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In typical organic based microcavities, large values of Rabi splitting are accompanied by any amount of
structural disorder. We present a microscopic approach which treats on equal footing the strong light-matter
coupling and the disorder scattering which breaks translational symmetry. Through direct numerical diagonal-
ization in a long, but finite, disordered one-dimensional microcavity, the nature of the eigenstates is elucidated
and compared to that of the plane-wave-like cavity polaritons of a perfect system. It is shown that delocalized
states with well defined wave vectors or strongly localized states may occur, depending on their energy. In
particular, at energies close to the excitonic resonance as well as at the bottom of the polariton branches, the
states are definitely not plane-wave-like.
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I. INTRODUCTION

Inorganic semiconductor microcavities in the strong cou-
pling regime, in which a confined photon mode is hybridized
with a resonant electronic excitation, e.g., a quantum well
Wannier-Mott exciton, giving rise to two cavity polariton
states separated by the Rabi splitting, have been intensively
studied as they exhibit many novel linear and nonlinear op-
tical properties.1 Recently, organic based microcavities hav-
ing much larger Rabi splitting values, typically of the order
of 100 meV or more, have for this reason attracted a lot of
attention.2 While the photonic component of such systems is
quite similar to that of inorganic based microcavities, their
optically active electronic resonances are quite different be-
ing molecular excitations rather than large radius excitons. In
particular, due to electron-phonon interaction or disorder
scattering the molecular Frenkel excitons may behave as in-
coherent sdiffusived excitations rather than Bloch plane
waves having a well defined wave vector and group
velocity.3

In organic microcavities, the strong light-matter coupling
giving rise to plane-wave-like cavity polariton states is fa-
vored by the large oscillator strength of Frenkel excitons.4

However, as their optically active layer is not crystalline,
typical organic microcavities are also disordered to a high
degree. Thus, in the strong coupling regime, on the one hand
the light-matter interaction induces the formation of delocal-
ized polariton states with a well defined wave vector, on the
other hand the structural disorder which scatters the excitons
and breaks the translational invariance brings about localized
states quite different from plane-wave-like polaritons.

Close to the exciton energy, in particular, a significant
density of incoherent states may remain present, as also evi-
dent from the observation of a third luminescence peak,2,5

the energy of which does not depend on the angle of obser-
vation, between the uppersUPd and lower sLPd polariton
ones which follow instead the usual cavity polariton disper-
sion. A macroscopic approach,6 briefly discussed below in
Sec. II to introduce all relevant definitions, predicts how the
traditional picture of coherent plane-wave-like cavity polari-
tons breaks down at the bottom of both polariton branches
and for the LP branch where it flattens approaching the bare
exciton resonance.

It is our purpose in the present work to develop a micro-
scopic approach treating both the light-matter coupling and
the disorder scattering on equal footing in order to elucidate
the character of the resulting cavity eigenstates and to sub-
stantiate the macroscopic picture. The microscopic model is
introduced in Sec. III, while the results of the numerical
simulations are presented and discussed in Sec. IV; finally,
conclusions are drawn.

II. MACROSCOPIC APPROACH

In the macroscopic approach,6 the cavity polariton modes
are directly obtained from the solution of Maxwell’s equa-
tions with the complex dielectric function appropriate for an
excitonic resonance and boundary conditions determined by
the cavity mirrors. Assuming for the sake of simplicity per-
fect mirror boundary conditions, the confined photon mode
dispersion in an “empty” microcavity of widthLc as a func-
tion of the in-plane wave vectorq is

Ecavsqd =
"c
Î«b

Îp2

Lc
2 + q2, s1d

where«b is the background dielectric constant. The dielectric
function including the resonant contribution is given by

«svd = «b +
A

E0
2 − s"vd2 − 2i"vg0

, s2d

whereE0 is the dispersionless exciton energy,g0 is the total
shomogeneous plus inhomogeneousd broadening of the exci-
tonic resonance, and the constantA is proportional to the
oscillator strength of the transition. Then, from Maxwell’s
equations follows

"2c2sq2 + p2/Lc
2d = «svds"vd2, s3d

and the cavity polariton modes near resonance("v
<Ecavsqd<E0) are obtained as the solutions of

f"v − Ecavsqdgs"v − E0 + ig0d = sV/2d2, s4d

whereV=ÎA/«b is the Rabi splitting.7
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The solution of Maxwell’s equations with a complex di-
electric function leads in general to both a complex fre-
quencyv=v8+ iv9 and a complex wave vectorq=q8+ iq9,
i.e., to modes having an uncertainty both in energy and wave
vector. Assuming the dissipation to be smallsg0,Vd and
taking a real wave vector, from Eq.s4d the following cavity
polariton dispersion curves and energy broadenings are ob-
tained:

EU,Lsqd =
Ecavsqd + E0

2
±

1

2
ÎV2 + fEcavsqd − E0g2, s5d

DEU,Lsqd = g0ucex
sU,Ldsqdu2 =

g0V2

V2 + 4fE0 − EU,Lsqdg2 , s6d

where ucex
sU,Ldu2 are the exciton weights in the polaritonic

states. However, semiclassical wave-packets with a well de-
fined wave vector and energy will be rather characterized as
having both an energy uncertaintyDE and a wave vector
uncertaintyDq, providedthat DE!E andDq!q. Such cav-
ity polariton quasiparticles will be coherent states moving
with a group velocityvg=]v /]q as obtained from Eq.s5d.
Correspondingly, the wave vector uncertainty can be esti-
mated asDq=DE/ s"vgd and from the equations above,

DqU,Lsqd =
g0«bEcavsqd

c2"2q

4fEcavsqd − EU,Lsqdg2

V2 . s7d

Therefore, for cavity polaritons it is clear that while the
condition DE!E is not restrictive, the conditionDq!q
breaks downsid for q→0 for both branches andsii d for large
q for the lower polariton branch. The points along the dis-
persion branches whereDq=q can be taken as the “end
points” restricting the spectral and wave vector range where
plane-wave-like cavity polariton states may exist.6 It is to be
noted that while in casesii d above the eigenstates can be
considered to be incoherent exciton states not affected by the
strong coupling, in casesid the states are still hybrid states
with a significant cavity photon-exciton coupling for which,
however, the wave vector is not a good quantum number.

III. MICROSCOPIC 1D MODEL

We notice that even though the cavity polariton quasipar-
ticles considered above are expected to be localized over a
distance of the order of 1/Dq, the macroscopic approach
does not explicitly introduce any translational symmetry
breaking effect. In particular, it does not allow to assess the
character of the wave functions when they are no longer
plane-wave-like and it can only take the disorder into ac-
count in an effective phenomenological way through the en-
ergy broadening of the exciton resonance. The microscopic
model presented in the following does not have such short-
comings. However, for reasons of numerical complexity, it
must be limited to the one-dimensional casesrather than a
planar two-dimensional oned. This limitation is not expected
to change in any significant way the physics of the interplay
between the light-matter strong coupling and the transla-
tional symmetry breaking disorder scattering, just as in the
case of inorganic microcavities.8

The microscopic model is set up in the simplest possible
way to address the competition of the strong light-matter
coupling with the localization effects due to structural disor-
der, neglecting all other inessential features. The one-
dimensional microcavity is considered to be a rectangular
waveguide with perfectly reflecting walls of sidesLy,Lx in
which a confined photon mode polarized alongy propagates
along thez axis with wave vectorq and dispersion given by
Eq. s1d with Lc=Lx. In the ideal case without disorder, the
optically active material is modeled by a 1D lattice of inde-
pendent two-level molecules along the axis of the one-
dimensional microcavity, each one having a resonance of

energyE0 and transition dipole matrix elementPW =P0ŷ. No
direct interaction among the molecules is included, i.e., in
the absence of the coupling with the photon mode an elec-
tronic excitation is localized on a single molecule. No dissi-
pation is included, i.e., perfect mirrors are assumed and the
lifetime of electronic excitations is supposed infinite.

Static structural disorder of different kinds is taken into
account as follows. Diagonal energy disorder is included
writing the resonant energy of moleculej as Ej =E0+dEj,
dEj being a stocastic variable Gaussian distributed with zero
mean and a width corresponding to the exciton linewidthg0
si.e., the value ofg0 gives the strength of the on-site energy
disorderd. Positional disorder is included assuming that the
position of moleculej alongz is zj = ja+dzj, wherea is the
1D lattice constant anddzj a stocastic variable Gaussian dis-
tributed with zero mean and a width which is a fraction ofa.
Orientational disorder is included writing the projection of
the transition dipole moment of moleculej along the polar-

ization of the photon mode asPW j ·ŷ=P0h j with −1øh j ø1 a
stocastic variable the distribution of which peaks at the value
of unit with an average valueh̄ which is a fraction of unit
si.e., increasing orientational disorder corresponds to lower
values ofh̄, the distribution shape being that of a half Gauss-
iand.

The model Hamiltonian comprises two diagonal blocks
sthe first referring to the electronic excitations labeled by
their site indexj , the second to the one-dimensional cavity
photon modes labeled by their wave vectorqd with an off-
diagonal coupling due to the light-matter interaction given
by

FIG. 1. Density of statessin arbitrary unitsd for diagonal energy
disorder of different strength: the diamonds correspond tog0

=25 meV, the circles tog0=90 meV sthe solid line is the result
with no disorderd.
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Hj ,q ~
EjP0h j

ÎLxLyLz«bEcavsqd
expsiqzjd, s8d

whereLz is the length of a long quantization box along thez
axis. In the above, it has been assumed that the modulus of
the transition dipole momentP0 is constant and that thex
coordinate of all molecules is fixed at the antinode of the
cavity photon mode. These are not crucial restrictions as the
effects of their variations can be considered to be included in
the “orientational” stocastic variableh j. The latter is the dis-
order contribution which has the strongest effect whenh j
takes both positive and negative values. On the contrary, the
effects of positional disorder are rather weak simply because
q dzj !1, and they will not be considered in detail. Finally,
the effects of the on-site energy disordersappearing in the
diagonal electronic excitation blockd can be very significant.

In the next section, the results of a direct numerical di-
agonalization of the Hamiltonian of the disordered system
will be presented and discussed. For each disorder configu-
ration all eigenstates and eigenvectors are found and ana-
lyzed, then configurational averages of significant physical
quantities are calculated.

IV. NUMERICAL RESULTS AND DISCUSSION

In order to solve numerically the microscopic model
above, the parameters of the corresponding ideal system
without disorder have been chosen as follows. To be definite,
the most common case of a negatively detuned cavity has
been considered withEcavsq=0d=1.69 eV andE0=1.85 eV,
and the P0 value chosen to have a Rabi splittingV
=120 meV, typical for organic microcavities. To limit the
calculation load without affecting the physics of the problem,
the basis used is ofN=488 molecule sitessuex, jld spaced by
a=150 nm along the length of the cavitysLz=Na=73 mmd
and 295 photon modessuph,qld equally spaced at wave vec-
tor intervals of 2p /Lz=860 cm−1 and covering the lowest
one-dimensional cavity mode from its cutoff up to an energy
of about 2.3 eV, value at which the coupling with the elec-
tronic excitations is already negligible. We notice that the
size of the Brillouin zone of the lattice of moleculesp /a
.2.13105 cm−1 is significantly larger than the maximum
photon mode wave vector consideredqmax.1.33105 cm−1.
Thus, even in the ideal case in our numerical simulations a
large number of electronic excitationssabout 40%d remain
uncoupled. This is, however, quite acceptable as in reality
they would correspond to lower polaritons having large wave
vectors and a nearly negligible photon component. To be
consistent, in the presence of disorder, only eigenstates hav-
ing a photon component of at least 2% have been included in
the analysis. Other states are within our numerical simulation
not coupled to light, and thus correspond, with or without
disorder, to purely molecular excitations with an energy
close to the bare exciton energyE0.

For a given disorder realization, all eigenstates and eigen-
values are calculated. The eigenstates are expressed in our
basis as follows:

ucl = o
j

cexs jduex, jl + o
q

cphsqduph,ql. s9d

Excluding those corresponding to purely molecular excita-
tions as mentioned above, the wave functions are analyzed to
extract quantities relevant to characterize their degree of lo-
calization. The analysis can be done for the excitonic com-
ponent in real space usingcexs jd and for the photonic com-
ponent in wave vector space usingcphsqd, or vice versaby
the respective Fourier transforms. In particular, we calcu-
late the exciton inverse participation rate(Iex

FIG. 2. Density of statessin arbitrary unitsd for orientational
disorder of different strength: the diamonds correspond toh̄=0.78,
the circles toh̄=0.37 sthe solid line is the result with no disorderd.

FIG. 3. Inverse participation ratiostopd and mean position stan-
dard deviationsbottom, in units of lattice constantd of the exciton
component for diagonal energy disorder of different strength: the
diamonds correspond tog0=25 meV, the circles tog0=90 meV.
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=o jucexs jdu4/ fo jucexs jdu2g2) and the mean position standard
deviationDzex, and the corresponding quantities for the pho-
tonic component from the Fourier transform ofcphsqd. In
addition, to reconstruct the dispersion relations, we calculate
the mean value of the wave vectorq̄ and its standard devia-
tion Dq from cphsqd or from the Fourier transform ofcexs jd,
respectively, for the photonic and excitonic components. For
each eigenstate of the disordered system, we also determine
the ideal cavity polaritonsICPd state which has the highest
overlap with it. The latter quantity is here introduced as a
very effective measure of the global effect of disorder on the
system eigenstates. The numerical results presented in the
figures and discussed below, a part from a few examples of
specific individual eigenfunctions, have been obtained after
configurational averaging. All calculations have been re-
peated for about 500 disorder realizations and averaged sum-
ming over the eigenstates within 150 small spectral intervals
in which the entire spectrum is subdivided. The width of
these small spectral intervals is chosen in such a way that
each of them for a given disorder realization typically con-
tains about 5 eigenvalues.

The effects of disorder of increasing strength on the den-
sity of statessDOSd are shown in Figs. 1 and 2 for diagonal
energy disorder and orientational disorder, respectively. For
comparison, the solid line shows the corresponding DOS
with no disorder, in which case the square root singularities
typical of one-dimensional systems are smoothed by finite
size effects in our numerical simulations. In both figures, it is
evident a build-up of DOS at energies close to the bare ex-

citon energy between the UP and LP branches. For the case
of orientational disorder, the two DOS peaks corresponding
to the lower edge of the UP branch and the upper edge of the
LP branch are no longer resolved. Furthermore, orientational
disorder also affects the bottom of the lower polaritonsLPd
branch. In general, disorder effects are less important in the
spectral regions far from the edges of the ideal cavity polar-
iton dispersion branches.

Figures 3 and 4 show the localization properties of the
excitonic component for diagonal energy disorder and orien-
tational disorder, respectively, as measured by the inverse
participation ratioIex and by the mean position standard de-
viation Dzex. The inverse participation ratio would be of or-
der 1 for a completely localized state and of order 1/N
=1/488 for a completely delocalized one, while the standard
deviation of the mean position is of the order of the localiza-
tion radius and, for our sample of 488 sites, would be about
140a for a completely delocalized state. In both Fig. 3 and
Fig. 4, the localization effects of disorder are evident and
affect particularly the spectral region near the bare exciton
energy and, more markedly for orientational disorder, the
bottom of the LP branch. In these spectral regionsIex grows,
whereasDzex correspondingly decreases down to values of
only a few lattice spacings. Analogous information is ob-
tained from an analysis of the photonic component of the
disordered eigenstates.

In Fig. 5, we show the dispersion relation of the system
with diagonal energy disorder obtained from the calculation
of the mean valueq̄ of the wave vector of the excitonic

FIG. 4. Inverse participation ratiostopd and mean position stan-
dard deviationsbottom, in units of lattice constantd of the exciton
component for orientational disorder of a different strength: the
diamonds correspond toh̄=0.78, the circles toh̄=0.37.

FIG. 5. Energy dispersion curve obtained from the mean wave
vectorq̄ of the excitonic componentstopd and its standard deviation
Dq sbottomd for a diagonal energy disorder of a different strength:
the diamonds correspond tog0=25 meV, the circles tog0

=90 meV.
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component of the eigenstates: it is noticeable that the spectral
region between UP and LP branches where there is little
dispersion corresponding to localized states with an ill de-
fined wave vector, i.e., a largeDq. Similar information is
obtained from the corresponding analysis of the photonic
component, while in the case of orientational disorder the
wave vector of the excitonic component is even less defined.

As illustrative examples of the different character of the
eigenstates, a few specific wave functions are shown in Figs.
6–8 for the case of diagonal energy disorder withg0
=50 meV. The state in Fig. 6 is representative of the few
states at the bottom of the LP branch with a localized char-
acter, in this case withDzex.70a. Notice also the rather
broad peak in its Fourier transform aroundq=0. Yet, this

FIG. 6. Eigenfunction corresponding to the bottom of the LP
branch sE=1.663 eVd in Fourier spacestopd and in real space
sbottomd.

FIG. 7. Eigenfunction corresponding to the middle of the LP
branch sE=1.767 eVd in Fourier spacestopd and in real space
sbottomd.

FIG. 8. Eigenfunction corresponding to the spectral range be-
tween the UP and the LP branchessE=1.863 eVd in Fourier space
stopd and in real spacesbottomd.

FIG. 9. Highest overlap with ideal cavity polaritonsICPd states
for the diagonal energy disorder of different strength: the diamonds
correspond tog0=25 meV, the circles tog0=90 meVsthe solid line
is the ICP dispersion relationd.
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state is still a hybrid of excitonic and photonic components,
the excitonic weight being about 10%. The state in Fig. 7 is
in the middle of the LP branch and has a plane-wave-like
character similar to an ideal cavity polaritonsICPd state. Its
Fourier spectrum is dominated by two strong and narrow
peaks at ±q.5.53104 cm−1. The state in Fig. 8 is from the
dispersionless spectral region between UP and LP branches
and has a strongly localized character with a highly frag-
mented structure and a rather small photon component of
about 7%. Its Fourier spectrum is correspondingly structure-
less.

As mentioned above, the highest overlap of a disordered
eigenfunction with an ideal cavity polariton statesICPd can
be taken as a figure of merit of the quality of the system: the
lower this quantity is, the stronger the localization effects of
disorder are in the corresponding spectral region. For in-
stance, for the state shown in Fig. 8 it is less than 0.1, while
for the one in Fig. 7 it is 0.98. The behavior of the highest
overlap with an ICP as a function of energy is shown in Figs.
9 and 10 for diagonal energy disorder and orientational dis-

order, respectively, confirming that the localization is stron-
ger at energies near the bare exciton energy and at the bottom
of the LP branch, with a more pronounced effect of orienta-
tional disorder.

In the macroscopic model discussed above, the condition
defining the extension of the plane-wave-like cavity polar-
iton dispersion curves isDqøq. As we have detailed infor-
mation on the actual eigenfunctionucl in the presence of the
microscopic disorder, we will use the following heuristic
condition based on the value of the highest ICP overlap:
zkICPuclzù0.8. The corresponding “end points” of the
plane-wave-like cavity polariton dispersion curves can be
read from Fig. 11 for the diagonal energy disorder or the
orientational disorder. For increasing disorder strength, the
plane-wave-like regions schrink. The microscopic criterion
here used gives results in good agreement with those of the
macroscopic approach,6 as shown in Table I for a few ex-
amples, considering that in both the microscopic and macro-
scopic treatments the “end points” are not sharply defined as
the transition between incoherentslocalizedd states and co-
herentsplane-wave-liked quasiparticles is a smooth one.

V. CONCLUSIONS

In this work, we have used a microscopic approach to
describe the effects of disorder on the polariton states of an
organic microcavity. The competition between the transla-
tional symmetry breaking scattering and the strong light-
matter coupling leads to the coexistence of states with differ-
ent character in various spectral regions. Not only close to
the bare exciton energy the states are localized, but also at
the bottom of the LP branch they no longer have a well
defined wave vector, though they are still strongly coupled
with light. These microscopic results substantiate the predic-
tions of a macroscopic model and provide a complete de-
scription of the eigenfunctions of the system. The approach
developed here will allow us to calculate microscopically
other quantities, such as the matrix elements of the electron-
phonon interaction in the presence of a disorder, which are
needed for a detailed description of the behavior of cavity
polaritons in organic microcavities.
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FIG. 10. Highest overlap with ideal cavity polaritonsICPd states
for an orientational disorder of a different strength: the diamonds
correspond toh̄=0.78, the circles toh̄=0.37 sthe solid line is the
ICP dispersion relationd.

FIG. 11. Dispersion curves of well defined quasiparticles: the
black solid line and the black circles indicate the plane-wave-like
cavity polaritons in the presence of an energy diagonal disorder for,
respectively,g0=25 meV andg0=90 meV; the gray solid line and
the gray circles indicate the plane-wave-like cavity polaritons in the
presence of orientational disorder for, respectively,h̄=0.78 andh̄
=0.37. In all cases, the upper branch can be indefinitely extended to
higher energies.

TABLE I. Wave vector end pointssin units of 1000 cm−1d of the
plane-wave-like quasiparticle dispersion branches for two values of
diagonal disorder compared to the corresponding predictions of the
macroscopic approach.

kmin
LP kmax

LP kmin
UP kmin

LP mac. kmax
LP mac. kmin

UP mac.

g0=50 meV 1.1 69 62 7.7 95 45

g0=90 meV 5.0 62 65 10 83 50
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