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We investigate tunneling of holes through a single barrier which is subject to an in-plane magnetic field.
Band mixing between heavy and light holes is pronounced which indicates the necessity of using a multiband
approach. The problem is investigated within the 434 Luttinger-Kohn model for bands atG8, without restric-
tion on the Luttinger parameters. The application of a magnetic field enhances the anisotropy in the transmis-
sion coefficientsTlmskx,kyd and makes transitions possible between various channelsse.g., the two light holesd.
It is shown that heavy holes can precess when magnetic field is in plane, since band mixing lifts the selection
rules for angular momentum. The current density is calculated for a double-barrier resonant structure and
compared with a previous approximate theoretical result. This comparison clearly indicates that full wave
vector dependence of the tunneling process is needed in order to obtain reliable values for the current.
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I. INTRODUCTION

The discovery1 of diluted magnetic semiconductors
sDMS’sd has reinforced interest in spin-dependent phenom-
ena in semiconductor heterostructures, especially those
made2,3 of sGaMndAs and AlAs. SincesGaMndAs is ap-type
material, with holes being majority carriers, a multiband
theory that takes into account the degeneracy atG8 is needed.
First, the hole tunneling in nonmagnetic GaAs/AlAs in a
magnetic field should be first investigated and clarified. One
of the simplest and most widely used models is the 434
Luttinger Kohnk ·p Hamiltonian,4,5 which includes explic-
itly only heavy and light holes at theG8 point. Though more
accurate methods such as the effective bond-orbital method
sEBOMd were recently employed to investigate intraband6

tunneling, thek ·p theory provides a more clear physical
insight into band mixing. It is known that it can predict the
positions of resonant peaks in double-barrier
heterostructures7 with reasonable accuracy and explain the
difference between the tunneling lifetimes of heavy and light
holes.8

In this paper the tunneling through a single barrier is ex-
amined in detail with and without a magnetic field applied to
the barrier. The problem is treated numerically by solving the
coupled system of differential equations as proposed by Xia.9

Although recently the multiband quantum transmitting
boundary method10 sMQTBMd was developed to treat this
kind of problems, we find that the method used here requires
less processor time when the mesh size is made arbitrary
small. It surpasses the transfer matrix methodsTMM d in nu-
merical stability when the layer widths11 exceed 40–50 Å,
due to the numerical difficulty in dealing with numbers with
high discrepancy in order of magnitude that arises in the
TMM. Magnetotunneling in GaAs-AlGaAs has already been
treated in several works,12,13but either with the neglect of the
material dependence of the Luttinger parameters or within
the spherical approximationsg2=g3d or in the absence of a
magnetic field.11,14,15Here, we will go beyond these approxi-
mations.

The paper is organized as follows. In Sec. II the 434
Luttinger-Kohn sLK d model is reexamined, with particular

attention paid to its application to the tunneling problem and
in the most general case when all the Luttinger parameters
are different. In Sec. III, the method for numerical calcula-
tions is explained. In Sec. IV we give results for the trans-
mission and reflection coefficients as a function of in-plane
momenta, in the absence and presence of a magnetic field. In
the subsequent section the tunneling current in a resonant
tunneling device is given forB=0 and in the case of a mag-
netic field in plane,B ix, which is more interesting for prac-
tical applications. A summary of the results is presented in
Sec. VI.

II. MODEL

The basic idea of the effective mass theory is that the
motion of an electron or a hole can be described by the
effective mass tensorsin generald if the external potentialV
varies smoothly through the unit cell and the Bloch functions
at the top of the bands do not change rapidly across different
materials in the heterostructure. In the case of both GaAs and
AlAs the split-off sSOd band lies sufficiently below theG8
point and the 434 LK Hamiltonian is sufficiently accurate
to explain the behavior of the holessat least in the vicinity of
k =0d and reads9

H =1
P1 Q R 0

Q† P2 0 R

R† 0 P2 − Q

0 R† − Q† P1

2 + VszdI4 − 2kmBJ ·B, s1d

where

P1 =
"2

2m0
fsg1 + g2dskx

2 + ky
2d + sg1 − 2g2dkz

2g, s2ad

P2 =
"2

2m0
fsg1 − g2dskx

2 + ky
2d + sg1 + 2g2dkz

2g, s2bd
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Q = − i
Î3"2

m0
g3skx − ikydkz, s2cd

R=
Î3"2

2m0
fg2skx

2 − ky
2d − 2ig3kxkyg. s2dd

Here gi are the well-known Luttinger parameterssextracted
from experimentd and k is an additional phenomenological
parameter describing the coupling of the hole with an exter-
nal magnetic field. The basis eigenfunctionshu j ,mlj s j
=3/2d are ordered as hu3/2,3/2l , u3/2,1/2l , u3/2,
−1/2l , u3/2,−3/2lj and represent the periodic part of the
Bloch functions atk =0 sG8d. They correspond to the states
of heavy holesh1 and h2 sm= ±3/2d and light holesl1 l2
sm= ±1/2d. The axis of quantization of the angular momen-
tum J is chosen to be along the growth direction12,16—for

instance,z—and hencekz→ k̂z=−i]z. The off-diagonal terms
Q andR cause the mixing of heavy and light holes for finite
in-plane momentumkx,ky.

In the presence of a magnetic field, the wave vectorski
must be replaced byki −eAi /", i =x,y,z, and they no longer
commute. It was already noticed in the beginning of the de-
velopment of the theory4 that in order to preserve the Her-
micity of the Hamiltonian a symmetrized combination of the
wave vectorskikj →1/2skikj +kjkid must be used in the ma-
trix elements in Eq.s2d. Now, in order to rewrite the Hamil-
tonian in a form suitable for numerical calculations one

should normally move the operatork̂z=−i]z to the rightmost
place,13 which leads to an extra term in the Hamiltonian:

H = H0 +1
0 K 0 0

K 0 0 0

0 0 0 − K

0 0 − K 0
2 , s3d

whereH0 is the LK Hamiltonian in whichk̂z stands always at
the rightmost end in the off-diagonal terms ±Q, ±Q† sand
thus using complex conjugation instead of Hermitian conju-

gationd. The termK is equal to 1/2fk̂z,Q1g, whereQ1 is the

factor in Q fEq. s2cdg in the front of k̂z. We assume that the
external leads of the structure are not affected by the mag-
netic fieldsonly by the vector potentialAd and the solution of
the Schrödinger equationHC=EC in the bulk whereB=0 is
a linear combination of the plane waves

Csr d = eiskxx+kyyd o
i=1,8

ai
sL,Rd1

F1

F2

F3

F4

2eikziz. s4d

Here sF1,F2,F3,F4dT=Vi represents the four-column
eigenvectorsssee, e.g., Ref. 17d of the Hamiltonian at the
same energyE and the wave vectorkz classifies the states of
heavy and light holes. The eigenvectorsVi should be normal-
ized to unity to ensure that the coefficientsai

sL,Rd are directly
proportional to the probability current density of the particu-
lar channels—i.e., to transmissionsreflectiond coefficients.

This is particularly important if there is an applied bias
across the structure, when even transmission of holes of the
same kind must be normalized by the group velocity. In so
doing, care must be taken during evaluation of the Hermitian
conjugate of an eigenvectorVi

†=sF1
* ,F2

* ,F3
* ,F4

*d that when-
ever a term containskz, it must be kept unchanged17—i.e.,
hFkskzdj* =Fk

*skzd—even when it is a complex number. This is
the consequence of the fact that the corresponding operator
−i]z is Hermitian and the value of the wave vectorkz is
determined by the biquadratic equation

e = g1k
2 ± Î4g2

2k4 + C2skx
2ky

2 + ky
2kz

2 + kz
2kx

2d, s5d

wheree=2m0sE−Vd /"2 is the normalized energy in the flat
potential regions andC2=12sg3

2−g2
2d. The plussminusd sign

corresponds to lightsheavyd holes. Depending on the energy
and values of the in-plane momentakx,ky, the solution of Eq.
s5d with respect tokz can have the following properties:

sid e.ec4, all kzh andkzl are real,
sii d ec4.e.ec3, kzh is real, andkzl purely imaginary,
siii d ec3.e.ec2, kzh andkzl are real,
sivd ec2.e.ec1, kzh andkzl are complex,
svd e,ec1, all kzh andkzl are purely imaginary,
where

ec1 =
1

2g2
2„− 3g1sg3

2 − g2
2dkt

2 − h3sg1
2 − 4g2

2dsg3
2 − g2

2d

3fs3g3
2 + g2

2dkt
4 − 4g2

2kx
2ky

2gj1/2
…, s6ad

ec2 =
1

2g2
2„− 3g1sg3

2 − g2
2dkt

2 + h3sg1
2 − 4g2

2dsg3
2 − g2

2d

3fs3g3
2 + g2

2dkt
4 − 4g2

2kx
2ky

2gj1/2
…, s6bd

ec3 = g1kt
2 − f4g2

2kt
4 + 12sg3

2 − g2
2dkx

2ky
2g1/2, s6cd

ec4 = g1kt
2 + f4g2

2kt
4 + 12sg3

2 − g2
2dkx

2ky
2g1/2, kt

2 = kx
2 + ky

2.

s6dd

The most interesting case issiii d when allsreald solutions
lie on the heavy-hole branchssee Fig. 1d. Due to its warped
structure, the nominally classified light-hole statesswith
smallerkzd have group velocity with opposite sign than that
of its phase velocity. It is important to bear this in mind
during the calculation of the transmitivityT and reflectivity
R coefficients, because they are normalized by the probabil-
ity density current—i.e., by the group velocity:

Tlm =
uam

sRdu2

ual
sLdu2

jz0m
sRd

jz0l
sLd = utlm

0 u2
vzm

sRd

vzl
sLd , s7ad

Rlm =
uam

sLdu2

ual
sLdu2

jz0m
sLd

jz0l
sLd = urlm

0 u2
vzm

sLd

vzl
sLd . s7bd

Here
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vzh,l =
"kzh,l

m0

sg1
2 − 4g2

2dk2 − 6sg3
2 − g2

2dkt
2 − g1e

g1k
2 − e

s8d

is the group velocity of both heavy and light holes,vz
="−1]zE. It was proved18 that it is directly proportional to the
probability current density even in case of degenerate bands
j =rvskd, which justifies usingvz instead ofjz0 in Eqs.s7d, as
r0=Vi

†Vi =1. Furthermore, since the LK Hamiltonian de-
scribes a hole in four possible statessthe two light- and the
two heavy-hole statesd, there are four channels possible, and
due to band mixing, for instance, a heavy hole passing
through the barrier can end up as either a heavy hole or a
light hole with certain probabilities determined by the
Schrödinger equationssee Fig. 2d. The difference in the ve-
locities of light and heavy holes outside the barrier must be
accounted for, during this conversion, as was already done in
Eq. s9d. Therefore, the conservation of the probability current
div j =0 leads to four relations among the transmission and
reflection coefficients:

Rlh1
+ Rlh2

+ Rll1
+ Rll2

+ Tlh1
+ Tlh2

+ Tll1
+ Tll2

= 1.

s9d

Here the variablel assumes all four statessh1,h2, l1, l2d.
These relations are also useful to check the consistency of
the numerical calculations. However, for certain values of
the in-plane momentumkx,ky the wave vectorkzl of the light
hole is purely imaginaryfcasesii d; see Fig. 1g; i.e., their
wave functions are evanescent. The quantity ResC* ĵ zCd can
no longer be related to the particle flux, and one should put

by handTll =0 andTlm=0 sfor both light holesl = l1, l2d, as
well as for the corresponding power reflection coefficients.
Therefore the conservation relations, Eq.s9d, reduce to only
two:

Rlh1
+ Rlh2

+ Tlh1
+ Tlh2

= 1, l P hh1,h2j. s10d

However, it may happen that under a positive bias and for
someskx,kyd, the light holes have propagating states only in
the right lead, so that Eq.s9d turns into

Rlh1
+ Rlh2

+ Tlh1
+ Tlh2

+ Tll1
+ Tll2

= 1 s11d

for lP hh1,h2j.

III. NUMERICAL METHOD

The major difference between tunneling phenomena and,
e.g., treatment of bound states in semiconductor physics,
from the numerical point of view, is that the boundary con-
ditions are not known in advance in the former case. This is
due to the presence of reflected waves, whose amplitude is
yet to be found, and the traditional method to tackle it has
been the transfer matrix method as developed earlier to treat
analog problems in classical optics. An alternate way was
developed by Frensley19 for electrons and then later by Yu
and co-workers8 for holes si.e., for the case of degenerate
bands, now called MQTBMd where the problem is solved by
a method similar as in a finite-difference scheme but here
adapted for the propagating states. The basic idea of the
MQTBM is to add an extra layer in the left lead, still in the
flatband region, in order to eliminate the unknown reflection
coefficients. However, we treat the problem as a set of
coupled differential equations, which is solved by the Adams
method20 sit belongs to the class of predictor-corrector meth-
odsd. The procedure was originally outlined and explained in
Ref. 9 and it will be repeated briefly here. It exploits the
superposition principle in the solution of the Schrödinger
equation. Let us define the matrixM that connects output and
input channels—i.e., the coefficients of expansion in Eq.s4d:

FIG. 1. Constant-energy diagram for light and heavy holes de-
termined by Eq.s5d, at ky=0. For certainkx sright vertical dashed
lined all solutions lie on the heavy-hole branchsthe outer contourd,
the casesiii d, with light holes having negative slope¹kEskd. The
left vertical dashed line shows casesii d in the text, where the heavy
hole propagates, while the light holes have evanescent wave
functions.

FIG. 2. A heavy hole impinging on a barrier can transmitsre-
flectd as a heavy hole or as a light hole on the rightsleftd side due to
band mixing in the barrierssimilarly for a light holed.
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1
ah1

ah2

al1

al2

rh1

rh2

r l1

r l2

2 = M1
th1

th2

tl1
tl2
0

0

0

0

2 . s12d

Note that the matrixM connects the coefficients from the
right flatband region to the left, in the opposite direction than
that in the TMM. Now if we put tl=1 for some l
P sh1,h2, l1, l2d and take the others zeroson the right leadd,
then we know the boundary conditions on the right side of
the barrier, since there are no reflected waves. These are
sufficient to solve the set of coupled equations arising from
the 434 LK Hamiltonian, goingbackwardto the left lead by
discretizing the structure by a mesh with steph=Dz=D /N,
whereD is the barrier width. Then the solution, obtained by
numerical integration, is decomposed on theleft side as a
linear combination, likewise Eq.s4d of normalizedeigen-
functions to obtain the coefficientsai

L. These are actually the
entries or, more precisely,lth column of the matrixM, since
tl=1. Upon repeating the whole procedure for each four out-
going states, one finds all entries in the left half of the ma-
trix, which we denote by two 434 submatricesMU, ML:

M = SMU *

ML *
D . s13d

The right half ofM is not important due to the absence of
reflected waves on the right side of the barrier—i.e., due to
zeros in the outgoing vector in Eq.s12d. It can be easily
proved that

Tij = uNji u2
vzj

sRd

vzi
sLd , Rij = U o

k=1,4
Nj ,kMk,i

L U2vzj
sLd

vzi
sLd , s14d

wherei , j P h1,2,3,4j=hh1,h2, l1, l2j, N=sMUd−1. The major
advantage of the method presented here is that the calcula-
tion time increases linearly with the number of mesh points
N—i.e., when the steph is diminished—in contrast with the
MQTBM where it increases asOsN2d, as the order of the
matrix equation that has to be solved is 4sN+3d.

IV. TRANSMISSION AND REFLECTION COEFFICIENTS:
SINGLE BARRIER

A. Zero-magnetic-field case: B=0

The theory will be applied to the case of a barrier made of
Al0.2Ga0.8As which is embedded in GaAs. The barrier width
is taken to beD=25 Å, the barrier height—i.e., the valence-
band mismatch between the two materials—isV0=95 meV,
and the Luttinger parameters areg1

a=6.85, g2
a=2.1, andg3

a

=2.9 sGaAsd and g1
b=3.45, g2

b=0.68, andg3
b=1.29 sAlAsd

slinear interpolation of gi was used for the alloy
Al xGa1−xAsd. The Fermi energy is taken to beEF=10 meV.
In the absence of a magnetic field the wave wectorskx, ky,
andkz commute with each other and the termK equals zero.
The in-plane wave vectork i=skx,kyd is still a good quantum
number when inelastic processes at the interfaces are ne-
glected. The difference in the Luttinger parametersg2Þg3
causes anisotropy in the plane parallel to the interfaces and it
will be then important to investigate the dependanceTlm on
the in-plane momentumk i=skx,kyd. A contour plot of the
transmission amplitudeTh1h1

skx,kyd between the two heavy
holes is shown in Fig. 3. There is a clear anisotropy in the
dispersion relationEskx,kyd as reflected in this graph. For
small kx and ky the contour lines resemble circles as band
mixing is less pronounced. However, as the in-plane momen-
tum is increased beyond the first critical valuekt

<Îe / sg1+2g2d swhen the light holes become evanescentd,
the contour lines become more distorted. The deviation from
isotropic shape is maximal whenkx, ky lie in the region
siii d—i.e., when all solutions lie on the heavy-hole branch.
The latter is expected since the dispersion relation has now a
pronounced warped structure. In this case the termC2kx

2ky
2

becomes dominant in the dispersion relation, when bothkx
andky are large, which makes the wave vectorkz small and
the transmission coefficientTh1h1

attains very small values
below 10−2, presented by the dashed lines in the corners of
the graph of Fig. 3. Now in order to understand better the
contour graph, it is also instructive to have a look at the
dependenceTh1h1

skxd at fixedky, which is given in Fig. 4 for
three different values ofky/ s2p /ad: 0.0 ssolid lined 6
310−3 sdashed lined, and 0.012sdash-dotted lined. Due to
band mixing, the transmission coefficient of the heavy holes
increases withkx which is opposite to the predictions of the
simple one-band picture. This increase continues as long as
the propagating states of the light holes exist, as is so for
casesid: the peaks in the graph for differentky indeed corre-
spond to the critical energyec4 fEq. s6ddg. Beyond the maxi-

FIG. 3. Contour diagram of the transmission coefficientTh1h1
for

heavy holes of the same kind with energyE=10 meV, in units of
the reciprocal vector 2p /a. Due to Kramer’s degeneracy, the graph
is identical toTh2h2

.
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mum, it decreases and begins to increase again when values
of skx,kyd are large enough for the “light holes” to become
propagating. It was noticed8,21 previously that the heavy-hole
tunneling times through double-barrier structures are signifi-
cantly shorter than can be concluded from their massmhh
=m0/ sg1−2g2d at k i=0. Yu et al.8 attributed this discrepancy
to band mixing in the sense that heavy holes in a barrier
acquire somewhat of a light-hole character, having lighter
mass and thus enhancing the tunneling of the heavy holes.13

Their results were obtained from the 434 LK model, as
used in the present paper as well, and are in good agreement
with the experimental results of Ref. 21.

Since the heterostructure has inversion symmetrysin the
absence of an applied biasd, the two heavy-hole statessand
the two light-hole statesd are degeneratesKramer’s degen-
eracyd and hence the corresponding coefficients are identical,
so that it will suffice to show onlyTl1l1

s=Tl2l2
d and Th1l1

s=Th2l2
d, which are given in Figs. 5sad and 5sbd. The trans-

mission coefficient between the two light holes as a function
of kx, ky is more isotropic than that of the heavy holes since
their propagating states exist only for relatively smallkt

,Îe / sg1+2g2d. The values ofTl1l1
are larger than that of

Th1h1
, since the light holes transmit through the barrier more

easily due to their lighter mass. The transmission coefficients
Th1h2

and Tl1l2
vanish identically due to zeros on the side

diagonal in the Hamiltonian. We find that the conservation
relationss9d ands10d are always fulfilled in contrast to what
was found in Ref. 18, even in casesiii d, when the light holes
propagate in the opposite direction than the phase velocity. In
this case one should either assumeTh,l8 =−Rh,l and Rl,h8
=−Tl,h or choose18 a negative value forkz for light holes.

Next we will give the reflection coefficients. There is a
difficulty in representing them faithfully on a contour graph
since many values are concentrated near unity. However, we
choose to present contour lines for 0.01, 0.03, 0.2, and 0.6.
The reflection from a heavy to a heavy holeswith the same
sign of md is given in Fig. 6sad. Total reflection occurs for
large values ofskx,kyd when the propagation wave vectorkz

is too small to ensure efficient tunneling. Hence, small values
of Rh1h1

are mainly located near the origins0,0d. In the next

figure, Fig. 6sbd, one can see that a heavy hole can reflect as
a light hole sbut with a negative group velocityd which is
denoted by dashed lines in the corners of the graph. For
moderate values of the in-plane momentumsaround 0.02
32p /ad there is no reflection as light holes then do not exist.
Finally the reflection coefficient as a function ofskx,kyd from
a light hole to a light hole is presented in Fig. 6scd.

B. In-plane magnetic field case: B̧x

When the magnetic field is in plane—i.e., parallel to the
interfaces—but acting only in the barrier region—i.e.,
zP s−D /2 ,D /2d—and aligned along thex axis, the wave
vectorskx, ky, kz no longer commute. For the case of the
commonly used Landau gaugeA =s0,−Bz,0d the term Q

contains both noncommutingz and k̂z, and the termK is
equal toK= iÎ3" / s2m0dg3eB. The vector potential compo-
nent Ay is constant outside the barrierAysz,−D /2d
= +BD/2, Aysz. +D /2d=−BD/2, and except for the con-
stant shift in the wave vectorky=ky

0−eAy/"=ky
0+eBz/", the

FIG. 4. Transmission coefficientTh1h1
for heavy holes as a func-

tion of kx for three different values ofky: 0.0 ssolid lined, 0.006
32p /a sdashed lined, and 0.01232p /a sdot-dashed lined. The en-
ergy isE=10 meV.

FIG. 5. Contour diagram of the transmission coefficientT: sad
Tl1l1

for light holes of the same kind in the absence of a magnetic
field. Inset:Tl1l1

for B=15 T sbd Th1l1
from the heavy to the light

holes, atB=0 T. Inset:Th1h1
at B=0 T. All axes in units of the

reciprocal vector 2p /a, for the energyE=10 meV.
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solution in the external leads is similar to the nonmagnetic
casefEq. s4dg:

Csr d = eiskx
0x+ky

0yd o
i=1,8

ai
sL,Rd1

F1

F2

F3

F4

2eikziz. s15d

The quantitieskx
0, ky

0 are canonical momenta associated
with the translational invariance and therefore good quantum
numbers throughout the structure.12,22 However, within the
barrier, whereBÞ0, the third term in the Hamiltonian, Eq.
s1d, introduces off-diagonal terms due to the matrixJx, which
represents the projection of the angular momentum on thex
axis:

Jx =1
0 Î3i/2 0 0

− Î3i/2 0 i 0

0 − i 0 Î3i/2

0 0 − Î3i/2 0
2 . s16d

Now the transmission between the two light holesswith
opposite projectionm= ±3/2d becomes possible thanks to
the presence of the magnetic field. In other words the quan-
tity m is no longer a conserved quantum number sinceJz
does not commute withJx and holes undergo an angular
momentum precession. In the inset of Fig. 5sbd the contour
plot of the transmission coefficientTh1h1

is shown for mag-
netic field strengthB=15 T. When compared with Fig. 3 we
see that the magnetic field enhances the anisotropy. Similar
results forTl1l1

are shown in the inset of Fig. 5sad. To dem-
onstrate the precession of the hole spin in the barrier we
present the transmissionsTl1l2

andTh1h2
as a function of the

barrier widthD in Fig. 7. Normally the transmission between
the statesm= +3/2 sh1d andm=−3/2 sh2d is not possible at
kt=0 due to zeros in the corresponding terms in the Hamil-
tonian, Eq.s1d. However, the mixing of the heavy holes with
the light holes lifts this selection rule23 at finite kt. This can

also be seen if one evaluatesm=kJzl=kChuĴzuChl for heavy
holes, which turns intom=Vh

†JzVh for continuum states or
m=eVh

†JzVhe
−2xzzdz, kz= ixz, for evanescent states. The ex-

pectation value of the angular momentum on thez axis for
the heavy-hole axis decreases withkt below the nominal
value of 3/2. This effect was already pointed out for bound
states in quantum wells.24 Thus one cannot speak about pure

FIG. 6. Contour diagram of reflection coefficients:sad Rh1h1
for

heavy holes of the same kindsdue to Kramer’s degeneracy the
graph is identical toRh2h2

d, sbd Rh1l1
from the heavy holes to the

light holes, andscd Rl1l1
from a light hole to a light hole with the

samem=3/2 in units of the reciprocal vector 2p /a. The energy is
E=10 meV.

FIG. 7. Transmission coefficientTl1l2
between the two light-hole

statesssolid lined and heavy-hole statesTh1h2
sdashed lined as a

function of barrier widthD. The magnetic field strength isB
=15 T, and the energy isE=10 meV.
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heavy holes or light holes away from the center of the Bril-
louin zone. Since the tunnelingTh1h2

is not a direct effect but
is induced by band mixing, its value is smaller than that of
Tl1l2

, as can be seen from Fig. 7snotice there is a factor of 10
difference in the used scale forTl1l2

andTh1h2
d.

C. Accuracy of the numerical methods

This subsection is concerned with the accuracy of the
method used here and the accuracy of the MQTBM men-
tioned earlier, when different numerical implementations of
matching conditions at interfaces are used in the latter. It is,
in principle, possible to derive analytical expressions for the
transmission and reflection coefficients for the problem of a
single barrier, but their forms are cumbersome, and we re-
strict ourselves to the final results. For the case of the method
used in this paper, we find that the average relative error
obtained is dmax=0.15%, when usingNmp=20 000 mesh
points. Now we turn our attention to the MQTBM, where the
system of differential equations is approximated as finite dif-
ference equations for each mesh point:

Hs,s+1Fs+1 + Hs,sFs + Hs,s−1Fs−1 = 0, s17d

with Hsm being 434 numerical matrices. The boundary con-
ditions on the interface proposed in Ref. 10 read

Hh,h =
2sHR

s2d + HL
s2dd

h2 − i
HR

s1d − HL
s1d

2h
, s18ad

Hh,h+1 = −
2HR

s2d

h2 − i
HR

s1d

2h
, s18bd

Hh,h−1 = −
2HL

s2d

h2 + i
HL

s1d

2h
. s18cd

These forms of matrices are obtained the conditionsJzFL
=JzFR is imposed on the wave vectorsFs. Though math-
ematically not inconsistent, we find that a direct implemen-
tation of the continuity of wave function in our numerical
calculations is not appropiate. For instance, if one puts inten-
tionally HR

sid=HL
sid sas if there were no changes of materials at

the interfaced, then Eqs.s18ad–s18cd will not reduce to the
layer element of a single materialfsee Eqs.s21ad–s21cdg in
Ref. 10d. Thus we propose the following forms forHsm:

Hh,h =
sHR

s2d + HL
s2dd

2h2 +
1

2
sHR

s0d + HL
s0dd + Vs − E, s19ad

Hh,h+1 = −
HR

s2d

h2 − i
HR

s1d

2h
, s19bd

Hh,h−1 = −
HL

s2d

h2 + i
HL

s1d

2h
. s19cd

When compared with analytical values forTh1h1
, the new

matching relationss19ad–s19cd yield an average relative er-
ror dav1,0.2% for Nmp=300, while the “old” relations
s19ad–s19cd give dav2=3% for the sameNmp which is an
improvement with more than a factor 10.

V. RESONANT TUNNELING

When a bias is applied across the structure there is a net
current flowing from the left to the right lead, if there are
unoccupied states on the right lead. Taking into account
utlm

0 u2vzm
sRd=Tlmvzl

sLd the expression for the current density is

JC =
e

8p3 E dkxdkydkzHo
m

Th1mvzh1

sLd + o
m

Th2mvzh2

sLd

+ o
m

Th1mvzl1
sLd + o

m

Tl2mvzl2
sLdJffsEd − fsE + eVbdg. s20d

However, since the transmission coefficients are calcu-
lated at fixedE, it is better to change the variablekz into Ez,
which leads to the following expression for the current:

JC =
e

8p3"
E

0

kt max

ktdktE
0

2p

dfdESo
ml

TmlD
3ffsEd − fsE + eVbdg.

where it is assumed thatdE=dEz since integration overkt is
in the front of integral overdEz. The tunneling current is
calculated for a double-barrier resonant structuresDBRTd.
However, another set of values of the Luttinger parameters is
taken,g1=7.65,g2=2.845,g3=2.845,k=1.72sfor both ma-
terialsd, in order to make a comparison with the results of
Ref. 13 possible. The other parameters are taken from the
same reference: barrier heightV0=0.1 eV, barrier widthD
=25 Å, well width W=80 Å, and Fermi energyEF
=10 meV. The current density as a function of applied bias is
plotted in Fig. 8, along with results of Ref. 13sdashed lined
for T=0 K. The first two peaks correspondsneglecting the
small one, HH0, at smallVbiasd to the first light-hole reso-
nancesin the welld LH0 and the second heavy-hole reso-
nance HH1. In Ref. 13 the explicit dependence of the current
on the in-plane momenta was neglected in order to facilitate
numerical integration in Eq.s21d. Though the two curves are
of the same order of magnitude, the two peak structure is not
reproduced with the approximationJCsE,kid<JCsEzd. These
two peaks indeed coincide with one another atkt=0, but
because of the different mass of the heavy and light holes
and, more importantly, because of band mixing, the position
of the resonant levels in the well between the two barriers
split at kt.0.

Now we revert to the previous values for the Luttinger
parameters:g1

a=6.85,g2
a=2.1, etc.ssee previous sectiond, but

the same dimensions of the DBRT—i.e.,D=25 Å W=80 Å.
The transmission coefficients Th1l and Tlll

sl
P hh1,h2, l1, l2jd when an external magnetic fieldB=10 T is
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applied in planesexcept in the contact regionsd—i.e., parallel
to the layers—are shown in Figs. 9sad and 9sbd, respectively.
Out of 16 possible transmission channels, only 8 are different
and shown in the figures, due to the fact that the magnetic
field is normal to the quantization axis and there is no bias.

The peaks inTlm that correspond to the light-hole resonance
LH0 are broader than those that correspond to HH reso-
nances since the light holes reside shorter in the structure. It
can be seen that the HHx resonant peaks do not show any
visible splitting when a magnetic field is applied along thex
axis. This is a consequence of the fact that the quantization
axis for angular momentum is chosen to be alongz and the

operatorŜz for the heavy-hole states atkt=0 has definite

values sz= ±1. Thus expectation value ofĴx between the
states of the heavy holes atkt=0 is zero13,25—i.e., kJxl=0.
This conclusion becomes a little bit more relaxed for larger
in-plane momenta, but still the heavy-hole splitting is signifi-
cantly smaller than that of the light holes.

Finally, the current density is given in Fig. 10 for four
different values of the magnetic field strength atT=0 K. The
amplitudes of the peaks in general decrease with an increase
of the magnetic field, as the vector potential component
eAy/" narrows the range ofky

0 in momentum space that can
ensure efficient tunneling. However, we observe that the in-
crease of the current amplitude appears aroundB<12 T.
The nonmonotonic dependence of the peak current in in-
plane fields was observed26 in magnetotunneling of electrons
in DBRT, so that it is not directly related to band mixing.
Though we may expect a splitting to appear in LH0, it even-
tually does not. The absence of spin splittingseven for LH0d
in DBRT under an in-plane magnetic field was already noted
experimentally27 and theoretically.13 This is probably due to
the integration over bothE andkt which smears out the spin-
split peaks into a single peak. The heavy-hole component of
the current is shown in Fig. 11. It is apparent that the peak
LH0 increases withB as the heavy holes acquire light-hole
character, thus lowering their effective mass. To check spin
polarization effects in DBRT one needs to evaluate the ratio

P = sJC
↑ − JC

↓ d/JC = DJC/JC, s21d

where

FIG. 8. Tunneling current through DBRT as a function of ap-
plied bias atB=0 in arbitrary unitsssolid lined in the spherical
approximation,g2=g3. As a referenceJCsVbiasd is shown sdotted
lined when the approximationkt=0 is used as in Ref. 13. The
dashed line represents the values of the current calculated without
approximations.

FIG. 9. Transmission coefficients of:sad the heavy holeh1 and
sbd the light holel1 to other four possible hole states as a function of
the energy of the incoming hole, in the presence of an in-plane
magnetic fieldB=10 T.

FIG. 10. Tunneling current through DBRT as a function of ap-
plied bias forB=0 T ssolid lined, B=5 T sdashed lined, B=10 T
sdotted lined, andB=15 T sdash-dotted lined.
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DJC =
e

8p3"
E ktdktdfdESo

ml

TmlkVluŝzuVllD
3ffsEd − fsE + eVbdg.

Here ŝz is the Pauli spin operator acting as a weighting fac-
tor in the output channels in Eq.s22d and reads

sz =1
1 0 0 0 · 0 0

0
1

3
0 0 ·

2Î2i

3
0

0 0 −
1

3
0 · 0 −

2Î2i

3

0 0 0 − 1 · 0 0

· · · · · · · · ·

0 −
2Î2i

3
0 0 −

1

3
0

0 0
2Î2i

3
0 0

1

3

2 .

s22d

For four-component vectorssneglecting the SO bandd this
operator is actually equal to23Jz fmarked by the dotted line in
Eq. s22dg in the subspace of heavy and light holesu3/2,jzl,
as was already pointed out during the derivation of the hole
Zeeman term in Ref. 5. In the limit of a strong spin-orbit
coupling and a small Fermi energyEF /D→0, as in our case,
the 434 LK is a good approximation28 to describe the holes.
The spin polarization of the current and its HH and HL com-
ponents as a function of magnetic field are given in Fig. 12,
for an applied biasVbias=0.1 eV. The currents are slightly
polarized even atB=0, which is a consequence of the lifting
of the Kramers degeneracy due to structural inversion asym-
metry sSIAd. The polarization exhibits oscillating behavior
with the magnetic field strength, though its amplitude in gen-
eral increases withB. The maximal polarization that can be

achieved for the present dimensions DBRT is around 3%.
The spin polarization can be enhanced by tuning the external
bias Vbias or/and well widthW. We note, however, at this
point thatP is not a monotonous function ofVbias andW.

VI. CONCLUSIONS

In this paper the tunneling of holes is investigated within
the frame of the 434 Luttinger-Kohn Hamiltonian in the
most general case whereg1Þg2Þg3. The transmission co-
efficients are plotted as a function of in-plane momenta
skx,kyd, which is a conserved quantum number throughout
the structure. The conservation of probability current
density—i.e., the sum of all transmission and reflection co-
efficients equals unity—is confirmed to be valid in all cases,
contrary to the conclusions of Ref. 18. The anisotropy caused
by the difference in the Luttinger parameters ing2Þg3 is
reflected mainly in the transmission between the two heavy
holesswith or without external magnetic fieldd, because their
propagating states exist for largerskx,kyd sthan that of the
light holed when band mixing plays an important role. The
range of parameterssE,kx,kyd for casesiii d, where the light
holes propagate at group velocity opposite to their phase
velocity, is narrow and transmission coefficients are small, so
its influence on the current is not significant. However, we
find that employing any approximation, such as spherical,
isotropical, or neglecting the dependence ofJC on skx,kyd,
can lead to visible discrepancies as was shown in Fig. 8. The
main consequence of band mixing is that heavy holes acquire
light-hole character in the barrier, thus enhancing their tun-
neling. The values ofTh1h1

are larger than in the one-band
picture and increase withskx,kyd as long as both heavy and
light holes exist in the external leadsfcasesidg. In the pres-
ence of an in-plane magnetic fieldsnormal to the currentd the
holes acquire an additional in-plane momentumky and for
certain values ofsE,kx,kyd heavy holes stay longer in the
barrier, thus enhancing theirspartiald light-hole character.
Then transmission between the two light holes is possible;
i.e., the hole undergoes a precession. The heavy holes atkt

FIG. 11. Heavy-hole current component as a function of applied
bias forB=0 T ssolid lined, B=5 T sdashed lined, B=10 T sdotted
lined, andB=15 T sdash-dotted lined.

FIG. 12. Spin polarizationP of the current as a function of
in-plane magnetic field for biasVbias=0.1 eV: total ssolid lined,
heavy-holesdotted lined, and light-holesdashed lined polarization.
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=0 cannot precess because of the zeros in the Hamiltonian
betweenh1 andh2. However, the band mixing lifts this “se-
lection rule” as heavy holes acquire some of the light-hole
character. We presented results for the current density of
DBRT which is an interesting structure for possible applica-
tions, and it is a common setup in experiments. Upon com-
paring results with other theoretical results already present in
the literature, we find that band mixing is important and can-
not be neglected. At the end, we presented the ratio of spin
polarizationP as a function of magnetic field. Spin polariza-

tion can be enhanced by tuning the well width and/or by an
increase of applied bias.
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