the intramolecular anharmonicity which is responsible for1@S been judiciously chosen. The vibrational energy is thus

a frequency shift when the two vibrons are located on thdrapped on this molecule until its frequency is shifted to in-

defect. As a result, the vibrational population remains esserfluce a resonance with the TVFS simply by tuning the bias
tially localized on the defect but does not exhibit oscillation Voltage between the STM and the substrate. As a result, the

anymore. local vibron pair is broken and an energy flow takes place on

To conclude, let us mention that this study opens a nevgach side of the defect. The theoretical analysis of such a
way in the elaboration of nanodevices allowing the control ofmechanism is currently in progress and will be addressed in
the information storage and transfer at the nanoscale. Thimore detail in a forthcoming paper.
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