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Polariton states in disordered organic microcavities
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In typical organic based microcavities, large values of Rabi splitting are accompanied by any amount of
structural disorder. We present a microscopic approach which treats on equal footing the strong light-matter
coupling and the disorder scattering which breaks translational symmetry. Through direct numerical diagonal-
ization in a long, but finite, disordered one-dimensional microcavity, the nature of the eigenstates is elucidated
and compared to that of the plane-wave-like cavity polaritons of a perfect system. It is shown that delocalized
states with well defined wave vectors or strongly localized states may occur, depending on their energy. In
particular, at energies close to the excitonic resonance as well as at the bottom of the polariton branches, the
states are definitely not plane-wave-like.
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I. INTRODUCTION It is our purpose in the present work to develop a micro-

Inorganic semiconductor microcavities in the strong cou-SCOPIC approach treating both the light-matter coupling and
pling regime, in which a confined photon mode is hybridizedthe disorder scattering on gqual fqotlng in order to elucidate
with a resonant electronic excitation, e.g., a quantum welfhe character of the resulting cavity eigenstates and to sub-
Wannier-Mott exciton, giving rise to two cavity polariton Stantiate the macroscopic picture. The microscopic model is
states separated by the Rabi splitting, have been intensiveligtroduced in Sec. I, while the results of the numerical
studied as they exhibit many novel linear and nonlinear opsimulations are presented and discussed in Sec. 1V, finally,
tical properties. Recently, organic based microcavities hav-conclusions are drawn.
ing much larger Rabi splitting values, typically of the order
of 100 meV or more, have for this reason attracted a lot of
attention? While the photonic component of such systems is Il. MACROSCOPIC APPROACH

uite similar to that of inorganic based microcavities, their . . .
gptically active electronic regsonances are quite different be- In 'ghe macroscopic approaihe cawty polariton ,modes
ing molecular excitations rather than large radius excitons. e dlrgctly obtained fro_m the_soluno_n of Maxwe_:lls equa-
particular, due to electron-phonon interaction or disordefons W!th the complex dielectric funct|on_ appropriate for an
scattering the molecular Frenkel excitons may behave as if£XCitonic resonance and boundary conditions determined by
coherent (diffusive) excitations rather than Bloch plane the cavity mirrors. Assuming for the sake of simplicity per-
waves having a well defined wave vector and groupfeCt mirror boundary conditions, the confined photon mode

velocity3 dispersion in an “empty” microcavity of width; as a func-
In organic microcavities, the strong light-matter coupling tion of the in-plane wave vectar is
giving rise to plane-wave-like cavity polariton states is fa- 5
vored by the large oscillator strength of Frenkel excitbns. E - he o2 1
" . . . . cay(q) — 2 q [ ( )
However, as their optically active layer is not crystalline, vep ¥ Lg

typical organic microcavities are also disordered to a high ) ) ) , ,
degree. Thus, in the strong coupling regime, on the one han@fheres, is the background dielectric constant. The dielectric

the light-matter interaction induces the formation of delocal-function including the resonant contribution is given by
ized polariton states with a well defined wave vector, on the A

other hand the structural disorder which scatters the excitons e(w) = ep+ = T ,
and breaks the translational invariance brings about localized Ef - (fiw)” = 2wy

states quite different from plane-wave-like polaritons. whereE, is the dispersionless exciton energy,is the total

d rC]:Iﬁse ftci)n thﬁ ?Xﬁ'tto? tenerrrt];]y, lrn rﬁairr:'cﬂlar’ nat S|gn||f|cant homogeneous plus inhomogenephbsoadening of the exci-
ensity otinconherent states may remain present, as aiso ey, resonance, and the constaktis proportional to the

dent from the ob_servatlon of a third luminescence peak, oscillator strength of the transition. Then, from Maxwell's
the energy of which does not depend on the angle of obser

vation, between the uppdtJP) and lower (LP) polariton equations follows

ones which follow instead the usual cavity polariton disper- h2c?(q? + 772/|_§) = g(w)(fhw)?, (3)
sion. A macroscopic approaéhpriefly discussed below in ) ,

Sec. Il to introduce all relevant definitions, predicts how the@nd the cavity polariton modes near resonan@a
traditional picture of coherent plane-wave-like cavity polari- = Eca(d) = Eo) are obtained as the solutions of

(2)

tons breaks down at the bottom of both polariton branches ho-E b= Ea+ive) = (Q/2)2 4
and for the LP branch where it flattens approaching the bare (Ao~ Bea (@0 = By +ivo) = (Q/2)%, @
exciton resonance. whereQ)=vA/g, is the Rabi splitting.
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The solution of Maxwell's equations with a complex di- 87
electric function leads in general to both a complex fre-
quencyw=w’+iw” and a complex wave vecta=q’ +iq”,
i.e., to modes having an uncertainty both in energy and wavi
vector. Assuming the dissipation to be smah<Q) and
taking a real wave vector, from E¢4) the following cavity
polariton dispersion curves and energy broadenings are o

units)

—0—R25
- ©- R90
——Ideal case

BOs (arb.
H

tained: 2
E.(@+E, 1
Buu@ === 0P+ [Ea(@ - B, (B o LT
16 19 s 2.1 22
) E (eV)
Yo . . . . .
AEU,L(q) - yo|c(et)J(,L)(q)|2 - ( FIG. 1. Density of state@in arbitrary unit$ for diagonal energy

, (6
QZ+4[E0—EU,|_((:1)]2 disorder of different strength: the diamonds correspondygo

UL)2 ) ) . .. =25meV, the circles toy;=90 meV (the solid line is the result
where |c.,”|* are the exciton weights in the polaritonic with no disordey.

states. However, semiclassical wave-packets with a well de-

fined wave vector and energy will be rather characterized as The microscopic model is_set up in the simple;t possible
having both an energy uncertaintyE and a wave vector way to address the competition of the strong light-matter
uncertaintyAq, providedthat AE<E andAq<g. Such cav- coupling with the localization effects due to structural disor-
ity polariton quasiparticles will be coherent states movingder, neglecting all other inessential features. The one-
with a group velocityvy=dw/dq as obtained from Eq(5). dimensional microcavity is considered to be a rectangular
Correspondingly, the wave vector uncertainty can be estivaveguide with perfectly reflecting walls of sideg<Ly in

mated as\q=AE/(hv,) and from the equations above, which a confined photon mode polarized alongropagates
along thez axis with wave vector and dispersion given by
'}’Ostcau(q) 4[Ecau(Q) B EU,L(q)]2

_ Eqg. (1) with L.=L,. In the ideal case without disorder, the
Aqu(@) = ¢ 02 (7 optically active material is modeled by a 1D lattice of inde-

. ) o . pendent two-level molecules along the axis of the one-

Therefore, for cavity pOlarltonS it is clear that while the dimensional microcavity' each one having a resonance of

gond||(t|odn Aﬁf fE IS n%tfre%tntchtnt/)e, thﬁ Co?gi'g'?m?<q energyE, and transition dipole matrix elemeR= Poy. No
reaks downi) for g—® for both branches a orfarge Girect interaction among the molecules is included, i.e., in

q;‘:)r_(;trr:eblr(‘)’:lvxi[]epolarggpabr_ancchénTgi F;ggﬁ 2'0nt?];hfeg:js'the absence of the coupling with the photon mode an elec-
Persi s W 4=q S tronic excitation is localized on a single molecule. No dissi-

points” restric_:ting th_e spectr.al and wave vector range Wher?)ation is included, i.e., perfect mirrors are assumed and the
Elatn?j'\;vhavtewﬁﬁ C?r:"ty pgilia)mt%n \?taﬁa}s m;ay ﬁﬂmtjs to brf b lifetime of electronic excitations is supposed infinite.

oted tha € In cas@i) above e Eigenstates can be qyqiic structural disorder of different kinds is taken into
considered to be incoherent exciton states not affected by thfccount as follows. Diagonal energy disorder is included
strong c_oup!ing, in C".’lsé) the states are sl _hybrid states writing the resonan.t energy of molecujeas E;=Ey+ 6E;,
with a significant cavity phpton-excnon coupling for which, JOE; being a stocastic variable Gaussian distrik])uted WitIJ’l zero
however, the wave vector is not a good quantum number. mean and a width corresponding to the exciton linewigh
(i.e., the value ofy, gives the strength of the on-site energy
disordej. Positional disorder is included assuming that the

We notice that even though the cavity polariton quasiparP0sition of moleculgj alongz is z=ja+ &z, wherea is the
ticles considered above are expected to be localized over ¥P lattice constant andz; a stocastic variable Gaussian dis-
distance of the order of g, the macroscopic approach tributed with zero mean and a width which is a fractioreof
does not explicitly introduce any translational SymmetryOrlentathnal d!sorder is included writing the projection of
breaking effect. In particular, it does not allow to assess théhe transition dipole moment of molecujealong the polar-
character of the wave functions when they are no longeization of the photon mode & -y=Py7; with -1<7,<1 a
plane-wave-like and it can only take the disorder into ac-stocastic variable the distribution of which peaks at the value
count in an effective phenomenological way through the enof unit with an average valug which is a fraction of unit
ergy broadening of the exciton resonance. The microscopi.e., increasing orientational disorder corresponds to lower
model presented in the following does not have such shortvalues of, the distribution shape being that of a half Gauss-
comings. However, for reasons of numerical complexity, itian).
must be limited to the one-dimensional casether than a The model Hamiltonian comprises two diagonal blocks
planar two-dimensional oneThis limitation is not expected (the first referring to the electronic excitations labeled by
to change in any significant way the physics of the interplaytheir site indexj, the second to the one-dimensional cavity
between the light-matter strong coupling and the translaphoton modes labeled by their wave vectprwith an off-
tional symmetry breaking disorder scattering, just as in theliagonal coupling due to the light-matter interaction given
case of inorganic microcavitiés. by

Ill. MICROSCOPIC 1D MODEL
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wherel, is the length of a long quantization box along the
axis. In the above, it has been assumed that the modulus
the transition dipole momer, is constant and that the
coordinate of all molecules is fixed at the antinode of the®
cavity photon mode. These are not crucial restrictions as the
effects of their variations can be considered to be included in ;
the “orientational” stocastic variablg. The latter is the dis- 0 i
order contribution which has the strongest effect whgn -
takes both positive and negative values. On the contrary, the
effects of positional disorder are rather weak simply because FIG. 2. Density of statesin arbitrary units for orientational
q dz;<1, and they will not be considered in detail. Finally, disorder of different strength: the diamonds correspong+@.78,
the effects of the on-site energy disordeppearing in the the circles ton=0.37 (the solid line is the result with no disorder
diagonal electronic excitation blogkan be very significant.
In the next section, the results of a direct numerical di- ) =, colj)lexi) + >, Con(@)[ph, ). (9)
agonalization of the Hamiltonian of the disordered system i q
will be presented and discussed. For each disorder configu-
ration all eigenstates and eigenvectors are found and an&xcluding those corresponding to purely molecular excita-
lyzed, then configurational averages of significant physications as mentioned above, the wave functions are analyzed to
guantities are calculated. extract quantities relevant to characterize their degree of lo-
calization. The analysis can be done for the excitonic com-
ponent in real space usirg,(j) and for the photonic com-
IV. NUMERICAL RESULTS AND DISCUSSION ponent in wave vector space using(q), or vice versaby

) ) ] the respective Fourier transforms. In particular, we calcu-
In order to solve numerically the microscopic model|ate the exciton inverse participation —rate(lq,

above, the parameters of the corresponding ideal system
without disorder have been chosen as follows. To be definite
the most common case of a negatively detuned cavity ha:
been considered witk,,(q=0)=1.69 eV andE;=1.85 eV, 8
and the Py value chosen to have a Rabi splitting
=120 meV, typical for organic microcavities. To limit the
calculation load without affecting the physics of the problem, 3
the basis used is =488 molecule sitefex, j)) spaced by
a=150 nm along the length of the cavifl,=Na=73 um)
and 295 photon mode$ph,q)) equally spaced at wave vec-
tor intervals of 2r/L,=860 cmi* and covering the lowest
one-dimensional cavity mode from its cutoff up to an energy
of about 2.3 eV, value at which the coupling with the elec-
tronic excitations is already negligible. We notice that the
size of the Brillouin zone of the lattice of moleculesa 0.
=2.1x10° cm™t is significantly larger than the maximum
photon mode wave vector considergg,,~1.3x 10° cm™.
Thus, even in the ideal case in our numerical simulations a
large number of electronic excitatiortabout 40% remain s
uncoupled. This is, however, quite acceptable as in realityN
they would correspond to lower polaritons having large wave < 1
vectors and a nearly negligible photon component. To be
consistent, in the presence of disorder, only eigenstates hau
ing a photon component of at least 2% have been included ir
the analysis. Other states are within our numerical simulation
not coupled to light, and thus correspond, with or without
disorder, to purely molecular excitations with an energy
close to the bare exciton energy. FIG. 3. Inverse participation ratidgop) and mean position stan-
For a given disorder realization, all eigenstates and eigentard deviation(bottom, in units of lattice constanof the exciton
values are calculated. The eigenstates are expressed in @dmponent for diagonal energy disorder of different strength: the
basis as follows: diamonds correspond tg,=25 meV, the circles ta,=90 meV.
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L . . FIG. 5. Energy dispersion curve obtained from the mean wave
FIG. 4. Inverse participation ratiop) and mean position stan- ect6rg of the excitonic componeritop) and its standard deviation

dard deviation(botFom, iln units.of lattice congta)nbf the exciton Aq (bottom for a diagonal energy disorder of a different strength:
component for orientational disorder of a different strength: thethe diamonds correspond tg,=25 meV, the circles toy,

diamonds correspond tp=0.78, the circles t@;=0.37. =90 meV.

=3j[cedi)[*/[Zlcex()[?]) and the mean position standard citon energy between the UP and LP branches. For the case
deviationAz,, and the corresponding quantities for the pho-of orientational disorder, the two DOS peaks corresponding
tonic component from the Fourier transform @fi(g). In  to the lower edge of the UP branch and the upper edge of the
addition, to reconstruct the dispersion relations, we calculateP branch are no longer resolved. Furthermore, orientational
the mean value of the wave vectprand its standard devia- disorder also affects the bottom of the lower polaritb)
tion Aq from c,(q) or from the Fourier transform af.(j),  branch. In general, disorder effects are less important in the
respectively, for the photonic and excitonic components. Fospectral regions far from the edges of the ideal cavity polar-
each eigenstate of the disordered system, we also determiiten dispersion branches.
the ideal cavity polaritor{ICP) state which has the highest  Figures 3 and 4 show the localization properties of the
overlap with it. The latter quantity is here introduced as aexcitonic component for diagonal energy disorder and orien-
very effective measure of the global effect of disorder on thetational disorder, respectively, as measured by the inverse
system eigenstates. The numerical results presented in tiparticipation ratiols, and by the mean position standard de-
figures and discussed below, a part from a few examples ofiation Az.,. The inverse participation ratio would be of or-
specific individual eigenfunctions, have been obtained afteder 1 for a completely localized state and of ordeiN1/
configurational averaging. All calculations have been re=1/488 for a completely delocalized one, while the standard
peated for about 500 disorder realizations and averaged surdeviation of the mean position is of the order of the localiza-
ming over the eigenstates within 150 small spectral intervalsion radius and, for our sample of 488 sites, would be about
in which the entire spectrum is subdivided. The width of140a for a completely delocalized state. In both Fig. 3 and
these small spectral intervals is chosen in such a way thdig. 4, the localization effects of disorder are evident and
each of them for a given disorder realization typically con-affect particularly the spectral region near the bare exciton
tains about 5 eigenvalues. energy and, more markedly for orientational disorder, the
The effects of disorder of increasing strength on the denbottom of the LP branch. In these spectral regibpgrows,
sity of stateDOS) are shown in Figs. 1 and 2 for diagonal whereasAz,., correspondingly decreases down to values of
energy disorder and orientational disorder, respectively. Foonly a few lattice spacings. Analogous information is ob-
comparison, the solid line shows the corresponding DOSained from an analysis of the photonic component of the
with no disorder, in which case the square root singularitieglisordered eigenstates.
typical of one-dimensional systems are smoothed by finite In Fig. 5, we show the dispersion relation of the system
size effects in our numerical simulations. In both figures, it iswith diagonal energy disorder obtained from the calculation
evident a build-up of DOS at energies close to the bare exef the mean valueg of the wave vector of the excitonic
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component of the eigenstates: it is noticeable that the spectral
region between UP and LP branches where there is little
dispersion corresponding to localized states with an ill de-
fined wave vector, i.e., a largaq. Similar information is
obtained from the corresponding analysis of the photonic
component, while in the case of orientational disorder the
wave vector of the excitonic component is even less defined.
As illustrative examples of the different character of the
eigenstates, a few specific wave functions are shown in Figs.
6-8 for the case of diagonal energy disorder wih
=50 meV. The state in Fig. 6 is representative of the few
states at the bottom of the LP branch with a localized char-
acter, in this case witi\z,,~70a. Notice also the rather
broad peak in its Fourier transform arounet 0. Yet, this

1A

® 0.8 1
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32204
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FIG. 9. Highest overlap with ideal cavity polarit¢fCP) states

FIG. 7. Eigenfunction corresponding to the middle of the LP for the diagonal energy disorder of different strength: the diamonds

branch (E=1.767 eV} in Fourier space(top) and in real space

(bottom).

correspond tap=25 meV, the circles tgp=90 meV(the solid line
is the ICP dispersion relation
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TABLE I. Wave vector end pointén units of 1000 crm?) of the
plane-wave-like quasiparticle dispersion branches for two values of
diagonal disorder compared to the corresponding predictions of the
macroscopic approach.

|
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£ 506 1 ¢ 00.78
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; 8 0.4 — polariton curve
§ %=50meV 11 69 62 7.7 95 45
E 0.2 - %=90meV 50 62 65 10 83 50
3
8 0 T T 1
16 17 18 1.9 2 2.1 22 order, respectively, confirming that the localization is stron-
E (eV) ger at energies near the bare exciton energy and at the bottom

FIG. 10. Highest overlap with ideal cavity polaritoiCP) states ~ Of the LP branch, with a more pronounced effect of orienta-
for an orientational disorder of a different strength: the diamonddional disorder.
correspond top=0.78, the circles ta;=0.37 (the solid line is the In the macroscopic model discussed above, the condition
ICP dispersion relation defining the extension of the plane-wave-like cavity polar-
iton dispersion curves iAg=<(q. As we have detailed infor-
state is still a hybrid of excitonic and photonic componentsmation on the actual eigenfunctid) in the presence of the
the excitonic weight being about 10%. The state in Fig. 7 ismicroscopic disorder, we will use the following heuristic
in the middle of the LP branch and has a plane-wave-likecondition based on the value of the highest ICP overlap:
character similar to an ideal cavity polarit@iCP) state. Its  [{ICP|)|=0.8. The corresponding “end points” of the
Fourier spectrum is dominated by two strong and narrowplane-wave-like cavity polariton dispersion curves can be
peaks at #1=5.5X 10* cm™. The state in Fig. 8 is from the read from Fig. 11 for the diagonal energy disorder or the
dispersionless spectral region between UP and LP branchegientational disorder. For increasing disorder strength, the
and has a strongly localized character with a highly frag-plane-wave-like regions schrink. The microscopic criterion
mented structure and a rather small photon component dfere used gives results in good agreement with those of the
about 7%. Its Fourier spectrum is correspondingly structuremacroscopic approachas shown in Table | for a few ex-
less. amples, considering that in both the microscopic and macro-
As mentioned above, the highest overlap of a disorderegcopic treatments the “end points” are not sharply defined as
eigenfunction with an ideal cavity polariton stal€P) can  the transition between incoherefibcalized states and co-
be taken as a figure of merit of the quality of the system: thenerent(plane-wave-likg quasiparticles is a smooth one.
lower this quantity is, the stronger the localization effects of
disorder are in the corresponding spectral region. For in-
stance, for the state shown in Fig. 8 it is less than 0.1, while V. CONCLUSIONS

for the one in Fig. 7 it is 0.98. The behavior of the highest |, this work, we have used a microscopic approach to

overlap with an ICP as a function of energy is shown in FigSgescribe the effects of disorder on the polariton states of an
9 and 10 for diagonal energy disorder and orientational d'sbrganic microcavity. The competition between the transla-

tional symmetry breaking scattering and the strong light-

22 matter coupling leads to the coexistence of states with differ-
2.1 A ent character in various spectral regions. Not only close to
the bare exciton energy the states are localized, but also at

g 21 —R25 the bottom of the LP branch they no longer have a well
B 16 _* * R0 defined wave vector, though they are still strongly coupled
& i with light. These microscopic results substantiate the predic-
& 1.8 L ° o8 tions of a macroscopic model and provide a complete de-
M scription of the eigenfunctions of the system. The approach

. developed here will allow us to calculate microscopically
16 : . . . : : , other gquantities, such as the matrix elements of the electron-

0 20 40 60 80 100 120 140 phonon interaction in the presence of a disorder, which are

q (1000/cm) needed for a detailed description of the behavior of cavity

) _ _ o polaritons in organic microcavities.
FIG. 11. Dispersion curves of well defined quasiparticles: the

black solid line and the black circles indicate the plane-wave-like

cavity polaritons in the presence of an energy diagonal disorder for, ACKNOWLEDGMENTS
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