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We study the corrections to adiabatic dynamics of two coupled quantum dot spin qubits, each dot singly
occupied with an electron, in the context of a quantum computing operation. Tunneling causes double occu-
pancy at the conclusion of an operation and constitutes a processing error. We model the gate operation with
an effective two-level system, where nonadiabatic transitions correspond to double occupancy. The model is
integrable and possesses three independent parameters. We confirm the accuracy of Dykhne’s formula, a
nonperturbative estimate of transitions, and discuss physically intuitive conditions for its validity. Our semi-
classical results are in excellent agreement with numerical simulations of the exact time evolution. A similar
approach applies to two-level systems in different contexts.
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I. INTRODUCTION function where both electrons are on the same (Having
different sping occur with finite amplitude. Doubly occupied
Quantum information processing is an active and fascinatstates which arise as the result of a measurement after the
ing direction of research with participation from various gate operation destroy the information in those qubits and
fields of physics and neighboring scientific discipliiéghis  lead to errors in the information processing. Therefore, it is
extraordinary interest has generated a fairly vast amount adesirable to reduce the probability of such errors, i.e., the
theoretical and experimental studies. Possible eXperiment@bcurrence of doub|y Occupied states, in the resumng two-
realizations of quantum information processing are presentlg|ectron state after the gate operation, while it is necessarily
being investigated. Among the different approaches, those ifjite during the operatioR° If the error probability can be
a solid-state setting are attractive, because they offer the PQufficiently reduced, error events can be tolerable and
tential of scalability—the integration of a large number of o hqied with quantum error correction schemes. An effective
quantum gates into a quantum computer once the Ir‘d'v'du%ay of guaranteeing error suppression is to maintain nearly

gates and qublts. are established. With that in n_wlnd_, SEVeIaiabatic time evolution. Doubly occupied states then corre-
proposals for using electron and/or nuclear spins in solid-

state systems have been put forward in recent yeAGpe- spond to corrections to adiabatic evolution, which are often

cifically, in Ref. 2 it was proposed to use the spin of electronsﬁa"ed hnona?kl]al?a;';]lc tr;nzlt?ns. _Num_erltcal S'm;"t?]t'%sl
residing in semiconductor quantum dots as qubit3In this ave shown hat the adiabatic region, In terms of the puise

paper we revisit the quantum dynamics of gate operationQ"j‘rameter_S $UCh as ramp time _and amplit_ude, is _rather large.
between qubits of this type. Such two-qubit operations aré)” g heuristic Ievgl, this numerlca! reSL_lIt is plausible oh th(_e
performed by varying the amplitude of electron tunnelingbas's of the classic papers on adiabatic quantum motion in
between the dots via external electric potentials. In a generiVO-level systems by Landat Zener;® Stueckelberd? and
scenario, the tunneling amplitude between the dots is zerBosen and Zenét. For an overview see Ref. 22.
(or, more precisely, exponentially smaiefore and after the In this work we study the quantum dynamics of the two-
gate operation, while it is finite and appreciable during suctfjubit gate operations described above and use Dykhne's
a process. Thus, the typical time dependence of the tunnelinggmiclassical result to estimate the probability of nonadia-
amplitude is a pulse roughly characterized by its durationpatic transitior’® The applicability of Dykhne’s formula is
amplitude, and ramp timéee Fig. 1 During such a pulse, analyzed from the standpoint of the theory of semiclassical
the tunneling amplitude is finite and essentially constant, andpproximations. These semiclassical estimates are found to
both electrons can explore the total system of two quantunbe in excellent agreement with numerical simulations of the
dots. Therefore, their indistinguishable fermionic character iexact time evolution. Moreover, in a certain limit our model
of relevance®'®1” In particular, in such gate operations is integrable, allowing us to explicitly calculate and interpret
entanglement-like quantum correlations arise which require ¢he corrections to Dykhne’s formula.
description different from the usual entanglement between This paper is organized as follows. Section Il reviews the
distinguishable partiefAlice, Bob, ...) in bipartite (or mul-  derivatiort® of an effective two-level model. In Sec. IIl, we
tipartite) systems. In such a case the proper statistics of thpresent our main result—the asymptotic estimate of double
indistinguishable particles has to be taken into accéttl’  occupancy, which in Sec. IV is compared with an integrable
Another important aspect of having a finigs opposed to model and a numerical integration of the Schrédinger equa-
infinitely high) tunneling barrier between the dots is that it tion. In the Appendix, we construct the scattering matrix for
necessarily leads t(partially) doubly occupied states in the the integrable model, which has three independent param-
two-electron wave function, i.e., contributions to the waveeters.
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Pulse, t, A=B(-y,x,0)/2 the Fock-Darwin ground state of a single
05 - dot with harmonic confinement centered around
=(£a,0,0 reads

04

Ramp — Mo _Mo o — 2.2
03 Time ralXy) =\ exp — = o[(xF )7 +y]

i a

02 X exp(:— —2), 3
0.1 Duration

wherelg=v#c/eBis the magnetic length, and the frequency

o o w is given by w?=wi+(w /2)?> where o =eB/mc is the

-10 0 10 usual Larmor frequency. From these nonorthogonal single-
Time, ¥z particle states we construct the orthonormalized stpgs

FIG. 1. A realistic profile of the tunneling puld23), labeled and|B) with wave functions

with the characteristic duratiof = 137) and ramp time scales. The

pulse shown has dimensionless stren@d‘%. 7 J1-25g+ 92 Pra=0¢-a)
Il. MAPPING TO AN EFFECTIVE TWO-LEVEL SYSTEM
For the purpose of studying double occupancy it is prac- (rB) = V1 -2Sg+ 92(9"—3_ 9¢+a), ()

tical to examine the dynamics of the quantum gate operation
in a subspace spanned by singly and doubly occupied state&ith S being the overlap between the stat@ and g=(1
Following Ref. 10 with only minor changes of notation, we —V1-S%)/S. For appropriate values of system parameters
now detail how to reduce the description of a system of twosuch as the interdot distance and the external magnetic field,
coupled quantum dot spin qubits to an effective two-levelthe overlapS becomes exponentially smélln this limit an
Hamiltonian. The system is described by a Hamiltonian ofelectron in one of the states), |B) is predominantly local-
the formH =T+C, whereC denotes the Coulomb repulsion ized around’=(+a,0,0). In the following we consider this
between the electrons ant==;_, ;h; is the single-particle case and use these states as basis states to define qubits, i.e.,
part with qubits are realized by the spin state of an electron in either
1 R orbital |A) or orbital |B).
hi:—<5i+-A(ri)> +V(F)). (1) An appropriate basis set for the six-dimensional two-
2m c particle Hilbert space is givefusing standard notatigrby

The single-particle Hamiltoniah, describes electron dynam- (he three spin singlets,

igs confined to thexy plane in a perpendicular magnetic field 1, . .
B. The effective mass is a material dependent parameter. IS = E(CATCBi - cAchT)|O>, (6)
The coupling of the dotéwhich includes tunnelingis mod-
eled by a quartic potential

1
2 S2) = =(CaCa, + €51 Ca)10), (7)
_ _ mwo 1 \‘1’2
V(M) =V(xy) = T(@(XZ —a)’+ y2> : )
which separates into two harmonic wells of frequengy 1S5) = %(C;TCZL_CETCELNO% (8)
(one for each dotin the limit a>a,, wherea is half the V2

distance between the dots amgk A /mwy is the effective  and the triplet multiplet,
Bohr radius of a dot.

I\ — A1 +
Following Burkardet al® we employ the Hund-Mulliken [T =cxc5/(0), 9
method of molecular orbits to describe the low-lying spec-
trum of our system. This approach concentrates on the lowest R AP + o
orbital states in each dot and is an extension of the Heitler- 7= \;E(CATCBl +Ca Ce1)[0), (10)

London method.[In the following, we assume for simplicity

that hwo>Uy i.e., (s_ingle particle orbital level _spa_cimg> Y :C/:TCET|O>- (11)
(quantum dot charging energyo that orbital excitations can

be safely neglected. Such a situation is reached for suffiAs the Hamiltonian conserves spin, the three triplet states are
ciently small quantum dot€] The Hund-Mulliken approach degenerate eigenstatggpically we can ignore possible Zee-
accounts for the fact that both electrons can, in the presend®an splitting8) and have the eigenvalue

of a finite tunneling amplitude, explore the entire system of Y (12)

the two dots, and therefore adequately includes the possibil- trp 1t

ity of doubly occupied states. In the usual symmetric gaugevhere we have defined

115315-2



DOUBLE OCCUPANCY ERRORS IN QUANTUM. PHYSICAL REVIEW B 71, 115315(2005

&1 =(Alh4|A) = (B|hy|B) (13 4 1
+=(Aln & CalChil0) = = (% = SD). (20

and the expectation value of Coulomb energy, V2
V_=(TYC|TY), V. =(S[C|S)). (14) These two states are eigenstates in the ¢84seV_ andty

=0 for which the singlet-triplet splitting vanishes.

An important further observation is that, as a consequence As discussed in Refs. 2, 8, and 10, swapping may be
of inversion symmetry along the axis connecting the dotsachieved by the action of a gate that lowers the potential
the Hamiltonian does not have any nonzero matrix elementBarrier between the quantum dots. If the duration and ampli-
between the singlet staf8;) and other states. Hend&) is,  tude of a tunneling pulse are adjusted appropriately, the rela-
independently of the system parameters, an eigenstate. Tkige dynamical phase between the singlet and the triplet
eigenvalues of the triplet anié;), however, do depend on states accumulates a shift of
system parameters. The Hamiltonian acting on the remaining

- 1 o]
space spanned H$,) and|S,) can be written as _J A eip(t) - £gd)] = (21)

B 1 Uyl ty -
H=2e% 2UH Ve 2 <tH - 1)’ (15 and the swapping operation between stdie3 and (20) is

performed. However, during the operation the s{&¢ is
where coupled to]|S,), and they evolve according to Eq15).
4 1 Double occupancy errors are thus generically introduced.
ty=- —<<A|hl|B> + —(SZ|C|81)) (16) The reduction of the dynamics to the time evolution of a
Un 2 two-level system relies on the fact that the system has inver-
and sion symmetry along thg axis in real space connecting the
dots. This symmetry can be broken if odd powers of the
Uy =(S,[C|S,) — V.. (17)  particle coordinateg; are added to the Hamiltonia), for
example, the potential of a homogeneous electric field. The
jpreaking of inversion symmetry introduces additional matrix
elements betwee|$;) and the other two singlets leading to

The nontrivial part of Eq(15) is a simple Hubbard Hamil-
tonian on two sites and can be identified as the Hamiltonia

f i- obj in magnetic field havin . e .
0 apseudospl% object in a pseudomagnetic field having aan effective three-level Hamiltonian. However, as it was

componentJy in the Z direction andUgty in the X direction : . X . L ;
b H HH 4 Shown in Ref. 10, this more inclusive Hamiltonian has quali-

of pseudospin spacéNote that this pseudospin is not relate tatively th i i diabatic d
to the spin degree of freedom which constitutes the o)ubit..a Ively the same properties concerning nonadiabatic dynam-
aas the two-level system on which we shall concentrate in

The basis states themselves are eigenstates only in the ¢ % .

of vanishing tunneling amplitudig, where|S;) is the ground € following. . .

state andS,) is a higher lying state due of the Coulomb .SO far we have not _cons@ered a possible Zeeman_cou-

(Hubbard energy. In all other cases, the ground state has aﬂl'ng to the_ elect_ron spin. Th'S.WOUId not change th_e situa-
tion essentially since all states involved in the swapping pro-

admixture of doubly occupied states containedSj). The . .
energy gap between the triplet and the singlet ground state f‘sess(|T°>, IS0, |Sp), and possiblySy) have the total spin
quantum numbe&=0.

UH UH !f_Z
Eyip ~ 8gs= V-~ Vi — — + 1+t (19
2 2 IIl. ANALYSIS OF NONADIABATIC TRANSITIONS
A key challenge for state-of-the-art quantum information In this section we use Dykhne’s formula for nonadiabatic

processing is the construction of systems composed of twtransitions to derive an asymptotic expression for the prob-
coupled quantum dots which can be coupled to perform swagbility of final double occupancy, given physically motivated
operationdAsyy i.e., unitary two-qubit operations which in- properties of the two-qubit operation.
terchange the spin statégubit9 of the electrons on the two As described in the preceding section, the modulation of
dots. By combining the “square root}lé’\f, of such a swap the tunneling barrier during the swapping process induces a
with other isolated-qubit manipulations one can construct &oupling between the singly occupied qubit s{&¢ and the
quantumxor gate. A quantunxor gate, along with isolated- doubly occupied statgs,). Their dynamics are governed by
qubit operations, has been shown to be sufficient for thehe effective Hamiltonian
implementation of any quantum algoritifhHence a practi-
cal and reliable realization of a swap gate would be an im- —_ %( 1 t ) (22)
portant step toward the fabrication of a solid-state quantum g -1

eff —
2
computer. A swap operation in the present system is a unitar . .
transformation which turns a state having the qubits in dif—P(1 the S, ;) basis. The terms omitted from EGLS) do not

f contributg to transitions,_ because the identity operator in the
erent states, say, IS, » basis commutes with the remainder of the Hamiltonian.
1 The large energy offsall; between singly and doubly occu-
CaiCq/[0) = E(|TO>+ ISD), (19 pied states, primarily due to the Coulomb repulsion, is per-
turbed only by an exponentially small additive quantjyo-
into a state where the contents of the qubits are interchangegoprtional to the overlapS) during the swapping operation
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Eigenvalues, &/ (U,/2) perturbation theory, there are no transitions, and the leading
behavior of the general solution is simply the dynamical
phase of each component eigenstate

_—
(1)) ~ eXP[ Igf dt’s(t’)] |E1(O)Ex(= )| ih(= =)

_—
+ exp{— I%f dt’S(t’)} | E2(ONEx(= )| ihl= =),

_1v

(26)
-10 0 10
Time, /1 where [¢; 5(t)) are the instantaneous eigenstagiven ex-
FIG. 2. A profile of the instantaneous eigenvaluest} corre- p!icitly in Eq. (54)] of Hamiltonian (22) corresponding to
sponding toA=2 and the pulse shown in Fig. 1. eigenvalues
and is hereafter assumed to be a constant. Our specification Fe()= F ﬁvl +tﬁ, (27)
of the pulse(Fig. 1) 2
ty(t) = 6 23 respectively. In general, the approximate solution could also
: cosht/7) include a factor representing Berry phase. However, for a
coshT/27) real symmetric Hamiltonian such as Eg2), Berry phase is

irrelevant, because the Hamiltonian has an inherent planarity.
with dimensionless strength is considered to realistically In pseudospin one-half notatioh.=H(t) -, the time evo-

reflect t_he tunneling amplitud_e that would arise from aytion of the pseudomagnetic fiel&(t) is in a plane. If the
(rjnodulaufor;} of the gate pOtint'/‘Lﬂ'I]he exponential gepen- azimuthal axignorth polé is chosen to lie within that plane,
ence of the ramping near £T/2 has its origin in the eX- +he ool angle subtended by the pseudomagnetic field van-
ponenual sensitivity O.f the coupling to th.e gate vqltage aNGshes identically. Although Berry phase is out of consider-
|fn turn the gxpohnentlal ddecay .o%éhehsmglle—part'lclle WaV€4tion, there are interesting circumstances where Berry phase
unctlofnds (3) .'n_lf € (;nter ot r(ejg'sg '/;— ehpu S€ MIMICS @ s relevant to transitions. It can correct the transition
stedp Oﬁ huratlonhan magnitu He w OS% ra_mplnfg ﬁn amplitudé® and produce topological selection rules for spin
and off has a characteristic time The perturbation of the tunneling?”-28 Our problem is one of a class initiated by the
mstantaneog.s .e|genvalue§ by_ the pulse is shown in Fig. 2. work of Landau, Zener, and Stueckelb&?° However, we
The Schrédinger equation is emphasize that for our modgtith the pulse specified as Eq.
d (23)] the linearization of Hamiltonian matrix elements near
i—| (1)) = Hegr(t)| (1)) (24)  the times where adiabaticity is most severely violated is not
dt applicable and leads to an incorrect result. As we will see the

. , . h f th Ise is i .
Our task is to find the component of double occupancy in theS ape of the pulse Is important

final state(S,|#(=)), given that the prepared state is purely
singly occupiedJ<Sl| ,/,(—oo)>|:1_ A. Application of Dykhne’s formula

Our model involves three dimensionless scales, assigned
for our purposes as followss, A\=Uy7/2%, and »=T/r.
Presently, the case of interest is

Returning to our model, we observe that if the time inter-
val t e (-,) is divided into two domain$<0 andt>0,
and in the limity=T/7> 1, the pulsg23) is approximated

A>1, p>1. (25 Y
The first of these conditions reflects the adiabaticity of the ) t<0
problem. The second requires that the ramping on and ramp- 1 + g UD=(T27)"
ing off of the pulse be temporally well-separated and distinct th(t) = s (28)
events. m, t>0.

Let us pause and for this paragraph review the familiar
notions of transitions under the action of a time-dependent
perturbation. The pulse acts as a transient perturbation arld each domain the pulse behaves as a step, and the dynam-
otherwise the Hamiltonia22) is diagonal. By force of the ics are integrabldésee Sec. IY. We will focus first on the
adiabatic theorem, the probability of transition among eigenintervalt<0, where the probability of transition to a doubly
states vanishes in the limit— o, where the ramping on and occupied stateP. may be estimated with Dykhne's
off of the pulse is adiabatic. In the zeroth order of adiabatidormula?®
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Im(9) 10° ‘ ‘
3 semiclassical estimate
* . ———- numerical simulation
QRIS T =2 |
Ca n=50 NW
£ 107
________________ 3
"""""" 2
-2 72 Re() £10"
-13
FIG. 3. The analytic structure of the functieft) shown only in 10
a segment of the upper half plane. The contdyis associated with .
transitions that occur due to the ramping on of the pulse, while ey 02 04 08 0.8 1
contourCy, is associated with the ramping off. By Cauchy'’s theo- )

rem, an integral on the contody, is equal to the integral on the

~ . FIG. 4. The probability for nonadiabatic transitions for 2 and
contourC,. Bold lines represent branch cuts, dots represent branch . . : .
. . 7=50 as a function ofs. We compare our semiclassical estimate
points, and poles are denoted with<a

according to expressio(85) with results from numerical simula-
tions of the exact quantum mechanical time evolution as done in

4 4 Ref. 35. The results are in excellent agreement.
P = (S0P ~ exp{— ~im f dzs(z)] (29 e e ?

Re(ty)
! and P_=P-. The oscillatory first factor of Eq(31) is the

where the approximatiof28) is used implicitly for the in-  jnterference of the dynamical phase of each term of(Ba).
stantaneous eigenenergies(t) defined above by Eq27).  The magnitude oP is dominated by the second factBr
The turning pointt=t;, given explicitly below, is a&complex  whose exponent is given by the following integral:
root of the functione(t); in other words, it is an intersection i 1y
of the energy surfaces of the two instantane¢timzen”) _a |mf'”(\1+ JHi arctart2) dz{l +< ez> }

| 1+

eigenstates. Our model is the patching together of two do- n(V1+69)
mains of time, and transitions that occur during0 andt —
>0 interfere. The expression for the probability of transition =-2m\(1+\1+ 8- 9). (33
during the time evolution front=— to t=c is Substituting this result in E¢29) we have
— 2 —
P = (S| y(>0))| p_ ~ g 2man1s-g). (34)

2

exp{l—f dz;s(z)} + exp[l—f dZS(Z)] From Eqg.(31), we have our main result, an asymptotic esti-
hlc, hle, mate for the probability of final double occupancy,

exp{g ReJ dZs(z)} P~4 sinz<£ Ref dz.s(z)>e‘2“<l"\“52‘5), (35)
Ca ty
2 i i which is shown as a function af in Fig. 4. The probability
XeXp[_ % ImLe(t ) dZs(Z)] - exp{ﬁ ReJC dZs(Z)] P is characteristically nonperturbative in the adiabatic limit
' ® r—o with Uy, fixed, or equivalentiy\ — . Hence, the di-

2 ‘2 z mensionless quantity associated with the exponential sup-
xexp[—% Im Ldt)dz(s(z)] (30 pression is\ and has been called the “adiabaticity param-
2 eter.” For p=T/7>1, the approximatior{28) allows us to
1 t, estimate the argument of the prefactor of E8p) to expo-
=4 sinZ(% Ref dm(z)) P_, (31)  nential accuracy,
tl 1 tz = T o

where the contours, , are shown in Fig. 3, and according to Ref dze(2) = V1+ &\ - 2M{In(V1+ &+ 1)
the sign of the integration variable, <§ez), one or the 4
other of the approximation@8) is used. The turning points “V1+&IN[2(1+ 8]+ SIn(N1+ &+ 6)

t=t, , appearing in the limits of integration of E¢30) are —_—
chosen as the two roots eft) that are closest to and above +(V1+6° = 1)In(8)} + O(e™?), (36)
the real time axigsee Fig. 3 The oscillation with respect to the duration of the pulsis
T —\ reminiscent of a similar factor in the Rosen-Zener model.
t1,= + (5 +7in(v1+ 52)) +ifm—arctatd)]. (320  The phenomenon of pulsed perturbations that return the full
amplitude/occupation to the initial state has been studied in
They are nonreal because the Hamilton(a®) is nondegen- the context of atom-laser interactiotfs®? In Figs. 4-6, we
erate for real times. Equatiof81) follows from Eg. (30), compare our semiclassical estimd®&b) with results from
because the symmetry of the pulse implies(thr=Im(t,) numerical simulations of the exact quantum mechanical time
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FIG. 5. The probability for nonadiabatic transitions for4 and

50 as a function of FIG. 6. The probability for nonadiabatic transitions for 1 and
n= .

»=50 as a function ob.

evolution, tfolloc\j/\ng% Ref. llO. tBOth resuall;s are |fn excelll(ent not exhaust its capacities. The reason lies in the following: a
agreement and differ only at very smal i.e., for wea basis of eigenstate§; 5(t)), when extended into the complex

puls_es. O.f course, the nonadiabatic transition pmbab'“t%ime plane, is multivalued. In particular, as a basis state is
vanishes in this limit, whereas the semiclassical approxima;

. . o analytically continued across a branch cut of the function
tion breaks dowri{see Sec. Ill ¢ This regime is beyond the . o . . .
exponential accuracy of Dykhne’s formula. The integrabilitys(t)’ its long-time asymptotics are discontinuously changed.

of our model allows us to make precise statements about thlg accord with our above two-level problem, we uniquely

form and magnitude of the corrections to Dykhne’s formuIaSpeC'fy the basis by its asymptotics,
(see Sec. Y. For example, in the limih>1 ando\ <1 we |&1,(1) =[S ) as t— *oo. (37

have from the expansiai63) thatP_ ~ (27\)? € 4™, while . . _ . _
in the same limit the result of Dykhne's formui&5) gives The multivalued nature is not manifest on the real time axis,

only the exponential factag™*™ without information about ~Pecause owing to the nondegeneracy of the spectuit),

the prefactor. This explains a trend among Figs. 4—6, namel;},he brfmch points are nonreal. We can choose a single-valued
the increasing range, in terms 6f of validity of Dykhne’s  basis|&; 5(t)), which makes reference {é, 5(t)) but has fixed
formula with increasingh. The value for the adiabaticity asymptotics, by defining rules for continuing the basis states
parametei =2, represented in Fig. 4, corresponds to a ramgacross branch cuts. Equivalently, this new basis is said to be
time r=4#/Uy, which was identified in Ref. 10 as a practical defined over a Riemann surface with she@spies of the
lower bound to ensure sufficient adiabatic behavior in a gateomplex time plane corresponding to each of the two
operation between two quantum dot spin qubits. It is interbranches of the functiofe(t)?]*2. (The Riemann surfac®
esting that Dykhne’s formula remains accurate for smallefq; the eigenstate baS@l,g(t» has four sheets, while the
values of\ in particularn=1 as seen in I_:lg. 6. The reason is Riemann surfaceR, for the function [¢(t)2]¥2 has two

fchat the result$35).a.nd(.61) havg an incidental fact.or of2 sheets. Of the four sheets &,, two correspond to one

in the exponent, giving in practical terms the requirement forbranch off(t)2]2 and the other two correspond to the other

exponential suppressiona > 1. branch of[e(t)?]*2 Therefore, the phases, , and j; , of

The expression&34) and(35), along with Figs. 4-6, com- Eq. (38), though constant on each sheet, can assume different

prise our main results. For the remainder of this section, WE lues on different sheets @®,.) Crossing a branch cut

will address the justification and limitations of these results.means passing to the other sheet of the Riemann surface. We

ign the following relations among the eigen :
B. Origin of Dykhne's formula assign the following relations among the eigenstates

Dykhne derived a concise expression for nonadiabatic  [€4(t)) =€2& (1)), t e sheet 1 ofe(t)?]"2,
transitions from a local analysis of the Schrddinger equation
in the vicinity of the turning point3 Dykhne’s formula can [ ,(0) =P, (1), te sheet 2 ofs(H)ZY2, (38)

be viewed as a semiclassical approximation, and an elegant

interpretation and proof was given by Hwang and Pechiikas where a; , and B; , are phase definitions that are chosen to
(see also Ref. 34 We will briefly discuss the key elements maintain continuity of the basis; ,) across the branch cut.
and scope of the proof. Their method was to study the SOIUGiven |<El(—oo)|¢(—oo)>|:1, the conclusion of the adiabatic

tion of the Schrodinger equation in the complex plane of thetheorem mav be restated on a Riemann surface as
independent variable, time. According to the adiabatic theo- y

rem, the projection of the solution onto any eigenstate other r

’ o ; . . . t)|(t 10t as o, 39
than the initial eigenstate approaches zero in the adiabatic (E®lp0) — ™ (39)
limit. One might suppose that weak statement is all the adiawhere 7 is the characteristic time scale for variation of
batic theorem can tell us about transitions; however, it doe&{(t). The only exception to Eq39) is for times within
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Im(t) Sheet 2 existence of a complex time contour th@) connects the
two sheets of the Riemann surface af@l on which the
zeroth-order approximation of adiabatic perturbation theory
is the correct leading behavior of the solution in the adiabatic
limit. These are sufficient conditions for Dykhne’s formula to
give the correct asymptotic form of the transition probability
in the adiabatic limitn — c. Having established the existence
of such a contour, one can calculate a more precise value for
the prefactor of Dykhne's formula by applying time-
dependent perturbation theory along the contour. We expect

FIG. 7. An example of a Riemann surface with two sheets, aDykhnes formula to break down when the contour ceases to

branch point at=ty and a contou€ corresponding to a transition. exist. At the limit of its range of validity, the higher-order
terms become comparable to the zeroth- order term. Intro-

ducing the unitary transformatiobl that diagonalizes the
Hamiltonian, i.e. UTHU=ga3, we can write the Schrodinger
equation in the basis of instantaneous eigenstates,

Re(t)

Sheet 1

O(7™\"?/3) of a turning point, for there the semiclassical cri-
terion (45) is invalid. As remarked above, the zeroth-order
approximation(26) of the solution ag— « is the dynamical d
phase. The zeroth-order approximation may be extended into iﬁa|§(t)> =[e(t) oz +ha(t)]|£(1)) (42)

the complex plane by evaluating the dynamical phase on a

contourC. Continuing with the above example, a state that iswith the off-diagonal perturbatio@(t)=-UTisU. A domi-
purely singly occupied &t=- is for complex time given by  nancy balance among the terms gives the condition for the

accuracy of the zeroth-order approximation,

|yt)) = exp{— I%f d4- 8(2)]} |E1(t)>, (40) le(t)]
c = = lao) “3

where( is a contour fromz=-« to z=t. The amplitude of

transition is readily obtained as the projection of the solutionyy in scaled timex=t/r,

onto the doubly occupied sta}§,), ast—« on the second

Riemann sheefsee Fig. 7 of [¢(t)?]*? i.e., |8(X)|7‘>
h

(Sy] () = €79, () | (=2))

Ja(x)]. (44)

. For our model of the dynamicg,= 7 is the largest scale and
~ gio1 gy _'_J dd-¢2)]t, (41 |é|_~1. The condition Eq(44) must be maintained at all

hle points on the contour. Applying Ed44) on the real axis,
where|e(x)| ~ Uy, gives the adiabaticity condition> 1. Ad-

where the contoug crosses the branch cut emanating fromditionally, in order to connect two Riemann sheets, the con-

e branch bt it i clset o 1 1) 2, DM o T s benuoen wo iy ponce i 3
Py q P " . where|e(x)| ~ sUy, giving the conditions\ > 1.

In the adiabatic regime, in contrast to the perturbative S S
Beginning instead from an intuitive approach, we can

regime, the leading contribution to transitions comes fromevaluate the adiabaticity of the dynamics along a given con-

the zeroth-order term of perturbation theory instead of theEOur To test whether a given contour is adequate, we can

first-order term. By retaining only the zeroth-order term, it . o . .
. ' “exploit the analogy between quasiadiabatic dynamics and
appears that we have neglected completely the coupling . . . : : o
semiclassical scattering. Recall the semiclassical criterion

between states. However, the coupling enters implicitly in
the multivalued functiofie(t)2]2 and influences the location AA)  dA
of the turning points—the complex roots sft). Transition N T a <1. (45)
amplitudes are obtained by carefully considering the differ-
ent branches of this function. In the following section, we The analog of the de Broglie wavelengttx)=27#/p(x) in
consider the validity of keeping only the zeroth-order term. scattering problems is the periotit)=2x7i/z(t). In other
words, the conditiori45) says that the change of period over
the course of one period is small. We now require that the
semiclassical criterion be obeyeaverywherealong an ad-
The theory of semiclassical approximations, especiallymissible contour, i.e., one that connects the two Riemann
WKB analysis, provides a foundation from which to evaluatesheets. To find an admissible contour, we must appeal to the
the validity of Dykhne’s formula. The calculation of nona- analytic structure of the eigenenergyt); see Fig. 3. For
diabatic transitions is closely related to the semiclassicatlarity we will focus on the time interval<O and operate
approximatior® because the semiclassical liniit-0 can be  under the approximatio28). The singularities of(t) are
mathematically equivalent to the adiabatic limit>~. An branch points at=—(T/2)-7In(-1£i8) and poles att=
essential element of the proof by Hwang and Pechukas is the(T/2)-rIn(-1). If we agree to define a branch cut connect-

C. Validity and accuracy of Dykhne’s formula
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ing the nearest and next nearest branch points to the real time Ho, t<0
axis, =y >0 (49
T Tt 4 with
t,=- 5" rInV1 + & +id 7 - arctarid)],
1 __ &
~(t/7)—(T/27)
T ho=_Yu L+
t3=—§—rlnv1+52+|1-[7-r+arctarﬁ5)], < 2 5 ’
1 + e UD-(T27) -1
respectively, then an admissible contour is one that crosses
this branch cut exactly once. For the semiclassical criterion 5
to be obeyed, the admissible contour cannot pass too close to 1 T U129
: . . U 1+em7er
a branch point. In essence, dfis too small, the contour is H.o=--—"H . (5D
pinched between the branch pointsandt,. Evaluating the 2 2 _1
maximum ofdA/dt on a contourC that crosses the branch 1 + et/n=(1/27)

cut betweent=t; and t=t; we arrive at the conditions o ) )
>\"1. Together with the adiabatic limit>1, we have the The HamiltoniansH . andH- can be obtained as a special
following conditions on the interdependence of the physicaFase of

parameters: X
b a+ctanh—-

\~ Unr >1, (46) Hexact= X (52
h a+c tanhé -b

by identifying ic=a=-6\/2, b=—\ and rescaling timex
=t/ 7+ T/27, respectively. The Schrodinger equation

&JHT

S\ ~ >1. (47)

Each of these dimensionless quantities is a product of a char- i3] (X)) = Hexacl (X)) (53
acteristic energy and time scale. If these conditions are nqgg exactly solvabi® (see the Appendix
satisfied, there does not exist a contour on which the motion || analogy with one-dimensional scattering, the transition

is adiabatic. The integ_rabilitySe_c. V) of our model allows amplitude from a singly occupied std) to a doubly oc-
us to mvestlggte the intermediate Feg'.ﬂf‘@l gnd&<1, . cupied statdS,) may be viewed as an off-diagonal element
where Dykhne's formula cannot be justified with the analysisyt e scattering matris that connects the coefficients of the
of Hwang and Pechukas. asymptotic final states to the asymptotic initial states. The
asymptotic states are the limit &s> £ of the instantaneous
IV. IDENTIFICATION WITH AN INTEGRABLE MODEL eigenstateg&; 5(t)) of Hey corresponding to eigenvalues

The result obtained by Dykhne’s formula in Sec. Il A is +2(t), respectively,

now shown to be equivalent to the exact result for an inte- 1 [—\Ve—-\
grable model in the appropriate limit. &LO)y=—7=| :

Under the approximationg28) for the time intervalst V2e\ Ve+h
<0 andt>0, the Hamiltonian

&() = — (‘f ' x) (54
U 1 t 2 = ’,—— | .
9ﬁ:_7H<tH _H1> (48) V2e \Ve =\

The leading behavior of the long-time asymptotics of a gen-
is approximated by eral solution has the form

.t st
ay ex _fli_ f dt'[- &(t")] |fl<t)>+a2ex;a[—'g f dt's(t')]lsz(t» ast — —oo
(b)) =

b, ex

i (" i (" (55
—ﬂ dt'[-e(t")] Ifl(t)>+b2e><p[—gf dt’s(t’)]liz(t» ast — o,

115315-8
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and the scattering matrix relates the coefficients, Im()

(g ju Lt
by 2] + S
=S . (56) nT N
b2 ay !V Nty
Referring to the statement of our problem in Sec. I, the e
amplitude of final double occupancy is the elem8&ntof the
scattering matrix, which we parametrize as |
S S T2 Re(t)
S:< P (57
=S S FIG. 8. The contourC gives a subdominant correction to

. . . . Dykhne’s f la.
The scattering matrices. and S- associated with the ykhnes formuia

HamiltoniansH . and H~. may be obtained by substitution
from the exact scattering matri®’ (derived in the Appendix
associated with the Hamiltonigh e,,; By the symmetry of
the pulse, we havé‘>:ST<. Patching together the two do-
mains of time evolutior(49), we find the scattering matrix

problems this type of nonperturbative correction is domi-
nated by perturbative corrections along the contour—those
mentioned in Sec. Ill C. The striking absence of perturbative
corrections in the limit\, SA>1, is a unique artifact of the
" i 2 integrability of our model.
S=S_ ex %UsRef dte(t) |S<, (58) With a knowledge of the exact result, we can also inves-
f tigate the intermediate regime>1 and 6\ <1, where the
where the integral of the exponent has been estimated in E@nalysis of Hwang and Pechukéec. 11l B) cannot be used

(36) and the elements a&$_ are obtained from/\), to prove Dykhne’s formula. In this limit, the transition prob-
) . ability (61) becomes
(5)1= 2u ra2nrai22uw) N
TN AT +iIN+i0T(p+in—ioN) P~ (2mon)"e™™. (63)

(59) Although Dykhne’s formula does not apply in this limit be-
causes* and not\ is the Iargis'i scale, it nevertheless gives
; s the correct controlling factog™*™ of Eq. (63), except ford
(S)12= 1/ 21 - .l"(|.2)\)1“( '?’“) — , that are exponentially small with respecttoThis exponen-
p=AL(=ip+in+iol(-ip+ik—ion) tial factor is resilient and remains the controlling factor for a
(60 range of parameters beyond the naive expectation based on
the arguments of Sec. Ill C.

where u=\\1+6% Dykhne’s formula(34) for P_ is recov-

ered as exactly the leading term @fS 2 in the limit
y 9 A5z V. CONCLUSIONS

N, ON>1,
— 2 The dynamics of two coupled quantum dot spin qubits
P.=[(82)2 ;
can be mapped to an effective two-level system, where nona-
_sin{ (V1 + F -1+ ]sinf— mA\(V1+&-1-9)] diabatic transitions correspond to double occupancy. We
B sinh(27\)sinh(2mA1 + 6) have estimated the probability of final double occupancy

with Dykhne’s formula. In the adiabatic regime, the perva-
(61) sive feature of transitions is their exponential suppression by
. . a dimensionless adiabaticity paramelerOur main result
~e—2m(1+\’1+52—6)(1 — g 2m(6+1-1+D) ). (62) (35 was expressed in terms of the dimensionless quantities
. ) . N\, 6, and 7. An integral constrain{21) on the swapping
The nonperturbative corrections are typically very small. Forgperation gives one relation among the three dimensionless
A=2 and5=.1/2, therelative con_tr|but|on of the second term parameters. The problem is uniquely defined by specifying
of Eq. (62) is less than 1%. This accounts for the excellentyny two, and in a solid-state setting, conservative estimates
agreement in Figs. 4-6, between the probability of doubleyra) ~2 ands~1/2. The probability of double occupancy
occupancy as given by the semiclassical re@8} based on  p~10-10s sufficiently rare that the operation of a quantum
Dykhne’s formula and the result of a numerical integration Ofgate will not be obstructed by this type of error. It is note-

the Schrddinger equation. We can interpret the subleadingorthy that the probability of double occupanégs) has
term in the parentheses of E@2) as the contribution from  odes for

the contourC of Fig. 8, which crosses the branch cut three .
times. The sign of the correction is negative and arises from 2 o

the factor e®1 associated with matching the bagi38) k”:Reft dte(t) = V1+ &y, ke Z. (64)
across the branch cut. Similarly, it may be possible to obtain !

further subdominant corrections to Dykhne’s formula byHowever, this property is not immediately relevant to the
summing over all inequivalent complex paths that give dis-suppression of transitions, because the oscillatory factor
tinct positive values for Inf.dts(t).%6 For many physical sir’(yV1+&°\») of Eq. (35) vanishes algebraically and for it
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to provide an improvement upon the exponentially small fac- b
tor from Dykhne’s formula, the argument would have to be tang = o (A5)
tuned exponentially close tkw. Thus, naively the errors a+ctanh§

associated with inaccuracies in satisfying the integral swap-
ping constrain(21) will be much greater than double occu- the instantaneous eigenstatgs ,(x)) corresponding to in-

pancy errors. Other important sources of error are dephasingsntaneous eigenvalues ’
and decoherence of the qubit states.
We have reviewed a physically motivated derivation of X\ 2
te(x)= + \/b2+ (a+ ctanh—) ,

Dykhne’s formula®® The theory of semiclassical approxima- (A6)

tions underlies Dykhne’s formula and its validity is appropri-

ately judged within that framework. The semiclassical estirespectively, are parametrized as
mates obtained from this approach are in excellent
agreement V\_nth numerl_cal S|mulat|ons.of the full quaptum— e+ <a+ ctanh§> cosi)
mechanical time evolution. The corrections to Dykhne’s for- 2
mula are of two types: perturbative and nonperturbative. The  |xi(t)) = T <
X \/s—<a+ctanh§>

former appears to vanish for integrable models, and we have sin—
interpreted a nonperturbative correction as the contribution

of a contour in the complex time plad@. (A7)
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0348358. The two-state Schrodinger equation may be converted to a
second-order differential equation for the componesits
=C1,2(%),

The following Hamiltoniar®® which possesses three inde-
pendent parameters, FC12+ Q1 AX)C1 =0, (A9)

APPENDIX: INTEGRABLE DYNAMICS

X where
b a+ctanh—
HexackX) = (A1) 2 x\? 1 X
exac « Qx)=b*+|a+ctanh= | ti-cseck =. (A10)
a+tc tanhE -b 2 2 2
Changing the dependent and independent variables as
has integrable dynamics in the sense that the Schrbding@g AX)=7"(z-1)'*w, (z) and Z:%[l+tan|f(x/2)], trans-
equation forms Eq.(A9) into the standard form of the Gauss hyper-

(cl(x)) geometric equation, for example, for(x)
10y = Hexac =0 with =
[i (9]]#9) = 0 with [yx)) Co(X) (A2) 2(1 - 2wy + [k=2(i +j = D]ow; —ijw, =0,

has a solution in terms of special functions. Our aim is to (A11)

construct the scattering matriXV associated with the dy- .
namical problem. For clarity of presentation, we will con- where the arguments and exponents are defined as follows:

sider the Hamiltonian

izip+iv-i2c,
X
a+ctanh§ b j=ip+iv+izc+1,
H'(x) = L (A3)
b —(a+ctanh5> k=i2v+1,
v_vhich differs fromH et DY @ constant unitary transforma- = g(=o0) = \'m,
tion V,
—_—
V' H ol = H' wiith v=%(1 1 ) (Ad) n=e(=) = b+ (a+ o)
vl -l The two linearly independent solutiong(z) andv4(2) of the

Introducing the mixing angleb defined as differential equation fom,(z) are

115315-10
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uy(i,j,k;2) =2%(z- 1)'"“F(i,j,k;2), (A12)

vil,mn;z) =24 *u (i —k+1,j —k+1,2-k;2)
=z7Mz- 1) (i-k+1,j-k+1,2-k;2),
(A13)

where,F,(i,j,k;2) is the Gauss hypergeometric functitin.

The amplitude of transition may be viewed as the off-

diagonal element of the scattering matdiX that connects
the asymptotic final and initial states for- +~ [see Eg.
(56)]. The scattering matrix is parametrized as

Wiy W

= ( " fz>, (AL4)
~Wip, Wy

because it has the properti#g’ W=1 and deV)=1. From

the asymptotics ofl;, u,, v, anduv, in the limits z— 0 and
z—1, we find

PHYSICAL REVIEW B 71, 115315(2005

W= \/b2+m—<a+c>]2

b?+[v-(a-0)]?
" T(1-i2v)T(-i2u)
Mi-i(u+v-20)[-i(u+v+20)]

and

(A15)
. \/b2+m+ (a+o)f
2N +[v-(a-o)P
ra-i2vri(iz
"y (1-i2v) (I. ) (AL6)
IMi(u=—v=20) N1 +i(u—v+20)]
W= sinhm(2c+ p + v)sinhar(=2c+ u + v)
e sinh 2y sinh 2my ’
(A17)
W= sinh(2c - u + v)sinh@(2c+ - v)
12 sinh 2w sinh2my
(A18)
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