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The two-vibron dynamics in a molecular nanowire with a local defect is characterized. The integration of the
time dependent Schrodinger equation has revealed the occurrence of two singular behaviors. When the defect
frequency shift is close to the intramolecular anharmonicity, a resonance between the localized two-vibron
bound state and the two-vibron free states continuum takes place. The resonance breaks the localized vibron
pair and two independent vibrons are emitted on each side of the defect so that an exponential decay of the
defect vibrational population occurs. By contrast, when the defect frequency shift is almost twice the anhar-
monicity, a resonance occurs between the localized two-vibron bound state and the continuum formed by a
vibron trapped on the defect and a second vibron delocalized along the nanowire. In that case, the trapped
vibron enhances the hopping constant experienced by the second vibron near the defect so that two localized
states occur in which the two vibrons are trapped around the defect. Due to the superimposition of these two
localized states, the vibrational population is strongly localized around the defect and exhibits oscillations
similar to that occurring in a classical discrete breather.
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I. INTRODUCTION

Since the pioneer works of Davydov devoted to the vibra-
tional energy flow in proteins,1 the nonlinear dynamics of
classic lattices was studied in numerous theoretical papers. In
this context, the formation of intrinsic localized modes, or
discrete breathers, has been the subject of intense theoretical
research during the last decadesfor a recent review, see for
instance Refs. 2–4d. Discrete breathers, which correspond to
highly localized vibrational excitations in anharmonic lat-
tices, do not require integrability for their existence and sta-
bility. They are not restricted to one-dimensional lattices and
it has been suggested that they should correspond to quite
general and robust solutions.5 Since discrete breathers yield a
local accumulation of the energy which might be pinned in
the lattice or may travel through it, they are expected to be of
fundamental importance for both energy storage and trans-
port. Unfortunately, in spite of the great interest that breath-
ers have attracted, no clear evidence has yet been found for
their existence in real molecular lattices.

By contrast, bound states involving two high frequency
vibrational excitons, also called vibrons, have been observed
in several molecular structures. In that case, the intramolecu-
lar anharmonicity breaks the vibron independence and favors
the formation of bound states.6–13A bound state corresponds
to the trapping of the two quanta over only a few neighbor-
ing molecules with a resulting energy which is less than the
energy of two quanta lying far apart. The lateral interaction
yields a motion of such a state from one molecule to another,
thus leading to the occurrence of a delocalized wave packet
with a well-defined momentum. Since two-vibron bound
statessTVBSd are the first quantum states which experience
the nonlinearity, they can be viewed as the quantum counter-
part of breathers or solitons.8 The formation of TVBS was
observed in molecular adsorbates such as H/Sis111d,14,15

H/Cs111d,16 CO/NaCls100d,17 and CO/Rus001d18–22 using
optical probes. Bound states in the system H/Nis111d were
investigated via high resolution electron energy loss
spectroscopy.23 Moreover, a recent experiment based on fem-
tosecond infrared pump-probe spectroscopy, has clearly es-
tablished the existence of TVBS ina-helix proteins.24

In a series of recent papers, it has been suggested that
vibrons, and especially TVBS, could provide an alternative
to the electronic transport in adsorbed molecular
nanowires.9–11,25,26Following this idea, the present work ad-
dresses a new question related to the influence of a local
defect on the two-vibron dynamics with a special emphasis
on the mechanism responsible for energy localization/
delocalization.

In an adsorbed nanostructure, a defect can be created by
using a scanning tunneling microscopesSTMd. Indeed, it has
been shown by Avouris and co-workers27–30 that even under
normal operating conditions, the electric field in the STM-
substrate junction is high, i.e., typically of about
0.1–0.5 V/Å. This field is comparable to the internal fields
that electrons experience inside atoms and molecules so that
it can cause significant changes in the local electronic struc-
ture and bonding. In particular, the authors have shown that
the vibrational frequency of some molecule-surface stretch-
ing modes strongly depends on the applied bias voltage be-
tween the STM and the sample. As a consequence, in a nano-
wire, the molecule located under the STM tip behaves as a
local defect exhibiting a frequency shift when compared with
the frequency of the other molecules. Therefore, the STM
provides a powerful tool to control the strength of the defect
frequency shift simply by tuning the bias voltage between
the STM and the substrate.

In that context, it is well-known that a defect breaks the
translational invariance of the nanowire and favors the oc-
currence of a localized state when a single vibron is excited.
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This state, which is located below or above the single vibron
band depending on the sign of the shift, disappears when this
frequency shift is set to zero. When two vibrons are excited,
the physics is more elaborate because of the various kinds of
states involved in the dynamics. Indeed, in addition to two-
vibron bound states and two-vibron free statessTVFSd,
which appears naturally in a perfect anharmonic lattice, the
defect is responsible for the occurrence of a localized two-
vibron bound statesLTVBSd in which the two vibrons are
trapped on the defect. In addition, it allows for states in
which a single vibron is localized, i.e., a localized single
vibron statesLSVSd, whereas the second vibron is delocal-
ized according to a continuum of single vibron free states
sSVFSd. Therefore, in marked contrast with the single vibron
dynamics, we expect resonances between these different
two-vibron states so that the vibrational energy could be ei-
ther localized or delocalized, even for a nonvanishing fre-
quency shift of the defect.

The present paper is thus organized as follows. In Sec. II,
the model Hamiltonian describing the vibron dynamics in a
molecular nanowire is first introduced. Then, the time depen-
dent two-vibron Schrodinger equation is established within
the number states method. In Sec. III, the simulation of the
Schrodinger equation is performed and the numerical results
are presented. These results are finally discussed and inter-
preted in Sec. IV.

II. MODEL HAMILTONIAN AND TWO-VIBRON
DYNAMICS

To model the vibron dynamics in a rather simple way, let
us consider a set ofN molecules adsorbed on the surface of
a well-organized substrate. These molecules form a 1D lat-
tice where the site position is denoted asn=1,2,… ,N. We
thus assume that each moleculen behaves as a high fre-
quency internal oscillator described by the standard vibron
operatorsbn

+ and bn. The intramolecular anharmonicity of
each molecule is taken into account according to the model
of Kimball et al.6 so that the resulting HamiltonianH is
essentially a Bose version of the Hubbard model with attrac-
tive interactions, assusing the convention"=1d

H = o
n

sv0 + Ddnn0
dbn

†bn − Abn
†2bn

2 + Jfbn
†bn+1 + h.o.g. s1d

In Eq. s1d, h.o. denotes the Hermitian operator,v0 stands for
the internal frequency of each molecule,A is the positive
anharmonic parameter andJ represents the vibron hopping
constant between nearest neighbor admolecules. The defect,
located onto then0th site, corresponds to a molecule which
the internal frequency exhibits a shiftD with respect to the
other molecules. Note that long range lateral interactions
may affect the vibron dynamics but these effects are ex-
pected to be rather weak in a 1D lattice.

To characterize the two-vibron dynamics, the correspond-
ing time dependent Schrodinger equation has to be solved.
Since the HamiltonianH fEq. s1dg conserves the number of
vibrons, this can be achieved by using the number states
method8 which was successfully applied to molecular
adsorbates9–11 anda-helix proteins.12,13 Within this method,

the two-vibron wave function is expanded as

uCstdl = o
n1,n2ùn1

Csn1,n2,tdun1,n2d, s2d

where hun1,n2dj denotes a local basis set normalized and
symmetrized according to the restrictingn2ùn1 and where a
particular vectorun1,n2d characterizes two vibrons located
onto the sitesn1 andn2, respectively. This basis set generates
the entire two-vibron subspace which the dimension
NsN+1d /2 represents the number of ways for distributing
two indistinguishable quanta ontoN sites.

In this context, the time dependent Schrodinger equation
depends on the nature of the basis vectors involved. Indeed,
when the two vibrons are far apart and far from the defect,
i.e., whenn1Þn2Þn0, the Schrodinger equation is expressed
as

i
]Csn1,n2,td

]t
= JfCsn1 + 1,n2,td + Csn1 − 1,n2,tdg

+ JfCsn1,n2 + 1,td + Csn1,n2 − 1,tdg

+ 2v0Csn1,n2,td. s3d

When the first vibron is located on the defect whereas the
second vibron is far from the defect, i.e., whenn2.n1=n0,
the Schrodinger equation is written as

i
]Csn0,n2,td

]t
= JfCsn0 + 1,n2,td + Csn0 − 1,n2,tdg

+ JfCsn0,n2 + 1,td + Csn0,n2 − 1,tdg

+ s2v0 + DdCsn0,n2,td. s4d

Note that a similar equation is obtained when the second
vibron is on the defect whereas the first vibron lies far from
the defect, i.e., whenn1,n2=n0. When the two vibrons, ly-
ing far from the defect, are located on the same site, i.e.,
whenn1=n2Þn0, the Schrodinger equation is expressed as

i
]Csn1,n1,td

]t
= Î2JfCsn1 − 1,n1,td + Csn1,n1 + 1,tdg

+ s2v0 − 2AdCsn1,n1,td. s5d

Finally, when the two vibrons are located on the defect, i.e.,
whenn1=n2=n0, the Schrodinger equation is written as

i
]Csn0,n0,td

]t
= Î2JfCsn0 − 1,n0,td + Csn0,n0 + 1,tdg

+ s2v0 + 2D − 2AdCsn0,n0,td. s6d

Note that all the other elements of the Schrodinger equation
are obtained by symmetry due to the Hermitian nature of the
HamiltonianH.

At this step, let us mention the following picture which
provides an intuitive way to understand and to interpret the
two-vibron dynamics. Indeed, as discussed in detail in Refs.
9–13, Eqs.s3d–s6d clearly show the equivalence between the
two-vibron dynamics and the dynamics of a single fictitious
particle moving quantum mechanically on the 2D lattice dis-
played in Fig. 1. Within this equivalence, the two-vibron
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wave functionCsn1,n2,td can be viewed as the wave func-
tion of the fictitious particle. According to Eqs.s3d–s6d, its
dynamics is described by a tight-binding Hamiltonian char-
acterized by self energies located on each site and hopping
matrices which couple nearest neighbor sites. Both the in-
tramolecular anharmonicity and the presence of the defect in
the real nanowire are responsible for the occurrence of de-
fects in the 2D lattice leading to a shift of the corresponding
self-energies. These defects discriminate between localized
states and delocalized states for the fictitious particle, which,
in turn, correspond to localized, bound or free states for the
two vibrons.

As illustrated in Fig. 2, the nanowire exhibits basically
four kinds of different eigenstates. The two-vibron bound
statessTVBSd, which refer to a localization of the fictitious
particle close to the sitesn1=n2Þn0 sopen squares in Fig. 1d,
form an energy band around 2v0−2A. The two-vibron free

statessTVFSd, connected to the delocalization of the ficti-
tious particle far from the defect sites of the 2D equivalent
lattice scircles in Fig. 1d, form an energy continuum around
2v0. States corresponding to the localization of the first vi-
bron and to the delocalization of the second vibron
sLSVS+SVFSd correspond to the localization of the ficti-
tious particle in the vicinity of the sitesn1,n2=n0 and
n1=n0,n2 sdiamonds in Fig. 1d. These states form an energy
band around 2v0+D. The localized two-vibron bound state
sLTVBSd, connected to the localization of the fictitious par-
ticle around the siten1=n2=n0, is a discrete state located
around 2v0+2D−2A.

Therefore, the 2D equivalent latticesFig. 1d provides a
helpful picture allowing a comprehensive representation of
the two-vibron energy spectrumsFig. 2d. This spectrum
clearly shows the ability to have resonances between the dif-
ferent kinds of states depending on the value taken by the
frequency shiftD. The next section is thus devoted to the
characterization of these resonances through the numerical
resolution of the time dependent Schrodinger equation, Eqs.
s3d–s6d.

III. NUMERICAL RESULTS

In this section, the numerical integration of the time de-
pendent two-vibron Schrodinger equation is performed
within the fourth order Runge-Kutta method.31 To realize the
simulation, typical values for molecular adsorbates are used
for the parameters enter Eq.s1d. Indeed, for small adsorbed
molecules, the anharmonic parameter, usually close to the
gas phase value, ranges between 10−40 cm−1 whereas the
vibron bandwidth is typically less than or about 10 cm−1. For
instance, for the CO/Ru systemssee Ref. 11 and references
insided, the anharmonicity is equal toA=15.56 cm−1 and the
hopping constant is equal toJ=3.82 cm−1. For the
H/Sis111d system, the vibron bandwidth is equal to 10 cm−1

and the anharmonicity was found to beA=34 cm−11.14 As
pointed out in the Introduction, the defect frequency shiftD
is considered as a free parameter which can be controlled
experimentally. Note that in the present paper we consider
positive D values, only, and other situations will be ad-
dressed in a forthcoming work.

To understand the influence of the defect onto the two-
vibron dynamics, we thus assume that the two quanta are
initially located on the defect so that the two-vibron state at
time t=0 is expressed as

Csn1,n2,t = 0d = dn1,n0
dn2,n0

. s7d

Among the different observables which can be extracted
from our simulation, we essentially focus our attention on
the behavior of the vibron population along the nanowire.
The population represents a key observable to describe the
vibrational energy flow and allows us to discriminate be-
tween both energy localization and delocalization. Therefore,
in terms of the two-vibron wave functionCsn1,n2,td, the
population at siten and at timet, psn,td=kCstdubn

†bnuCstdl, is
expressed as

FIG. 1. 2D lattice for the equivalence between the two-vibron
dynamics and the tight-binding model for a single fictitious particle
ssee the textd.

FIG. 2. Representation of the two-vibron energy spectrum in a
molecular nanowire with a defect.
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psn,td = o
n1=1

n

uCsn1,n,tdu2 + o
n2=n

N

uCsn,n2,tdu2. s8d

In Fig. 3sad, the evolution of the defect populationpsn0,td
versus time is shown for differentD values. The anharmo-
nicity and the hopping constant are equal toA=15 cm−1 and
J=3 cm−1, respectively, and the lattice size is set toN=131.
The figure clearly shows the occurrence of different behav-
iors depending on the strength of the frequency shift. For a
strong shift, i.e.,D=50 cm−1, the population exhibits two
regimes. Indeed, in the short time limit, the population first
decreases from its initial value equal to 2 and exhibits fast
damped oscillations with a period about 1.4 ps. Then, the
oscillations disappear and the population reaches an almost
constant value equal to 1.85. In other words, 92.5% of the
vibrational energy is localized on the defect. For a rather
small frequency shift, i.e.,D=10 cm−1, the defect population
shows a similar behavior. Nevertheless, the almost constant
value reached in the long time limit is equal to 1.60 so that
80% of the energy is localized on the defect. By contrast,
when D=30 cm−1, the defect population exhibits undamped
oscillations in the long time limit. The period of these oscil-
lations is equal to 2.4 ps and the corresponding frequency is
equal to 13.8 cm−1. Note that this permanent regime takes

place after about 20 ps. The defect population evolves be-
tween 1.0 and 1.4 so that the average amount of energy lo-
calized on the defect is about 60%. Finally, when
D=15 cm−1, the defect population behaves in a fully differ-
ent way. Indeed, after exhibiting fast damped oscillations, the
population drastically descreases according to an exponential
law with a decay rate about 1.07 cm−1. Note that this decay
rateg is obtained by fitting the defect population according
to psn0,td=a+b exps−gtd. After 30 ps, it reaches a constant
value equal to 0.09 so that 95.5% of the initially localized
energy have left the defect.

To clarify the previous features, Fig. 3sbd represents the
average value of the defect population as a function of the
frequency shiftD. Note that the figure also shows the fluc-
tuations of the population around its average value. For a
strong frequency shift, i.e.,D=50 cm−1, the average popula-
tion is important whereas the fluctuations almost vanish. This
feature indicates a rather strong localization of the two vi-
brons onto the defect site. WhenD decreases, the average
population decreases and the fluctuations slowly increase.
When the shift reaches the region aroundD=30 cm−1, the
average population reaches a minimum value equal to 1.20
whereas the fluctuations are maximum. Such a behavior oc-
curs whenD ranges typically between 25 and 35 cm−1 and
indicates the occurrence of oscillations in the defect popula-
tion. However, by decreasing again the frequency shift, the
average population now increases to reach a maximum value
equal to 1.5 whenD=23 cm−1. In that case, the fluctuations
have disappeared. Then, whenD reaches the region located
around 15 cm−1, the average population strongly decreases to
reach 0.07 and the population does not exhibit any fluctua-
tion. Such a behavior occurs whenD ranges typically be-
tween 12 and 18 cm−1 and indicates that the two vibrons
have left the defect. Finally, whenD decreases again, the
average population increases again.

The time evolution of the population of the different lat-
tice sites is shown in Figs. 4. WhenD=15 cm−1 fFig. 4sadg,
the exponential decay of the defect population is accompa-
nied by the propagation of the vibrational energy along the
lattice. Indeed, as the defect population decreases, two popu-
lation wave packets are emitted on each side of the defect
with a velocity about one site per ps. Nevertheless, a part of
the vibrational energy stays localized on the defect. When
D=30 cm−1, the site population is displayed in Fig. 4sbd.
Although the results concerning the oscillations of the defect
population are recovered, the figure shows that the popula-
tion of the neighboring sites of the defect exhibits oscilla-
tions, but with smaller amplitudes. In that case, the main part
of the vibrational energy is trapped over a few sites around
the defect according to a solution which is spatially localized
and time periodic. Note that the emission of a few parts of
the energy takes place so that small amplitude population
wave packets propagate on each site of the defect. Finally,
whenD=50 cm−1, Fig. 4scd clearly shows that the main part
of the energy is localized on the defect although a very small
part of the energy is emitted along the lattice.

Let us now focus our attention on the exponential decay
of the defect population. In Fig. 5, the defect population vs
time is shown whenJ=2.5 cm−1 and D=A=15 cm−1 sfull
lined, D=A=20 cm−1 sdashed lined, andD=A=25 cm−1 sdot-

FIG. 3. sad Defect vibrational population vs time for differentD
values and forJ=3 cm−1, A=15 cm−1, andN=131.sbd Average and
fluctuations of the defect population vsD. The average is performed
between 40 and 100 ps.
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ted lined. The figure clearly shows that the exponential decay
takes place whenD=A. As the frequency shift increases,
both the decay rate and the amount of localized energy in the
long time limit decrease. For instance, the decay rate is equal
to 0.69 cm−1 when D=A=15 cm−1 whereas it is equal to
0.44 cm−1 whenD=A=20 cm−1 and finally reaches 0.3 cm−1

whenD=A=25 cm−1. Note that the decay rate seems to in-
crease asJ increases since it was found to be 1.07 cm−1

whenJ=3 cm−1 andD=A=15 cm−1 fFig. 3sadg.
In Figs. 6, the square modulus of the two-vibron wave

function is represented on the 2D equivalent lattice for
t=10 psfFig. 6sadg, t=20 psfFig. 6sbdg, t=30 psfFig. 6scdg
and t=40 psfFig. 6sddg. The parameters used for this simu-
lation areD=A=15 cm−1 and J=3 cm−1. The figures show
that the excitation of the defect site att=0 is accompanied by

the emission of three different wave packets. The wave
packet which moves along the directionn1=−n2 describes
two vibrons propagating in the opposite direction on each
side of the defect. This feature reveals that the two vibrons
initially localized decay in a subspace of the continuum of
the two-vibron free states, the subspace connected to two
independent vibrons with opposite momenta. Note that the
wave packet develops a complex structure as the time in-
creases and spreads out along the linen1=−n2. In addition,
two small wave packets are emitted along the directions
n1=n0 and n2=n0, respectively. Along then1=n0 direction,
the wave packet refers to the free propagation of a single
vibron on the right side of the defect whereas the other vi-
bron is localized on the defect. Similarly, along then2=n0
direction, the wave packet describes the propagation of one
vibron on the left side of the defect whereas the other vibron
is localized on the defect site. This latter effect corroborates
the behavior of the long time limit of the defect population
which reaches a nonvanishing constant value.

Finally, in Figs. 7, the behavior of the population of
the neighboring sites of the defect is shown when
D=2A=30 cm−1 andJ=3 cm−1. The time scale has been re-
duced between 40 and 60 ps so that the features previously
observed in Figs. 3sad and Fig. 4sbd appear more clearly.
Figure 7sad shows that the oscillations of the defect popula-
tion are accompanied by oscillations in the population of the
neighboring sites. All the curves display the same frequency,
i.e., about 13.8 cm−1, and the populations of two nearest
neighbor sites exhibit oscillations in phase opposition. How-
ever, although the defect population oscillates between 1.0
and 1.4, all the other populations vary between zero and a
maximum value which decreases as the distance with the
defect increases. In Fig. 7sbd, the vibron population versus
the site position is shown for two typical times. The vibra-
tional population appears strongly localized around the de-
fect and exhibits an exponential decay with respect to the
distance with the defect position. However, the figure clearly
shows that such a localized object has an internal dynamics
similar to a breathing motion. In other words, the vibrational
population is not trapped in a conventional localized mode
but appears as the quantum counterpart of a well-known
classical discrete breather.

FIG. 4. Vibrational populations vs time forsad D=15 cm−1, sbd
D=30 cm−1, and scd D=50 cm−1. The anharmonicity is equal to
A=15 cm−1, the hopping constant is set toJ=3 cm−1, and the lattice
size is equal toN=131.

FIG. 5. Defect vibrational population vs time forJ=2.5 cm−1

and for A=D=15 cm−1 sfull lined, A=D=20 cm−1 sdashed lined,
andA=D=25 cm−1 sdotted lined.
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IV. INTERPRETATION AND DISCUSSION

A. General features and Green’s function calculation

The previous numerical results clearly show that the pres-
ence of a defect in the nanowire strongly modifies the two-
vibron dynamics. Indeed, the defect breaks the translational
invariance and favors the occurrence of a localized two-
vibron bound statesLTVBSd in which the two quanta are
trapped on the defect site. The vibrational population of the
defect tends to a significant value which appears time inde-
pendent in the long time limit.

However, singular behaviors take place when the defect
frequency shift reaches regions located around bothA and
2A. More precisely, whenD is close to the anharmonicityA,
Fig. 2 shows that a resonance between the LTVBS and the
TVFS continuum occurs. The two vibrons initially located
on the defect tend to decay on the TVFS continuum. The
defect population exhibits an exponential decay and two
population wave packets are created and propagate on each
side of the defect. By contrast, when the defect frequency
shift is twice the anharmonicity, a resonance between the
LTVBS and the LSVS+SVFS continuum takes placessee
Fig. 2d. In that case, a spatially localized and time period

FIG. 6. Representation of the square modulus of the two-vibron
wave function on the 2D equivalent lattice forsad t=10 ps, sbd
t=20 ps, scd t=30 ps, andsdd t=40 ps. The parameters used are
J=3 cm−1 andA=D=15 cm−1.

FIG. 7. Vibrational population forJ=3 cm−1, D=30 cm−1, and
A=15 cm−1. sad Population vs time for the defect site and its neigh-
boring sites.sbd Vibrational population vs the site positions for
t=41.12 pssfull circlesd and t=42.32 pssfull squaresd.
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object is created corresponding to the trapping of the two
vibrons on few sites around the defect. As in a classical
breather, the vibrational populations exhibit oscillations
around average values which decrease exponentially as the
distance with the defect increases.

Understanding these features requires a perfect descrip-
tion of the two-vibron dynamics through the resolution of the
corresponding time dependent Schrodinger equation. This
can be achieved either in the time domain or in the frequency
domain by applying the well-known evolution operator
method. Within this method, the two-vibron state at timet is
expressed in terms of the initial state at timet=0 as

uCstdl = 7 E
−`

+` dv

2p
2 Im Gsv ± i0+duCs0dle−ivt, s9d

whereGsvd denotes the two-vibron Green’s operator defined
as

Gsvd = sv − Hd−1. s10d

To calculate the two-vibron Green’s operator, the two-
vibron subspace represented by the 2D equivalent lattice is
partitioned in five sublatticesSi, i =0, 1, …, 4 ssee Fig. 1d.
The sublatticeS0 reduces to the single siten1=n2=n0
which describes the two vibrons localized on the defect. The
sublattice S1, formed by the two chainsn1,n2=n0 and
n1=n0,n2, corresponds to the LSVS+SVFS continuum.
The sublatticeS2 is the square lattice containing the sites
n1,n0,n2 which describes the TVFS subspace connected
to two independent vibrons on each side of the defect. Two
vibrons on the same side of the defect are characterized by
the sublatticeS3 formed by the two domainsn1,n2,n0 and
n0,n1,n2. Finally, the sublatticeS4, formed by the two
chainsn1=n2Þn0, corresponds to TVBS.

In that context, the vibron Hamiltonian can be expressed
as

H = o
i

Hi + o
iÞ j

Vij , s11d

whereHi =PiHPi and Vij =PiHPj and wherePi denotes the
projector on the sublatticeSi. Note that the couplingVij con-
nects the different sublattices according to the links dis-
played in Fig. 1.

Since the two vibrons are initially located on the defect,
the evolution equation, Eq.s9d, can be solved from the
knowledge of the projectionsGi0=PiGP0, only. Therefore, it
is straightforward to show that these projections satisfy the
following system of equations:

sv − H0dG00 − V01G10 = P0,

sv − H1dG10 − SiÞ1V1iGi0 = 0,

sv − H2dG20 − V21G10 = 0,

sv − H3dG30 − V31G10 − V34G40 = 0,

sv − H4dG40 − V41G10 − V43G30 = 0. s12d

Although Eq.s12d can be solved easily to obtain the required
Green’s operator, a complete understanding of the numerical
results can be achieved from the knowledge of the projection
G00, only. This projection characterizes the probability am-
plitude to find the two vibrons on the defect at timet and is,
therefore, strongly connected to the vibrational population of
the defect. After performing some algebraic manipulations,
this projection is expressed as

G00svd = P0„v − H0 − S0svd…−1P0, s13d

where the self-energyS0 is defined

S0svd = V01„v − H1 − S1svd…−1V10. s14d

The self-energyS0 represents the correction of the Hamil-
tonianH0 due to the interaction betweenS0 andS1 ssee Fig.
1d. It is expressed in terms of the corrected Green’s operator

of the sublatticeS1, i.e. G̃1svd=(v−H1−S1svd)−1, in which
the self-energyS1 characterizes the correction ofH1 due to
the coupling betweenS1 and all the other sublattices. It is
expressed as

S1svd = V13s1 −G3V34G4V43d−1G3sV31 + V34G4V41d + V14s1

− G4V43G3V34d−1G4sV41 + V43G3V31d + V12G2V21,

s15d

where Gisvd=Pisv−Hid−1Pi stands for the unperturbed
Green’s operator connected to the sublatticeSi.

The behavior of the projected Green’s operatorG00 is
governed by the self-energyS0. Although this quantity can-
not be calculated exactly, approximated values can be ob-
tained, especially when the defect frequency shift reaches
regions located aroundA and 2A. These calculations are il-
lustrated in the following sections.

B. Resonance between LTVBS and TVFS

When the value of the defect frequency shiftD is close to
the anharmonic parameterA, the energy of the LTVBS is
resonant with the TVFS continuum. Therefore, to simplify
our discussion, we assume that these two kinds of states are
isolated from the other two-vibron states. In other words,
LSVS+SVFS and TVBS are supposed to lie, respectively,
above and below the TVFS. Note that whenD<A, this as-
sumption requires to have an intramolecular anharmonicity
greater than the single vibron bandwidth, and appears rea-
sonable for a low-dimensional molecular adsorbate.

In that context, the effective Green’s operatorG̃1svd of
the sublatticeS1, involved in the definition of the self-energy
S0 fEq. s14dg, does not exhibit any resonance in the
frequency range of the TVFS continuum. As a result, it
corresponds to a localized propagator so that the sublatticeS1
can be restricted to its two side sitesa=sn0,n0+1d and
b=sn0−1,n0d to describe its coupling with the sublatticeS0.
The self-energyS0 is thus expressed as
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S0svd < 2J2sG̃1aa + G̃1ab + G̃1ba + G̃1bbd. s16d

Within this restriction, Fig. 1 shows that the two side sites of
the sublatticeS1 are coupled to both sublatticesS2 and S4.
However, in the frequency range of the TVFS continuum,
only the coupling betweenS1 andS2 contributes significantly
to the self-energyS1 so thatS1<V12G2V21 fEq. s15dg. There-
fore, within the subspacesa ,bd of the two side sites, the

effective Green’s operatorG̃1 reduces to thes232d matrix
expressed as

Sv − 2v0 − D − J2G2gg − J2G2gg

− J2G2gg v − 2v0 − D − J2G2gg
D−1

,

s17d

where G2gg defines the diagonal element in the site
g=sn0−1,n0+1d of the unperturbed Green’s operator of the
sublatticeS2. Note that sinceS2 represents a 2D square lat-
tice, the corresponding Green’s function can be computed
easily. At this step, by inserting Eq.s17d into Eq. s16d, it is
straightforward to show that the Green’s operatorG00 is ex-
pressed as

G00svd =
1

v − 2v0 − 2sD − Ad − S0svd
, s18d

where the self-energyS0 is defined as

S0svd =
4J2

v − 2v0 − D − 2J2G2ggsvd
. s19d

To illustrate the behavior of the projectionG00, the re-
sponse function −2 ImG00sv+ i0+d, corresponding to the
Fourier transform of the evolution operatorfEq. s9dg, is
shown in Fig. 8sad for A=20 cm−1, J=2.5 cm−1 and for
D=18, 20, and 22 cm−1. The response function exhibits a
single peak in the frequency range of the TVFS continuum
which both the position and the width strongly depend on the
defect frequency shiftD. The peak position is blueshifted as
D increases and the linewidth, given by the imaginary part of
the self-energy −ImS0sv+ i0+d, decreases asD increases
fFig. 8sbdg. This linewidth depends on the frequency and
exhibits a maximum value at the center of the TVFS con-
tinuum whereas it almost vanishes at the sides of that con-
tinuum.

As displayed in Fig. 8sad, the response function shows an
almost Lorentzian lineshape in which both the lineposition
and the linewidth can be characterized by neglecting the fre-
quency dependence of the self-energyS0svd. Therefore, ac-
cording to the result displayed in Fig. 8sbd, the self-energy is
approximated by its value at the center of the TVFS con-
tinuum so thatS0sv+ i0+d<S0s2v0+ i0+d=d− iG. Moreover,
at the center of the TVFS continuum, it is straightforward to
show that the unperturbed Green’s operator of the square
sublatticeS2 has no real part and is expressed asG2ggs2v0

+ i0+d=−8i /3pJ. Therefore, from Eq.s19d, the parametersd
andG are written as

G =
16

3p

J

s D
2Jd2 + s 8

3pd2 ,

d = −
D

s D
2Jd2 + s 8

3pd2 . s20d

At this step, by inserting Eq.s20d into Eq. s18d and by
integrating Eq.s9d, the wave function connected to the two
vibrons located on the defect is expressed as

Csn0,n0,td = e−is2v0+2sD−Ad+ddte−Gt. s21d

Since the propagation along the sublatticeS1 is negligible,
the vibrational population of the defect, Eq.s8d, is finally
written as

psn0,td < 2e−2Gt. s22d

In perfect agreement with our numerical simulations, the
previous theoretical approach shows that the exponential de-
cay of the defect population results from the indirect cou-
pling between the LTVBS and the TVFS mediated by inter-
mediate states located in the LSVS+SVFS continuum.
Indeed, the LTVBS experiences nonresonant interactions
with states corresponding to the localization of the first vi-
bron on the defect whereas the second vibron is located ei-
ther on the left side or on the right side of the defect. Such
states can evolve according to three different ways leading to
the full delocalization of the second vibron, to the trapping of
the first vibron on the second vibron, and to the delocaliza-
tion of the first vibron in the opposite direction of the second
vibron. This latter process is the main mechanism when the
resonant conditionD<A is satisfied. As a consequence, the
LTVBS decays on the subspaceS2 of the TVFS continuum
corresponding to two independent vibrons propagating in an
opposite direction on each side of the defect. Note that the

FIG. 8. sad Imaginary part of the LTVBS Green’s function
for J=2.5 cm−1, A=20 cm−1, and for D=18 cm−1 scirclesd,
D=20 cm−1 ssquaresd, and D=22 cm−1 strianglesd. sbd Imaginary
part of the LTVBS self-energy.
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two independent vibrons are emitted according to an en-
tangled state due to their indistinguishable nature. The
Lorentzian lineshape of the response function shows that the
TVFS involved in the process are those centered around the
frequency 2v0+2sD−Ad+d over a frequency range of about
2G.

As shown in Eq.s20d, the decay rateG decreases as the
defect frequency shiftD increases and it increases with the
hopping constantJ. This behavior characterizes the fact that
the strength of the coupling between the LTVBS and the
intermediate LSVS+SVFS continuum is proportional to the
hopping constantJ whereas it decreases as the energy differ-
ence between the two kinds of states, proportional toD, in-
creases. Note that whenJ=2.5 cm−1, the decay rate 2G for
the defect population is equal to 0.87, 0.50, and 0.33 cm−1

when D=15, 20, and 25 cm−1, respectively, in rather good
agreement with the numerical values discussed in Sec. III. To
conclude this section, let us mention that the propagation
along the sublatticeS1 has been neglected in the present ap-
proach. However, because the intermediate LSVS+SVFS
participate in the LTVBS decay, the probability for such a
propagation, even small due to the nonresonant nature of the
intermediate states, does not vanish exactly. As a conse-
quence, a few parts of the vibrational energy stays localized
on the defect so that the defect population does not strictly
tend to zero in the long time limit.

C. Resonance between LTVBS and LSVS+SVFS

When the value of the defect frequency shiftD is close to
2A, the energy of the LTVBS is resonant with the LSVS
+SVFS continuumssee Fig. 2d. As previously, to simplify
our discussion, we assume that these two kinds of states are
isolated from the other two-vibron states so that both TVFS
and TVBS are supposed to lie below the LSVS+SVFS.

In that context, Eq.s15d clearly shows that all the inter-
actions defining the self-energy of the sublatticeS1 involve
nonresonant states. As a consequence, we assume the self-
energyS1 negligible so that the corrected Green’s operator

G̃1 can be approximated by the corresponding unperturbed
Green’s operatorG1. The self-energy connected to the
LTVBS fEq. s14dg is thus expressed as

S0svd = 2J2sG1aa + G1bbd. s23d

In others words, by neglecting the interactions betweenS1
and all the sublatticesSi, i Þ0, the 2D equivalent lattice de-
scribing the two vibron dynamics reduces to a linear chain
formed by the two sublatticesS0 and S1. The discrete state
LTVBS represented by the single siteS0 is thus coupled to
the side sitesa andb of the two semi-infinite chains defining
the sublatticeS1. Within this picture, the procedure intro-
duced by Dobrzynski32 to calculate the response function of
superlattices and composite materials can be applied and it is
straightforward to show that the Green’s functionG1aa is
expressed as

G1aasvd =

v−2v0−D

2J ± Îsv−2v0−D

2J d2
− 1

J
, s24d

where the sign ± is chosen to ensure the regularity of the
Green’s function at the infinity. Therefore, sinceG1bb=G1aa

by symmetry, the self-energyS0 fEq. s23dg can be calculated
easily and the Green’s operator projected on the LTVBS, Eq.
s13d, is finally written as

G00svd =
1

2JDsud5u + h + 2Îu2 − 1, if u . 1;

u + h + 2iÎ1 − u2, if uuu , 1;

u + h − 2Îu2 − 1, if u , − 1;
6

s25d

where the reduced parametersu=sv−2v0−Dd /2J and
h=sD−2Ad /2J have been introduced and whereDsud=3u2

−2hu−h2−4. Equations25d shows that the behavior of the
projected Green’s operator depends on whether the fre-
quencyv lies inside the LSVS+SVFS energy band or not.
As a result, the response function, −2 ImG00sv+ i0+d, is the
sum of three contributions as

− 2 Im G00sv + i0+d = −
2

3J

Î1 − u2

su − u+dsu − u−d
„hsu + 1d

− hsu − 1d… +
p

3JS1 −
2h

Îh2 + 3
D

3dsu − u−d„1 − hsh − 1d…

+
p

3JS1 +
2h

Îh2 + 3
Ddsu − u+dhsh + 1d,

s26d

wherehsxd denotes the Heavisde step function and whereu±,
which are the zeros of the functionDsud, represent the poles
of the Green’s function as

u± =
h

3
±

2

3
Îh2 + 3. s27d

As illustrated in Fig. 9sad for J=2 cm−1 and
D=2A=40 cm−1, the response function, Eq.s26d, exhibits a
nonvanishing continuous part in the frequency range of the
LSVS+SVFS band which extends fromv=2v0+D−2J si.e.,
u=−1d to v=2v0+D+2J si.e., u=1d. In addition, the re-
sponse function shows two delta peaks located, respectively,
below and above the band. These two peaks occur at the
frequencies of the two polesu± of the Green’s function de-
fined in Eq.s27d. As displayed in Fig. 9sbd, the shape of the
continuous part depends on theD values. For instance, al-
though it is almost uniform whenD=2A, the response in-
creases in the vicinity of the low frequency band edge asD
increases to develop a divergence whenD=2A+2J, i.e.,
whenh=1. However, as increasingD again, the divergence
finally disappears. The same behavior takes place at the high
frequency band edge whenD decreases and a divergence
occurs whenD=2A−2J si.e., when h=−1d. As shown in
Figs. 10, this behavior is strongly correlated to the evolution
of the two poles of the Green’s function. Figure 10sad dis-
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plays the frequency of the delta peaks versus the reduced
parameterh whereas Fig. 10sbd shows the intensity of
the delta peaks. It is shown that the low frequency
peak occurs whenh,1, i.e., whenD−2A,2J, whereas the
high frequency peak takes place whenh.−1, i.e., when
D−2A.−2J. As a result, the two peaks occur simulta-
neously when −1,h,1, only. Note that the disappearance
of a delta peak corresponds to a divergence in the continuous
part of the response.

To understand the behavior of the response function, let
us remain that whenD is close to 2A, the 2D equivalent
lattice reduces to a 1D chain formed by the combination of
the two sublatticesS0 and S1 ssee Fig. 1d. In terms of two
vibron states, this chain describes the trapping of a vibron on
the defect whereas the other vibron is allowed to propagate
along the nanowire. The chain exhibits two kinds of defects.
First, the frequency of the siteS0, equal to 2v0+2sD−Ad,
differs from the frequency of the sites of the sublatticeS1,
equal 2v0+D. Then, two defects correspond to a singularity
in the hopping constant, equal toÎ2J, betweenS0 and the
two side sites of the sublatticeS1. From a physical point of
view, these defects in the equivalent lattice originate from the
fact that when a vibron is trapped on the real defect, it modi-
fies the dynamics of the other vibron in the vicinity of this
latter defect. Due to the intramolecular anharmonicity, it is
first responsible for a frequency shift when the two vibrons
are localized on the defect. Then, it enhances the hopping
constant of the process involving the hop of the other vibron
on the defect site.

In that context, the presence of defects in the equivalent
1D chain is responsible for the occurrence of both extended
states and localized states, for the fictitious particle. The ex-
tended states, which belong to the energy band defined by
the sublatticeS1, are responsible for the continuous part of
the response function. They correspond to states in which a
vibron is trapped on the defect whereas the other vibron is
fully delocalized along the nanowire. In addition, it is
straightforward to show that the 1D chain supports localized
states which produce the delta peaks in the response func-
tion. These states, which the frequencies are specified by the
poles of the Green’s function, are strongly localized on the
site S0. However, the number of localized states depends on
whether the LTVBS lies in the LSVS+SVFS band or not, as
a result of the competition between the two kinds of defects
in the 1D chain. When the LTVBS is located in the band, two
localized states occur essentially due to the singularity of the
hopping process in the vicinity of the defect. By contrast,
when the LTVBS lies abovesh.1d or below sh,−1d the
band, a single localized state remains due to the influence of
the intramolecular anharmonicity. In both cases, a localized
state corresponds to a bound state in which the two vibrons
are trapped around the defect site. These features are illus-
trated in Fig. 11 which displays the high frequency and the
low frequency wave function of the 1D chain for
J=2 cm−1 and A=20 cm−1. When D=2A fFig. 11sadg, the
chain exhibits two localized states centered on the siteS0.
Although both wave functions exhibit an exponential decay,
the low frequency state shows spatial oscillations so that two
nearest neighbor sites are characterized by amplitudes in

FIG. 9. sad Imaginary part of the LTVBS Green’s function for
J=2 cm−1, A=20 cm−1, andD=40 cm−1. sbd Representation in the
frequency range of the LSVS+SVFS continuum for differentD
values. Note thatv0 has been used as the origin of the frequency so
that v0=0.

FIG. 10. sad Position andsbd amplitude of the high frequency
sopen circlesd and low frequencysfull circlesd peaks of the imagi-
nary part of the LTVBS Green’s function vs theh parameterssee
the textd.
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phase opposition. WhenD=2A+4J fFig. 11sbdg only the
high frequency state remains localized.

At this step, by integrating Eq.s9d from the knowledge of
the response function, Eq.s26d, the wave function connected
to the two vibrons located on the defect is expressed as

Csn0,n0,td = Ccsn0,n0,td

+ e−is2v0+D+2Ju−dtF1 −
2h

Îh2 + 3
G1 − hsh − 1d

3

+ e−is2v0+D+2Ju+dtF1 +
2h

Îh2 + 3
Ghsh + 1d

3
,

s28d

whereCcsn0,n0,td denotes the contribution of the response
function in the frequency range of the LSVS+SVFS band. In
the long time limit, such a contribution vanishes. Indeed, it is
straightforward to show that when the continuous part of the
response is almost uniform, the integration of Eq.s9d over
the LSVS+SVFS band leads toCcsn0,n0,td<sins2Jtd /2Jt.
By contrast, when a divergence takes place, Eq.s26d shows
that the response function behaves as 1/Îu±1 so that the
integration of Eq.s9d over the LSVS+SVFS band leads to
Ccsn0,n0,td<1/ÎJt. Therefore, whatever the situation,
Ccsn0,n0,td→0 whenJt@1.

Finally, since the two peaks refer to states strongly local-
ized on the sublatticeS0, the long time limit of the defect
population, Eq.s8d, is given by psn0,td<1+uCsn0,n0,tdu2
and is written as

psn0,td < 1 +
2

9

s3 + 5h2d + s3 − 3h2dcoss 8J
3
Îh2 + 3td

h2 + 3
,

s29d

when uhu,1 whereas it is expressed as

psn0,td < 1 +
1

9F1 +
2uhu

Îh2 + 3
G2

, s30d

when uhu.1.
When uhu,1, i.e., when the LTVBS lies in the LSVS

+SVFS band, the two vibron wave functionCsn0,n0,td re-
duces to the coherent superimposition of the two localized
states. As a result, the defect population shows oscillations
which the frequency is equal to the frequency difference be-
tween the two localized states. In particular, at the resonance
h=0, i.e., whenD=2A, the defect population oscillates be-
tween 1 and1+4/9=1.44 according to the frequency 8J/Î3
equal to 13.85 cm−1 when J=3 cm−1. These results are in
perfect agreement with the numerical results shown in Figs.
3, 4, and 7ssee Sec. IIId. Note that the spatial dependence of
the two localized statesfFig. 11sadg is responsible for the fact
that the population between two nearest neighbor sites ap-
pears in phase opposition. By contrast, whenuhu.1, a single
localized state remains so that the defect population appears
time independent. Note that whenJ=3 cm−1, A=15 cm−1,
andD=50 cm−1, Eq. s30d leads to a defect population equal
to 1.85 in perfect agreement with the numerical results dis-
played in Figs. 3 and 4.

D. Conclusion

In this paper, it has been shown that the presence of a
local defect in a molecular nanowire strongly modified the
two-vibron dynamics. Indeed, the defect breaks the transla-
tional invariance and favors the occurrence of a localized
two-vibron bound statesLTVBSd in which the two quanta are
trapped on the defect site. However, the numerical integra-
tion of the time dependent two-vibron Schrodinger equation
with two vibrons initially located on the defect has revealed
the occurrence of two singular behaviors.

When the defect frequency shiftD is close to the anhar-
monicity A, a resonance between the LTVBS and the TVFS
takes place mediated by nonresonant intermediate states lo-
cated in the LSVS+SVFS continuum. As a result, the two
vibrons initially located on the defect decay on the subspace
of the TVFS continuum corresponding to two independent
vibrons propagating in the opposite direction. In other words,
the resonance breaks the localized vibron pair and two inde-
pendent vibrons are emitted on each side of the defect. By
contrast, when the defect frequency shift is almost twice the
anharmonicity, a resonance between the LTVBS and the
LSVS+SVFS occurs. In that case, it has been shown that a
vibron trapped on the defect modifies the dynamics of the
second vibron. When the LTVBS lies in the LSVS+SVFS
band, the trapped vibron essentially enhances the hopping
constant experienced by the second vibron when this latter
one realizes a hop on the defect. As a result, two localized
states occur in which the two vibrons are trapped over few

FIG. 11. High frequencysdotted lined and low frequencysfull
lined wave function for the fictitious particle along the 1D chain
formed by the combination of theS0 and S1 sublattices for
J=2 cm−1 and A=20 cm−1. sad When D=40 cm1, the chain sup-
ports two localized states centered on the siteS0. sbd When D
=46 cm1, only the high frequency localized state remains.
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sites around the defect. Starting with two vibrons on the
defect, the wave function evolves in time and converges to a
coherent superimposition of these two localized states. A spa-
tially localized and time period object is created in which the
vibrational populations exhibit oscillations around average
values which decrease exponentially as the distance with the
defect increases. When the LTVBS lies outside the LSVS
+SVFS band, a single localized state remains essentially due
to the intramolecular anharmonicity which is responsible for
a frequency shift when the two vibrons are located on the
defect. As a result, the vibrational population remains essen-
tially localized on the defect but does not exhibit oscillation
anymore.

To conclude, let us mention that this study opens a new
way in the elaboration of nanodevices allowing the control of
the information storage and transfer at the nanoscale. This

feature requires the ability to create two vibrons on the defect
and to control their dynamics by playing with the resonances
previously described. For instance, such processes can be
realized by using simultaneously an infrared laser and a
STM. Indeed, by creating a strong frequency shift of the
molecule located below the STM, two quanta can be excited
on that molecule with an infrared laser which the frequency
has been judiciously chosen. The vibrational energy is thus
trapped on this molecule until its frequency is shifted to in-
duce a resonance with the TVFS simply by tuning the bias
voltage between the STM and the substrate. As a result, the
local vibron pair is broken and an energy flow takes place on
each side of the defect. The theoretical analysis of such a
mechanism is currently in progress and will be addressed in
more detail in a forthcoming paper.
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