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The recent discovery of the microwave-induced vanishing resistance states in a two-dimensional electron
system(2DES is an unexpected and surprising phenomenon. In these experiments the magnetoresistance of a
high mobility 2DES under the influence of microwave radiation of frequeacgt moderate values of the
magnetic field exhibits strong oscillations with zero-resistance stZiS) governed by the ratia/ w., where
w, is the cyclotron frequency. In this work we present a model for the photoconductivity of a 2DES subjected
to a magnetic field. The model includes the microwave and Landau contributions in a nonperturbative, exact
way, while impurity-scattering effects are treated perturbatively. In our model, the Landau-Floquet states act
coherently with respect to the oscillating field of the impurities that in turn induces transitions between these
levels. Based on this formalism, we provide a Kubo-like formula that takes into account the oscillatory Floquet
structure of the problem. We study the effects of both short-range and long-range disorder on the photocon-
ductivity. Our calculation yields a magnetoresistance oscillatory behavior with the correct period and phase. It
is found that, in agreement with experiment, negative dissipation can only be induced in very high mobility
samples. We analyze the dependence of the results on the microwave power and polarization. For high-
intensity radiation, multiphoton processes take place predicting negative-resistance states cemiéegd at
:% andw/wczg.
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[. INTRODUCTION contribution arises from the modifications of the electron dis-
) ) ) tribution function induced by the microwave radiation. These
Two-dimensional electron systent8DES in a perpen-  models, as well as some of their predictions, remain to be
dicular, strong magnetic field have been extensively studiegested experimentally.
in relation with the quantum Hall effect. Recently, two ex- In this work we present a model which includes the Lan-
perimental grougs” reported the observation of a unique dau and radiation contributiofin the long-wavelength limjt
phenomenon: the existence of zero-resistance @RS in  in a nonperturbative exact way. Impurity scattering effects
an ultraclean GaAs/AGa-,As sample subjected to micro- are treated perturbatively. With respect to the Landau-
wave radiation and moderate magnetic fields. The magne=joquet states, the impurities act as a coherent oscillating
toresistance exhibits strong oscillations with ZRS governedield which induces the transitions that prove to be essential
by the ratioe=w/ w., Wherew; is the cyclotron frequency. in order to reproduce the observed oscillatory behavior of the
According to Zudowet al,’ the oscillation amplitudes reach magnetoresistance. Based on this formalism a Kubo-like ex-
maxima ate=w/w.=] and minima ate=] +§, for j, aninte-  pression for the conductance is provided. Our results display
ger. On the other hand Maet al? reported also a periodic a strong oscillatory behavior fgs,, with NRS. It is found
oscillatory behavior, but with maxima at:'—%1 and minima  thatp,, vanishes at=w/w.=]j for j integer. The oscillations
at w/wc=j+;11. Additionally, experimental work appeared follow a pattern with minima a&=j+ 48 and maxima ate
recently>° =j- 6, adjusted withd~= % The model is used to test chirality
In spite of a large number of theoretical wolks?® a  effects induced by the magnetic field, and calculations are
complete understanding of the effects in 2DES induced byarried out for variou€-field polarizations. Finally, we ex-
microwaves has not yet been achieved. A pioneering worlplore the nonlinear regime in which multiphoton processes
put forward by Ryzhit® and another by Ryzhii and Sulls  play an essential role.
predicted the existence of negative-resistance stiBS). The paper is organized as follows. In the next section we
Durst et al!? found also NRSn a a diagrammatic calcula- present the model and the method that allows us to obtain the
tion of the photoexcited electron scattered by a disorder poexact solution of the Landau-microwave system as well as
tential. A possible connection between the calculated NR$he perturbative corrections induced by the impurity poten-
and the observed vanishing resistance was put forward itial. In Sec. lll we develop the formulation of dc electrical
Ref. 13, noting that a general analysis of Maxwell equationdinear response theory valid in arbitrary magnetic fields and
shows that negative resistance induces an instability thahicrowave radiation. A discussion of relevant numerical cal-
drives the system into a ZRS. Whereas some of theulations is presented in Sec. IV. Section V contains a sum-
model$®1217 are based on impurity-assisted mechanismsmary of our main results. Details of the calculations are sum-
there are alternative explanatiéi&2%in which the leading marized in the Appendixes.
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Il. THE MODEL Refs. 22,23, we introduce a canonical transformation to new
We consider the motion of an electron in two dimensionsvar'ableSQﬂ’ P #=0, 1, 2, according to
subject to a uniform magnetic fiel# perpendicular to the Qo=t, Py=id,+ep+er-E,
plane and driven by microwave radiation. In the long-wave
limit the dynamics is governed by the Schrédinger equation, V’E%Ql =11, v’eT3Pl =11,
Y = = V(N1 R s
5 =Y =lHew +VIOIY. @ (eBQ=p,+eA +eBy eBR=p,+eA-eBx (6)

HereHg,, is the Landau Hamiltonian coupled to the radia- It is easily verified that the transformation is indeed canoni-
tion field’(with A o0) andV(r) is anv potential that can can cal; and the new variables obey the commutation rules,
yp -[Qq,Pol=[Q1,P1]=[Q5,P,]=i, all other commutators be-

be decompo§ed in a Fourier expansion. The method appliei g zero. The inverse transformation gives
in general ifV(r) includes various possible effects such as
lattice periodic potential, finite wavelength corrections, im- X=1g(Q1=P2), y=1g(Q2= Py, (7)
purity scattering, etc.; however, as it will be lately argued,
the impurity scattering is the most likely explanation for the
recent experimental results. One important remark with rela
tion to the impurity potential in Eq1) is that to start with, it

where Ig=V#%/eB is the magnetic length. The operators
(Q2,P») can be identified with the generators of the electric-
magnetic translation symmetri&s26 Final results are inde-
h(_:pendent of the selected gauge. From the operators i6Eq.

should only include the polarization effects produced by t . . : .
combined effects of the Landau-Floguet states and the implee construct two pairs of har_monlc oscillatorlike ladder op-
erators,(a,,al), and(ay,a}), with

rity potentials. The broadening effects produced by this po-
tential are, as usual, included through the Kubo formula. 1 1
Then we writeV(r) as = E(Pl_ iQ1), a= E(Pz -iQy), (8)

V(r)=V(r) - AV(r), AV(r) = WV(r)W, (2)  obeying[a,,al]=[a,,a}]=1 and[a,,a,]=[a;,a}]=0.

whereW is the transformation that takes exactly into account(:»(‘,:ct'lS 8?;’\'0?](;8”32'25 0 'fli?di; dtémtary transformation that
the microwave-Landau dynamics; it is explicitly given in Eqg. y diag {Bwp 1Y

(~10). In the absence_ of th_e microwgve radiati.w,zll and WTH{B,w}W= wc(% + aIal) = Ho, (9)
V(r) vanishes. The impurity scattering potenti&r) is de- )

composed as with the cyclotron frequencw.=eB/m* and theW(t) opera-

X tor given by
d . . . .
vin=3 f SppV@edia- -l @ WI(t) = expli 72 QulexplisPiexpli Q)
: t

Herer, is the position of thaé™ impurity and the explicit xexpli&;Potex —if Edt'}, (10)

form of V(g) depends on the mechanism that applies under
particular physical conditions. Some examples will be con-where the functionsy(t) and &(t) represent the solutions to
sidered in Sec. IVHg ,, is then written as the classical equations of motion that follow from the varia-
1 tion of the Lagrangian:
H{B,w}: (_*>H21 H:p+eA! (4) w . .
2m ﬁz(f)(ﬂi"’ﬁ)"’(?lm*'gzﬂz)
wherem* is the effective electron mass and the vector po-
tential A includes the external magnetic and radiation fields +elg[Ex({1+ ) +Ey(m + {)]. (11

(in the A — e limit) contributions The explicit form of the solutions fof;(t) and&(t) are given

_ (1 Eq ) in Appendix A.
A=-{7)rxB+Ra | |exp-int}). ®) Let us now now consider the complete Hamiltonian, in-
cluding the contribution from th&/(r) potential. When the

We first consider the exact solution of the microwave-drive T . : .
Landau problem. The impurity-scattering effects are latel;'transformatmn induced by\({) is applied the Schrodinger

added perturbatively. This approximation is justified on theequatlon in Eq(1) becomes
following conditions: (i) |V|/Aw,<1 and (i) wr,~ w7y Po¥™W = Ho¥ W + v () T, (12)
>1; 7, is the transport relaxation time that is estimated us- W
ing its relation to the electron mobilitg=er, /m*. As dis-  WhereW™=W(H)¥ and
cussed in Sec. IV both conditions are fully complied. _ ~ _
The system posed b¥g,y can be recast as a forced Vinlt) = WIOV(NWHD) = WIOVIOW (1) = V(). (13)

harmonic oscillator, a problem that was solved a long timeNotice that the impurity potential acquires a time depen-
ago by Husim?! Following the formalism developed in dence brought by th&V(t) transformation. The problem is
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now solved in the interaction representation using first order elgEq(— iwe, + we,) elgEo(wcey + iwe,)
time-dependent perturbation theory. In the interaction repre- P1=7 5 _ 2 il v P2T T 5 2 il

i (W) _ ; (W) s @~ W T lwl g 0"~ ¢ Tl (aq
sentationWV, ™ =exgiHt}w™", and the Schrodinger equa-
tion becomes (21)

i@ = V() W (14 and

The equation is solved in terms of the evolution operator C“) j V(g)e 9D ( ) A

U(t), in such a way tha\lf,(W)(t):U(t—to)\lffW)(to). The solu- E (2m)? @ wl@ Y J(aD,

tion of the evolution operator in first order perturbation 22)
theory is given by the expression

t - where J=J,- 8 o, J being the Legendre polynomials, and
Uit =1 —if dt'[WI(t)V(nW(t")];, (19  D,,(q) is given in terms of the generalized Laguerre polyno-
— mials in Eq.(B4), and
which is explicitly evaluated in Appendix B. The interaction wl2eE,
is adiabatically turned off asy— -, in which case the A= 5 Cg :
asymptotic state is selected as one of the Landau-Floquet w(0” = g +iol' sy
eigenvalues oH,, i.e., |¥, W(t))—|u,k). The solution to (23
the original Schrédinger equation in Edql) has been
achieved by means of three successive transformationd, iS important to notice that the subtracted tedmd- 40,

[ow(0ye+ nyy) + ia’c(Qxey - qyex)]-

which expressions have been explicitly obtained, has its origin in the fact that the impurity potential E@)
it , includes only the dynamical effects, with the corresponding
W, (1) = Wexp{= iHothU(t = to) ., k). (16)  zero field term conveniently subtracted. This procedure is

As discussed in Appendix A the indédklabels the degen- justified because the broadening effects produced(byare
eracy of the Landau-Floquet states. SelectingRrepresen- ~ separately included via the Kubo formula. See Appendix E.
tation the dependence of the wave functionlobecomes The subtraction)=J,— & o becomes essential, otherwise the
very simple. See EqA6). For simplicity in what follows the longitudinal resistance would be dominated by ith@ term,
index k will not be shown. The expression of the Kubo for- producing incorrect results.

mula that will be derived in Sec. Il requires the knowledge

of the matrix elements of the momentum operdtr

(W JTLW,) = (u]UT(t - t) IWILWT Ut - )] ). (17) Ill. KUBO FORMULA FOR FLOQUET STATES

Let us first consider the term inside the square brackets. Us- N this section we shall develop the Kubo formula that
ing the explicit form of the operators in Eq&l), (6), and  applies when the dynamics include Landau-Floquet states

(10), it yields such as those in Eq16). We take the perturbing electric
— _ field to have the fornk,=EgcogQt)exp(—7|t)). The static
+_ ] VeBPi—my),  1=X limit is obtained with()— 0, and » represents the rate at
Wi, — - (18) ! thed. _
VeB(Q; - &), i=y. which the perturbation is turned on and off. The perturbing

electric field is included in the vector potential. As we are

If we now utilize the result for the evolution operattl  jnterested in the linear response the perturbing potential has
given in Appendix B, we can explicitly work out the matrix ine form

elements of the momentum operator,
B 1 Eqc .
- _ = IIA Agi= —sin(Qt)exp(— nlt)). (24
(I ,) = (a Vpeeds, oy + bpveeds, ) Vo™ o Ron™ " TsiNAeXH=7t). (24
_ _ | Besides the original Hamiltonian in Eql), the complete
+ V’eBE EuralTmAD (). (199  Hamiltonian should includ®,, and the part of the disorder
' potential [AV(r)=W"V(r)W] that was previously subtracted.
Here the fo”OW'ng deﬁnmons were |ntroduce¢' V_g [See Eq(2)] Hence the tOtal Ham”toniahl'r iS Wl’itten as

gl\E/,(,a,nai)yb =1if j=x, andaj=—-b;=-i if j=y, andA (j) is Hy = H + Vit AV(T). (25)
W . The disorder potentiahV(r) will induce broadening effects,
8,000 = 8ulpidia* pjéi -l and it will be included later. Then, the time evolution for the
1 ag* Cﬂ)v quC(') density matrixp(t) obeys the von Neumann equation,
\s’E Epn—wetol=-in £, +o.+tol-iy ’ _ <F7p)
(20) Iﬁ E - [H +V6Xt’p]‘ (26)

whereq=ilg(g,— |qy)/\2 and the expressions for the func- Within the linear regime is split in the sunp=py+Ap. The
tions p;, andC' , are worked out as zero order ternpy, must satisfy

115313-3



M. TORRES AND A. KUNOLD PHYSICAL REVIEW B71, 115313(2005

{ dpo conductivity can now be worked out. Results for the dark
i\ )= [H.pol. (27)  and microwave-induced conductivities are quoted,
The conditions required to solve this equation will be estab- w f aud, bvs
. X .. D_: [ Juv M v+l + iV w,v=1
lished below. The first order deviatiakp then obeys Oy i47 % Q[ E,+Q-in E,+Q-iy
5722 = [H, Ap] + [Vag 0] (29)
— =[H,Ap pol-
at e +(Q - m} , (32)
We shall now apply to this equation the three transformations
that were utilized in the preceding section in order to solve 202 f A(I)(i)A(—I)(X)
the Schrodinger equation. Hence, in agreement with Eq. oy = i4ﬁc —6—”2 z +” |+”Q : +(Q—-=-Q).
(16), Ap is defined as pv I ST @ n
x t it (33)
Ap(t) = U/ (t — tg)expliHotfW(t) Ap() W' (t
PO = Ui 0? AHAWDAL(OW () In these expressions the external electric field points along
Xexp{—iHottU;(t = to). (290 the x axis. Hence, setting=x or i=y the longitudinal and

. ~ Hall conductivities can be selected. The denominators on the
In terms of the transformed density matiyp(t), EQ. (28)  (ight-hand sideRHS) of the previous equations can be re-

becomes lated to the advanced and retarded Green's funct@j()
_ (;Zp ~ =1/(£-&,£in). To make further progress, the real and ab-
ify ) [Vexs Pol, (300 sorptive parts of the Green’s functions are separated, taking

whereT/ext andpg are the external potential and quasiequilib- the limit ?7%.0 and using I|n.;;H01/(5—|?7)-P1/€+|775(€),

. _ _ . ~ where P indicates the principal-value integral. As usual the
rium density matrix transformed in the same manneAAs o4 and imaginary parts contribute to the Hall and longitu-
is transformed in Eq(29). The transformed quasiequilib- qina| conductivities, respectively. In what follows, details of

rium density matrix is assumed to have the foff§ (he calculations are presented for the longitudinal
=2, wf(€,)(u|, wheref(£,) is the usual Fermi function and  yicrowave-induced conductivity. The corresponding dark
&, the Landau-Floquet level(See Appendix A It is  conductivity expressions as well as the Hall microwave-
straightforward to verify that this selection guarantees thajnquced conductance are quoted in Appendix D. Implement-
the quasiequilibrium condition in Eq27) is verified. The ing the previous considerations and inserting &nction,

justifi_cation for selepting a Fermi_—Dirac dist_ribution_ in the the longitudinal microwave-induced conductivity takes the
quasienergy states is presented in Appendix C. It is showgym

that, under experimental conditiofs, < 7, < 7,), the elastic 2

and inelastic relaxation processes can be neglected as com- o3, = —4—;2 > d€6(5—5ﬂ)|A2)V(x)|2
pared to the external field effects. The solution of the Boltz- uy |

mann equation yields, for a weak microwave intensity, a {f(5+w| +Q) -1

Fermi-Dirac distribution in the quasienergy states. The ex- X Im G,(£+ wl +Q)
pectation value of E¢(30) in the|u) base can now be easily Q

calculated using Eq$16), (24), and(29). Solving the result-
ing equation with the initial conditionAp(t) —0 ast— —o, +(Q— - Q)}, (34
yields fort<O0,
- where ImG,(€)=(3)[G}(£)-G;(&)]. The static limit with
(| Ap(®)|v) respect to the external field is obtained, taking- 0. In the
= (W |Ap()| W) case of the impurity-assisted contribution an additional aver-
K : age over the impurity distribution has to be carried out. It is
eEq4 1 | @it ) assumed that the impurities are not correlated, utilizing the
= 2 f_w QO fMV<‘If”|H(t W)+ Q—=-Q) |, explicit expressions for the velocity matrix elements in Eqg.
(20). The final result for the averaged microwave-induced
(3D longitudinal conductance is worked out as

where the definitiorf ,,=f(£,) - f(£,) was used. Substituting © _ﬁf I

the expectation value for the momentum operator given in (030 = deX 2 Im CuEBTEE)
Eq. (19), the integral in the previous equation is easily per-
formed. The current density to first order in the external elec- 2 2
tric field can now be calculated from{J(t,r)) X{w°|p1| Bl A1 % -0 * Nimdl

=Tr{Ap(t)J(t)]. The resulting expression represents the local d?q e~

density current. Here we are concerned with the macroscopic X f S0 (ADV(@)D,, @7, (35
conductivity tensor that relates the spatially and time- (2m)

averaged current densify(7,V)!fg°dt/ d*x(J(t,)) to the  wheren,,, is the two-dimensional impurity density and the
averaged electric field, here,=27/w. The macroscopic following function has been defined as

uv |
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d
B(l)(g,gp) == {d_é’o{[f(g +low+ &) - f(E)] u0=106cm2/Vs

XIm GV(5+Iw+50)}} . (36)

&=0 ~

The photoconductivity in Eq(35) has a first contribution g 20
that depends on the; factor (independent of the impurity &
concentration It represents the direct cyclotron resonance
heating arising when th&\/(t) transformation is applied to 0
the momentum operatofSee Eq.(18).] The impurity-
induced contributiorfsecond row in Eq(35)] takes into ac-
count the dynamics produced by the magnetic and micro-
wave fields combined with the resonant effect of the
impurities; the information is contained in the complete
wave function in Eq(16).

The previous expression would present a singular behav- FIG. 1. Longitudinal resistivity as a function af=w/ o, for
ior that is an artifact of thep— 0 limit. This problem is  neutral impurity scattering and three values of the electron mobility,
solved by including the disorder broadening effects. A simplex~0.5x10° cnm?/V's  (dotted ling, w=~1.5x10°cn?/V s
phenomenological prescription is dictated by simply retain{(dashed-dotted lingand u~2.5x 10° cn?/V s (continuous ling
ing a finite value ofy that is related to the quasiparticles’ In the two former cases the oscillations follow a pattern with
lifetime (=2m/7).2728 According to this prescription the minima ate=j+&and maxima at=] -, adjusted withs~ ¢ NRS
density of state$DOS) of the u level would have a Lorent- ©nly appear whem.> up,~1.5x 10° cmP/V's. The values of the

zian form, other parameters are the same as in Fig. 2.
Im G, (€) = (m/2m) _ in the T—0 limit becomes of the formy(£-&g), and the
- + 7 conductivity is positive definite depending only on those
(€= €)%+ 7Pl4] ductivity i itive definite dependi | h

states lying at the Fermi level. On the other hand, as a result

A more formal procedure requires us to calculate the broads¢ i heriodic structure induced by the microwave radiation,

ening produced by the so far neglected part of the disordegi ¢ontains a second contribution proportional to the deriva-
potential AV(r). [See Eq.25).] Fortunately, as explained in tive of the density of stated/d&)im G (£+1w). Due to the

Appendix E, the calculation becomes equivalent to that cargqeijiatory structure of the density of states, this extra con-

) s ) .
ried out by Andd® and Gerhardt$] so the density of states i, vion takes both positive and negative values. According

for thfe “ 3I_2andau level can be represented by a Gaussian(—0 Eq.(37) this second terntas compared to the first onis
type form;

proportional to the electron mobility. Hence, for sufficiently

- high mobility the new contribution dominates, leading to
Im G,(€) = 4 | —exd— (£~ EM)ZI(ZFi)], NRS. The former observation becomes fundamental, because
2l in agreement with experiment our calculations show that
NRS can only be induced in very high mobility samples.
2B, 1w (See Fig. 1.
2 _ 2 C
I.= (37) As was mentioned in Sec. Il the present method applies in

(77y) ~
general ifV(r) can be decomposed in its Fourier expansion

The parametep,, in the level width takes into account the rzq (3)] ¢ g., finite wavelength corrections, lattice periodic
difference of the transport scattering time determining the,ential, impurity scattering, etc. The microwave radiation
mobility w from the single-particle lifetime. In the case of . jiself only produces transitions between adjacent Landau
short-range scatterersy =7 and 5,=1. An expression for o eis[first term on the RHS of Eq(35)], leading to the

By, suitable for numerical _evgluatlon_tha_t applles for thecyclotron peak. In the case of a periodic potential the result-
long-range screened potential in B40) is given in Appen-  ing " gpectrum will be dominated by the regian=2m/a,

dix E. B, decreases for higher Landau levels. This property, hereq is the lattice parameter: for the experimental condi-
becomes essential to generate NRS, because they only ggsns) .>a and the contribution is negligible. So we are led
pear for a narrow’,,, a condition that is satisfied around the to analyze the impurity-assisted mechanism as a plausible

Fermi Ie\_/el in the case of Iarge_ filling fa(.:to.rs. . scenario to explain the strong oscillatory structure of the
Equations(35) and(36) contain the main ingredients that magnetoresistance.

explain the huge increase observed in the longitudinal con-
ductance(and resistangewhen the material is irradiated by
microwaves. In the standard expression for the Kubo formula
there are no Floquet replica contributions, hewogan be set

to zero in Eq.(36). if that is the cas@! becomes propor- The single-particle and transport relaxation rates induced
tional to the energy derivative of the Fermi distribution thatby disorder are given 5§33

IV. RESULTS
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1 1 Th
= 1 “oE S a1
o L LT ; 407 Bm* (k2™ @
- mp 3 / I il
1 mh ke Jo V1 - (g/2ke)? A2 The upper indexC labels the charged impurity case. As ex-
Tir pected, for charged remote impurities the single-particle life-

(38) time differs from the transport lifetime. The approximated
relation reads\" ~ (2ked)?70.22

whereV(q) is the Fourier transform of the impurity potential ~ The parameter values have been selected corresponding to
[Eq. (3)]. Remarkably, we have a consistent formalism in"€Ported expepmerﬁé in ultraclean GaAs/AlGa,_,As
which (i) the photoconductivityEg. (35)], (ii) the relaxation ~Samples: effective electron masg =0.067m,, relative per-
rates[Eq. (38)], andiii) the level broadeninfEgs.(37) and ~ Mittivity €,~13.18, Fermi energge=10 meV, electron mo-
(E2)] can all be consistently calculated oneé) has been Pility :““*_29-1—_2-5% 10" cn?/V's, electron  densityn=3
specified. X 10* cm™2, microwave frequencie$=50-100 Ghz, mag-

For neutral impurities the potential can be represented bzetic fields in the range 0.05-0.4 T, andn'izemperatu'r'es
a short range delta interaction. The coefficient in E8). ~,0'5_2'5 K. The rgported specimen iX5 m T s. Typlcal
corresponds to a constant that can be selected/(gs ~'Microwave power is 10-40 mW; however, it is estimated

=2mh2a/ M. The expression in Eq38) is readily calculated that the microwave power that impinges on the sample sur-

to yield the same value for the single-particle and transpor{ace is of the order of 100-20@/. Hence, the microwave

relaxation rates, electric field intensity is estimated #ﬂ ~1-3 V/cm. Using
these values, it is verified that the weak-overlapping condi-
1 1 47 tion holds: w.7, ~100-1000.
TN T @i (39 Recalling thatu=er, /m*, one can use Eq$39) and(41)
Tr Ts m to determine the values af,,, corresponding to neutral or

_ _ _ charged scatterers, respectively. For example, assuming
The upper indexN labels the neutral impurity case. The ~2.5x 10° cn?/V's, one estimates for neutral scattering
evaluation of the photoconductivityEq. (35)] requires in azni(g) ~1x 10" cm 2. Although « and ni(m) are not sepa-
general a time-consuming numerical integration. Howeverrately fixed, one notices that the condition for the weak dis-
for moderate values of the microwave radiation the transiprder potential as compared to the Landau energy can be
tions are dominated by single photon exchange. In the neusypressed a¥(q)/ (13hw) =2ma<1; e.g., if a~0.01, then
tral impurity case a very precise analytical approximation,™N _ 1411 cy2. For charged impurities and taking a value
. f im .
can be explicitly worked out. See Appendix F. for the separationl between the impurity and the 2DES as

For charged impurities the Coulomb potential is Iong—dzzo nm yields n© ~15x 10 em2 In this case the
imp . .

range modified by the screening effects. Although electron . - 2
motion is restricted to two dimensions, the electric field isWeak disorder condition takes the fori(q)/(Ighewc)

three dimensional and there are contributions from the impurwt”;)t(qt_hzmlé‘?)fl tTatt'S seglsﬂed. ﬁ\]fltngl tremgrk |strr]e-
rities localized within the doped layer of thickneds The ated to the radiative electron dechy, that determines the

: . irect electron response to the microwave excitafisae
zfé?r?;zg Est?hn;aelxi)?gstgi;gsbe represented in momentum Céqs.(23) and(A4)]. Following Ref. 34I',4 is related to the
radiative decay width that is interpreted as coherent dipole
TR P rg—radia}tion of electromagnetig waves by the oscillating two-
V() = e . Gpe= m ' (40) dimensional2D) electrons excited by microwaves. Hence, it
m* q 2meg€h? is given byT',,q=n€?/(6e;m* c). Using the values oh and
G m* given above it yieldd ,,4=0.38 meV.
Adding the dark and microwave-induced conductivities,

where the Thomas-Ferm{TF) approximation is imple- the total longitudinal, o= oy, + (030, and Hall, oy, =03y,
mented in order to calculate the di-electric function. Heye *+{o%y), conductivities are obtained. It should be pointed out
represents the relative permittivity of the surrounding mediathat the interference between the dark and microwave con-
The expression in Eq40) corresponds to a screened poten-tributions exactly cancels. The corresponding resistivities are
tial, that in real space hasra® decay for large. The rates in  obtained from the expressiop,,=oy./ (0§X+o§y) and pyy

Eq. (38) can be evaluated numerically; however, an accurate o/ (0‘>2(X+0‘>2<y). The relation o,,> oy, holds in general.
analytical result is obtained by observing that the decayinddence, it follows thaip,, oy, and the longitudinal resistiv-
exponential in Eq(40) causes the integral to die off faf ity follows the same oscillation pattern as that@f. The
>1/|d| and the upper limit in the integral can therefore beplots of the total longitudinal and Hall resistivities as a func-
set to infinity. Additionally for the relevant parametdsee tion of the magnetic field intensity are displayed in Fig. 2.
below the following conditions are observé@>1/|d| and  Whereas the Hall resistance presents the expected monoto-
gre>1/[d|; consequently, it is reasonable to drop the factomous behavior, the longitudinal resistance shows a strong os-
g/qye in the denominator of Eq40) and replace the square cillatory behavior with distinctive NRS. The behavior of the
root in the denominator of Eq38) by unity. These simpli- completep,, is contrasted with the dark contributions that
fications yield for the transport relaxation rate, present only the expected Shubnikov—de Hass oscillations.
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T T T T 7 "

processes, while the numerical result includes the possibility
7 of multi-photon exchange. Hence, it is concluded that for the

0. selected electric field intensit{E|~2.5 V/cm), the one-

photon processes dominate. Results are also presented for the

case of charged impurity scattering but fogr=2.5

X 10" cn?/V s. In spite of the very different nature of the

two physical processes and that the mobility is increased by

an order of magnitude in the charged case, it is observed that

the results for the neutral and charged cases are very similar.

The similarity of both results is based on the followir{®:

The increase in the mobility is compensated by the fagpr

in Eq. (37), giving a similar broadening valugii) For the

neutral casey(q) is constant over all thg-range of integra-

tion. Whereas for the charged cagf) varies according to

the expression in Eq40). However, in both cases the inte-

gral in Eq. (35 is dominated by the region in which

3
T

pn(microwave)

0.1 02 0.3

B (tesla)

FIG. 2. Longitudinal resistance, both totabntinuous ling and
dark (dotted ling as a function of the magnetic field. The figure also  One of the puzzling properties of the observed huge mag-
i?dudes the Hall resistandelashed linep,, is rescaled by a factor netoresistance oscillations is related to the fact that they ap-
10)- Results corresponds to neutral impurity scattering obtaineghear only in samples with an electron mobility exceeding a
with the approximated solutioAppendix F and the selected pa-  threshold value,,. The phenomenon is absent in samples in
rameters are u=~0.25x 10’ cn?/V s, T=1K, f=100 Ghz,[E|  which w is slightly reduced. This behavior is well repro-
~25 Vlcm,azni(m) =5X10° cm 2. The values of the other param- duced by the present formalism. Figure 1 displaysdhevs
eters used in the calculations are discussed in the text. e=wl/w; plot for neutral impurity scattering and three se-

lected values oft. For u=0.5x 10° cn?/V s the previously

Figure 3 shows a comparison of the longitudinal resistiv-known, almost linear behavigr, =B is clearly depicted. As
ity as a function ofw/w, obtained for the case of neutral the electron mobility increases jo~1.5x 1f cn?/V s, the
impurity scattering using both the approximated expressiomagnetoresistance oscillations are clearly observed; how-
in Appendix F as well as the result of the numerical integra-ever, NRS only appear when the mobility is increaseg.to
tion [Eq. (35]. The electron mobility is selected g8  ~2.5x 1P cn?/V s. It is observed thap,, vanishes ak=j
=0.25x 10" cn?/V's. The approximated analytical result for j integer. The period and phase of the oscillations follow
shows a good agreement with the one obtained from tha pattern very similar to the one observed in experiméfits,
numerical integration. It should be remarked that the apwith minima ate=j+ & and maxima at=j - 8, adjusted with
proximated expression includes only one-photon exchange= é It should be pointed out that this value &flepends on
the correct representation of the density of states. Using a
Lorentzian form instead of the Gaussian in Eg87) would

numerical integration

(charged impurity)
(neutral impurity)

give 5~ 1/107®. Similar behavior is observed for the charged
impurity scattering case, but with the mobility threshold in-
creased approximately by an order of magnitudg~2.5

“r approximated = =---=- X 107 cm?/V s. The precise determination pf,, depends of
a sk course on the selected values of the other parameters, mainly
=, on the frequency and microwave intensity.
a0l The early reported experimefit$ were carried out for a

<

FIG. 3. Longitudinal resistance as a function &f w/w. for

microwave radiation with transverse polarization with re-
spect to the longitudinal current flow direction. It is clear,
however, that the presence of the magnetic field induces a
chirality in the system. The model can be used to test these
effects. Figure 4 shows the results for differ&afield polar-
izations with respect to the current. In Figafit is observed
that the amplitudes of the resistivity oscillation are slightly
bigger for transverse polarization as compared to longitudi-
nal polarization. This result is in agreement with the recent

neutral and charged impurities. Results for neutral impurities ar@xperiment, in which it is reported that the selection of lon-

obtained from the numerical integrati¢uotted ling and also using
the analytical approximation discussed in Appendix(dashed
line) with the parametersu~0.25x 10" cn?/V s, a’n

gitudinal or transverse polarization produces small differ-
ences. However, we propose that the more significant signa-
tures will be only observable for circular polarization.

X 10° cmi2. The continuous line corresponds to the charged impu-Selecting negative circular polarizatideee Fig. 4b)], the
rity case with parameters~2.5x 10’

cm?/Vs,n9=15

7 im
X 10" cm2. The other parameters are the same as in Fig. 2.

oscillation amplitudes get the maximum possible value. In-
stead, for positive circular polarization an important reduc-
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linear 1 [ . 1
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0 ) E=30 V/em
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o)/(n)c L L ! L
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(o]
FIG. 4. Longitudinal resistance,, for neutral impurity scatter-

ing and various microwavE-field polarizations with respect to the FIG. 5. Nonlinear effects in the longitudinal resistangg for
current. In(a) the continuous and dotted lines correspond to linearcharged impurity scatteringa) includes thepy, vs = w/ w. plots
transverse and longitudinal polarizations, respectivély.shows  for glectric field intensities ofE|=2.5 V/cm (continuous ling and

results for circular polarizations, left-han@ontinuous ling and = . . =
right-hand(dashed ling The values of the parameters are the samtJEI S V/.cm (dotteed ling. (o) dlsplays resuIFs folE|[=10 V/cm
(dotted ling and |E|=30 V/cm (continuous ling The parameter

as in Fig. 2.

J values areu=~2.5x 10" cn?/V s, T=1 K, =100 Ghz, anohi(%
. . . . . - 1 —2
tion of the amplitude is observed leading to the total disap=1-5% 10t cmr?.

pearance of the NRS. These results are understood, reca”"&%rresponding minima centered arougg,=0.67 ande,,

that for negative circular polarization amg w. the electric -1 gg " respectively. DorozhKirand Willettet al® have also
field rotates in phase with respect to th_e e_Iectron_cyclotror}eportedpxX minimum associated With:%. Although the
rotation. Based on the present results, it will be highly rec-gxact position of the minima and maxima g, observed in
ommended to carry out experiments for circular polarizationrig, 5(b) is not localized at the same position reported by
configurations. Zudov et al,! the general pattern is very similar, supporting

The present formalism can also be used in order to exthe interpretation as multiphoton processes. Clearly, a more

plore the nonlinear regime in which multiphoton exchangesystematic analysis and further experimental studies are nec-
plays an essential role. As the microwave radiation intensityssary.

is increased, the analytical approximation breaks down and Comparison with some other theoretical work is obliged.
the numerical expression in E(35) with higher multipole  Previous work in Refs. 10-12 and 17 analyzed the effects of
(1) terms needs to be evaluated. In the explored regime conhe microwave radiation on the electron scattering by impu-
vergent results are obtained, including terms up tolth8  rities in the presence of a magnetic field. Dugstal}? con-
multipole. Figure %) displayspyy Vs € plots for electric field  sider an out-of-equilibrium calculation; Instead here a qua-
intensitiejlg|:2.5 V/cm andI§|:5 V/cm, respectively. The siadiabatic approximation is implemented, assuming that the
increase on the field intensity produces a corresponding irSystem is thermalized in those states characterized by the
crease in the minima and maximagf, but apart from this, Landau-Floguet spectrum. The similarity between some re-
the qualitative behavior in both cases is similar. A furthersults in the present work and those of Duestl.** suggest
increase of the electric field intensity té|=10 V/cm and that.departure from equilibrium is not §|gn|f|cant for the

= : . .. studied phenomenon. The present formalism extends and ex-
|E|.:30 V’C”?[F!g- S(b)], takes us to the nonlinear regime in plores the impurity-assisted photoconductivity mechanism in
which a qualitatively new behavior is observ_ed. FOr2 the  Gegail. In this model the same disorder potential determines
same NRS are observed; however, the widths of these r

) . ; : S€ "%he broadening of the Landau levels, as well as the wave
gions increase to include practically all the range fré”}  ¢nction that is used to evaluate the velocity matrix element.
to e=]+3. Notice that the negative resistance minima doeSrhese matrix elements are incorporated into a Kubo-like for-
not have a monotonous dependence|Bh In fact for the 1,5 that takes into account the Floguet structure of the sys-
strongest field intensity the minima approaches zero. Reégpm As previously mentioned, there are alternative models
markably, for|E|=30 V/cm ande<2, new negative resis- in which the leading contribution arises from the modifica-
tance states associated with transitions by two microwavéon of the electron distribution function induced by the mi-
photons are observed nea::% and ezg. The minima of crowave radiation. According to DorozhRithe negative re-
these states are centerea},=0.52 ande,,i,=1.52, respec- sistance phenomena have their origin in a local population
tively. Evidence of ZRS associated with multiphoton pro-inversion that produces a change of sign of thie 9€) term
cesses has been already observed by Zwdal,;! they re-  that appears in the conductivity. Although possible, the in-
ported structures with maxima nea::% and e:% and the version of population requires rather strong microwave pow-
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ers which were not achieved in the experiméfitindeed, sity of states,(d/d&)Im G,(£+lw). Due to the oscillatory
the inversion population is expected to be produced when thstructure of the density of states this extra contribution takes
microwave energy exceeds the Fermi enefgl)?/(m* ?)  both positive and negative values. According to ) this

> Eg. (See Appendix CClearly the estimated value for the second term is proportional to the electron mobility. Hence
threshold electric field;,~ 1000 V/cm highly exceeds the for sufficiently high mobility the new contribution dominates
experimental microwave field8~1-5 V/cm. An interest- leading to negative resistance stadfS). This allows us to

ing alternative explanation based on the modifications thaéxplain one of the puzzling properties of the observed huge
the microwave radiation produces in the distribution functionmagnetoresistance oscillations related to the fact that they
was recently presented by Dmitriet all® and Kennettet — appear only in samples with an electron mobility exceeding a
al.?% In these publications it is assumed that the inelasticthreshold. This result is well reproduced by the present
scattering processes give the dominant contribution to thenodel. For the selected parameters, NRS emerge when the
collision term of the kinetic equation. As explained in Ap- conditionsu=2.5x 1P cnm?/V s (short-range disordgiand
pendix C however, under experimental conditiongs< 7, w=2.5x10" cn?/V's (long-range disordgrare satisfied.
<, and certainly the inelastic processes can be safely igFhe oscillations follow a pattern with minima atj+ 6 and
nored as compared to the elastic processes. In fact we haweaxima ate=j - &, adjusted with&zé. These results are in
presented an argument for a first approximation in which theeasonably good agreement with the observation of Mani
distribution function is determined only by the microwave a| 24 They reported a similar pattern with~ ‘-11_

effects. It may be interesting for a future work to add to the  An interesting prediction of the present model is related to
present formalism the effects that elastic processes produgglarization effects that could be possibly observed in future
to the distribution function. In any case, we consider that theaxperiments. While the results for the cases of linear trans-
present results taken together with those of Refs. 10-12 angkrse or longitudinal polarizations show small differences,
17 consolidate the explanation of the photoconductivity osthe selection of circular polarized radiation leads to signifi-
cillations and negative resistance states in terms of theant signatures. The maximum possible value for the oscil-
microwave-disorder mechanism. lation amplitudes of,, appears for negative circular polar-
ization. Instead, positive circular polarization yields an
important reduction on the oscillation amplitudes and the
total disappearance of the NRS. This result can be under-

We have considered a model to describe the photocondustood if one recalls that for negative circular polarization and
tivity of a 2DES subjected to a magnetic field. We presentedv =~ w. the electric field rotates in phase with respect to the
a thorough discussion of the method that allowed us to takelectron cyclotron rotation. The present results call for the
into account the Landau and microwave contributions in @mportance of carrying out experiments with circular polar-
nonperturbative exact way while the impurity scattering ef-ization configurations.
fects are treated perturbatively. The method exploits the sym- An analysis was presented in order to explore the nonlin-
metries of the problem; the exact solution of the Landau-ar regime in which multiphoton exchange plays an essential
microwave dynamic$Eq. (9)] was obtained in terms of the role. The results suggest the existence of new N®Rich
electric-magnetic generatdisq. (6)] as well the solutions to  are expected to develop into ZlRﬁiearezg and ezg. these
the classical equations of motidiq. (11)]. The spectrum states correspond to two-photon exchange processes and are
and Floquet modes were explicitly worked out. In our model,in reasonable agreement with the reported experimental re-
the Landau-Floquet states act coherently with respect to thsults.
oscillating field of the impurities, that in turn induces transi-  Some final remarks are related to the limitations and pos-
tions between these levels. Based on this formalism, a Kubasible extensions of the present work. In a first approximation
like formula is provided. It takes into account the oscillatory we have not included the contribution of the elastic processes
Floquet structure of the problem. It should be stressed thab the kinetic equation that determines the electron distribu-
the disorder potential is conveniently sdlitee Eqs(2) and  tion. It will be interesting however, to extend the present
(25)] in such a way that it contributes both to the matrix calculations to include not only the dynamical effects pro-
elements of the velocity operator, as well as to the broaderduced by the impurity on the electron wave function, but also
ing of the Landau levels. Hence, we have a consistent forthe modifications that they produce in the distribution func-
malism in which(i) the photoconductivityEq. (35)], (ii) the  tion.
relaxation ratedEqg. (38)], and (iii) the level broadening
[Egs. (37) and (E2)] can all be consistently calculated once ACKNOWLEDGMENT
the disorder potential has been specified.

The expression for the longitudinal photoconductivity
[Eqg. (35)] contains the main ingredients that explain the hug
increase observed in the experiments. As explained in SecC.
[ll, the standard expression for the Kubo formula at low
temperature is dominated by the states near to the Fermi
level. On the other hand, as a result of the periodic structure
induced by the microwave radiation the teB® contains a Equation(6) defines a canonical transformation from the
second contribution proportional to the derivative of the denvariables {t,x,y;po.,px,Py} 10 {Qg,Q1,Q2;Po,P1,P,} in

V. CONCLUSIONS

We acknowledge the partial financial support endowed by
CONACYyT through Grants No. 42026-F and No. 43110, and
NAM IN113305..

APPENDIX A: MICROWAVE-DRIVEN
LANDAU PROBLEM
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terms of the new variables. The Schrédinger equatibn
(without impurity potentigl takes the form

2, o2
Po¥ = {ﬁwc{@] +elgEx(Q1 - Py)

+ e|BEy(Q2 - Pl) \P (Al)

The action of the transformatiow defined in Eq.(10) over
the (Q,,P,) variables can be easily calculated as

WQW' = Qy,
WPW' = Py + 7Qq + {1P1 + 7:Qa + (P = Lam = Loma + L,
WQW'=Q;+¢1, WPW' =P, ~ 7,

WQW'=Q, + {5, (A2)
It can be verified that when thé/ transformation is applied

WPW' =P, - 7,.

PHYSICAL REVIEW B71, 115313(2005
_ o0) © — 1
Eu=E,) + &g, &, =hor §+,u ,

EEJ1 + 20, Rel e €,) w] (A5)
2m* [(0 = w)?+ Tyl |

grad =

Here £ are the usual Landau energies, and the induced
Floquet energy shift is given by the microwave enefgy.

The corresponding time-periodic Flogquet modes in the
(P1,P,) representation are given by

W, (P) = expl~ i sin2wt)F(w)} ¢, (P1) 8P, ~ k).
(A6)

Here ¢,(Py) is the harmonic oscillator function in thi;
representation

1 2
= |e "1?H (P,), (A7
i)

bu(P1) = (Pi|u) = (

to Eq.(A1), the second and third terms in the right-hand sideandH,,(P,) is the Hermite polynomial and the functiéiiw)
exactly cancel with all the terms that appear in the expressiot$ given as

for WPW' (exceptP) if the functionsz; and/; are selected
to be solutions of the following differential equations:

m—odi=elgE,, {1+ ocn = -elEy,

m=elgEy, L=~ elE,. (A3)

But, these are exactly the classical equations of motion th
follow when the variational principle is applied to the La-
grangian in Eq(11). Hence, theW operator transforms the
Schrédinger equatiofAl) to the Landau eigenvalue prob-
lem with the Hamiltonian given in Eq9).

For the electric field consider the expression in Ej. It
is then straightforward to obtain the solutions to E@fs3),

a

eBlg \?
F(w):ﬂc< 2Eo BZ> |:(1)2_(1)§+2(1)ZE§—2(1)262

0\~ o, €y
R *
+ dfxfy) (2w4_ w2w§+ wg):| (A8)
W

'Ehe wave function(A6) depends on the Landaiu) and
center guidgk) indexes; however, the spectrumé) is de-
generate with respect to It is important to notice thaf(w)
appear in the wave function phase that depends only on time.
Hence its contribution to the expectation value of the mo-
mentum operator cancels exactly. Thus, contrary to what it is
claimed in Ref. 15, the effect of the Floquet dynamiasith-

adding a damping term that takes into account the radiativ@Ut including an extra effect such as impurity scattericen-

decay of the quasiparticle. The lines read

m= e'BEORe|:
i ot

E:{e
7, = elgEgR - ] )

iw
0= eIBEORe[

i wt
ZZ =- eIBEoRe|: exel :| .

lw

~lwg t wcey dat
(O] e lwl 59

weg +iwe, eiwt:|
1

2_ 2.
o= wf il

(A4)

not account for the explanation of the ZRS observed in re-
cent experiments.

APPENDIX B: IMPURITY-INDUCED TRANSITIONS

In this appendix we consider the first order solution of the
evolution operatolJ(t) given by
t
Ui =1 —if dt'[W(t")V(H)W(t)],. (B1)
The effect of the transformation induced by teoperator
over the impurity potential can be easily evaluated consider-
ing the effect over the Fourier decomposition\4f) given

in Eq. (3). Recalling that thex andy coordinates are written
in terms of the new variable&;,P;,Q,,P,) by means of

According to the Floquet theorem the wave function can b%q. (7) and utilizing the transformation properties of the

written asW(t) =exp—i&,t) ¢, (1), wheree, (1) is periodic in
time, i.e., ¢,(t+7,)=¢,(1). From Eq.(10) it is noticed that
the transformed wave functio’™V=WW¥ contains the phase

factor expi [*£dt). It then follows that the quasienergies and

the Floquet modes can be deduced if we add and subtract

this exponential a term of the fon(m/ r)fgﬁdt’. Hence, the
quasienergies can be readily read off as

(Q;,P;) operators in Eq(A2), it is readily obtained
Wi (t)expliq - r}WI(t) = expilg(aP, — 0yQ2)}
Xexp{_ il B(qul - qypl)}

xexpilglay (g1 + 72) + (Lo + 7)) I}
(B2)

to
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Using Eq.(A4) the third exponential in the previous equation 1 (7o ————

can be recast in a compact form as AR A expliot)]}, (fey = T_f f,:(gf) +&ag + ZCOS‘UCt\"g,(l?)grad)dt-

with A given in Eq.(23). This expression can be expanded ©-0

as® For the experimental conditions it is verified ttﬁgd<£(°),

thus expanding to first order one findﬁ:)zfp(sf)+£rad)

|=00 |

exp—i REA expliot)]} = > (Aeiwt> J(ap, B3)  =fe(£,). Hence, it is verified that a rapid relaxation of the
S \ilA| Fermi distribution to the quasienergy states is a reasonable
, ) assumption. The arguments presented in this appendix have
with J, the Legendre polynomials. For the second exponenpeen introduced by Mikhaildd in order to explore the pos-

tial notice that once tha®, andP, are replaced by the rais- gpility that the microwave radiation leads to a population
ing and lowering operators given in E(B), one is lead 1F° inversion; however, it is concluded that it would require a
evaluate the matrix elements of the operdd§@) =exp@A;  rather high microwave intensitg,.q> e

-G~ A,) that generates coherent Landau states. A calculation

yields APPENDIX D: DARK AND HALL CONDUCTIVITIES
D"“(q) = (v|D(@)|w) In Sec. lll it was explained in detail the method to obtain
| the final expression for the microwave-induced magnetore-
(= ) /LLM—V(@ ) w> v sistance[Eq. (35)]. Working along a similar procedure the
1 ’ expression for the remaining conductivities are worked from

- (3)m?

| Egs.(32) and(33). First we quote the longitudinal dark con-
RERY %L;‘“(|"q|2), mw<wv, ductance
2
(B4) =TS [azime, @2
= o MG ,(£)—=Im G (£ + w,),
> ah 4 e Tk ¢

whereL), is the generalized Laguerre polynomial. With all
these provisions the matrix element of the solution of the (D1)

evolution operator in Eq(B1) can be worked out as whereas the dark Hall conductance is given by

ei(gﬂv+“’|)t 0 e2w2
@ =5,-3 | Z=I o). @9) 2= | e, e

The explicit expression fo@ﬂ)v was given in Eq(22).

X[f(€, ~ w)) — F(E)IP (D2)

1
(E-E,+ wo)?’
APPENDIX C: MICROWAVE-DRIVEN

where P indicates the principal-value integral. The impurity-
DISTRIBUTION FUNCTION

assisted contributions require an additional average over the
Within the time relaxation approximation the Boltzmann impurity distribution. It is assumed that the impurities are not

equation can be written as correlated. The final result for the microwave-assisted longi-
tudinal conductivity was quoted in Ed35). Following a
af  of E B) = f-fr f-fe similar procedure the microwave-assisted Hal conductivity is
Pl ap(e +ev X B)=- - calculated to give
. I o e w?
wheref is the Fermi-Dirac distribution and we distinguish (o) = ¢l deS S im G(EF(E,) ~F(E)]

between the elastic rat§' and inelastic or energy relaxation wh

rate r;}. Under experimental conditions;, <7, <7, and

certainly the inelastic processes can be safely ignored. Fur- S+ +n f 2
thermore, due to thac-electric field[Eq. (5)], the left-hand X{6”V(plp2§|’l P1P28,-1) * Mimp | A°AT(Q)
side of the previous equation is estimated to be of ofdey. 5

Hence, in a first approximation the elastic scattering contri- X[3(JADV(a)D,,,@)|? ( (D3)
bution can also be neglected. The resulting Vlasov equation

has the exact solutiof(p,t)=fe[p-m*v(t)], where the ve- \yhere the functiorT(q) is defined as

locity v(t)=(7y,{,) solves exactly the same classical equa- _—

tions of motion as given in EqA3), and the initial condition T(qQ) = wd3 O * 9y . (D4
is selected a$— fr as the external electric field is switched Betwl =& |(E+wl-E) -

off. In particular it is verified thatm* |v(t)|?/2=E,.4 coin-
cides with the Floquet energy shift produced by the micro-
wave radiation[Eq. (A5)]. The steady-state distribution,
evaluated at the Landau ener@yg(o), is obtained by aver- A detailed calculation of the density of states incorporat-
aging fe[p—m* v(t)] over the oscillatory period ing all the elements that contribute to the system under study

uv |

APPENDIX E: LANDAU DENSITY OF STATES
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is beyond the scope of the present paper; however, it can &, decreases for higher Landau levels. For example for the
argued that the expression given in Eg7) for the DOS is  selected parameter, we hagg=108, B3,=14, andB5o=11.
expected to be a reasonable selection under some consistent

approximations. Let us consider the Green’s function associ- APPENDIX E: APPROXIMATED ONE-PHOTON

ated with the Hamiltoniad + AV, whereH is given in Eq. EXCHANGE PHOTOCONDUCTIVITY

(1) and AV=W'VW is the subtracted part of the disorder ) ) o

potential[Eq. (25)]. As explained in Sec. IlI, the Kubo for-  The microwave-induced longitudingEg. (35)] conduc-
mula[Egs.(32) and(33)] was deduced using the wave func- _t|V|ty requires the numerical evaluation of a time-consuming
tion obtained after the three transformations in Ef) are  integral given by

applied to the Landau states. Hendd/ is transformed ac-

cording to S :fdqu(Q)M(|A|)V(Q)D,w(a)|2-

AV(t) = U/ (t - to)expliH ot W(H AVWI () exp{— iHt}U, (t —t;) ~ However, if we consider the regime of moderate microwave
intensity and assume neutral impurity scattering, a very use-
ful analytical approximation can be worked out. For neutral
impurity scatterers, the potential is assumed to be of the short
range delta form, hence the Fourier coefficient in Bj.is
given byV(q) =2n#i%a/m*. The D ,,(G) term contains an ex-
ponential factor that represents a cutoff for lamgeThen

[see Eq.(29)]. Notice that(i) the W transformation cancels
exactly, (i) both AV and the first order correction to,(t
-ty) are proportional toV, and hence, considering linear
terms onV we can setU,(t-tg)=1, and(iii) finally when

evaluated in theu) base and neglecting inter-Landau mix- X )

- S - according to Eq(23) for moderate values of the microwave
ng, the contributions from eXpiHt} ca_ncel 9Ut' Hence, electric field theA term is small and the leading contribu-
AV=V(r), and the problem under consideration reduces Qjons arise from the=+1 factors that correspond to the
evaluate the density of states produced by a magnetic fielgingle photon exchange contribution. Using the approxima-
and a disorder potenti&l(r) of the form given in Eq(3); but  tjon J,(z) ~z/2 one is lead to evaluate

this is precisely the problem considered some ago time by by

Ando® and Gerhardt8! The density of states is well repre- 27h%a
sented by the Gaussian expressioyn in BF), and the Ie\f)el Se1 = me* fdqu(q)|A|2DW(a)2. (F1)
broadening neglecting couplings between different Landau . o . . ]
levels is taken from Ref. 32, The angular integration is straightforward, while the integral
over theq=1/q%+q; leads, after a change of varialile ¢?, to
d?r o2 an integral of the form
IL=8x mlanmp | o5 f oqp VOV)D (e =r'| ,
- s g J- dge—fg,u—w—Z(L,:}L—V)Z' (FZ)
X (V2)T%, (ED) 0

o _ which is explicitly evaluated with the help of the recurrence
where D#* is given in Eq.(B4). For the delta short range relation xLk=(2n+k+ 1)Lk - (n+k)LK_ ;- (n+1)LK,, and the
scatterers the previous expression is readily evaluated, yielqimegraps
ing the result in Eq.(37) with 8,=1. In the case of the

charged impurity disorder, after the substitution of the Fou- ” ek Ky k _ (n+Kk)!
rier decompositiodEq. (3)] and using Eq(40) it is verified o dée&Lolm= nl Sinn- (F3)
thatI", is again given by the expression in E§7), but the
factor B, is given by The final result reads
mhlaw?|E)?l
—d = py 21 + 2 |2
o eXP|:— \8_q:| = 8m* w?|w?’ - w?+ in|2[w ( &9
- 3 B 2 N
By =16m(ked) fo g ( 2 )z [D**(@)]da. (E2) + 021+ 26 ) - Bwwdm(e,e)], (F4)
1+ lg0Te where
. . 1 1 1
Previous analyse of the Landau level broadening were car- [ = 6(,u + 5)(# + 5) +(n-v)?+ > (F5)

ried out, for examplé® for a Gaussian potentiaV(r)

~ g, However, as mentioned in Sec. IV the actual situa-These expressions greatly simplify the numerical calcula-
tion corresponds to a screened potential that in real space htésns, and as discussed in Sec. IV they provide a very accu-
ar~2 decay for large. As mentioned in Sec. Il the value of rate approximation to the exact result.
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