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Interlevel electromagnetic response of individual spherical quantum &@D9 as well as of two-
dimensional2D) rectangular lattice of spherical quantum dots is considered employing the self-consistent field
approach in the quasistatic limit. It is established that the response can be considerably affected by the dynamic
direct intradot and interdot electron-electron interaction. It is shown that the effects of these intradot and
interdot interactions on the response can be analyzed separately. We show that correct description of the
Coulomb coupling must take into account relevant umklapp processes. Fundamental importance of the problem
of the electron self-interaction in quantum dot systems is established. The values are found which can be used
for instant approximate estimation of the resonant dynamic screétiiegdepolarization shiftin any single
SQD and 2D square lattice of SQDs. The effect of the size parameters of the systems, the SQR aadius
the lattice periodd (and, in part, the three-dimensionality of the systems the depolarization shift is
thoroughly investigated. Effect of polarization of incident radiation is investigated too. It is shown that the
difference between the resonant photon energies for the normal and in-plane light polarization can be treated as
independent of the static interdot interaction. Two-state and four-state electron systems are considered. Nu-
merical calculations of the absorption spectra are performed for short p@i@R<5) lattices of GaAs
spherical quantum dots in the AGa -As medium. It is established that the approximation of the point
dipole-dipole interaction can be used for adequate representation of the dynamic interdot electron-electron
interaction in the lattice. Also it is shown that the approach of the modified oscillator strength reproduces the
absorption spectra of the considered systems with interacting modes of the collective excitation very well.
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[. INTRODUCTION masseps The experimental results reported in Ref. 2 indicate
that then the resonant photon energy is blueshifted against
The electromagnetic response of quantum ¢@B®s) due the corresponding interlevel spacifig@normalized by static
to interlevel transitions has been an attractive problem sinc€oulomb interactiohin individual dots. This shift is associ-
QDs became objects for intensive fundamental research aried with the formation of the collective interlevel excita-
application. One of the main points is how strongly the far-tions d_ue to the dynamic Coulomb force. In the literature the
infrared (FIR) interlevel absorption spectra are affected byPlueshift of the resonant photon energy induced by the dy-
intradot and interdot electron-electrde-e) interaction. A namic direct Coulomb interaction is called the resonant
large number of theoretical and experimental works in this>¢"€€NINg or the depolarization eff.e(EIE).' . .
field have been dongsee, e.g., Refs. 1 and.2n most of the The subject of this paper is an investigation of the influ-

papers the authors assume that QDs have cylindrical Symmgpce of the direct Coulomb interaction on the FIR absorption

> A - T in spherical quantum dot$SQDS. Interlevel optical transi-
try W'th. in-plane . parabolic-like . c_onfmmg potent|a%|§.A tions in SQDs in the absence of tee interaction have been
parabolic(harmonig type of confining potential has a great

; . : discussed theoretically by several gro@p$.The influence
advantage for analytical calculations. It was established thal ihe dynamic direct Coulomb interaction on the interlevel

when the confining potential of a many-electron system hag|ectromagnetic response of single SQiith the parabolic
parabolic shape, the-e interaction does not affect the long- self-consistent confining potentiaas considered, taking
wavelength interlevel resonant frequency of the system. into account retardation effects, in Ref. 11. The main purpose
This statement is applied to single harmonic quantum dots asf the present paper is to discuss the role of the intradot and
well as to arrays of identical harmonic ddt8More precisely  interdot direct Coulomb interaction on the interlevel electro-
the above statement is valid only for the optically activemagnetic response of SQD systems. We consider the re-
(Kohn) mode] Consequently, the FIR absorption spectrumsponse of an individual SQD as well as two-dimensional
of the whole many-particle system agrees exactly with theectangular lattice of spherical quantum d@®RLSQDs.
spectrum of a single-particle system. Note that the approxiin the later case different polarizations of the incident light
mation of the parabolic potential was shown to represent thare discussed. Our approach is based on the commonly used
potential usually experienced by an electron in large sizeself-consistent field formalisti'4taking into account static
QDs with a large amount of the electrons well. The situationand dynamiddirect Coulomb interaction in the nonretarded

is more complex and simultaneously more interesting in théquasistatig limit. Numerical calculations are performed for
case of a lattice of nonparabolic quantum dots with a fewn-type GaAs/A} :Ga, ;As quantum dots in which electrons
electrons per dot(or hole dots with different effective are confined by a steplike hard-wall spherical potential. To
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avoid considering mechanisms of loading electrons into the A. Density matrix approach to response

quantum dots we assume that each SQD contains a fixed of quantum dot systems

number(Ngp) of electrons andgT is considerably smaller ) ) ) )

than the interlevel spacing. We concentrate on the cases We investigate the electron interlevel electromagnetic re-
when(i) the lowest level is occupied by one or two electronsSPONse of the following systems dfree-dimensionatjuan-
(Ngp=1,2 and (i) two lowest levels are fully occupied tum dots:(i) sm_gle |solate'd_SQDs ar_l(ai) two-dimensional
(Nop=8). A special attention is paid to the problem of the rectangular lattices containing spherlca_l quantum dots. I_n
electron self-interaction and coupling between interlevel col—bOth cases we assume t_hat the system is subjected _to a linear-
lective modes. To our knowledge, this is the first time thatpolanzed(ln the g direction external electromagnetic field

the self-interaction problem is addressed in the investigatio®f the form E®{(t)=g;E;(w)e™* (the dipole approximation
of the QD system response. We demonstrate the usefulne$#lich causes the interlevel electron transitions. We are inter-
of the concept of the modified oscillator strength for descrip-€sted in the multielectron QD systems. The Cartesian coor-
tion of the effects connected with intermode coupling. Fordinate systentx;,x,,xs), with the basis vectors, denoted by
comparison the interda-e interaction in the lattice is also € (j=1,2,3, is chosen so that the coordinate axes are di-
considered within the approximation of the dipole-dipole in-rected along the symmetry axes of the system if any. In the
teraction. We show that this approximation reproduces thease of the 2D rectangular lattice one coordinate axis is nor-
exact result very well. mal to the lattice plane, and the other axes are directed along
Since due to technological progress SQDs can now bée translation vectord; andd, of the lattice, i.e.gy)lldy(,)
manufacturetP16the problem of the interlevel transitions in ande;ll(d; X d,). In the following we present a general ap-
such quantum dots is important for basic research as well gsroach from first principles to calculate the interlevel elec-
for applicationgsee also Ref.)9Also, the effect of spherical tromagnetic response of a multilevel multielectron quantum
symmetry is found to manifest itself in the collective excita- system within the density matrix approximation.
tions in other nanosystem&.In addition, growth of long- It is convenient to describe the interlevel electromagnetic
range ordered arrays of self-assembled quantum dots hayesponse of the system in terms of tfoemple® tensor of
been demonstratétirecently, with the quantum dots show- the linear polarizability of the system=a’ +ia”. This ten-
ing excellent optical properties. sor is connected with the dipole moment induced in the sys-
_The paper is organized as f(_)llows_. Section Il gives aNdtem [p(t) =p(w)e“!] by the relationpj(w):Ejj(w)Ej(w). In
lytical d_evelopment _of the relat|on'_5h|ps uged for numer'calgeneral, the tensaw is diagonal, i.e.a;=a; 4 ;. However,
calculations. An outline of the density mairix appr.oach to theIn the case of an isolated SQD it reduces to scalar
response of Fhe quantum dot systems is given in Sec. Il AEij:a’éhj- The power dissipated in the system
Cases of a single SQD and 2DRLSQD are considered SEPB( ) [=3 PU(w)] is associated with; by the relationship
rately in Secs. Il A1 and Il A 2, respectively. In Sec. I B the i) ! PO N I )
response of the two-state and four-state electron systems 18" (@) =(w/2 aii|EJ|.- (Writing the above relation we have
analyzed in detail in Secs. 11 B 1 and 11 B 2, respectively. Inneglected the polaritonic effegfThus, spectral shape of the
addition, the response is considered within the modified osinterlevel absorption of the system is controlleddfy(w). At
cillator Strength approach’ in Sec. II B 3, and within the ap_thiS pOint it is interesting to note that while describing the
proximation of dipole-dipole interaction, in Sec. Il B 4. Sec- experimental data on two-dimensional lattices of QDs it is
tion Il presents numerical results and their detailedconvenient to treat the lattice as a pure two-dimensional ef-
discussion for lattices with one electron per @Bec. Il1 A)  fective sheetsee, e.g., Refs. 21 and 2®@hich is described
and structures with infinitéSec. 11l B) and finite(Sec. 1 by the 2D complexeffective) susceptibility tensox?® (see,
depths of the confining potential. The main conclusions aré€.9., Refs. 21 and 23This tensor is derived from the tensor
collected in Sec. IV. The Appendix explores the effect of@ by the simple relationshi*°=a/(€S), wheree; is the
static interdot interaction on the interlevel spacing infree-space permittivity an8=Nd,d, is the 2D area occupied
2DRLSQDs. by the lattice.
In the linear approximation the dipole moment induced in
the system is associated with the density maifix describ-
ing the system by;(w)=-€Tr[p*)(w)r;]. Consequently, the
Arigorous approach to the problem of optical response ofelationship for the polarizability takes the form
quantum dot systems is very complicated, particularly when
we go beyond the two-level model. In general, it requires a
self-consistent solu_tion of the Maxwell quatipns with in- () :~—_e2 pg,ly'§)(w)(rj)yrv, (1)
duced current density as a source term, which is related non-
locally to the field to be solvetf. In this paper we employ a
simpler formalism based on the density matrix approach in
the quasistatic limit and the dipole approximati@ee, e.g., where -eis the electron charge~=(x;,x»,X%3), v andv’ label
Refs. 12 and 20 It has good justification when the wave- the states of the electron system, guiét!(w) is the first
length of the incident radiatiofi\) in the host medium is harmonic of the density matrix describing the system when
much larger than the dot radiu®) and (in the case of the incident radiation is polarized in the direction.
2DRLSQD3 the interdot distancéd). The equation governing the density matrix operaiay is

Il. THEORETICAL BACKGROUND

j (O V,V'
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oo (1) ()(t) = O terstate transitions in the system under consideration. The
(2 1 R [P (t) P ]vv’ . .
= —[Ho+ VO (1), p(0)],,, - ———. quantity A, is related ton,,.. For the quantum wells
dt i Twv! N,,=n,,. As our present investigation shows the relation

(2) betweenV,,, andn,,, is more complicated for QD systems
. o . ) where the electron self-interaction cannot be neglected. Due
Here H, is the Hamiltonian describing the electrons in theq this £0)(, 17, 0”) and \,, are specific to each many-
system in absence of the external fie)(D[=V"(w)e™ ] gjoctron system. In the following we apply the above ap-

is the perturbing potentiah® is the equilibrium value of the - yoach 0 a single isolated QD as well as to 2D lattices of
density matrix operator, and,,,=#/I",, is the scattering QDs.

rate. The spatial dependence in E2). is omitted.

- ) X ) Finally we would like to briefly consider within the above
A general form of the first-harmonic solution of E®) is

formalism the systems with the parabolimrmonig confin-

Ap(o) ing potential, which are known to obey the generalized
P () :V<j),(w)—”’ : , (3)  Kohn's theorent?4 the e-e interaction does not affect the
" "By —he =il FIR response of such systems. As the parabolic confining

_ . . . otential is the only one which allows separation of the
which is Ut'l'zed(o')n E(qo). (1)(.0)Here_E,,.,,,:EV—E,,/ with E, Eenter-of-mass(c.m.)yvariables and relativepvariables de-
=(vHolv) and Ap,,=p,,=p,,,. It is important to empha-  serining any kind of thee-e interaction of the systenfsee
size thatp(V()V)(EnV) represents the number of electrons at stateRef. 24, this let us to separate the equation which governs
v in the whole electron system under consideration. Thenp.,(t) depending only on théc.m) variables from Eq(2).
Ap(VOV),:nW,:nV—n,, represents the number of the electronslt is pcm(t) that determinep(t) which, thus, is not affected

in the whole electron system involved in the> ' transi- Py thee-e interaction.
tions, andl',,, is the broadening parameter associated with
these transitions.\/(y'z,E(v|V(i)(r,w)|v’) is the matrix ele- 1. An isolated spherical quantum dot
ment of the perturbing potentiai!(r , ) which in the self- First we consider optical transitions between bound levels
consistent field approach is presented by the following relain a single isolatedSQD. The confining potential is assumed
tionship: to be spherical steplike hard wall potential.
For brevity, in further discussions, an eigenstate of the
VO(r, w) = VO o) + ¢ fdr’ 1 > o) one-band effective mass Hamiltoni&ty in the single SQD
4mee Ll o R will be denoted by composite quantum number(n, |, m),
. with m=0,+1,...,4, wheren, |, andm are the main, azi-
XW,, ()W, (r'), (4 muth, and the magnetic quantum numbers, respectiEhe

. . . ' spin quantum number is omitted for simplicity. It is con-
where\lfy IS trle eigenfunction of state Here the first term sgrve%l during the interlevel transitionhe Fejzigezenergy of
VIt w)=eE(w)r; is the external perturbing potential and H will be denoted byE,=E,,. Due to the spherical symme-
the second term, shortly?i"d(w), stands for the correction try of the system, the level with eigenenerds,, is
induced due to the dynamiee interaction.e is the back-  (2|+1)-fold degenerate with respect to the angular momen-
ground dielectric constant of the medium. In the systemsum projection. In addition to the term “state of SQD” we

considered in this paper, the difference between the dielectrighall use the term “energy levéshel) of SQD” to name alll
constants of the well and barrier materials is rather smallthe states which share the safg.

Thus, so-called dielectric effects can be neglected in the first The eigenfunctionV, of H, is written in the form
approximation?
To self-consistently solve Eqé3) and (4) we exploit the Woim() =Ry (NY m(6, ), (6)

approach developed in our previous pélﬁjt)an quantum well \yherer is the distance from the SQD center amdnd ¢ are
systems. A general form of the SO|UU@E},,', (w) for the den-  the angles in the spherical coordinates. The radial part of the

sity matrix is obtained from the set of equations wave functionR, (r)=F, (r)/r satisfies the equation
(j)ex 2 2
_ (Valoce T #29 1 9 B+ 1)
WDy = —— — o V) + o [ Fau(r) = En Fog(r),
0, (w) = E. —fho-iT,, 2 arm'(r) ar )+ o (nr? ) = Eni (1)
, i (7
2 LY, 0,0 e (N, o . .
oo’ wherem (r) is the spatially dependent effective mass of the
+ E  —ha_ T . (5 electron andv.(r) is self-consistent confining potential.

Note that the Hartree approximation is used here. Thus,
where the first term on the right-hand side stands for thé/s{r) includes only the direct Coulomb interaction, while
one-electron solutiofwhich neglects the dynamise inter-  the exchange-correlation interaction is omitted. This approxi-
action), while the second term represents the dynami&  mation seems to have good justification for quantum dots
interaction in the many-electron systems by means ofvith rather many electrontsee, e.g., Refs. 25 and 26Ve
LO(v, v 0,0'). The pairsv— ', o— o' cover all the in- expect that including the exchange-correlation interaction
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can reduce the effect of the direct Coulomb interaction only Using Eq.(4) and taking into account the fact that due to
guantitatively and does not affect the genef@lalitative  the spherical symmetry of the potentil(r) only the opti-
conclusions of the paper. The effect of positive charges is natal transitions withE,, #0 are allowed, we get that
considered either. Although, in general, this effect reduce§(1>,(w) is defined by Eq(5) if we take v=a, v'=a’, o=b,
the effect of the static intradete interaction, it depends on &% | @), \_ @) N
the distribution of the donorénside and/or outside the SQD ¢ =b’,ande,, (w)_pa,a’(w)’ LY, v 0,0 )_If (a,a’;
and makes the calculations specific for each distribution. If+0"), and N,, =Naq=8,pdx . We have introduced
our calculations we assume for simplicity that this interac-%ab%r b iNto N, to exclude the self-interaction. Here

tion does not violate the spherical symmetry of the confining 2 .
potential and can be neglected in the first approximation. L(a,a";b,b") = fdr f dr'W(r)
Equation(7) will be solved numerically following the ap- 4mee
proach developed in Refs. 27 and 26. Without the loss of 1 .
generality we can assume that the electric figRf! is di- X‘I’a/(f)m‘l'bf(r')‘l’b(r')- 9

rected along thez(=z) direction and omit the polarization
index. The matrix element a=r cosé can be rewrittefiem-  Note that the nondiagonal elements appear as a result of the

ploying Eq.(6)] in the form coupling between differena—a’ and b—b’ transitions
(modes.
Zow = 5|i1,|’5m,m’Y:i|—rln’\|mlR2,I’|ili (8) For further calculations it is convenient to exploit, as in
’ ’ Ref. 5, the 2D Fourier expansion of [t+r’|
1"'m' _ 2 T, H *
where;rl, Yim ; fo defgdésin OCOSBYl,’m,(H,qo)YLm(H,(p) 1 :ifdQ”i -iQu(rH—r‘De—QHl@—xg\, 20
andR)" =[drr°R , |, (NRy(r). Ir=r'| 2w Q

. : 1
From Eq.(3) we obtain the matrix elemenis, () of et two 2D vectors in the-x, planer;=(x;,%,) and Q,

the density matrix by setting=a and v=a’. ThenE,.»  -(Q,,Q, are introduced. Then the expression for
=E,—E, is the interlevel spacing renormalized by the stat|c|_(a a’:b,b’) becomes

intradot e-e interaction(see, e.g., Fig. 1 in Ref. Z.GAp;O;,

2

=N, o =Ny~ Ny, With N, stands for the number of eIec_:trons at L(a,a’;b,b’) = & f dQHi f dxg0lx;

statea per dot, represents the number of electrons in the QD 8neeq Qi

involved in thea—a’ transitions.V, , =(aV(r,w)[a’) is Ol + ,

the matrix element of the perturbing potentidlr , w) [see xears 3‘Aava’(Q”’Xe‘)Ab"b(Q”’X‘?)’

Eq. (4)]. Now the second term in E@4) represents the po- (11

tential associated with intradot dynamic Coulomb interaction h

of electrons in the SQD. where
Attention must be paid to the fact that in an individual QD . . »

(i) V(r,w) in Eq. (4) is the self-consistent effective potential Ac o (QuXg) = f dry W (r ), %) €AW (1, xg) . (12)

existingin the QD, that is, the potential which is created by

all the electrons in the dotji) the matrix elemen¥/, . is It should be emphasized that the above approach can be used

calculated for the self-consistent effective potential which isfor other shapes of single QDs and E#j2) takes care of the

experiencedy an electron in the dot, which means that theshape.

potential of that electron must be excludedMg,,, andiii) Note that Eq(11) does not impose any restrictions on the

there are only a few electror{s<8) in the dot. Thus, physi- interlevel transitions of electrons in individual QDs. Applied

cally the second term in Eq4) should result in zero when to the spherical QDs, it is easy to see théat,c’;c,c’)>0

V, .« is calculated for only one electron in the dot. However,andL(a,a’;b,b") <0 if a#b and/ora’ #b’.

this term(i.e.,\/:g,) in Vao is equal to zero only when there  Analysis of Eq.(5) for pg;,(a)) (see also Sec. Il Bshows

is no electron in the dot, and it takes a nonzero value in th¢hat the strength of the depolarization effect in the single

presence of any number, even one, of electrons in the dot.SQD is controlled by the product

For one electron in the do¢™, is the potential of the — —
La,a’;b,b’ = L(a,a,;b,b’)(\ na,arnbyb/ - 5a,b5a’,b’)- (13)

aa’
dynamic self-interaction of the electron with itself. This self-
interaction contribution must be excluded from the eﬁeCtiveFor examp]d:see Eq(31)], in the two-level approximation
potential. Keeping this contribution within the effective po- the resonant energy associated with the transitions between
tential leads to considerable overestimation of the latter onestatesc andc’ is given by
For instance, in the case of two electrons per single QD the —
effective induced potential would be twice as much as it is hwres= Ecor \/ 1-2 cco/Ecer- (14
really. Note that there is no problem of this kind for quantum = )

wells and wires, since there are plenty of electrons in thdt iS important to emphasize that the factdic,c’;c,c')ngcr
occupied subbands of those structures, and the relative cofin contrast withL...../) represents the interaction energy
tribution of the self-interaction to the effective potential is with the self-interaction included, and the value of
negligibly small. L(c,c’;c,c’) itself is the energy caused by the self-
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. . . . FIG. 2. Dependence of the DE shift caused by the interdot dy-
FIG. 1. Dependence of the DE shift associated with the |nterdohamiC e-e interaction in a square lattice of SQDs upon the SQD

dynamice-e interaction in a square lattice of SQDs upon the lattice 5 qj,5 calculated within different approximations. One electron is
period calculated within different approximations. Ont_a elc_ec_tron ISper QD.d=600 A. The legend is the same as in Fig. 1.

per QD.R=95 A. Square symbols represent SQDs with finite po-

tential barrier. Triangular symbols represent infinite deep S@s —

Bessel wave functions The lines stand for the DDA, with the tions that(L,..,p'R) is the constant parameter which char-

dipole matrix element being of the finitesolid lineg or infinite  acterizes the dynamic interaction of the electrons involved in
deep(dash liney SQD. Positivenegativé values represent the nor- the transitionsa=a’ andb=b’ in any single SQD.(Note

mal (in-plang polarization of the incident radiation. The zero level that faa,_b »'R depends upon the dielectric constarithis

is also Iabelled_b_y symbols_in orde_r to emphasize that the “zero” isapprokirﬁétion also allows us to anticipate the decreasing
also calculateoil_t is the self-lntgractlon valye For comp_arl_son the behavior of the DE in a single SQD with growing dot radius,

change of the interlevel spacing because of the static intexdot e s confirmed by our numerical calculations. Note that
interaction is presented by the dot line with circle symiieke Fig. for infinitely deep SQDs with one electron the interlevel
8. spacing behaves @& 2. Then, by Eq.(15), the ratio of the

. ) o . ) absolute value of the DE shift to the interlevel gap increases
interaction of one electron with itself in a single QD. Note wjith growing size of single QD.

that it isL(c,c’;c,c’) that serves as the “calculated zero” in
Figs. 1-3. 2. A two-dimensional lattice of spherical quantum dots

For further discussion it is useful to preseﬁta/.b o for Now we extend our treatment to the case of the interlevel
the SQD in the form o electromagnetic response of a two-dimensional rectangular
(nontunneling lattice of spherical quantum dots
— e ~ (2DRLSQDsg with the translation vectorsl; and d,. The
La,a’;b,b’:ﬁl-a,a’;b,b’: (15  wave function describing lattice sta@ [associated with
0 SQD statea=(n,l,m)] can be written in the tight-binding

whereta,a,;b,b, is a dimensionless quantity depending in gen_form

eral onR. _ 1 K- de kol
For a rough estimation one can use the spherical BesselPal") = N_l’znzn Walxa =My, Xz — oty Xg) €aMBENE,

functions for R,,(r) (further such wave functions will be 12

called “the Bessel wave functionswhich is the case of one (16)

electron in an infinitely deep SQD. ThEnga,;bvb, isindepen-  wherea=(a,k?), ki'=(k§,k5) is the wave vector of the elec-
dent of R. Thus, it is remarkable for the Bessel wave func-tron at statea. Since we employ the periodic boundary con-
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FIG. 3. Dependence 4L, . .d) (@), (B, d) (B), =B, 0, (©), and(BL. . d) (d) upond/2R for normal(circle symbols and
in-plane (square symbojsincident light polarizations for a square lattice of SQDsRat95 A with the Bessel wave functions and one
electron per QD. The solid lines represent the DDA. The symbols labelling the zero level are to emphasize that the “zero” is also calculated

(it is the self-interaction valye

Now the direct application of Eq(3) let us obtain
p;%)(w) by setting v=a and »'=a’. Then Vg,)a'(“’) is the
matrix element of the perturbing potentidl(r , w) andl'zz
is the broadening parameter associated witha’ transi-
ions. In the further discussion, we assume for simplicity that

aa=laa- It is important that for the lattice with a fixed
number of electrongat the states anda’) per dot we can

ditions ki, =27mpy()/d12N12), Ni(2) is the number of the
QD rows in thed,) direction andN=N N, is the number of
QDs in the lattice. n;, and py, are integers with
N1/ 2<ny(2), P12 <N1(2/2. The numbem is assumed
to be big enough to let any summation over the lattice site
go to infinity.

Writing Eq. (16) we have assumed that the influence Ofwrite S S o =N
the long-range interdot static Coulomb interaction on the in- ki kfPaa K-kl G, (19";‘@"
terlevel spacing and eigenfunctions of SQDs can be ne- To facilitate work Withp;;,(w) we make the following
glected as a first approximation in our appro&sbe Appen- reasonable assumptions. Since we neglect interdot electron
dix A). Thus, (normalized W,(r) appearing in Eq(16) is  tunneling in the lattice the energy of stateloes not depend
given by Eqgs.(6) and(7) derived for an isolated SQD. The onkf, i.e., Ez=E,=E,| and, thusEzz =E, . As the fol-
normalization of the wave functionsbg(r) requires lowing calculations shovvgz,(w) is also independent d¢?
5kﬁ‘—kﬁlv<'3m”’ whereGmH:(mlzwldl,m221-r/q2) is .the reciprp- andG, andvg)a,(w):vgg,’(w) [see Eq(25)].
cal lattice vectorm;=(my,mp), andmyy) is an integer, with Taking into account the above assumptions and employ-
~Nip/2<myp<Nyz/2. The presence ofdaia g ~—  ing Eq.(1) we find that(effective) polarizability of the QD
means that the wave vector is conserved within the reciprdocated in the latticécontainingN interacting QD$ aj; ()
cal lattice vectorG,,, due to periodicity of the system, and =ajj(w)/N can be rewritten in the form
a :E’“HE @ ki+Gp).

—e w1
Employing Eq.(16) one can check that the matrix element ajj(w)==—2, P(alr’,g(w)za,au (18)
(X)az = (N )zz can be written in the form Ej(@)aa
with
X)az = Zaa S 6, - (17) "
! _ 1 . VY (0)ng o
5(1,1)(0)) I 2 Soaral p(l—'J)(a)) - aa a,a
Inspection of the above equation shows that the dipole selec-"22' N = T O e Boa —fio—iTqa
tion rules in the nontunneling SQD lattices are the same as in Kipki
an isolated SQD given by E@8). (19
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The perturbing potentialinside a particular QDis the

sum of the external perturbing potential and the potential

induced due to the intradot and interdot dynarie inter-
action[see Eq.4)]. To properly take into account the inter-

dot e-e interaction it is convenient to have each lattice site

labeled by(l,k), wherel andk are the integers. The si(8,0)

contains the origin of the coordinate system. The radius

vector to the volume associated with ttiek)th SQD is de-
noted byf .. Then

e 1

VI @)= -—— 3 f i 2 ()
47T€€O|,k:—w |r - r|k| b,b’ ’
XD (Pl Pp(T). (20)

Note that the summation includes the term wit0 and
k=0 which represents the intradete interaction. Conse-

quently, the problem of the self-interaction of one electron in

a QD with itself appears. It is important to note that E2[)
represents thexistingpotential; the self-interaction does not

matter yet. The self-interaction problem arises when we cal-

culate the matrix elements &)(r,w) for the potentialex-
periencedby an electron(see Sec. IlAL So this self-
interaction problem will be addressed further.

Now, by using the vectoR,=(Id;,kd,,0), we introduce
the radius vector’ =T —R which is originated in the cen-
ter of the(l,k)th SQD. Employing the 2D Fourier transform
in the x;-X, plane of the periodic lattice

1~, — /1 - 2_772 equd“(le—qnlx;;—Xé\e—iqu(fH‘fu’),
|r - r|k| |r - (r + R|k)| S qp q”

(21)

we can rewrite Eq(20) in the following form:

¢ > > eiqudmie—i%ru

€€0Sg, | koo q

V(i)ind(r L) =

X f dxée_q”‘xs_xélz FE,_I?E(QM-Xé)PE)l’_B(w),
b,b’
(22

whered,=(ld,,kd,). The vectorg,=(qy,qy), having dimen-

PHYSICAL REVIEW B 71, 115304(2005

For the form factor we find thatF%,)%(GmH,xs)

o (= :
=4 -kﬁ’,tGmHFb]f,b(Gm"’XS)* with

Fgr)i(Gm”,Xg) = f dr“\I,;,(rH,X3)etiGerH\I,b(r”,X3) . (24)

In EqQ. (24) the integration is carried out over one SQD which
is possible due to the periodicity of the wave function ac-
cording to Eq.(16).

Then, taking the matrix element &f)"(r | w) between

statesa anda’ =E’mH we get

Vaz (@) = Vo) = 2 l@a’ib,bpyp(w),
bb’
(25
where
. e 1 '
BYV(a,a’;b,b’") = > — | dxgdxjeCmsdl
2€€0d1d2 Gmu Gm”
XFL (G X F (G X)), (26)
andGmH:|Gm |. Here the relatioMN/S=d,d, is used. One can

check thatﬁ“”)(c,c’;c,c’)>0 andB¥(a,a’;b,b’)<0 if a

#b and/ora’ #b’ for the lattice of spherical QDs.

It should also be noted that the exponential factor
e CmPsal in Eq. (26) appears because the two-dimensional
lattice is built by the three-dimensional quantum dots; more
precisely, the QDs have nonzero size in the direcépnor-
mal to the plane of the lattice. One can suggest that when this
size of the dot becomes comparable withand/ord,, the
presence of the exponential factor in some situations could
impact the strength of the dynamic long-range Coulomb in-
teraction in the lattice. ‘

We find from Egs.(19), (25), and (26) that'ﬁglz’:,)(w) is
defined by Eq.(5) if v=a, v'=a' o=b, ¢'=b’, Q(Vlv'f)(w)
=), LV, 0,0)=p0@a,a;b,b), and N,
=Ngar-

Now the problem of the self-interaction should be figured
out. Equationg25) and (26) represent the potential experi-
enced by a certain electron in a certain QD of the lattice due

sion of reciproca' |ength' can be considered as the wave Veéo interaction of that electron with all the electrons in the

tor of the collective excitation associated with interlevel tran-

sitions. .
The form factorF%,)%(qH,xg) is defined by

L—'?fg(q”,xg: f dr o (1) Dy ()€, (23)
In Eqg. (22) we take the advantage of the summation ove
(I,k) as Eff’kz_we'q”dlk:Nﬁqulk,o which imposes the periodic
boundary conditions on;, so that, in effectg; =G, . Thus,

r

lattice. Thus, this potential includes the interée¢ interac-
tion as well as the intradate interaction. It is important to
note that these two contributions cannot be separated in Egs.
(25 and(26). The interdot interaction is described correctly
by these equations for any number of electrons per dot. How-
ever, Eqs(25) and(26) do include the self-interaction of an
electron through the intradete interaction as is described in
Sec. Il A 1 for a single SQD. Thus, this self-interaction con-
tribution to the DE shift is calculated separately by Etp)

and then subtracted from the value of the DE shift given by
Eq. (26). Note that this way of solution of the self-interaction

we conclude that in the approximation used here, i.e., whepqplem is justified within our approximation when the elec-

EeX‘(r,t):ej~Ej(w)e“‘°t, only the collective excitations with
q”:GmH can be excited by the external radiation.

tron eigenstates in the QDs are assumed to be untouched by
the static interdoe-e interaction.
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An analysis of the obtained relationships reveals very imthe in-plane light polarization(We assume that the self-
portant general features of the depolarization effect in sysmteraction is excludedg.
tems of quantum dots which allows us to solve the problem At this point we would like to emphasize that the relation-
of the electron self-interaction. First of all, comparing theships obtained in this subsection are general and can be ap-
relationships for the case of a single SQD in Sec. Il A 1 andplied to the 2D rectangular nontunneling lattice of identical
the above relationships for the lattice one can see that theyuantum dots of other shape and size. The shape of the dots
are strongly related. In fact, the relationships for the lattices taken into account by Ed24).
are transformed into the corresponding relationships for
single dot, in part Eq(26) is rendered into Eq(11), when B. Interlevel optical response of quantum dot systems
the step of the summation ove, is sufficiently small so
that the summation limits the integration. Since this limit is
realized wherd, — oo, it means that the DE in the lattice with
a sufficiently larged, comes close to the DE in a single SQD.
Our numerical calculations confirm that for any directign
of the radiation polarization

Now we are able to find out explicit expressions fer
which describes the effective polarizability of a QD in the
lattice as well as the polarizability of single QD, by applying
Egs.(1) and(5). In the following the diagonal components of
« are obtained for two-state and four-state electron systems
which can be realized depending upon the number of elec-

lim pYaa’;b,b’)=L(aa’;b,b"). (27)  trons per dot. The course of the development is identical for
/2R~ the single QD and for the lattice. As has been mentioned in
For simplicity we consider a square lattice with=d,  the former case the polarizability tensor reduces to scalar

=d, in the further analysis. Inspection of the obtained resultg¥jj=. i.e., it is independent on the light polarization. To
(see also Sec. Il Bindicates that strength of the DE shift is unify the final relationships we introduce the quantity
controlled not only by the factorg(a,a’;b,b’) them- BY(a,a’;b,b’) which takes the value ot (a,a’;b,b’)
selves but rather by products/s’(’) bb:B(J)(a a' or BW(a,a’;b,b’) for the single QD_(o)r the lattice,
—_— a’a’; , ! 1 -l . . J
b,b")\NaaNpp- Whena=b anda’=b’ (andn, . =1) this r_espectlvely. Moreover, we also deflnéa'a,;b’b, to be

is the case of the self-interaction and, con:sequeﬁéjg,_a o Egy;,;b'b,, correspondingly.
contains the self-interaction contribution. However,'w'h'en we For further analysis the following symmetry relations for
consider only the coupling between different transitions, i.e.the spherical QDs are important:3Y(a,a’;b,b")
whena# b and/ora’ #b’ (andn, . ,n,, =1) this isnotthe  =BY(b,b’;a,a’), BY(a,a’;b,b’)=BY(a’,a;b’,b), and
case of the self-interaction. BY(a,a’:b,b")=-BW(a,a’;b’,b), BW(a,a’;b,b")

It is important to mention the case of only a single elec-=-59)(a’,a;b,b’). Note also thatB%(c,c’;c,c’)>0 and
tron per QD which occupies a degenerated ldeich as  Bl)(a,a’;b,b’)<0 if a# b and/ora’ #b’.
(1,1,m) in SQD] so that this one electron can be at state We would like to stress that to simplify the further con-
b[(1,1,00r(1,1,+1 in SQD] with different probabilities.  sideration we assume that the broadening parameter is inde-
Consequently, the one electron can participate in transitionsendent of the level index, i.el},,, =T, with ' taken as a
of different types,a=a’ and b=b’, with different prob-  phenomenological parameter. Discussion of other situations
abilities. Then we can calculayégl‘,_b ,» Which includesno  when the level index is important for the broadening param-
self-interaction contribution. eter is beyond the scope of this paper.

The above discussion suggests that the effects associated

with self-interaction can be excluded replaciﬁgfa,,bb, by

Laar:bp OF

1. Two-state electron system

Let us consider a pair of levels anda’ (E, >E, and

BY oo =[BV(aa’;b,b) N.a>0) between which dipole transitions are allowed.
, ) — Note, that thea’ —a transition can be resonarif 7w
-L(@a';aa) b0 b/ ]V Naaop - (28)  <E, ) while thea—a’ transition is always nonresonant.
, —i) _ , We call the collective mode associated with e a’ tran-
Note that expression foB, ., ,, can be rewritten in @ gjions as thea mode. If we neglect another transitigthe
form analogous to Eq15) as diagonal approximationthen the direct calculations show
, @ . that the polarizability can be written in the following form:
EJ) - _B(l) (29)
a,a’;b,b’ d a,a’;b,b” 2 2 E
€€ ( )_ |Ma’,a| Naa'Bar a (30)
—_ a” w)— " ] y
whereﬂg)a,_b ,- IS @ dimensionless function dfandR. In the (Eg,)'a)2 - (hw)® - i2khol’
case of the infinite barriefthe Bessel wave functiohs _ . . .
~ i) ) where u, ,=—€Zy 5 IS matrix element of the electron dipole
B, 4 dEpends only on the ratid/ 2R. moment and
It is very important to note that the term WimeHZO in . _
Eq. (26) is determining the radical difference between the (Eg?,a)Z:Ei,; 2Ea,]a@;,vava,. (31

DE shift for the normal and in-plane light polarization: the . ) . ] R
contribution of the interdoé-e interaction into the DE shift N Ed. (30) T is omitted in the denominator sinckE
is positive for the normal light polarization and negative for<(Ea',) a)2.
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Thus, we see that in the diagonal limit the dynareie  the occupied lowest state of SQB=(1,0,0, to the first
interaction affects only the resonant energy. If we neglectempty excited statea’=(1,1,0 and simultaneouslyiw

this interaction therﬁg,)a:Ea/,a and the above expression =E;:1~E;, It is important to note that in a single QD the
reduces to the well known one-electron expreséime, e.g., lowest stat€1,0,0 must be occupied by two electrons whose
Ref. 21. transitions form the collective excitatiqthe a mode due to
The imaginary part ofx; () can be written in the form the intradote-e interaction. On the other hand, at least one
ji : : :
electron per dot is required for the lattice where ghmode

, A PNy 2 Ear il (32) of the collective lattice excitation is formed due to the inter-
] : dot e-e interaction.
BT )2 (ha)2 + (2hal)?
When only the resonant transitions are taken into account 2. Four-state electron system
(the resonant apprOX|matlband|_gg, A <E, ,the above Now we consider a system of four states, namalgnd
equation simplifies to the form a’ (Ey>E, and ny,>0), and b and b’ (E, >E, and
) Np,p- > 0), with the allowed dipole transitions ass=a’ (the
o o) = |iar o N2 (33) amode andb=b’ (theb mode only. In the diagonal limit
I (El, - hw)?+ 2’ the four-state system reduces to two noninteracting two-state
a systems describing treandb modes separately. When cou-
Where_(') =Eaat E(j)’ B pling_bet\_/\(een the aboye modes is taken into account the
aa’a.a (J) =) polarizability can be written as
It should be noted thakE,, .>E, , andE, >Ey 4 in
case of normal occupatlon of the Ieve(lssdar>0) except ajj(w) = [E;’J)(w)(xj)aa’ +;§1,1b(w)(xj)b o1 (34)

E;J,)a< E.a and_g,)a< E, , for the lattice, in-plane light po-
larization(i.e., j=1,2), andn,, =1 (see Fig. 1L 1)) @i, §_~(L))

The considered above two-state approximation is vallthere’TC’ o(©)= ’:{0’ (@)= pCC/h( )f level |
only when electron transitions between two bound states APPlication o Eq (5) to the our eve model gives sets
play dominant role for a given photon energy. For example©f two equations fOVP (w) and | Pb/ b(w) Substituting the
such a situation takes place when electrons are excited frosplutions of these equatlons into E((34) we get

~[Aj(w) +iBj(w)]
[(ho")2+ T2 - (hw)? - i2hol [(io)2+ T2~ (ho)? - i2hwl]’

ajj(w) =€ (35

where (hol))?

- %[(E(J) )2 + (E(l) b)2]

A-(a)) 2E., |(X) ' |2n {[(E(]) 2+F2] - (ﬁw)z} 1 =
j a’,al\NjJa’ al Ma,a’
= 2\/[(Egr)’a)2 (E(J)b)z]z 16Ea’ Eb’ b(B a/bbr)z

(38)

- . N, B / ) .
8Ear B bl ()a.aX))b 6Bz por [N Maa Mo, The above equations clearly show that in the four level
(36) systems the intermode coupliigontrolled by the parameter

E;‘a, b, ,) leads to the formation of new mixed modes. In the

presence of the broadening, the peak positions in the absorp-
tion spectra appear at the energies denote(ﬁtbsg) and
Bj(w) = = 4wl [Eq ol (X)ar aNaar + Eor | (X)br ol ], ho ﬁgywhlch can be associated with the eigenenergies of the
(37) mixed modes. Our numerical simulations show that, numeri-
cal values of these energles are very closkdd’ andhw(')
respectively, i.e.fio’)_~fw! andfw! ~ﬁw(” (see also

res— res+
Fig. 7). As one can expect the above energies differ from the

and eigenenergies of the uncoupled mocﬁ@aga and Eg,)b, with

+ 2B | (%) bl o o ALEY )2+ 2] = (rw)?}
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hol) < min(Egga,Eg? ) andfiw) > ma><(~E§?a,E§? ). Cor- In this section we are going to exploit the concept of the
rections induced by the mode coupling are Iargést when th¥1OS. Comparison pf th? exact relationship for the polariz-
i =) =~ . . . ability and that obtained in the MOS approdclamely, Egs.
difference betweer,, . andE,,  vanishes. In this regime (35 and(46)] enables us to estimate the applicability of the
the separation between the low-energy péakio| ) and  MOS approach. To the best of our knowledge such a com-
the high-energy peatat o)) in the spectrum ofP) can  parison and application of the concept of the MOS to QD

res

be approximated by systems have not been discussed in the literature.
. . . A , —i) The MOS concept is based on the assumption that broad-
AEY = hol, - hols ~fio) ~fioV = 2B, . ening parametef is much smaller than the uncoupled mode

(39) energy. Modeling each peak on the spectra by dhfeinc-
tions, i.e., whenl'=0, the polarizability of the multimode
The considered above four-state system can be used feystem is presented by a very compact general expression
modelling optical properties of the SQD when the two lowest

energy levelgstates(1, 0, 0 and(1,1,m) with m=0,-1,1] 212 0

are occupied, and the following electron transitions from ajj(w) = > * (i>)2n_ (frw)?’ (40)

stateq1,1,m) to vacant corresponding statés 2,m) play a Mo 5 (wy et

dominant role:(1,1,0=(1,2,0, (1,1,)=(1,2,2, and ~i)

(1,1,-)5(1,2,-D. wheref()] is the modified oscillator strength corresponding to
One can check, employing the diagonal approximationtn€ 7th eigenenergy.

that the transitions (1,1,2(1,2,) and (1,1,-1 Applying the MOS concept to the case of the four-state

=(1,2,-1 have the same matrix elements of the perturbingSyStem considergo_l here~ _the relationships for the modified
potential. Thus, only two kinds of the optically active transi- oscillator strengttf?’ and ) associated with the eigenener-
tions are  distinguished: (1,1,0=(1,2,0 and giesﬁw(_” andﬁwi”, respectively, are obtained with the help
(1,1,+1)=(1,2,+2. Then itis convenient to introduce the of Eq. (35) in a very simple form
following notation:a=(1,1,0, a’=(1,2,0, b=(1,1,%1,
andb’=(1,2, +1). It should be especially emphasized that it ) = [?1/2 cosﬁ _Fue Sinﬁr 41)
is the high symmetry of the SQD that allows the degenera- B aa b’.b '
tion of the energy levels, i.eE,=E,=E, ;, E; =Ey =E; »
and consequentl, ,=Ey ,=E(; »(1,1- Thus, the intermode o E
coupling in such a SQD has resonant character so that we D= {’f;{za sin2 + 1% cos—l} , (42)
can expect a strong influence of tleee coupling on the ’ 2 ’ 2
interlevel absorption spectra of the SQD. Note that in the
dipole approximation no transitions from the lowest level With
(1,0,0 are possible: to the second level due to the Pauli .
principle and to the third level due to the selection rile g = 4E;{’2aEé’fb @Vg,;b’“

It is also important to stress that the coupliye toVi"d) ] (Eg?,b)z - (Egr),a)z
between the considered above dipole active modes and opti-
cally inactive modes(associated witha=b’ and b=a’ Where’fc,’C:fC/’an, for o= (2My/ h2)Eq (JZ¢ o/|? is the oscil-
transitiong does not play any role SinOﬁg)a,;a,,b:BS‘)b,;b,,a lator strength corresponding to tleé— c transitions in the
=0. Working in the four level model we neglect the coupling absence of the DE, ant, is the free electron mass. As was
between the dipole transitiofdl =1) and multipole excita- shown in Ref. 29 the following sum ruleX,f,
tions (Al =2). It has a good justification because in the struc-=(almy/m’|a) is fulfilled, wherem" is the spatially depen-
tures considered here tligingle electropresonant energies dent effective mass.

(43

corresponding to the dipole transitioni&, ,=E,,) and In the above equations tah represents the intermode
multipole transitiongE; 5 —E; o) differ strongly. coupling, with targ;=0 stands for no coupliangL,_b .
3. Modified oscillator strength approach =0), i.e., the diagonal approximation. Equatiofl) and

. L ) (42) let us write the MOS sum rule as
Inspection of Eq(35) shows that it is very complicated

for analysis and allows us to get information about the influ-
ence of the intermode coupling on the height of the absorp-
tion peaks only by means of the numerical calculations. This N .
complexity is mainly caused by rigorous treatment of thewhich tells us that the sum of the modified oscillator
broadening even if the dependencd gf, on the level index ~ Strengths is independent of the intermode coupling: if due to
is neglected for simplicityi.e., I'; ,»=I"). Fortunately, it is the couplingf(_” increases therfi” decreases accordingly,
the concept of the modified oscillator strengihOS) that let ~ and vice versa.

us drastically simplify and enhance the analy@se, e.g., From Egs.(41) and (42) it is readily obtained that the
Ref. 28. relative height of the peaks is represented by the MOS ratio

Af‘(_J) +?S,]> :?a/’a +?b’,b1 (44)
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. 0. — 0(0) 2 4. Dipole-dipole interaction approximation
f/fY) = (tan'—1—> : (45) . o : .

2 It is really worth mentioning a special and important ap-
proach to investigating the interdot dynange interaction
where [tar‘(ﬁfo)/Z)]Z:T‘(j) i) Note that 6¥=m/2 for in th_e Q_D systems. _It i_s the dipole-dipole interactior_] ap-
_ = j a’a b'b ] proximation(DDA). Within the DDA the QDs of the lattice
fa a=fu p. The cased;=0 corresponds to the absence of theare treated as point dipoles which interact with each other.
intermode interaction(the diagonal approximation i.e.,  Note that the DDA is based on the assumption that the total
T_/f.=T. a/To . One can see that the MOS rafid)/)) is ~ field affecting the electrons in a QD can be assumed to be a
an even function oﬁj—e}@ with its minimum zero value at Uniform field in the volume of the QD.

01-:0}0). Thus, with increasing intermode coupling, which _ s|-t|:|[:swehaerr? go||3nsg ;?eexe)lo'tlglg dDEA Ig;:]he;zi?rz 1(1);%2 g

corresponds to increasing from zero tod?, the height of e); ns w Q . popu Yy many '
] ~(i)_ pecially, a few different types of the interstate electron

the Ic()a/v-energy peak decreases and vanishesf'=0) at  yansitions are allowed. To our best knowledge such cases

6,=¢°. This vanishing of the low-energy peak means thathave not been rigorously investigated taking into account the

due to the intermode coupling all the energy of the collectivemode mixing and electron self-interaction.

excitations in the system is concentrated in the high-energy Developing as in Ref. 31 we obtain the following elegant

modified mode. Foﬁa,,az?b,'b the low-energy peak never relation between the polarizability(w) of an isolated single

vanishes to zero sincél” = /2 requiregBU., | o, ac- QD and the(effective polarizability «j(w) of the QD lo-
. ) RN cated in a system of QDs:
cording to Eq.(43). For f, .7 f, , there is the finite value,

|Eg)a,,b o] =|Eg)a,,b ,/|o, that corresponds to strong intermode ai(0) = ﬂ.
coupling, at which the low-energy peak vanishes to zero. g 1-Va(0)
According to the MOS sum rule, the height of the high-The configuration paramete®?), appearing in the above
energy peak increases with growing intermode coupling fogquation, represents the summation over the QDs to get the
6,< 6. We should note that this prediction of the peakfield at a given QD created by all the rest dipoles of the
height behavior is confirmed with high accuracy by our nu-system[see Eq.(1.4) in Ref. 31. For the considered here
merical simulations of Eq35). infinite 2D square lattices)=¢0/d® and §V=£2=-¢,/2,
Within the MOS approach the relationship for the com-gd=¢, with &=-3,T_, (K2+12)732=-9.0336 (the term

plex polarizability of the four-state system, with the broad-\yith k=1=0 is excludlga in the summatipn

ening being incorporated, is reasonably presented in the fol- |+ should be emphasized that E@.7) is general and can

(47)

lowing simple form: be applied for a variety of QD systems. Another advantage of
Eq. (47) is its independence of the kind of QDs in the sys-
212 T tems. All the information about the electronic structure of the
ajj(w) = Dz 7 2 dot and particular intradoé-e interactions is sacrificed in
My [ (A=) = (hw)” = i2hol a(w), which is calculated by Eqs(30) and (35 when
0 E;]Lr-cclzl-a,a’;c,c’ and the polarization index is omitted.
* (ho)2 - (hw)? -2kl |’ (46) Using these expressions fatw) we can obtain by means of

Eq. (47) the relationships fogg)a,_c o

It should be emphasized that the parameter which determingse DDA.
the applicability and accuracy of the MOS approach for the When the QD is considered as a two-state electron system
systems of interacting modes is the ratiolofind the char- (the diagonal approximatigrthe application of Eq(47) re-
acteristic interlevel spacing of the system, i.eyos  sults in Eqs(30)—33) with
= ZF/EC’,C' X _ .

Note that Eq.(46) exactly describes the systems of non- Ec{lr;c,cr =Leercer = Moo NeerSY. (48)
interacting modes[the diagonal approximation, see Eq.
(30)], when the height of the pedknore precisely the area

under the peakis proportional toﬁf'a,,a, which is treated as

for QD systems within

For the four-state systent47) results in Eqs(35)—(38)
with, in addition to Eq.(48), the following relation takes

) ; ; ) lace:

the MOS associated with tremode of the collective exci- P

tations. gj) :f hh! ’ (VN5 57N rgj) (49)
Note also that the expressions analogous to the above anr = Laarioo' = Haatkon Ve oy

ones were derived in our previous paSenhere the inter- The amazingly simple relationship48) and(49) are very

subband collective modes were considered in quantum wedasy to exploit and allow us to make important conclusions.
with two lowest subbands=1 andn=2 occupied. There the (i) In the DDA the interdote-e interaction is controlled by
collective modes were associated with-2 and 2— 3 inter-  the bare dipoles u,, and uyy (independently of the
subband transitions. However, in contrast to the SQD, th&trength of intermode mixing by the number of the elec-
intermode coupling in QWs can have resonant character onlyrons in the dots, and by the configuration of the QD system
when appropriate conditions are niég® (i.e., dimension, size, and orde(ii) Within the DDA the
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effects associated with intradot and inter@eg interactions For comparison we consider also the two-state system
can be analyzed completely separately. In addition, assumingith transitions(1,0,0(1,1,0 only. The notations used

(i) and(ii) to be valid, the above relationships can be appliedareg=(1,0,0 andg’'=(1,1,0 with ny, =2.

to other systems of identical QDs, and, moreover, even to Note that for the infinitely deep SQD with one electron
systems of nonidentical QDs, provided the bare dipoles anthe dipole matrix element takes a very simple form, useful
the number of the electrons are known for each dot. In thgor approximate evaluation for other SQDs, as

next section the validity of the DDA is checked by compari-

son of the numerical results for the DE shift calculated with |Z¢.cr| = RMccr, (50
the help of Eqs(48) and(49), and with the help oﬁa{g,;cp“ where M 1.0.0(1.1,0=0.308, M1.1.0(120=0.315,
M(1,1,+0(1,2+0=0.273.  Then  f1 100120/ f11:002+0

IIl. NUMERICAL RESULTS AND DISCUSSION =1.33L.

To calculate the depolarization shifted transition energy
In this section we discuss in detail the results of numericafor the 2DRLSQD it is most convenient to utilize the Carte-

calculations. Numerical calculations @), have been sian coordinate systef,y,2) with axis orientation depend-

performed for systems of SQDs with infinite and finite po-Ng on the polarization of the light. Namely, for the normal
tential barrier. Both the two-state and four-state systems are L") lnC|denF light pollan.zat|on(lj =3): X=Xg, Y=%, fa.ndz
investigated. However, the effective polarizability is consid-=Xs- For the in-plane incident light polarization witf1:
ered only for the lattice of SQDs with finite potential barrier X=Xz, Y=Xs, Z=X3; and with j=2: x=x3, y=X;, 2=X,. (F‘?r
and we restrict it to the four-state system since it reveal$quare 2DRLSQDs these two polarizations are equivalent
much more interesting features of the DE than the two-stat@nd will be labeled by [l”) _ _
model. We compare our numerical results with those obtained
We consider a square latti¢é; =d,=d) of identical GaAs within the modified oscillator strength approa@te_e Eq.
SQDs in Al Ga, As medium. The parameters used are: thel46)] and the DDAsee Eqs(48) and(49)]. We would like to
offset of the potential well i2Jy=227.9 meV, the electron Note that the numerlcal cal_culatlons require high accuracy
effective masses in the dot and barrier axg=0.066n, and and are very time consuming especially {2R>5. To
m,=0.092n, respectivelyI'=1 meV ande=13.18. As has make conc_lusmns_ about accuracy when comparing the_ data
been mentioned, the difference between the dielectric corR'ésented in the figures one should keep in mind that differ-
stants of the dot and barrier materials is neglected. We a@—i‘t computer u codes are used for calculation of
sume that each dot contains a fixed number of electrons® (8,2";¢.¢'), B(a(,.?’;c,c’), andL(a,a’;c,c’). In addi-
Nop=8[2 at the lowest leve(l, 0, 0 and 6 at the next level ton, any value ofg"(a,a’;c,c’) is a sum of a great deal
(1,1,m)] for the four-state system, ardop=2 [at (1,0,0] (more than 100 fod/2R>2) of the terms[see Eq.(26)]
for the two-state system. calculatgd for differentn; and m,, and the accuracy of the
For the four-state system the dot radRs95 A is chosen ~ calculations depends on the valuerof;R/d. This makes
so that the dot contains only one more vacant energy levdhe calculated data in the figures look similar to “experimen-
[states(1,2,m)] in addition to the two occupied levels. Note tal” data, because no two values in the figures are calculated
that this situation is far from the infinite deep SQDs caseWith exactly the same accuracy. Note that the simplicity of
Self-consistent solution of Eq(7) gives E;,=-91 meV, the DDA becomes very attractive in the above context.
E; 1=-55.4 meV, andE,; ,=-10.7 meV. For comparison, ) ]
when the static intradoe-e interaction is neglected, ¢ A. Lattice of SQDs with one electron per dot
=-184.2 meV, E; ;=-138.3 meV, andE;,=-82.3 meV. It is very convenient and instructive to consider first a
Thus, the direct Coulomb interaction reduces the energyattice of SQDs with one electron per dot. As there is no
separation between stated,2,m) and (1,1,m) from intradote-einteraction in such a lattice the DE is formed due
56 to 44.7 meV. to the interdote-e interaction. Let us make the basic proper-
It should be noted that the exchange-correlation interacties of the DE in the lattice clear.
tion reduces the effect of the direct Coulomb interaction so Figures 1 and 2 present the numerical results obtained by
that the bound levels in the dot drop down by about 30 meMEq. (28) as well as the data obtained within the DDA. To
(see Fig. 1 in Ref. 26 However, the interlevel gap changes truly estimate the accuracy, note that these figures are re-
by nearly 2 meV. The effect of the exchange-correlation in-duced from source figures, which look similar to Figéd)4
teraction also means that the considered three-bound levehd Hd), by setting the intradot effect to zero as it is the pure
SQDs can be realized at a considerably smaller radius. Aelf-interaction. For comparison the correction to the inter-
special case should be mentioned when one of the levelgvel gap caused by the static interd®se interaction(see
involved in the transitions is located very close to the QDFig. 8) is shown in Fig. 1 too.
top. Then the exchange-correlation effect can be substantial. From Figs. 1 and 2 one can conclude the following.
Numerical simulations show that the electron tunnelling (i) The DDA represents the DE shift caused by dynamic
between the dotéwith R=95 A) can be practically ignored interdot e-e interaction very well for both the infinite and
for d>400 A. For the four-state system the following dipole finite deep SQDs with one electron per dot for transitions
transitions are considered=a’ andb=b’, with n,,,=2  g=g’ even when interdot separation is comparable wih 2
andny,,, =4. (which means practically at any/2R).
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a-mode 4. b-mode . B. Lattice of infinitely deep SQDs
/N . *

It is also convenient is to discuss featureﬁfg,_C - fora

square lattice of infinite deep SQDs assuming for simplicity
V¢d{r)=0. (Then the one-electron wave functions can be writ-
ten in terms of the Bessel functionghe advantage of such

a simplified model is thaf%’(j)  in Eq. (29 then depends

a,a’;c )
only upon ratiod/ 2R, which means tha(tEg)a,,cc,d) is com-

mon for any square lattice of infinitely deep SQDs with the

one-electron wave functions. Thus, hav(@?)a,,cc,d) calcu-
Eg;,_cc, for any lattice periodd and dot
radiusR. Further we use labe (and ) when speaking
) ) ) ) ;

about ,Ba’a,;a’a,,. _'Bb,b’;b,bf’_ ﬁa’a,;b’b,l, and ,Bg’q,;g’g., indepen-
dently of specific transitiongand light polarization

In addition to (Eg)a,,cc,d), the values of(L, ,..'R) are
also independent oR and common for all single SQDs.
Then havingEg;,_C o andLya o itis easy to separate the
DE shift associated with the interdot and intradot dynamic
e-e interactions.

To illustrate the strength of the interdete interaction in
the system with one electron per dot, we present in Figs.

50 55 60 3(a)—3(d) the variation of(E(a’)a,_cc,d) as a function ofd/2R.
(b) ho [meV] Forn,, N, electrons per QD at statesandc, respectively, the
FIG. 6. Dependence of’| (w) (a) and «](w) (b) upon photon  values in Figs. G)-3(d) should be multiplied by/nyn,.
energy of incident radiation for square lattice of finite deep SQDs From Figs. 8a)-3(d) one can conclude that the DDA rep-
described in the texR=95 A andd=400 A.n,, =2 andn,,,=4.  resents the contribution of the dynamic intereées interac-
The solid line represents results obtained including intermode coution in the DE shift well for any type of electron transition

pling into the dynamie-e interaction. Dash lines correspond to the gnd any d/2R for the Bessel wave functions. Figures

diagonal approximatiofi.e., no intermode coupling Dash-dotted 3(a)—3(d) show also that the values ﬁfor different transi-
lines are obtained neglecting dynamic Coulomb interaction. In th‘ﬁons can differ considerably
) .

two last approximations the separate contributions associated wi To exploit the great advantage of the applicability of the
a-mode andb-mode tod/| (w) and e/ (w) are also presented by thin DDA for the case of manv el
lines. y electrons per dot one should know
the values ofl, ,/.c.». The numerical values dfL, 4 .co'R)
(i) A decrease of the confining potential causes an inare as follows: L,g.5.R=405.0 meV A, Lpprpp R
crease of the absolute value of the DE shift because of the265.7 meV A, L,,ppR=-223.8meVA, Lyg.qqR
increase of the dipole matrix elements through modification. 395 3 mev A. To obtaiffl, .c R) for n, andn, electrons

of the electron wave functions and their extent beyond th%t the levelsa and ¢, respectively, these values should be
QD boundary. ' '

multiplied by (vnan.— &, o). Note that for more than one elec-

oy
o
|

(w) (arb. units)

OL"

lated we can ge

oc“”(m) (arb. units)

(iii ) An infinite deep QD approximation results in an es-

sential underestimation of the DE shift. tron in a single SQD the DE shift due to the intradse
(iv) The DE shift induced by the interdot interaction, interaction decreases with growing QD size. This is associ-
practically vanishes fod/2R> 5. ated with decrease of theee interaction potential in a bigger

(v) An increase of the dipole matrix elements with grow- restricting room.
ing QD size is responsible for the increase of the absolute We want to emphasize that the numerical vallies 1
value of the DE shift associated with the inter@et¢ inter- ~ <d/2R<5) obtained above are common for any infinitely
action. deep SQD with one-electron wave functions, which are ei-
(vi) At a fixed electron sheet densitwhend=consj the  ther single dots or form the square lattice. A change of the
DE shift changes just because of the change of the QD sizélielectric constant changes the values according to @§s.
One can see that for spherical QDs the exponential factasind(29). In part it moves all of the lines in Fig. 3 up or down
(see Sec. Il A 2does not manifest itself. Note the increase ofon the scale. These values are very useful for an instant
the dipole matrix elementiz. /| with decreasing potential approximate estimation even for SQDs with finite barrier and
barrier[against the values by E@0) in the bracketsat R many electrons.
=95 A: |Z(1,O,Q(l,1,Q| =36.2 A (291 A), 2(1,1,0(1,2,Q|:40'1 A

(29.9 A), and|2(1,1,¢n(1,2,¢13|:34-7 A(25_9 A). The value of C. Lattice of SQDs with finite potential barrier
M. in Eq. (50) decreases with growin®, especially at Wave functions of electrons are modified by a finite po-
95 A<R<150 A up to 10%. tential barrier of the quantum dot and, in addition, by the
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statice-e interaction(see further. The dot radius becomes an shift caused by the intradete interaction. As it is with the

important parameter for this effect. As a res~a{;_w in growing QD siZ(_a the_reason _is the spreading_out of the elec-
Eq. (29) is a function not of the ratia/2R but of R andd tron wave functions in the bigger space, which reduces the

independently. and. thus values,@') are specific for intradot e-e interaction. Note that the static intradete in-
P Y ’ ’ a’ec P teraction results in an additional extension of the wave func-
each system.

. . . tions. The values of , 5. for the considered finite deep
Figures 4 and 5 present the DE shift in the lattice of SQDSSQD(see Figs. 4 and)aérgcabout 30% less than those for the

for two-state (Ngop=2) and four-state(Ngp=8) systems. . = - .
i nfinite deep SQOseeL, .. R in Sec. Il B).
These figures demonstrate all the features of the DE sth1 It should be noted that faR>100 A the interlevel spac-

disclosed in the two previous subsections. It is worth emphaLI—n m | o the enerai £ LO phonons in th tem
sizing that in Figs. 4—6 both the interdot and intrades g comes close 1o the energies o phonons € syste

interaction work together. and a more carefu_l analysis, including th_e coupling of_ thg

First of all, Figs. 4 and 5 confirm that the DDA representsconecnve modes with th_e above phonon_s, is needed Whlc_h is
the DE shift well due to the dynamic interdete interaction ~ P€yond the scope of this paper. According to our numerical
for the square lattice of the finite deep SQDs for any type ofcalculations, the value g8 for 2DRLSQD withd,; #d, can

electron transitions and practically ady2R. Note that the  pe roughly taken as an average betwgevalues for square
match with the DDA in the fl_gureéas well as in Figs. 193 |attices with lattice periodsd, and d,, if d; and d, are
can be treated as excellent if the accuracy for the calculatediher  close to  each  other. However.  when

B andL, g is adopted to be within 0.5%. maxd; ,d,)/min(d;,d,) >2 the DE shift in such a lattice ap-
Figure 5 gives a good illustration of the opposite effect ofpears to be smallgin the absolute valu¢ghan that for the
change of the QD size upon the influence of the interdot angquare lattice with the period being iR, ds).
intrad_ot (_jynamice»g interac_tion on the DE. Note t.ha'F the Figure 6 displays absorption spectfanore exactly
contribution of the E(t_()ardot interaction to the DE shift is the o)) = (@) = /() and allg(w) = &/, ()] for the normal
difference betweerﬁa"a,;cyc, and L., Which is repre-  gng in-plane polarization of incident radiation dst 400 A.
sented within the DDA as the difference between the solidrhe presented results illustrate the importance of the dy-
and dot lines in Fig. 5. namic interdot interaction very well. This interaction causes
With growing R the absolute value of the DE shift in- the shift of the positions of two peaks in the absorption spec-

creasesdecreasedor the interdot(intrado) interaction, and 3 to the energieBwys,, iws., andhiwl.., fiwl., The po-

the shift due to the interdot interaction is more sensitive tGsjtions of the high-energy peaks are determined from the
the R change. It is important to note that the relative Contri'spectrum(see also Fig. 7to be hw’.,=54.69 meV and
bution of the interdot and intradete interaction into the DE ' | e

o . . . ,=53.15 meV. The positions of the low-energy peaks
shift is determined by the size of the SQOblote that, in res : :
general, in addition to the QD size, the QD shape can alsdre hard to determine from the spectra. That is why we take

L |l
affect the relative contributiopFigure 5 also shows that it is ﬂwem as close to the calculated valugs_ and fie-:

1 o o1 ooz =
the contribution of the intradot interaction that determines@res-~fw-=43.9 meV anthwres ~fw_=44 mev.

the overall value of the DE shift for our QD systems. Figure 6 also shows the substantial influence of the inter-

Itis important to notice the reducing effect of the decreasd"'0d€ coupling on the absorption spectra. Due to the near
of the confinement potential on the contribution to the pEeresonant character of this coupling considerable splitting of
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the peaks and considerable redistribution of the oscillatoes 742 mev and|§;a"b ,/|=4.765 meV, we can conclude
strength takes.place. Note phat observanon of the dOUblfhat there is strong intermode coupling in the system. That is
peak structure in the absorption spectra is possible when the : -
broadening energy' is sufficiently small. For biggel" the why the Iow-ejnergy'peak is so weak in .the specira. i
two peaks on the spectra cannot be distinguished: the lower- AS IS mentioned in Sec. |1 B 3 the ratigyos determines
energy peak practically vanishes. However, the position ofh€ accuracy of the results obtained within the MOS ap-
the higher energy peak can be correctly determined only bproach. Our numerical simulations show that the MOS ap-
taking into account the intermode interaction. It should beproach is very accurate bt=3 meV (yy0s=0.13 in predict-
emphasized that all six electrons at the second lelvel ,m) ing the position and height of the high-energy peé@khe
contribute to the depolarization shift. low-energy peak is not observ@dEven at I'=7 meV

A simulation shows that even in the absence of the modey,, .=0.31) the error of the peak position is about 0.2 meV,
coupling (the diagonal approximatigrthe resonant energies \yhije the error of the peak height is near 1%. Thus, we can
deviate from the~l(el\)/el~s(%par~aut|on. For example, ~ta1|§mg conclude that the MOS approach excellently represents the
=f00 A~we getE = Egr,azEg/,a:47-4 meV and ~Eb,’b multimode systems for reasonable valued of
:Ef,)’b:E'k'),’b:SO.Z meV, Ef,)'a: E;,’a:51.1 meV andEél,) Above we have considered the effectaon the DE at

b . ;
=E\") =48.1 meV. Note, that although the depolarization ™ €d Nop- Now we discuss the influence blgp on t_t\e DE
at fixed d. The DE is determined by values ¢’

b oo T
shift is substantial the diﬁerencéE(',) —Eg,)b , , aa’;aa’’
=(j) C - RS - B and gV Calculations show thalNgp affects
(<Ea, El). The relative intensity of tha andb modes is de- b,b’:b,b’ a,a’:bb’’ QD

scribed in the diagonal approximation by the ratjo,/f, p these values mainly directly by means nf anfj. Moo
which takes the value 2/3. : : while the influence ofNgp on values of 3(a,a’;c,c )_
Figures 16 demonstrate a strong dependence of the D@hro.ugh a change of parameters o_f the electron system in the
upon the polarization of the incident light: the resonancedd is weak. It should be emphasized tiégp denotes the
photon energy for the normal light polarization is alwaysnumber of electrong; QDs, not in the whole structurgNu-
bigger than that for the in-plane light polarization. It is im- merical results show that decreaseNyfp by 1 induces in-
portant to note that in our approximations the difference becrease of, ., by about 1-1.5 me\Mwhile E, decreases by
tween these resonance energies can be treated as independdmaut 10 meV for different levels and the dipole matrix
of the static interdot interaction. In addition, our numericalelements decrease by about 1.5%, i.e., are practically un-
calculations for the case of the in-plane polarization reveatouched]
different contributions to the DE from the lattice sites of Finally, we want to emphasize that the analytical results
different lattice rows. Ai=400 A, only the sites in the row and the majority of the obtained numerical results demon-
perpendicular to the polarization direction contribute to thestrating new interesting and important features of the DE are
DE. At d>500A the situation changes: the dots in the rowyalid for the systems of quantum dots of other shape. The
along the polarization direction make a major contribution tospecific spherical shape of dots utilized in this work makes
the DE. This again points to the importance of rati@R for ~ gome resultgespecially the intermode couplingiuch more

the polarization dependence of the DE. _ pronounced due to the resonance conditions for the interac-
Figure 7 demonstrates that the approach of the modifiegy, - |ngpection shows that all these results are applied to
oscillator strength excellently represents the absorption Spe%’llipsoidal quantum dots with an eccentricity of up to 15%.
tra of the considered four-state electron system. The posi-n an ellipsoidal dots statél,l,0) is split off from states
tiqn; of the peakgdmore precisely the resonant energies (1.1,-1) and(1.1,1) which aré 'not split off from each other
\;/iv:r_llz 4?.3 I\r:g\s/ a;ipcf:o:ascz 7?%53!(:”;?:3% ff/zi(fae?i (I=1,_2). Rl%ther a small eccentricity supports the resonance
#iwl=53.2. One can see in Figs(t] and 7d) that the error ~conditions: ,
in the high-energy peak positidinduced by the broadening It should be noted that the presented numerical results
Ihwi”—ﬁwﬁgsJ for =1 meV is near 0.03 meV, that is, prac- Qescrl_be rather sma(95 A) .|dent|_cal spherical quantgm dots
tically negligible. As Figs. ) and 7c) show the error of the N @n ideal square 2D lattice with rather small periods. Un-
position of the low-energy peaks is hard to determine. Théortpnately, the'currgntly manufactured quantum dqts of'such
height of the high-energy peaks is predicted very accuratel§t SI2€ are notidentical enough and are not organized into a
(<1%) within the MOS approach foF =1 meV. The error egular lattice. This makes a direct quantitative comparison
for the low-energy peak height, being about 5%, is associof our numerical results with the available experimental data

ated with the considerable contribution of the tail of thedifﬁ:mf[‘h b tioned ts of the infl
high-energy peak. Note that the MOS approach predicts vergh S 1 nas veen mentioned, measurements of the influence

is small

: . f interdot coupling on the interlevel resonance frequencies
accurately not only the ratio of the height of the peaks, bu : 2
also the absolute value of the peak height, especially th ave beentpertfo(;me(? by (;(akmcal al: dl—f|sowdever, thte au-
high-energy peak height. Our numerical simulations confirn 1S investigated only a dense array(disorderedl p-type

P i /Si self-assembled anisotropic and inhomegeneously
th high accuracy the vanishing of the low-ener eaks at’®
with g uracy vanisning W gy p roadened quantum dots. Nevertheless, the results reported

il _ 1l —
B, arpprl0=8.154 meV andB, ., ,/|o=7.488 meV. Com- i, the above paper show the considerable contribution of the
paring these values with those of our systdtlﬁia,;b’b,| interdot coupling to the DE. They observed, in particular, not
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only a characteristic absorption peak shift but also a narrow-
ing (induced by the DEof the inhomogeneously broadened 1
absorption line. This indicates that inhomogeneous broaden 0-30'_ 4\
ing cannot be simply incorporated into the broadening pa- 4 0
rameterT". ] \

IV. CONCLUSION 7 '

In conclusion, the depolarization effect on the interlevel
response of the electron systems is investigated in detail foi_
single SQDs as well as for two-dimensional square lattices of =
SQDs. It is established that photon absorption due to the g
dipole interlevel transitions in an individual SQD is consid- —
erably affected by the dynamic direct intrade¢ interaction.
The linear optical response of dense packed 2D lattices o
SQDs can be additionally affected by the DE associated withF3
the dynamic direct interdo#-e interaction. The correct de-
scription of the above interaction should take into account
so-called umklapp processes. It is established that the elec i
tron self-interaction is an unavoidable problem for the QD 0.05
systems(especially with a relatively small number of elec- ]
trons and should be dealt with care when we work in the
self-consistent field approach. : | '

Values are found which can be used for a fast approximate ' ' S UL U,
estimation of the DE shift irmny single SQD and 2D square 400 500 600 700 800 900 1000
lattice of SQDs. It was established that the dipole-dipole in- d ['&]
teraction approximation well represents the DE shift associ- . )
ated with the dynamic interdete interaction for any type of FIG. 8. Shift of theE, o (square symbojsand E, , (triangle
electron transition, for practically any size parameters of thgymbols energy, and modification of the gap between them
lattice, and for any potential barrier of the SQDs. In part, it_ Evo (circle symbol$ due to the static interdat-e interaction as
was shown that in this approximation the effects aSSOCiateBmCtlon of the interdot distanc&®=95 A. One electron is per QD.
with the intradot and interdot dynaméee interaction can be
analyzed separately. The obtained results indicate also th#thich can manifest themselves experimentally and be useful
the DE can cause not only the blueshift but also peak splitfor application.
ting (due to intermode couplingvhen two lowest levels are
occupied. The approach employing the concept of the modi- ACKNOWLEDGMENTS
fied oscillator strength is very useful for describing the effect
associated with the above-mentioned intermode coupling.  V.B. is grateful to P. Sokolowski for providing the oppor-

Strong dependence of the DE upon the incident light potunity to perform numerical calculations on the supercom-
larization was demonstrated for the dense packed lattice. Ruter grid of the Wayne State University. The work of M.Z.
was shown that the difference between the resonant photomas partially supported by Grant No. PBZ-MIN-008/P03/
energies for the normal and in-plane light polarization can b&003.
treated as independent of the static interdot interaction.

The three-dimensional nature of the QD systems Was AppENDIX: EFFECT OF STATIC NET INTERACTION
found to cause a_number of effec_ts. It was shown that ratio ON EIGENSTATES IN LATTICE OF NONTUNNELING
d/2R, the dot radiusR, and the lattice period can be used IDENTICAL SQDs
as driving parameters defining the features of the system re-
sponse. It was shown that with growing dot radius the abso- An electron in a dot experiences the electrostatic interac-
lute value of the DE shift associated with the intrafioter-  tion with the electrons in all other dots as well as with all the
dot) dynamice-e interaction decreasdmcreasel so thatR  positive charges in the system. The interaction with the posi-
can determine the dominant contributi¢of the intradot or tive charges depends directly upon the distribution of the
interdot interactiohto the total shift. donors in the lattice, which makes any calculations of this

It was also found that a decrease of potential barrier ofnteraction specific for each distribution. The overall effect of
guantum dots increasddecreasesthe strength of the DE this interaction is some compensation of the effect of the
associated with the interddintradod e-e interaction. The static interdote-e interaction, and the measure of the com-
presented results disclose some important physical aspects pénsation depends upon the positive charges distribution. In
the electromagnetic response of QD lattices, in particularaddition depending upon this distribution the lattice of iden-
strong dependence on the polarization of the incident radiaical SQDs can become a lattice of nonidentical SQBshe
tion, effect of the size parametefd and R) of the lattice, sense of nonidentical electron eigenstates, interlevel gaps,

nergy
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etc,) that contributes to inhomogeneous effect on the spectra. - e2
In our approach we restrict to the static interdot electron-  8°(@,a;c,c) = 2 J dxgdxge™Cm X
. . . . . . EEOdleG Gm
electron interaction and neglect the interaction with the posi- I
tive cha_rge's. Thls allows us to avoid bpundlng to a specific XF,o(G ,x3)FC (G X0 (A5)
donor distribution. On the other hand, it let us estimate the !
maximum effect of the static interdot interaction in the lat- ~
tice. where B&la,a;c,c)=limy_..5a,a;c,c) is the self-

We assume that the effect of the interdot statie inter-  interaction term. HerGC,C(Gm”,xé) is calculated by Eq.24),
action on the electron eigenstates can be treated as a smalith the upper index *” omitted as it is not important.
perturbation, so that the change of the electron eigenfunaNote, that the form of the relationships for tBdor the static
tions can be neglected in the first approximation and thénterdot e-e interaction is the same as for the dynarsie
correction to the energy levels is interaction.

£ = O 4 s (A1) It is seen thatlgf;t>0 and, thus, each level moves up in
a aar the energy scale. It is Important to note that each level moves
where V32 is the matrix element of the static interdete  UP differently, so that the interlevel spacings increase due to

|nteract|on(w|thout the self- |nteract|o)'|V5taKr) g|ven by the interdote-e static interaction. An interesting feature of
Eq. (A3) is thatVy 4 is different for differenta which means

that the static mterdot interaction splits the states which share
fdr - |2 |P(Fi)|ne. the same energy level in a single QD.
Fik One can notice that the effect of the number of the elec-
(A2) trons on the modification of the resonant photon energy is
different for the dynamic and static interdet interactions.
The DE shift is proportional to the number of the electrons in

Vee(r) =

47TE€0| Koo

Developing in the same fashion as in Sec. Il A 2 we obtain

VSR=> st ac, ), (A3)  the dot[see Eq(28)]. The shift of each level due to the static
’ c interdote-e interaction is also proportional to the number of
the electrons in the ddisee Eq.(A4)], however, the inter-
where level spacing is affected by the electron number only slightly.

~ Figure 8 illustrates the change of the two lowest levels and
stal . — pSta .

paaic,c) =p*aacon - Se';(a ;6.0 (Ad) the gap between them because of the static intezaotn-

and teraction.
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