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The recent discovery of the microwave-induced vanishing resistance states in a two-dimensional electron
systems2DESd is an unexpected and surprising phenomenon. In these experiments the magnetoresistance of a
high mobility 2DES under the influence of microwave radiation of frequencyv at moderate values of the
magnetic field exhibits strong oscillations with zero-resistance statessZRSd governed by the ratiov /vc, where
vc is the cyclotron frequency. In this work we present a model for the photoconductivity of a 2DES subjected
to a magnetic field. The model includes the microwave and Landau contributions in a nonperturbative, exact
way, while impurity-scattering effects are treated perturbatively. In our model, the Landau-Floquet states act
coherently with respect to the oscillating field of the impurities that in turn induces transitions between these
levels. Based on this formalism, we provide a Kubo-like formula that takes into account the oscillatory Floquet
structure of the problem. We study the effects of both short-range and long-range disorder on the photocon-
ductivity. Our calculation yields a magnetoresistance oscillatory behavior with the correct period and phase. It
is found that, in agreement with experiment, negative dissipation can only be induced in very high mobility
samples. We analyze the dependence of the results on the microwave power and polarization. For high-
intensity radiation, multiphoton processes take place predicting negative-resistance states centered atv /vc

= 1
2 andv /vc= 3

2.
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I. INTRODUCTION

Two-dimensional electron systemss2DESd in a perpen-
dicular, strong magnetic field have been extensively studied
in relation with the quantum Hall effect. Recently, two ex-
perimental groups1–4 reported the observation of a unique
phenomenon: the existence of zero-resistance statessZRSd in
an ultraclean GaAs/AlxGa1−xAs sample subjected to micro-
wave radiation and moderate magnetic fields. The magne-
toresistance exhibits strong oscillations with ZRS governed
by the ratioe=v /vc, wherevc is the cyclotron frequency.
According to Zudovet al.,3 the oscillation amplitudes reach
maxima ate=v /vc= j and minima ate= j + 1

2, for j , an inte-
ger. On the other hand Maniet al.2 reported also a periodic
oscillatory behavior, but with maxima ate= j − 1

4 and minima
at v /vc= j + 1

4. Additionally, experimental work appeared
recently.5–9

In spite of a large number of theoretical works,10–20 a
complete understanding of the effects in 2DES induced by
microwaves has not yet been achieved. A pioneering work
put forward by Ryzhii10 and another by Ryzhii and Suris11

predicted the existence of negative-resistance statessNRSd.
Durst et al.12 found also NRS in a a diagrammatic calcula-
tion of the photoexcited electron scattered by a disorder po-
tential. A possible connection between the calculated NRS
and the observed vanishing resistance was put forward in
Ref. 13, noting that a general analysis of Maxwell equations
shows that negative resistance induces an instability that
drives the system into a ZRS. Whereas some of the
models10–12,17 are based on impurity-assisted mechanisms,
there are alternative explanations5,19,20 in which the leading

contribution arises from the modifications of the electron dis-
tribution function induced by the microwave radiation. These
models, as well as some of their predictions, remain to be
tested experimentally.

In this work we present a model which includes the Lan-
dau and radiation contributionsin the long-wavelength limitd
in a nonperturbative exact way. Impurity scattering effects
are treated perturbatively. With respect to the Landau-
Floquet states, the impurities act as a coherent oscillating
field which induces the transitions that prove to be essential
in order to reproduce the observed oscillatory behavior of the
magnetoresistance. Based on this formalism a Kubo-like ex-
pression for the conductance is provided. Our results display
a strong oscillatory behavior forrxx with NRS. It is found
thatrxx vanishes ate=v /vc= j for j integer. The oscillations
follow a pattern with minima ate= j +d and maxima ate
= j −d, adjusted withd< 1

5. The model is used to test chirality
effects induced by the magnetic field, and calculations are
carried out for variousE-field polarizations. Finally, we ex-
plore the nonlinear regime in which multiphoton processes
play an essential role.

The paper is organized as follows. In the next section we
present the model and the method that allows us to obtain the
exact solution of the Landau-microwave system as well as
the perturbative corrections induced by the impurity poten-
tial. In Sec. III we develop the formulation of dc electrical
linear response theory valid in arbitrary magnetic fields and
microwave radiation. A discussion of relevant numerical cal-
culations is presented in Sec. IV. Section V contains a sum-
mary of our main results. Details of the calculations are sum-
marized in the Appendixes.
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II. THE MODEL

We consider the motion of an electron in two dimensions
subject to a uniform magnetic fieldB perpendicular to the
plane and driven by microwave radiation. In the long-wave
limit the dynamics is governed by the Schrödinger equation,

i"
]C

]t
= HC = fHhB,vj + ṼsrdgC. s1d

HereHhB,vj is the Landau Hamiltonian coupled to the radia-

tion field swith l→`d andṼsrd is any potential that can can
be decomposed in a Fourier expansion. The method applies

in general if Ṽsrd includes various possible effects such as
lattice periodic potential, finite wavelength corrections, im-
purity scattering, etc.; however, as it will be lately argued,
the impurity scattering is the most likely explanation for the
recent experimental results. One important remark with rela-
tion to the impurity potential in Eq.s1d is that to start with, it
should only include the polarization effects produced by the
combined effects of the Landau-Floquet states and the impu-
rity potentials. The broadening effects produced by this po-
tential are, as usual, included through the Kubo formula.

Then we writeṼsrd as

Ṽsrd = Vsrd − DVsrd, DVsrd = W†VsrdW, s2d

whereW is the transformation that takes exactly into account
the microwave-Landau dynamics; it is explicitly given in Eq.
s10d. In the absence of the microwave radiation,W;1 and

Ṽsrd vanishes. The impurity scattering potentialVsrd is de-
composed as

Vsrd = o
i
E d2q

s2pd2Vsqdexphiq · sr − r idj. s3d

Here r i is the position of thei th impurity and the explicit
form of Vsqd depends on the mechanism that applies under
particular physical conditions. Some examples will be con-
sidered in Sec. IV.HhB,vj is then written as

HhB,vj = S 1

2m*
DP2, P = p + eA , s4d

wherem* is the effective electron mass and the vector po-
tential A includes the external magnetic and radiation fields
sin the l→` limit d contributions

A = − S1

2
Dr 3 B + ReFSE0

v
Dexph− ivtjG . s5d

We first consider the exact solution of the microwave-driven
Landau problem. The impurity-scattering effects are lately
added perturbatively. This approximation is justified on the
following conditions: sid uVu /"vc!1 and sii d vttr ,vcttr
@1; ttr is the transport relaxation time that is estimated us-
ing its relation to the electron mobilitym=ettr /m*. As dis-
cussed in Sec. IV both conditions are fully complied.

The system posed byHhB,vj can be recast as a forced
harmonic oscillator, a problem that was solved a long time
ago by Husimi.21 Following the formalism developed in

Refs. 22,23, we introduce a canonical transformation to new
variablesQm , Pm ; m=0, 1, 2, according to

Q0 = t, P0 = i]t + ef + er ·E,

ÎeBQ1 = Py, ÎeBP1 = Px,

ÎeBQ2 = px + eAx + eBy, ÎeBP2 = py + eAy − eBx. s6d

It is easily verified that the transformation is indeed canoni-
cal; and the new variables obey the commutation rules,
−fQ0,P0g=fQ1,P1g=fQ2,P2g= i, all other commutators be-
ing zero. The inverse transformation gives

x = lBsQ1 − P2d, y = lBsQ2 − P1d, s7d

where lB=Î"/eB is the magnetic length. The operators
sQ2,P2d can be identified with the generators of the electric-
magnetic translation symmetries.24–26 Final results are inde-
pendent of the selected gauge. From the operators in Eq.s6d
we construct two pairs of harmonic oscillatorlike ladder op-
erators,sa1,a1

†d, andsa2,a2
†d, with

a1 =Î1

2
sP1 − iQ1d, a2 =Î1

2
sP2 − iQ2d, s8d

obeyingfa1,a1
†g=fa2,a2

†g=1 andfa1,a2g=fa1,a2
†g=0.

It is now possible to find a unitary transformation that
exactly diagonalizesHhB,vj; it yields

W†HhB,vjW= vcs 1
2 + a1

†a1d ; H0, s9d

with the cyclotron frequencyvc=eB/m* and theWstd opera-
tor given by

Wstd = exphih1Q1jexphij1P1jexphih2Q2j

3exphij2P2jexpH−iEt

Ldt8J , s10d

where the functionshistd andjistd represent the solutions to
the classical equations of motion that follow from the varia-
tion of the Lagrangian:

L = Svc

2
Dsh1

2 + z1
2d + sż1h1 + ż2h2d

+ elBfExsz1 + h2d + Eysh1 + z2dg. s11d

The explicit form of the solutions forhistd andjistd are given
in Appendix A.

Let us now now consider the complete Hamiltonian, in-

cluding the contribution from theṼsrd potential. When the
transformation induced byWstd is applied the Schrödinger
equation in Eq.s1d becomes

P0CsWd = H0CsWd + VWstdCsWd, s12d

whereCsWd=WstdC and

VWstd = WstdṼsrdW−1std = WstdVsrdW−1std − Vsrd. s13d

Notice that the impurity potential acquires a time depen-
dence brought by theWstd transformation. The problem is
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now solved in the interaction representation using first order
time-dependent perturbation theory. In the interaction repre-
sentationCI

sWd=exphiH0tjCsWd, and the Schrödinger equa-
tion becomes

i]tCI
sWd = hVWstdjICI

sWd. s14d

The equation is solved in terms of the evolution operator
Ustd, in such a way thatCI

sWdstd=Ust− t0dCI
sWdst0d. The solu-

tion of the evolution operator in first order perturbation
theory is given by the expression

Ustd = 1 − iE
−`

t

dt8fW†st8dṼsrdWst8dgI , s15d

which is explicitly evaluated in Appendix B. The interaction
is adiabatically turned off ast0→−`, in which case the
asymptotic state is selected as one of the Landau-Floquet
eigenvalues ofH0, i.e., uCI

sWdst0dl→ um ,kl. The solution to
the original Schrödinger equation in Eq.s1d has been
achieved by means of three successive transformations,
which expressions have been explicitly obtained,

uCm,kstdl = W†exph− iH0tjUst − t0dum,kl. s16d

As discussed in Appendix A the indexk labels the degen-
eracy of the Landau-Floquet states. Selecting theP represen-
tation the dependence of the wave function onk becomes
very simple. See Eq.sA6d. For simplicity in what follows the
index k will not be shown. The expression of the Kubo for-
mula that will be derived in Sec. III requires the knowledge
of the matrix elements of the momentum operatorP,

kCmuPiuCnl = kmuU†st − t0dfWPiW
†gIUst − t0dunl. s17d

Let us first consider the term inside the square brackets. Us-
ing the explicit form of the operators in Eqs.s4d, s6d, and
s10d, it yields

WPiW
† =HÎeBsP1 − h1d, i = x

ÎeBsQ1 − j1d, i = y.
J s18d

If we now utilize the result for the evolution operatorU
given in Appendix B, we can explicitly work out the matrix
elements of the momentum operator,

kCmuPiuCnl =
ÎeB
Î2

saj
Îmeivctdm,n+1 + bj

Îne−ivctdm,n−1d

+ ÎeBo
l

eisEmn+vl−ihtdDmn
sld s jd. s19d

Here the following definitions were introduced:Emn=Em

−En , aj =bj =1 if j =x, andaj =−bj =−i if j =y, andDmn
sld s jd is

given by

Dmn
sld s jd = dmnfr jdl,1 + r j

*dl,−1g

−
1
Î2
F ajq̃ * Cmn

sld

Emn − vc + vl − ih
+

bjq̃Cmn
sld

Emn + vc + vl − ih
G ,

s20d

where q̃= il Bsqx− iqyd /Î2, and the expressions for the func-
tions ri, andCm,n

l are worked out as

r1 =
elBE0s− ivex + vceyd

v2 − vc
2 + ivGrad

, r2 =
elBE0svcex + iveyd
v2 − vc

2 + ivGrad

,

s21d

and

Cm,n
sld = o

i
E d2q

s2pd2Vsqde−iq·r iDmnsqdS D

i uDuD
l

J̃lsuDud,

s22d

where J̃l =Jl −dl,0, Jl being the Legendre polynomials, and
Dmnsqd is given in terms of the generalized Laguerre polyno-
mials in Eq.sB4d, and

D =
vclB

2eE0

vsv2 − vc
2 + ivGradd

fvsqxex + qyeyd + ivcsqxey − qyexdg.

s23d

It is important to notice that the subtracted termJ̃l =Jl −dl,0,
has its origin in the fact that the impurity potential Eq.s2d
includes only the dynamical effects, with the corresponding
zero field term conveniently subtracted. This procedure is
justified because the broadening effects produced byVsrd are
separately included via the Kubo formula. See Appendix E.

The subtractionJ̃l =Jl −dl,0 becomes essential, otherwise the
longitudinal resistance would be dominated by thel =0 term,
producing incorrect results.

III. KUBO FORMULA FOR FLOQUET STATES

In this section we shall develop the Kubo formula that
applies when the dynamics include Landau-Floquet states
such as those in Eq.s16d. We take the perturbing electric
field to have the formEext=EdccossVtdexps−hutud. The static
limit is obtained withV→0, and h represents the rate at
which the perturbation is turned on and off. The perturbing
electric field is included in the vector potential. As we are
interested in the linear response the perturbing potential has
the form

Vext=
1

m
P ·Aext, Aext=

Edc

v
sinsVtdexps− hutud. s24d

Besides the original Hamiltonian in Eq.s1d, the complete
Hamiltonian should includeVext and the part of the disorder
potentialfDVsrd=W†VsrdWg that was previously subtracted.
fSee Eq.s2d.g Hence the total HamiltonianHT is written as

HT = H + Vext+ DVsrd. s25d

The disorder potentialDVsrd will induce broadening effects,
and it will be included later. Then, the time evolution for the
density matrixrstd obeys the von Neumann equation,

i"S ]r

]t
D = fH + Vext,rg. s26d

Within the linear regimer is split in the sumr=r0+Dr. The
zero order termr0 must satisfy
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i"S ]r0

]t
D = fH,r0g. s27d

The conditions required to solve this equation will be estab-
lished below. The first order deviationDr then obeys

i"
]Dr

]t
= fH,Drg + fVext,r0g. s28d

We shall now apply to this equation the three transformations
that were utilized in the preceding section in order to solve
the Schrödinger equation. Hence, in agreement with Eq.

s16d, D̃r is defined as

D̃rstd = UI
†st − t0dexphiH0tjWstdDrstdW†std

3exph− iH0tjUIst − t0d. s29d

In terms of the transformed density matrixD̃rstd, Eq. s28d
becomes

i"S ]D̃r

]t
D = fṼext,r̃0g, s30d

whereṼext andr̃0 are the external potential and quasiequilib-

rium density matrix transformed in the same manner asD̃r
is transformed in Eq.s29d. The transformed quasiequilib-
rium density matrix is assumed to have the formr̃0
=omumlfsEmdkmu, wherefsEmd is the usual Fermi function and
Em the Landau-Floquet level.sSee Appendix Ad. It is
straightforward to verify that this selection guarantees that
the quasiequilibrium condition in Eq.s27d is verified. The
justification for selecting a Fermi-Dirac distribution in the
quasienergy states is presented in Appendix C. It is shown
that, under experimental conditionsstv!ttr !tinl, the elastic
and inelastic relaxation processes can be neglected as com-
pared to the external field effects. The solution of the Boltz-
mann equation yields, for a weak microwave intensity, a
Fermi-Dirac distribution in the quasienergy states. The ex-
pectation value of Eq.s30d in the uml base can now be easily
calculated using Eqs.s16d, s24d, ands29d. Solving the result-
ing equation with the initial condition,Drstd→0 ast→−`,
yields for t,0,

kmuD̃rstdunl

= kCmuDrstduCnl

=
eEdc

2
E

−`

t FeisV−ihdt8

V
fmnkCmuPst8duCnl + sV → − VdG ,

s31d

where the definitionfmn= fsEmd− fsEnd was used. Substituting
the expectation value for the momentum operator given in
Eq. s19d, the integral in the previous equation is easily per-
formed. The current density to first order in the external elec-
tric field can now be calculated from kJst ,rdl
=TrfD̃rstdJ̃stdg. The resulting expression represents the local
density current. Here we are concerned with the macroscopic
conductivity tensor that relates the spatially and time-
averaged current densityj =stvVd−1e0

tvdted2xkJst ,rdl to the
averaged electric field, heretv=2p /v. The macroscopic

conductivity can now be worked out. Results for the dark
and microwave-induced conductivities are quoted,

sxi
D =

e2vc
2

i4"
o
mn
H fmn

V
F aimdm,n+1

Emn + V − ih
+

bindm,n−1

Emn + V − ihG
+ sV → − VdJ , s32d

sxi
v =

e2vc
2

i4"
o
mn
H fmn

V
o

l

Dmn
sld sidDnm

s−ldsxd
Emn + vl + V − ih

+ sV → − VdJ .

s33d

In these expressions the external electric field points along
the x axis. Hence, settingi =x or i =y the longitudinal and
Hall conductivities can be selected. The denominators on the
right-hand sidesRHSd of the previous equations can be re-
lated to the advanced and retarded Green’s functionsGm

±sEd
=1/sE−Em± ihd. To make further progress, the real and ab-
sorptive parts of the Green’s functions are separated, taking
the limit h→0 and using limh→01/sE− ihd=P1/E+ ipdsEd,
where P indicates the principal-value integral. As usual the
real and imaginary parts contribute to the Hall and longitu-
dinal conductivities, respectively. In what follows, details of
the calculations are presented for the longitudinal
microwave-induced conductivity. The corresponding dark
conductivity expressions as well as the Hall microwave-
induced conductance are quoted in Appendix D. Implement-
ing the previous considerations and inserting ad function,
the longitudinal microwave-induced conductivity takes the
form

sxx
v = −

e2vc
2

4"
o
mn

o
l
E dEdsE − EmduDmn

sld sxdu2

3H fsE + vl + Vd − fsEd
V

Im GnsE + vl + Vd

+ sV → − VdJ , s34d

where ImGnsEd= s 1
2i

dfGn
+sEd−Gn

−sEdg. The static limit with
respect to the external field is obtained, takingV→0. In the
case of the impurity-assisted contribution an additional aver-
age over the impurity distribution has to be carried out. It is
assumed that the impurities are not correlated, utilizing the
explicit expressions for the velocity matrix elements in Eq.
s20d. The final result for the averaged microwave-induced
longitudinal conductance is worked out as

ksxx
v l =

e2

p"
E dEo

mn
o

l

Im GmsEdBsldsE,End

3Hvcur1u2dmnsdl,1 + dl,−1d + nimplB
2

3E d2q

s2pd2qy
2zJ̃lsuDudVsqdDmnsq̃dz2J , s35d

wherenimp is the two-dimensional impurity density and the
following function has been defined as
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BsldsE,End = − F d

dE0
hffsE + lv + E0d − fsEdg

3Im GnsE + lv + E0djG
E0=0

. s36d

The photoconductivity in Eq.s35d has a first contribution
that depends on ther1 factor sindependent of the impurity
concentrationd. It represents the direct cyclotron resonance
heating arising when theWstd transformation is applied to
the momentum operator.fSee Eq. s18d.g The impurity-
induced contributionfsecond row in Eq.s35dg takes into ac-
count the dynamics produced by the magnetic and micro-
wave fields combined with the resonant effect of the
impurities; the information is contained in the complete
wave function in Eq.s16d.

The previous expression would present a singular behav-
ior that is an artifact of theh→0 limit. This problem is
solved by including the disorder broadening effects. A simple
phenomenological prescription is dictated by simply retain-
ing a finite value ofh that is related to the quasiparticles’
lifetime sh=2p /tsd.27,28 According to this prescription the
density of statessDOSd of the m level would have a Lorent-
zian form,

Im GmsEd =
sh/2pd

fsE − Emd2 + h2/4g
.

A more formal procedure requires us to calculate the broad-
ening produced by the so far neglected part of the disorder
potentialDVsrd. fSee Eq.s25d.g Fortunately, as explained in
Appendix E, the calculation becomes equivalent to that car-
ried out by Ando30 and Gerhardts,31 so the density of states
for the m Landau level can be represented by a Gaussian-
type form,32

Im GmsEd =Î p

2Gm
2 expf− sE − Emd2/s2Gm

2dg,

Gm
2 =

2bm"2vc

spttrd
. s37d

The parameterbm in the level width takes into account the
difference of the transport scattering time determining the
mobility m from the single-particle lifetime. In the case of
short-range scatterers,ttr =ts and bm=1. An expression for
bm, suitable for numerical evaluation that applies for the
long-range screened potential in Eq.s40d is given in Appen-
dix E. bm decreases for higher Landau levels. This property
becomes essential to generate NRS, because they only ap-
pear for a narrowGm, a condition that is satisfied around the
Fermi level in the case of large filling factors.

Equationss35d ands36d contain the main ingredients that
explain the huge increase observed in the longitudinal con-
ductancesand resistanced when the material is irradiated by
microwaves. In the standard expression for the Kubo formula
there are no Floquet replica contributions, hencev can be set
to zero in Eq.s36d. if that is the caseBsld becomes propor-
tional to the energy derivative of the Fermi distribution that

in the T→0 limit becomes of the formdsE−EFd, and the
conductivity is positive definite depending only on those
states lying at the Fermi level. On the other hand, as a result
of the periodic structure induced by the microwave radiation,
Bsld contains a second contribution proportional to the deriva-
tive of the density of states,sd/dEdIm GnsE+ lvd. Due to the
oscillatory structure of the density of states, this extra con-
tribution takes both positive and negative values. According
to Eq. s37d this second termsas compared to the first oned is
proportional to the electron mobility. Hence, for sufficiently
high mobility the new contribution dominates, leading to
NRS. The former observation becomes fundamental, because
in agreement with experiment our calculations show that
NRS can only be induced in very high mobility samples.
sSee Fig. 1.d

As was mentioned in Sec. II the present method applies in

general ifṼsrd can be decomposed in its Fourier expansion
fEq. s3dg, e.g., finite wavelength corrections, lattice periodic
potential, impurity scattering, etc. The microwave radiation
by itself only produces transitions between adjacent Landau
levels ffirst term on the RHS of Eq.s35dg, leading to the
cyclotron peak. In the case of a periodic potential the result-
ing spectrum will be dominated by the regionq<2p /a,
wherea is the lattice parameter; for the experimental condi-
tionslB@a and the contribution is negligible. So we are led
to analyze the impurity-assisted mechanism as a plausible
scenario to explain the strong oscillatory structure of the
magnetoresistance.

IV. RESULTS

The single-particle and transport relaxation rates induced
by disorder are given by29,33

FIG. 1. Longitudinal resistivity as a function ofe=v /vc for
neutral impurity scattering and three values of the electron mobility,
m<0.53106 cm2/V s sdotted lined, m<1.53106 cm2/V s
sdashed-dotted lined, andm<2.53106 cm2/V s scontinuous lined.
In the two former cases the oscillations follow a pattern with
minima ate= j +d and maxima ate= j −d, adjusted withd< 1

5 NRS
only appear whenm.mth,1.53106 cm6/V s. The values of the
other parameters are the same as in Fig. 2.
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5
1

ts

1

ttr

6 = nimp
m*

p"3kF
E

0

2kF

dq
uVsqdu2

Î1 − sq/2kFd2
3 5 1

q2

2kF
2 6 ,

s38d

whereVsqd is the Fourier transform of the impurity potential
fEq. s3dg. Remarkably, we have a consistent formalism in
which sid the photoconductivityfEq. s35dg, sii d the relaxation
ratesfEq. s38dg, andsiii d the level broadeningfEqs.s37d and
sE2dg can all be consistently calculated onceVsqd has been
specified.

For neutral impurities the potential can be represented by
a short range delta interaction. The coefficient in Eq.s3d
corresponds to a constant that can be selected asVsqd
=2p"2a /m*. The expression in Eq.s38d is readily calculated
to yield the same value for the single-particle and transport
relaxation rates,

1

ttr
sNd =

1

ts
sNd =

4p2"

m*
a2nimp

sNd . s39d

The upper indexN labels the neutral impurity case. The
evaluation of the photoconductivityfEq. s35dg requires in
general a time-consuming numerical integration. However,
for moderate values of the microwave radiation the transi-
tions are dominated by single photon exchange. In the neu-
tral impurity case a very precise analytical approximation
can be explicitly worked out. See Appendix F.

For charged impurities the Coulomb potential is long-
range modified by the screening effects. Although electron
motion is restricted to two dimensions, the electric field is
three dimensional and there are contributions from the impu-
rities localized within the doped layer of thicknessd. The
screened potential can then be represented in momentum co-
ordinates by the expressions29

VsqWd =
p"2

m*

e−qd

1 +
q

qTF

, qTF =
e2m*

2pe0eb"2 , s40d

where the Thomas-FermisTFd approximation is imple-
mented in order to calculate the di-electric function. Hereeb
represents the relative permittivity of the surrounding media.
The expression in Eq.s40d corresponds to a screened poten-
tial, that in real space has ar−3 decay for larger. The rates in
Eq. s38d can be evaluated numerically; however, an accurate
analytical result is obtained by observing that the decaying
exponential in Eq.s40d causes the integral to die off forq
@1/udu and the upper limit in the integral can therefore be
set to infinity. Additionally for the relevant parametersssee
belowd the following conditions are observedkF@1/udu and
qTF@1/udu; consequently, it is reasonable to drop the factor
q/qTF in the denominator of Eq.s40d and replace the square
root in the denominator of Eq.s38d by unity. These simpli-
fications yield for the transport relaxation rate,

1

ttr
sCd =

p"

8m* skFdd3nimp
sCd . s41d

The upper indexC labels the charged impurity case. As ex-
pected, for charged remote impurities the single-particle life-
time differs from the transport lifetime. The approximated
relation readsttr

sCd<s2kFdd2ts
sCd.29

The parameter values have been selected corresponding to
reported experiments2,3 in ultraclean GaAs/AlxGa1−xAs
samples: effective electron massm* =0.067me, relative per-
mittivity eb<13.18, Fermi energyEF=10 meV, electron mo-
bility m<0.1–2.53107 cm2/V s, electron density n=3
31011 cm−2, microwave frequenciesf =50–100 Ghz, mag-
netic fields in the range 0.05–0.4 T, and temperaturesT
<0.5–2.5 K. The reported specimen is 535 mm2 s. Typical
microwave power is 10–40 mW; however, it is estimated1

that the microwave power that impinges on the sample sur-
face is of the order of 100–200µW. Hence, the microwave

electric field intensity is estimated asuEW u<1−3 V/cm. Using
these values, it is verified that the weak-overlapping condi-
tion holds:vcttr ,100–1000.

Recalling thatm=ettr /m*, one can use Eqs.s39d ands41d
to determine the values ofnimp corresponding to neutral or
charged scatterers, respectively. For example, assumingm
<2.53106 cm2/V s, one estimates for neutral scattering
a2nimp

sNd <13107 cm−2. Although a and nimp
sNd are not sepa-

rately fixed, one notices that the condition for the weak dis-
order potential as compared to the Landau energy can be
expressed asVsqd / slB

2"vcd=2pa!1; e.g., if a,0.01, then
nimp

sNd ,1011 cm−2. For charged impurities and taking a value
for the separationd between the impurity and the 2DES as
d<20 nm yields nimp

sCd <1.531011 cm−2. In this case the
weak disorder condition takes the formVsqd / slB

2"vcd
,p exps−2pd/ lBd!1 that is satisfied. A final remark is re-
lated to the radiative electron decayGrad that determines the
direct electron response to the microwave excitationfsee
Eqs.s23d andsA4dg. Following Ref. 34Grad is related to the
radiative decay width that is interpreted as coherent dipole
re-radiation of electromagnetic waves by the oscillating two-
dimensionals2Dd electrons excited by microwaves. Hence, it
is given byGrad=ne2/ s6e0m* cd. Using the values ofn and
m* given above it yieldsGrad<0.38 meV.

Adding the dark and microwave-induced conductivities,
the total longitudinal,sxx=sxx

D +ksxx
w l, and Hall, sxy=sxy

D

+ksxy
w l, conductivities are obtained. It should be pointed out

that the interference between the dark and microwave con-
tributions exactly cancels. The corresponding resistivities are
obtained from the expressionrxx=sxx/ ssxx

2 +sxy
2 d and rxy

=sxy/ ssxx
2 +sxy

2 d. The relation sxy@sxx holds in general.
Hence, it follows thatrxx~sxx and the longitudinal resistiv-
ity follows the same oscillation pattern as that ofsxx. The
plots of the total longitudinal and Hall resistivities as a func-
tion of the magnetic field intensity are displayed in Fig. 2.
Whereas the Hall resistance presents the expected monoto-
nous behavior, the longitudinal resistance shows a strong os-
cillatory behavior with distinctive NRS. The behavior of the
completerxx is contrasted with the dark contributions that
present only the expected Shubnikov–de Hass oscillations.
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Figure 3 shows a comparison of the longitudinal resistiv-
ity as a function ofv /vc obtained for the case of neutral
impurity scattering using both the approximated expression
in Appendix F as well as the result of the numerical integra-
tion fEq. s35dg. The electron mobility is selected asm
=0.253107 cm2/V s. The approximated analytical result
shows a good agreement with the one obtained from the
numerical integration. It should be remarked that the ap-
proximated expression includes only one-photon exchange

processes, while the numerical result includes the possibility
of multi-photon exchange. Hence, it is concluded that for the
selected electric field intensitysuEW u,2.5 V/cmd, the one-
photon processes dominate. Results are also presented for the
case of charged impurity scattering but form=2.5
3107 cm2/V s. In spite of the very different nature of the
two physical processes and that the mobility is increased by
an order of magnitude in the charged case, it is observed that
the results for the neutral and charged cases are very similar.
The similarity of both results is based on the following:sid
The increase in the mobility is compensated by the factorbm

in Eq. s37d, giving a similar broadening value.sii d For the
neutral case,Vsqd is constant over all theq-range of integra-
tion. Whereas for the charged caseVsqd varies according to
the expression in Eq.s40d. However, in both cases the inte-
gral in Eq. s35d is dominated by the region in whichq
<2p / lB.

One of the puzzling properties of the observed huge mag-
netoresistance oscillations is related to the fact that they ap-
pear only in samples with an electron mobility exceeding a
threshold valuemth. The phenomenon is absent in samples in
which m is slightly reduced. This behavior is well repro-
duced by the present formalism. Figure 1 displays therxx vs
e=v /vc plot for neutral impurity scattering and three se-
lected values ofm. For m<0.53106 cm2/V s the previously
known, almost linear behaviorrxx~B is clearly depicted. As
the electron mobility increases tom<1.53106 cm2/V s, the
magnetoresistance oscillations are clearly observed; how-
ever, NRS only appear when the mobility is increased tom
<2.53106 cm2/V s. It is observed thatrxx vanishes ate= j
for j integer. The period and phase of the oscillations follow
a pattern very similar to the one observed in experiments,2,4

with minima ate= j +d and maxima ate= j −d, adjusted with
d< 1

5. It should be pointed out that this value ofd depends on
the correct representation of the density of states. Using a
Lorentzian form instead of the Gaussian in Eq.s37d would
give d,1/1026. Similar behavior is observed for the charged
impurity scattering case, but with the mobility threshold in-
creased approximately by an order of magnitudemth<2.5
3107 cm2/V s. The precise determination ofmth depends of
course on the selected values of the other parameters, mainly
on the frequency and microwave intensity.

The early reported experiments1–4 were carried out for a
microwave radiation with transverse polarization with re-
spect to the longitudinal current flow direction. It is clear,
however, that the presence of the magnetic field induces a
chirality in the system. The model can be used to test these
effects. Figure 4 shows the results for differentE-field polar-
izations with respect to the current. In Fig. 4sad it is observed
that the amplitudes of the resistivity oscillation are slightly
bigger for transverse polarization as compared to longitudi-
nal polarization. This result is in agreement with the recent
experiment,4 in which it is reported that the selection of lon-
gitudinal or transverse polarization produces small differ-
ences. However, we propose that the more significant signa-
tures will be only observable for circular polarization.
Selecting negative circular polarizationfsee Fig. 4sbdg, the
oscillation amplitudes get the maximum possible value. In-
stead, for positive circular polarization an important reduc-

FIG. 2. Longitudinal resistance, both totalscontinuous lined and
darksdotted lined as a function of the magnetic field. The figure also
includes the Hall resistancesdashed line,rxy is rescaled by a factor
1
10d. Results corresponds to neutral impurity scattering obtained
with the approximated solutionsAppendix Fd and the selected pa-

rameters are m<0.253107 cm2/V s, T<1 K, f =100 Ghz,uEW u
<2.5 V/cm,a2nimp

sNd =53106 cm−2. The values of the other param-
eters used in the calculations are discussed in the text.

FIG. 3. Longitudinal resistance as a function ofe=v /vc for
neutral and charged impurities. Results for neutral impurities are
obtained from the numerical integrationsdotted lined and also using
the analytical approximation discussed in Appendix Fsdashed
lined with the parametersm<0.253107 cm2/V s, a2nimp

sNd =5
3106 cm−2. The continuous line corresponds to the charged impu-
rity case with parametersm<2.53107 cm2/V s, nimp

sCd =1.5
31011 cm−2. The other parameters are the same as in Fig. 2.
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tion of the amplitude is observed leading to the total disap-
pearance of the NRS. These results are understood, recalling
that for negative circular polarization andv<vc the electric
field rotates in phase with respect to the electron cyclotron
rotation. Based on the present results, it will be highly rec-
ommended to carry out experiments for circular polarization
configurations.

The present formalism can also be used in order to ex-
plore the nonlinear regime in which multiphoton exchange
plays an essential role. As the microwave radiation intensity
is increased, the analytical approximation breaks down and
the numerical expression in Eq.s35d with higher multipole
sld terms needs to be evaluated. In the explored regime con-
vergent results are obtained, including terms up to thel =3
multipole. Figure 5sad displaysrxx vs e plots for electric field

intensitiesuEW u=2.5 V/cm anduEW u=5 V/cm, respectively. The
increase on the field intensity produces a corresponding in-
crease in the minima and maxima ofrxx, but apart from this,
the qualitative behavior in both cases is similar. A further

increase of the electric field intensity touEW u=10 V/cm and

uEW u=30 V/cmfFig. 5sbdg, takes us to the nonlinear regime in
which a qualitatively new behavior is observed. Fore.2 the
same NRS are observed; however, the widths of these re-
gions increase to include practically all the range frome= j
to e= j + 1

2. Notice that the negative resistance minima does
not have a monotonous dependence onuEu. In fact for the
strongest field intensity the minima approaches zero. Re-

markably, for uEW u=30 V/cm ande,2, new negative resis-
tance states associated with transitions by two microwave
photons are observed neare= 1

2 and e= 3
2. The minima of

these states are centered atemin=0.52 andemin=1.52, respec-
tively. Evidence of ZRS associated with multiphoton pro-
cesses has been already observed by Zudovet al.;1 they re-
ported structures with maxima neare= 1

2 and e= 3
2 and the

corresponding minima centered aroundemin=0.67 andemin
=1.68, respectively. Dorozhkin5 and Willett et al.6 have also
reportedrxx minimum associated withe= 1

2. Although the
exact position of the minima and maxima ofrxx observed in
Fig. 5sbd is not localized at the same position reported by
Zudov et al.,1 the general pattern is very similar, supporting
the interpretation as multiphoton processes. Clearly, a more
systematic analysis and further experimental studies are nec-
essary.

Comparison with some other theoretical work is obliged.
Previous work in Refs. 10–12 and 17 analyzed the effects of
the microwave radiation on the electron scattering by impu-
rities in the presence of a magnetic field. Durstet al.12 con-
sider an out-of-equilibrium calculation; Instead here a qua-
siadiabatic approximation is implemented, assuming that the
system is thermalized in those states characterized by the
Landau-Floquet spectrum. The similarity between some re-
sults in the present work and those of Durstet al.,12 suggest
that departure from equilibrium is not significant for the
studied phenomenon. The present formalism extends and ex-
plores the impurity-assisted photoconductivity mechanism in
detail. In this model the same disorder potential determines
the broadening of the Landau levels, as well as the wave
function that is used to evaluate the velocity matrix element.
These matrix elements are incorporated into a Kubo-like for-
mula that takes into account the Floquet structure of the sys-
tem. As previously mentioned, there are alternative models
in which the leading contribution arises from the modifica-
tion of the electron distribution function induced by the mi-
crowave radiation. According to Dorozhkin5 the negative re-
sistance phenomena have their origin in a local population
inversion that produces a change of sign of thes]f /]Ed term
that appears in the conductivity. Although possible, the in-
version of population requires rather strong microwave pow-

FIG. 4. Longitudinal resistancerxx for neutral impurity scatter-
ing and various microwaveE-field polarizations with respect to the
current. Insad the continuous and dotted lines correspond to linear
transverse and longitudinal polarizations, respectively.sbd shows
results for circular polarizations, left-handscontinuous lined and
right-handsdashed lined. The values of the parameters are the same
as in Fig. 2.

FIG. 5. Nonlinear effects in the longitudinal resistancerxx for
charged impurity scattering.sad includes therxx vs e=v /vc plots

for electric field intensities ofuEW u=2.5 V/cm scontinuous lined and

uEW u=5 V/cm sdotted lined. sbd displays results foruEW u=10 V/cm

sdotted lined and uEW u=30 V/cm scontinuous lined. The parameter
values arem<2.53107 cm2/V s, T<1 K, f =100 Ghz, andnimp

sCd

=1.531011 cm−2.
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ers which were not achieved in the experiments.34 Indeed,
the inversion population is expected to be produced when the
microwave energy exceeds the Fermi energyseEd2/ sm* v2d
.EF. sSee Appendix Cd Clearly the estimated value for the
threshold electric fieldEth,1000 V/cm highly exceeds the
experimental microwave fieldsE,1−5 V/cm. An interest-
ing alternative explanation based on the modifications that
the microwave radiation produces in the distribution function
was recently presented by Dmitrievet al.18 and Kennettet
al.20 In these publications it is assumed that the inelastic-
scattering processes give the dominant contribution to the
collision term of the kinetic equation. As explained in Ap-
pendix C however, under experimental conditionstv!ttr
!tin, and certainly the inelastic processes can be safely ig-
nored as compared to the elastic processes. In fact we have
presented an argument for a first approximation in which the
distribution function is determined only by the microwave
effects. It may be interesting for a future work to add to the
present formalism the effects that elastic processes produce
to the distribution function. In any case, we consider that the
present results taken together with those of Refs. 10–12 and
17 consolidate the explanation of the photoconductivity os-
cillations and negative resistance states in terms of the
microwave-disorder mechanism.

V. CONCLUSIONS

We have considered a model to describe the photoconduc-
tivity of a 2DES subjected to a magnetic field. We presented
a thorough discussion of the method that allowed us to take
into account the Landau and microwave contributions in a
nonperturbative exact way while the impurity scattering ef-
fects are treated perturbatively. The method exploits the sym-
metries of the problem; the exact solution of the Landau-
microwave dynamicsfEq. s9dg was obtained in terms of the
electric-magnetic generatorsfEq. s6dg as well the solutions to
the classical equations of motionfEq. s11dg. The spectrum
and Floquet modes were explicitly worked out. In our model,
the Landau-Floquet states act coherently with respect to the
oscillating field of the impurities, that in turn induces transi-
tions between these levels. Based on this formalism, a Kubo-
like formula is provided. It takes into account the oscillatory
Floquet structure of the problem. It should be stressed that
the disorder potential is conveniently splitfsee Eqs.s2d and
s25dg in such a way that it contributes both to the matrix
elements of the velocity operator, as well as to the broaden-
ing of the Landau levels. Hence, we have a consistent for-
malism in whichsid the photoconductivityfEq. s35dg, sii d the
relaxation ratesfEq. s38dg, and siii d the level broadening
fEqs. s37d and sE2dg can all be consistently calculated once
the disorder potential has been specified.

The expression for the longitudinal photoconductivity
fEq. s35dg contains the main ingredients that explain the huge
increase observed in the experiments. As explained in Sec.
III, the standard expression for the Kubo formula at low
temperature is dominated by the states near to the Fermi
level. On the other hand, as a result of the periodic structure
induced by the microwave radiation the termBsld contains a
second contribution proportional to the derivative of the den-

sity of states,sd/dEdIm GnsE+ lvd. Due to the oscillatory
structure of the density of states this extra contribution takes
both positive and negative values. According to Eq.s37d this
second term is proportional to the electron mobility. Hence
for sufficiently high mobility the new contribution dominates
leading to negative resistance statessNRSd. This allows us to
explain one of the puzzling properties of the observed huge
magnetoresistance oscillations related to the fact that they
appear only in samples with an electron mobility exceeding a
threshold. This result is well reproduced by the present
model. For the selected parameters, NRS emerge when the
conditionsmù2.53106 cm2/V s sshort-range disorderd and
mù2.53107 cm2/V s slong-range disorderd are satisfied.
The oscillations follow a pattern with minima ate= j +d and
maxima ate= j −d, adjusted withd< 1

5. These results are in
reasonably good agreement with the observation of Maniet
al.2,4 They reported a similar pattern withd< 1

4.
An interesting prediction of the present model is related to

polarization effects that could be possibly observed in future
experiments. While the results for the cases of linear trans-
verse or longitudinal polarizations show small differences,
the selection of circular polarized radiation leads to signifi-
cant signatures. The maximum possible value for the oscil-
lation amplitudes ofrxx appears for negative circular polar-
ization. Instead, positive circular polarization yields an
important reduction on the oscillation amplitudes and the
total disappearance of the NRS. This result can be under-
stood if one recalls that for negative circular polarization and
v<vc the electric field rotates in phase with respect to the
electron cyclotron rotation. The present results call for the
importance of carrying out experiments with circular polar-
ization configurations.

An analysis was presented in order to explore the nonlin-
ear regime in which multiphoton exchange plays an essential
role. The results suggest the existence of new NRSswhich
are expected to develop into ZRSd neare= 1

2 ande= 3
2. these

states correspond to two-photon exchange processes and are
in reasonable agreement with the reported experimental re-
sults.

Some final remarks are related to the limitations and pos-
sible extensions of the present work. In a first approximation
we have not included the contribution of the elastic processes
to the kinetic equation that determines the electron distribu-
tion. It will be interesting however, to extend the present
calculations to include not only the dynamical effects pro-
duced by the impurity on the electron wave function, but also
the modifications that they produce in the distribution func-
tion.
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APPENDIX A: MICROWAVE-DRIVEN
LANDAU PROBLEM

Equations6d defines a canonical transformation from the
variables ht ,x,y;p0,px,pyj to hQ0,Q1,Q2;P0,P1,P2j in
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terms of the new variables. The Schrödinger equations1d
swithout impurity potentiald takes the form

P0C = H"vcF sQ1
2 + P1

2d
2

G + elBExsQ1 − P2d

+ elBEysQ2 − P1dJC. sA1d

The action of the transformationW defined in Eq.s10d over
the sQm ,Pmd variables can be easily calculated as

WQ0W
† = Q0,

WP0W
† = P0 + ḣ1Q1 + ż1P1 + ḣ2Q2 + ż2P2 − ż1h1 − ż2h2 + L,

WQ1W
† = Q1 + z1, WP1W

† = P1 − h1,

WQ2W
† = Q2 + z2, WP2W

† = P2 − h2. sA2d

It can be verified that when theW transformation is applied
to Eq.sA1d, the second and third terms in the right-hand side
exactly cancel with all the terms that appear in the expression
for WP0W

† sexceptP0d if the functionshi andzi are selected
to be solutions of the following differential equations:

ḣ1 − vcz1 = elBEx, ż1 + vch1 = − elbEy,

ḣ2 = elBEy, ż2 = − elBEx. sA3d

But, these are exactly the classical equations of motion that
follow when the variational principle is applied to the La-
grangian in Eq.s11d. Hence, theW operator transforms the
Schrödinger equationsA1d to the Landau eigenvalue prob-
lem with the Hamiltonian given in Eq.s9d.

For the electric field consider the expression in Eq.s5d. It
is then straightforward to obtain the solutions to Eqs.sA3d,
adding a damping term that takes into account the radiative
decay of the quasiparticle. The lines read

h1 = elBE0ReF − ivex + vcey

v2 − vc
2 + ivGrad

eivtG,

h2 = elBE0ReF eye
ivt

iv
G ,

z1 = elBE0ReF vcex + ivey

v2 − vc
2 + ivGrad

eivtG ,

z2 = − elBE0ReF exe
ivt

iv
G . sA4d

According to the Floquet theorem the wave function can be
written asCstd=exps−iEmtdfmstd, wherefmstd is periodic in
time, i.e.,fmst+tvd=fmstd. From Eq.s10d it is noticed that
the transformed wave functionCW=WC contains the phase
factor expsietLdt8d. It then follows that the quasienergies and
the Floquet modes can be deduced if we add and subtract to
this exponential a term of the forms t / t de0

tLdt8. Hence, the
quasienergies can be readily read off as

Em = Em
s0d + Erad, Em

s0d = "vcS1

2
+ mD ,

Erad =
e2E0

2f1 + 2vcResex
*eyd/vg

2m* fsv − vcd2 + Grad
2 g

. sA5d

Here Em
s0d are the usual Landau energies, and the induced

Floquet energy shift is given by the microwave energyErad.
The corresponding time-periodic Floquet modes in the
sP1,P2d representation are given by

Cm,ksPd = exph− i sins2vtdFsvdjfmsP1ddsP2 − kd.

sA6d

Here fmsP1d is the harmonic oscillator function in theP1

representation

fmsP1d = kP1uml = S 1
Îp1/22mm!

De−P1
2/2HmsP1d, sA7d

andHmsP1d is the Hermite polynomial and the functionFsvd
is given as

Fsvd =
vc

v
S eE0lB

v2 − vc
2D2Fv2 − vc

2 + 2v2ex
2 − 2vc

2ey
2

+
Resex

*eyd
vvc

s2v4 − v2vc
2 + vc

4dG . sA8d

The wave functionsA6d depends on the Landausmd and
center guideskd indexes; however, the spectrumsA6d is de-
generate with respect tok. It is important to notice thatFsvd
appear in the wave function phase that depends only on time.
Hence its contribution to the expectation value of the mo-
mentum operator cancels exactly. Thus, contrary to what it is
claimed in Ref. 15, the effect of the Floquet dynamicsswith-
out including an extra effect such as impurity scatteringd can-
not account for the explanation of the ZRS observed in re-
cent experiments.

APPENDIX B: IMPURITY-INDUCED TRANSITIONS

In this appendix we consider the first order solution of the
evolution operatorUstd given by

Ustd = 1 − iE
−`

t

dt8fW†st8dṼsrdWst8dgI . sB1d

The effect of the transformation induced by theW operator
over the impurity potential can be easily evaluated consider-
ing the effect over the Fourier decomposition ofVsrd given
in Eq. s3d. Recalling that thex andy coordinates are written
in terms of the new variablessQ1,P1,Q2,P2d by means of
Eq. s7d and utilizing the transformation properties of the
sQi ,Pid operators in Eq.sA2d, it is readily obtained

W†stdexphiq · rjWstd = exphil BsqxP2 − qyQ2dj

3exph− il BsqxQ1 − qyP1dj

3exphil Bfqxsz1 + h2d + qysz2 + h1dgj.

sB2d
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Using Eq.sA4d the third exponential in the previous equation
can be recast in a compact form as exph−i RefD expsivtdgj,
with D given in Eq.s23d. This expression can be expanded
as35

exph− i RefD expsivtdgj = o
−l=`

l=` S D

i uDu
eivtDl

JlsuDud, sB3d

with Jl the Legendre polynomials. For the second exponen-
tial notice that once thatQ1 andP1 are replaced by the rais-
ing and lowering operators given in Eq.s8d, one is lead to
evaluate the matrix elements of the operatorDsq̃d=expsq̃A1

†

− q̃* A1d that generates coherent Landau states. A calculation
yields

Dnmsq̃d = knuDsq̃duml

= e−s1
2duq̃u25s− q̃ * dm−nÎ n!

m!
Ln

m−nsuq̃u2d, m . n

q̃n−mÎm!

n!
Lm

n−msuq̃u2d, m , n,6
sB4d

whereLm
m is the generalized Laguerre polynomial. With all

these provisions the matrix element of the solution of the
evolution operator in Eq.sB1d can be worked out as

kmuUstdunl = dmn − o
l
F eisEmn+vldt

sEmn + vl − ihdGCmn
sld . sB5d

The explicit expression forCmn
sld was given in Eq.s22d.

APPENDIX C: MICROWAVE-DRIVEN
DISTRIBUTION FUNCTION

Within the time relaxation approximation the Boltzmann
equation can be written as

] f

]t
+

] f

]p
seE + ev 3 Bd = −

f − fF

ttr
− −

f − fF

tin
,

where fF is the Fermi-Dirac distribution and we distinguish
between the elastic ratettr

−1 and inelastic or energy relaxation
rate tin

−1. Under experimental conditions,tv!ttr !tin, and
certainly the inelastic processes can be safely ignored. Fur-
thermore, due to theac-electric fieldfEq. s5dg, the left-hand
side of the previous equation is estimated to be of orderf /tv.
Hence, in a first approximation the elastic scattering contri-
bution can also be neglected. The resulting Vlasov equation
has the exact solutionfsp,td= fFfp−m* vstdg, where the ve-

locity vstd;sḣ1, ż1d solves exactly the same classical equa-
tions of motion as given in Eq.sA3d, and the initial condition
is selected asf → fF as the external electric field is switched
off. In particular it is verified thatm* uvstdu2/2=Erad coin-
cides with the Floquet energy shift produced by the micro-
wave radiation fEq. sA5dg. The steady-state distribution,
evaluated at the Landau energyE=Em

s0d, is obtained by aver-
aging fFfp−m* vstdg over the oscillatory period

kfFl =
1

tv
E

0

tv

fFsEm
s0d + Erad + 2cosvctÎEm

s0dEradddt.

For the experimental conditions it is verified thatErad!Em
s0d,

thus expanding to first order one findskfFl< fFsEm
s0d+Eradd

= fFsEmd. Hence, it is verified that a rapid relaxation of the
Fermi distribution to the quasienergy states is a reasonable
assumption. The arguments presented in this appendix have
been introduced by Mikhailov34 in order to explore the pos-
sibility that the microwave radiation leads to a population
inversion; however, it is concluded that it would require a
rather high microwave intensityErad.EF.

APPENDIX D: DARK AND HALL CONDUCTIVITIES

In Sec. III it was explained in detail the method to obtain
the final expression for the microwave-induced magnetore-
sistancefEq. s35dg. Working along a similar procedure the
expression for the remaining conductivities are worked from
Eqs.s32d ands33d. First we quote the longitudinal dark con-
ductance

sxx
D =

e2vc
2

p"
o
m

mE dE ImGmsEd
df

dE Im GmsE + vcd,

sD1d

whereas the dark Hall conductance is given by

sxy
D =

e2vc
2

p"
o
m

mE dEImGmsEd

3ffsEm − vcd − fsEdgP
1

sE − Em + vcd2 , sD2d

where P indicates the principal-value integral. The impurity-
assisted contributions require an additional average over the
impurity distribution. It is assumed that the impurities are not
correlated. The final result for the microwave-assisted longi-
tudinal conductivity was quoted in Eq.s35d. Following a
similar procedure the microwave-assisted Hal conductivity is
calculated to give

ksxy
v l =

e2vc
2

p"
E dEo

mn
o

l

Im GmsEdffsEnd − fsEmdg

3Hdmnsr1r2
*dl,1 + r1

*r2dl,−1d + nimpE d2qTsqd

3uJ̃lsuDudVsqdDmnsq̃du2J , sD3d

where the functionTsqd is defined as

Tsqd = vclB
2 qx

2 + qy
2

uE + vl − EnuusE + vl − End2 − vc
2u2

. sD4d

APPENDIX E: LANDAU DENSITY OF STATES

A detailed calculation of the density of states incorporat-
ing all the elements that contribute to the system under study
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is beyond the scope of the present paper; however, it can be
argued that the expression given in Eq.s37d for the DOS is
expected to be a reasonable selection under some consistent
approximations. Let us consider the Green’s function associ-
ated with the HamiltonianH+DV, whereH is given in Eq.
s1d and DV=W†VW is the subtracted part of the disorder
potentialfEq. s25dg. As explained in Sec. III, the Kubo for-
mula fEqs.s32d ands33dg was deduced using the wave func-
tion obtained after the three transformations in Eq.s16d are
applied to the Landau states. Hence,DV is transformed ac-
cording to

DṼstd = UI
†st − t0dexphiH0tjWstdDVW†stdexph− iH0tjUIst − t0d

fsee Eq.s29dg. Notice thatsid the W transformation cancels
exactly, sii d both DV and the first order correction toUIst
− t0d are proportional toV, and hence, considering linear
terms onV we can setUIst− t0d<1, and siii d finally when
evaluated in theuml base and neglecting inter-Landau mix-
ing, the contributions from exph−iH0tj cancel out. Hence,

DṼ<Vsrd, and the problem under consideration reduces to
evaluate the density of states produced by a magnetic field
and a disorder potentialVsrd of the form given in Eq.s3d; but
this is precisely the problem considered some ago time by by
Ando30 and Gerhardts.31 The density of states is well repre-
sented by the Gaussian expression in Eq.s37d, and the level
broadening neglecting couplings between different Landau
levels is taken from Ref. 32,

Gm
2 = 8 p plB

2nimpE d2r

2plB
2 E d2r8

2plB
2 VsrdVsr8dfDmmsur − r8u

3sÎ2lBddg2, sE1d

whereDmm is given in Eq.sB4d. For the delta short range
scatterers the previous expression is readily evaluated, yield-
ing the result in Eq.s37d with bm=1. In the case of the
charged impurity disorder, after the substitution of the Fou-
rier decompositionfEq. s3dg and using Eq.s40d it is verified
that Gm is again given by the expression in Eq.s37d, but the
factor bm is given by

bm = 16pskFdd3E
0

`

q

expF− Î8
d

lB
qG

S1 +
Î2q

lBqTF
D2 fDmmsqdg2dq. sE2d

Previous analyse of the Landau level broadening were car-
ried out, for example,30 for a Gaussian potentialVsrd
,er2/d2

. However, as mentioned in Sec. IV the actual situa-
tion corresponds to a screened potential that in real space has
a r−3 decay for larger. As mentioned in Sec. III the value of

bm decreases for higher Landau levels. For example for the
selected parameter, we haveb0=108,b30=14, andb50=11.

APPENDIX F: APPROXIMATED ONE-PHOTON
EXCHANGE PHOTOCONDUCTIVITY

The microwave-induced longitudinalfEq. s35dg conduc-
tivity requires the numerical evaluation of a time-consuming
integral given by

Sl =E d2qKsqduJlsuDudVsqdDmnsq̃du2.

However, if we consider the regime of moderate microwave
intensity and assume neutral impurity scattering, a very use-
ful analytical approximation can be worked out. For neutral
impurity scatterers, the potential is assumed to be of the short
range delta form, hence the Fourier coefficient in Eq.s3d is
given byVsqd=2p"2a /m*. The Dmnsq̃d term contains an ex-
ponential factor that represents a cutoff for largeq. Then
according to Eq.s23d for moderate values of the microwave
electric field theD term is small and the leading contribu-
tions arise from thel = ±1 factors that correspond to the
single photon exchange contribution. Using the approxima-
tion J1szd<z/2 one is lead to evaluate

S±1 =
2p"2a

m*
E d2qKsqduDu2Dmnsq̃d2. sF1d

The angular integration is straightforward, while the integral
over theq=Îqx

2+qy
2 leads, after a change of variablej=q2, to

an integral of the form

E
0

`

dje−jjm−n+2sLn
m−nd2, sF2d

which is explicitly evaluated with the help of the recurrence
relation xLn

k=s2n+k+1dLn
k−sn+kdLn−1

k −sn+1dLn+1
k and the

integral35

E
0

`

dje−jjkLn
kLm

k =
sn + kd!

n!
dmn. sF3d

The final result reads

S±1 =
p"2av2uEu2Imn

8m* vc
2uv2 − vc

2 + ivGu2
fv2s1 + 2ueyu2d

+ vc
2s1 + 2uexu2d − 8vvcImsex

*eydg, sF4d

where

Imn = 6Sm +
1

2
DSm +

1

2
D + sm − nd2 +

1

2
. sF5d

These expressions greatly simplify the numerical calcula-
tions, and as discussed in Sec. IV they provide a very accu-
rate approximation to the exact result.
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