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Interlevel electromagnetic response of individual spherical quantum dotssSQDsd as well as of two-
dimensionals2Dd rectangular lattice of spherical quantum dots is considered employing the self-consistent field
approach in the quasistatic limit. It is established that the response can be considerably affected by the dynamic
direct intradot and interdot electron-electron interaction. It is shown that the effects of these intradot and
interdot interactions on the response can be analyzed separately. We show that correct description of the
Coulomb coupling must take into account relevant umklapp processes. Fundamental importance of the problem
of the electron self-interaction in quantum dot systems is established. The values are found which can be used
for instant approximate estimation of the resonant dynamic screeningsthe depolarization shiftd in any single
SQD and 2D square lattice of SQDs. The effect of the size parameters of the systems, the SQD radiusR and
the lattice periodd sand, in part, the three-dimensionality of the systemsd on the depolarization shift is
thoroughly investigated. Effect of polarization of incident radiation is investigated too. It is shown that the
difference between the resonant photon energies for the normal and in-plane light polarization can be treated as
independent of the static interdot interaction. Two-state and four-state electron systems are considered. Nu-
merical calculations of the absorption spectra are performed for short periodsd/2Rø5d lattices of GaAs
spherical quantum dots in the Al0.3Ga0.7As medium. It is established that the approximation of the point
dipole-dipole interaction can be used for adequate representation of the dynamic interdot electron-electron
interaction in the lattice. Also it is shown that the approach of the modified oscillator strength reproduces the
absorption spectra of the considered systems with interacting modes of the collective excitation very well.

DOI: 10.1103/PhysRevB.71.115304 PACS numberssd: 78.67.Hc, 73.21.La, 73.22.2f

I. INTRODUCTION

The electromagnetic response of quantum dotssQDsd due
to interlevel transitions has been an attractive problem since
QDs became objects for intensive fundamental research and
application. One of the main points is how strongly the far-
infrared sFIRd interlevel absorption spectra are affected by
intradot and interdot electron-electronse-ed interaction. A
large number of theoretical and experimental works in this
field have been donessee, e.g., Refs. 1 and 2d. In most of the
papers the authors assume that QDs have cylindrical symme-
try with in-plane parabolic-like confining potentials.1,3 A
parabolicsharmonicd type of confining potential has a great
advantage for analytical calculations. It was established that,
when the confining potential of a many-electron system has
parabolic shape, thee-e interaction does not affect the long-
wavelength interlevel resonant frequency of the system.4–6

This statement is applied to single harmonic quantum dots as
well as to arrays of identical harmonic dots.7 fMore precisely
the above statement is valid only for the optically active
sKohnd mode.g Consequently, the FIR absorption spectrum
of the whole many-particle system agrees exactly with the
spectrum of a single-particle system. Note that the approxi-
mation of the parabolic potential was shown to represent the
potential usually experienced by an electron in large size
QDs with a large amount of the electrons well. The situation
is more complex and simultaneously more interesting in the
case of a lattice of nonparabolic quantum dots with a few
electrons per dotsor hole dots with different effective

massesd. The experimental results reported in Ref. 2 indicate
that then the resonant photon energy is blueshifted against
the corresponding interlevel spacingsrenormalized by static
Coulomb interactiond in individual dots. This shift is associ-
ated with the formation of the collective interlevel excita-
tions due to the dynamic Coulomb force. In the literature the
blueshift of the resonant photon energy induced by the dy-
namic direct Coulomb interaction is called the resonant
screening or the depolarization effectsDEd.

The subject of this paper is an investigation of the influ-
ence of the direct Coulomb interaction on the FIR absorption
in spherical quantum dotssSQDsd. Interlevel optical transi-
tions in SQDs in the absence of thee-e interaction have been
discussed theoretically by several groups.8–10 The influence
of the dynamic direct Coulomb interaction on the interlevel
electromagnetic response of single SQDsswith the parabolic
self-consistent confining potentiald was considered, taking
into account retardation effects, in Ref. 11. The main purpose
of the present paper is to discuss the role of the intradot and
interdot direct Coulomb interaction on the interlevel electro-
magnetic response of SQD systems. We consider the re-
sponse of an individual SQD as well as two-dimensional
rectangular lattice of spherical quantum dotss2DRLSQDsd.
In the later case different polarizations of the incident light
are discussed. Our approach is based on the commonly used
self-consistent field formalism12–14 taking into account static
and dynamicsdirectd Coulomb interaction in the nonretarded
squasistaticd limit. Numerical calculations are performed for
n-type GaAs/Al0.3Ga0.7As quantum dots in which electrons
are confined by a steplike hard-wall spherical potential. To
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avoid considering mechanisms of loading electrons into the
quantum dots we assume that each SQD contains a fixed
numbersNQDd of electrons andkBT is considerably smaller
than the interlevel spacing. We concentrate on the cases
whensid the lowest level is occupied by one or two electrons
sNQD=1,2d and sii d two lowest levels are fully occupied
sNQD=8d. A special attention is paid to the problem of the
electron self-interaction and coupling between interlevel col-
lective modes. To our knowledge, this is the first time that
the self-interaction problem is addressed in the investigation
of the QD system response. We demonstrate the usefulness
of the concept of the modified oscillator strength for descrip-
tion of the effects connected with intermode coupling. For
comparison the interdote-e interaction in the lattice is also
considered within the approximation of the dipole-dipole in-
teraction. We show that this approximation reproduces the
exact result very well.

Since due to technological progress SQDs can now be
manufactured15,16 the problem of the interlevel transitions in
such quantum dots is important for basic research as well as
for applicationsssee also Ref. 9d. Also, the effect of spherical
symmetry is found to manifest itself in the collective excita-
tions in other nanosystems.17 In addition, growth of long-
range ordered arrays of self-assembled quantum dots have
been demonstrated18 recently, with the quantum dots show-
ing excellent optical properties.

The paper is organized as follows. Section II gives ana-
lytical development of the relationships used for numerical
calculations. An outline of the density matrix approach to the
response of the quantum dot systems is given in Sec. II A.
Cases of a single SQD and 2DRLSQD are considered sepa-
rately in Secs. II A 1 and II A 2, respectively. In Sec. II B the
response of the two-state and four-state electron systems is
analyzed in detail in Secs. II B 1 and II B 2, respectively. In
addition, the response is considered within the modified os-
cillator strength approach, in Sec. II B 3, and within the ap-
proximation of dipole-dipole interaction, in Sec. II B 4. Sec-
tion III presents numerical results and their detailed
discussion for lattices with one electron per QDsSec. III Ad
and structures with infinitesSec. III Bd and finitesSec. III Cd
depths of the confining potential. The main conclusions are
collected in Sec. IV. The Appendix explores the effect of
static interdot interaction on the interlevel spacing in
2DRLSQDs.

II. THEORETICAL BACKGROUND

A rigorous approach to the problem of optical response of
quantum dot systems is very complicated, particularly when
we go beyond the two-level model. In general, it requires a
self-consistent solution of the Maxwell equations with in-
duced current density as a source term, which is related non-
locally to the field to be solved.19 In this paper we employ a
simpler formalism based on the density matrix approach in
the quasistatic limit and the dipole approximationssee, e.g.,
Refs. 12 and 20d. It has good justification when the wave-
length of the incident radiationsld in the host medium is
much larger than the dot radiussRd and sin the case of
2DRLSQDsd the interdot distancesdd.

A. Density matrix approach to response
of quantum dot systems

We investigate the electron interlevel electromagnetic re-
sponse of the following systems ofthree-dimensionalquan-
tum dots:sid single isolated SQDs andsii d two-dimensional
rectangular lattices containingN spherical quantum dots. In
both cases we assume that the system is subjected to a linear-
polarizedsin the ej directiond external electromagnetic field

of the form Eextstd=ejẼjsvde−ivt sthe dipole approximationd
which causes the interlevel electron transitions. We are inter-
ested in the multielectron QD systems. The Cartesian coor-
dinate systemsx1,x2,x3d, with the basis vectors, denoted by
ej s j =1,2,3d, is chosen so that the coordinate axes are di-
rected along the symmetry axes of the system if any. In the
case of the 2D rectangular lattice one coordinate axis is nor-
mal to the lattice plane, and the other axes are directed along
the translation vectorsd1 andd2 of the lattice, i.e.,e1s2d id1s2d
ande3i sd13d2d. In the following we present a general ap-
proach from first principles to calculate the interlevel elec-
tromagnetic response of a multilevel multielectron quantum
system within the density matrix approximation.

It is convenient to describe the interlevel electromagnetic
response of the system in terms of thescomplexd tensor of
the linear polarizability of the systemā=ā8+ iā9. This ten-
sor is connected with the dipole moment induced in the sys-

tem fpstd=psvde−ivtg by the relationpjsvd=ā j jsvdẼjsvd. In
general, the tensorā is diagonal, i.e.,āi j =ā j jdi,j. However,
in the case of an isolated SQD it reduces to scalar
āi j =adi,j. The power dissipated in the system
Psvdf=S jPs jdsvdg is associated withā j j by the relationship

Ps jdsvd=sv /2dā j j9 uẼju2. sWriting the above relation we have
neglected the polaritonic effect.d Thus, spectral shape of the
interlevel absorption of the system is controlled byā j j9 svd. At
this point it is interesting to note that while describing the
experimental data on two-dimensional lattices of QDs it is
convenient to treat the lattice as a pure two-dimensional ef-
fective sheetssee, e.g., Refs. 21 and 22d which is described
by the 2D complexseffectived susceptibility tensorx2D ssee,
e.g., Refs. 21 and 23d. This tensor is derived from the tensor
ā by the simple relationshipx2D=ā / se0Sd, wheree0 is the
free-space permittivity andS=Nd1d2 is the 2D area occupied
by the lattice.

In the linear approximation the dipole moment induced in
the system is associated with the density matrixrstd describ-
ing the system bypjsvd=−eTrfrs1,jdsvdr jg. Consequently, the
relationship for the polarizability takes the form

ā j jsvd =
− e

Ẽjsvd
o
n,n8

rnn8
s1,jdsvdsr jdn8n, s1d

where −e is the electron charge,r =sx1,x2,x3d, n andn8 label
the states of the electron system, andrs1,jdsvd is the first
harmonic of the density matrix describing the system when
the incident radiation is polarized in theej direction.

The equation governing the density matrix operatorrstd is
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]rnn8
s jd std

]t
=

1

i"
fH0 + Vs jdstd,rstdgnn8 −

frs jdstd − rs0dgnn8

tnn8
.

s2d

Here H0 is the Hamiltonian describing the electrons in the
system in absence of the external field,Vs jdstdf=Vs jdsvde−ivtg
is the perturbing potential,rs0d is the equilibrium value of the
density matrix operator, andtnn8=" /Gnn8 is the scattering
rate. The spatial dependence in Eq.s2d is omitted.

A general form of the first-harmonic solution of Eq.s2d is

rnn8
s1,jdsvd = Vnn8

s jd svd
Drnn8

s0d

Enn8 − "v − iGnn8
, s3d

which is utilized in Eq. s1d. Here Enn8=En−En8 with En

=knuH0unl and Dr
nn8
s0d =rnn

s0d−r
n8n8
s0d . It is important to empha-

size thatrnn
s0ds;nnd represents the number of electrons at state

n in the whole electron system under consideration. Then
Dr

nn8
s0d =nnn8=nn−nn8 represents the number of the electrons

in the whole electron system involved in then→n8 transi-
tions, andGnn8 is the broadening parameter associated with
these transitions.V

nn8
s jd ;knuVs jdsr ,vdun8l is the matrix ele-

ment of the perturbing potentialVs jdsr ,vd which in the self-
consistent field approach is presented by the following rela-
tionship:

Vs jdsr ,vd = Vs jdextsr ,vd +
e2

4pee0
E dr 8

1

ur − r 8uo
nn8

rnn8
s1,jdsvd

3Cn8
* sr 8dCnsr 8d, s4d

whereCn is the eigenfunction of staten. Here the first term

Vs jdextsr ,vd=eẼjsvdr j is the external perturbing potential and
the second term, shortlyVs jdindsvd, stands for the correction
induced due to the dynamice-e interaction.e is the back-
ground dielectric constant of the medium. In the systems
considered in this paper, the difference between the dielectric
constants of the well and barrier materials is rather small.
Thus, so-called dielectric effects can be neglected in the first
approximation.10

To self-consistently solve Eqs.s3d and s4d we exploit the
approach developed in our previous paper20 on quantum well
systems. A general form of the solution%

nn8
s1,jdsvd for the den-

sity matrix is obtained from the set of equations

%nn8
s1,jdsvd =

Vnn8
s jdextnnn8

Enn8 − "v − iGnn8

+

o
s,s8

Ls jdsn,n8;s,s8d%ss8
s1,jdsvdNnn8

Enn8 − "v − iGnn8
, s5d

where the first term on the right-hand side stands for the
one-electron solutionswhich neglects the dynamice-e inter-
actiond, while the second term represents the dynamice-e
interaction in the many-electron systems by means of
Ls jdsn ,n8 ;s ,s8d. The pairsn→n8, s→s8 cover all the in-

terstate transitions in the system under consideration. The
quantity Nnn8 is related tonnn8. For the quantum wells
Nnn8=nnn8. As our present investigation shows the relation
betweenNnn8 andnnn8 is more complicated for QD systems
where the electron self-interaction cannot be neglected. Due
to this Ls jdsn ,n8 ;s ,s8d andNnn8 are specific to each many-
electron system. In the following we apply the above ap-
proach to a single isolated QD as well as to 2D lattices of
QDs.

Finally we would like to briefly consider within the above
formalism the systems with the parabolicsharmonicd confin-
ing potential, which are known to obey the generalized
Kohn’s theorem:4,24 the e-e interaction does not affect the
FIR response of such systems. As the parabolic confining
potential is the only one which allows separation of the
center-of-masssc.m.d variables and relative variables de-
scribing any kind of thee-e interaction of the systemssee
Ref. 24d, this let us to separate the equation which governs
rc.m.std depending only on thesc.m.d variables from Eq.s2d.
It is rc.m.std that determinespstd which, thus, is not affected
by thee-e interaction.

1. An isolated spherical quantum dot

First we consider optical transitions between bound levels
in a single isolatedSQD. The confining potential is assumed
to be spherical steplike hard wall potential.

For brevity, in further discussions, an eigenstate of the
one-band effective mass HamiltonianH0 in the single SQD
will be denoted by composite quantum numbera=sn, l ,md,
with m=0, ±1, . . . , ±l, wheren, l, andm are the main, azi-
muth, and the magnetic quantum numbers, respectively.sThe
spin quantum number is omitted for simplicity. It is con-
served during the interlevel transitions.d The eigenenergy of
H0 will be denoted byEa=En,l. Due to the spherical symme-
try of the system, the level with eigenenergyEn,l is
s2l +1d-fold degenerate with respect to the angular momen-
tum projection. In addition to the term “state of SQD” we
shall use the term “energy levelsshelld of SQD” to name all
the states which share the sameEn,l.

The eigenfunctionCa of H0 is written in the form

Cn,l,msr d = Rn,lsrdYl,msu,wd, s6d

wherer is the distance from the SQD center andu andw are
the angles in the spherical coordinates. The radial part of the
wave functionRn,lsrd=Fn,lsrd / r satisfies the equation

F−
"2

2

]

]r

1

m*srd
]

]r
+ Vscsrd +

"2lsl + 1d
2m*srdr2 GFn,lsrd = En,lFn,lsrd,

s7d

wherem*srd is the spatially dependent effective mass of the
electron andVscsrd is self-consistent confining potential.

Note that the Hartree approximation is used here. Thus,
Vscsrd includes only the direct Coulomb interaction, while
the exchange-correlation interaction is omitted. This approxi-
mation seems to have good justification for quantum dots
with rather many electronsssee, e.g., Refs. 25 and 26d. We
expect that including the exchange-correlation interaction
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can reduce the effect of the direct Coulomb interaction only
quantitatively and does not affect the generalsqualitatived
conclusions of the paper. The effect of positive charges is not
considered either. Although, in general, this effect reduces
the effect of the static intradote-e interaction, it depends on
the distribution of the donorssinside and/or outside the SQDd
and makes the calculations specific for each distribution. In
our calculations we assume for simplicity that this interac-
tion does not violate the spherical symmetry of the confining
potential and can be neglected in the first approximation.

Equations7d will be solved numerically following the ap-
proach developed in Refs. 27 and 26. Without the loss of
generality we can assume that the electric fieldEext is di-
rected along thex3s=zd direction and omit the polarization
index. The matrix element ofz=r cosu can be rewrittenfem-
ploying Eq.s6dg in the form

za,a8 = dl±1,l8dm,m8Yl,umu
l±1,umuRn,l

n8,l±1, s8d

where Yl,m
l8,m8=e0

2pdwe0
pdu sinu cosuYl8,m8

* su ,wdYl,msu ,wd
andRn,l

n8,l8=edrr3Rn8,l8
* srdRn,lsrd.

From Eq. s3d we obtain the matrix elementsra,a8
s1d svd of

the density matrix by settingn=a and n=a8. Then Ea,a8
=Ea−Ea8 is the interlevel spacing renormalized by the static
intradot e-e interactionssee, e.g., Fig. 1 in Ref. 26d. Dra,a8

s0d

;na,a8=na−na8, with na stands for the number of electrons at
statea per dot, represents the number of electrons in the QD
involved in the a→a8 transitions.Va,a8;kauVsr ,vdua8l is
the matrix element of the perturbing potentialVsr ,vd fsee
Eq. s4dg. Now the second term in Eq.s4d represents the po-
tential associated with intradot dynamic Coulomb interaction
of electrons in the SQD.

Attention must be paid to the fact that in an individual QD
sid Vsr ,vd in Eq. s4d is the self-consistent effective potential
existingin the QD, that is, the potential which is created by
all the electrons in the dot,sii d the matrix elementVa,a8 is
calculated for the self-consistent effective potential which is
experiencedby an electron in the dot, which means that the
potential of that electron must be excluded inVa,a8, andsiii d
there are only a few electronssø8d in the dot. Thus, physi-
cally the second term in Eq.s4d should result in zero when
Va,a8 is calculated for only one electron in the dot. However,
this termsi.e., Va,a8

ind d in Va,a8 is equal to zero only when there
is no electron in the dot, and it takes a nonzero value in the
presence of any number, even one, of electrons in the dot.

For one electron in the dotVa,a8
ind is the potential of the

dynamic self-interaction of the electron with itself. This self-
interaction contribution must be excluded from the effective
potential. Keeping this contribution within the effective po-
tential leads to considerable overestimation of the latter one.
For instance, in the case of two electrons per single QD the
effective induced potential would be twice as much as it is
really. Note that there is no problem of this kind for quantum
wells and wires, since there are plenty of electrons in the
occupied subbands of those structures, and the relative con-
tribution of the self-interaction to the effective potential is
negligibly small.

Using Eq.s4d and taking into account the fact that due to
the spherical symmetry of the potentialVscsrd only the opti-
cal transitions with Ea,a8Þ0 are allowed, we get that
ra,a8

s1d svd is defined by Eq.s5d if we taken=a, n8=a8, s=b,

s8=b8, and %
nn8
s1,jdsvd=ra,a8

s1d svd, Ls jdsn ,n8 ;s ,s8d=Ls jdsa,a8 ;
b ,b8d, and Nnn8=na,a8−da,bda8,b8. We have introduced
da,bda8,b8 into Nnn8 to exclude the self-interaction. Here

Lsa,a8;b,b8d =
e2

4pee0
E dr E dr 8Ca

*sr d

3Ca8sr d
1

ur − r 8u
Cb8

* sr 8dCbsr 8d. s9d

Note that the nondiagonal elements appear as a result of the
coupling between differenta→a8 and b→b8 transitions
smodesd.

For further calculations it is convenient to exploit, as in
Ref. 5, the 2D Fourier expansion of 1/ur −r 8u

1

ur − r 8u
=

1

2p
E dQi

1

Qi

e−iQisr i−r i8de−Qiux3−x38u, s10d

where two 2D vectors in thex1-x2 planer i=sx1,x2d andQi

=sQ1,Q2d are introduced. Then the expression for
Lsa,a8 ;b ,b8d becomes

Lsa,a8;b,b8d =
e2

8p2ee0
E dQi

1

Qi
E dx3dx38

3e−Qiux3−x38uAa,a8
− sQi,x3dAb8,b

+ sQi,x38d,

s11d

where

Ac,c8
± sQi,x3d =E dr iCc

*sr i,x3de±iQir iCc8sr i,x3d. s12d

It should be emphasized that the above approach can be used
for other shapes of single QDs and Eq.s12d takes care of the
shape.

Note that Eq.s11d does not impose any restrictions on the
interlevel transitions of electrons in individual QDs. Applied
to the spherical QDs, it is easy to see thatLsc,c8 ;c,c8d.0
andLsa,a8 ;b ,b8d,0 if aÞb and/ora8Þb8.

Analysis of Eq.s5d for ra,a8
s1d svd ssee also Sec. II Bd shows

that the strength of the depolarization effect in the single
SQD is controlled by the product

L̄a,a8;b,b8 = Lsa,a8;b,b8dsÎna,a8nb,b8 − da,bda8,b8d. s13d

For examplefsee Eq.s31dg, in the two-level approximation
the resonant energy associated with the transitions between
statesc andc8 is given by

"vres= Ec,c8
Î1 − 2L̄c,c8;c,c8/Ec,c8. s14d

It is important to emphasize that the factorLsc,c8 ;c,c8dnc,c8
sin contrast withL̄c,c8;c,c8d represents the interaction energy
with the self-interaction included, and the value of
Lsc,c8 ;c,c8d itself is the energy caused by the self-
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interaction of one electron with itself in a single QD. Note
that it is Lsc,c8 ;c,c8d that serves as the “calculated zero” in
Figs. 1–3.

For further discussion it is useful to presentL̄a,a8;b,b8 for
the SQD in the form

L̄a,a8;b,b8 =
e2

ee0R
L̃a,a8;b,b8, s15d

whereL̃a,a8;b,b8 is a dimensionless quantity depending in gen-
eral onR.

For a rough estimation one can use the spherical Bessel
functions for Rn,lsrd sfurther such wave functions will be
called “the Bessel wave functions”d, which is the case of one

electron in an infinitely deep SQD. ThenL̃a,a8;b,b8 is indepen-
dent ofR. Thus, it is remarkable for the Bessel wave func-

tions thatsL̄a,a8;b,b8Rd is the constant parameter which char-
acterizes the dynamic interaction of the electrons involved in
the transitionsa�a8 and b�b8 in any single SQD.sNote

that L̄a,a8;b,b8R depends upon the dielectric constant.d This
approximation also allows us to anticipate the decreasing
behavior of the DE in a single SQD with growing dot radius,
which is confirmed by our numerical calculations. Note that
for infinitely deep SQDs with one electron the interlevel
spacing behaves asR−2. Then, by Eq.s15d, the ratio of the
absolute value of the DE shift to the interlevel gap increases
with growing size of single QD.

2. A two-dimensional lattice of spherical quantum dots

Now we extend our treatment to the case of the interlevel
electromagnetic response of a two-dimensional rectangular
snontunnelingd lattice of spherical quantum dots
s2DRLSQDsd with the translation vectorsd1 and d2. The
wave function describing lattice stateā fassociated with
SQD statea=sn, l ,mdg can be written in the tight-binding
form

Fāsr d =
1

N1/2 o
n1,n2

Casx1 − n1d1,x2 − n2d2,x3deik1
an1d1eik2

an2d2,

s16d

whereā=sa,k i
ad, k i

a=sk1
a,k2

ad is the wave vector of the elec-
tron at stateā. Since we employ the periodic boundary con-

FIG. 1. Dependence of the DE shift associated with the interdot
dynamice-e interaction in a square lattice of SQDs upon the lattice
period calculated within different approximations. One electron is
per QD.R=95 Å. Square symbols represent SQDs with finite po-
tential barrier. Triangular symbols represent infinite deep SQDssthe
Bessel wave functionsd. The lines stand for the DDA, with the
dipole matrix element being of the finitessolid linesd or infinite
deepsdash linesd SQD. Positivesnegatived values represent the nor-
mal sin-planed polarization of the incident radiation. The zero level
is also labelled by symbols in order to emphasize that the “zero” is
also calculatedsit is the self-interaction valued. For comparison the
change of the interlevel spacing because of the static interdote-e
interaction is presented by the dot line with circle symbolsssee Fig.
8d.

FIG. 2. Dependence of the DE shift caused by the interdot dy-
namic e-e interaction in a square lattice of SQDs upon the SQD
radius calculated within different approximations. One electron is
per QD.d=600 Å. The legend is the same as in Fig. 1.
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ditions k1s2d
a =2pp1s2d /d1s2dN1s2d, N1s2d is the number of the

QD rows in thed1s2d direction andN=N1N2 is the number of
QDs in the lattice. n1s2d and p1s2d are integers with
−N1s2d /2øn1s2d ,p1s2døN1s2d /2. The numberN is assumed
to be big enough to let any summation over the lattice sites
go to infinity.

Writing Eq. s16d we have assumed that the influence of
the long-range interdot static Coulomb interaction on the in-
terlevel spacing and eigenfunctions of SQDs can be ne-
glected as a first approximation in our approachssee Appen-
dix Ad. Thus, snormalizedd Casr d appearing in Eq.s16d is
given by Eqs.s6d and s7d derived for an isolated SQD. The
normalization of the wave functionsFāsr d requires
dki

a−ki
a8,Gmi

, whereGmi
=sm12p /d1,m22p /d2d is the recipro-

cal lattice vector,mi=sm1,m2d, andm1s2d is an integer, with
−N1s2d /2øm1s2døN1s2d /2. The presence ofdki

a−ki
a8,Gmi

means that the wave vector is conserved within the recipro-
cal lattice vectorGmi

due to periodicity of the system, and
ā8= āmi

8 ;sa8 ,k i
a+Gmi

d.
Employing Eq.s16d one can check that the matrix element

sxjdā,ā8;sejr dā,ā8 can be written in the form

sxjdā,ā8 = za,a8dki
a−ki

a8,Gmi

. s17d

Inspection of the above equation shows that the dipole selec-
tion rules in the nontunneling SQD lattices are the same as in
an isolated SQD given by Eq.s8d.

Now the direct application of Eq.s3d let us obtain
rā,ā8

s1,jdsvd by setting n= ā and n8= ā8. Then Vā,ā8
s jd svd is the

matrix element of the perturbing potentialVs jdsr ,vd andGā,ā8
is the broadening parameter associated withā→ ā8 transi-
tions. In the further discussion, we assume for simplicity that
Gā,ā8=Ga,a8. It is important that for the lattice with a fixed
number of electronssat the statesa anda8d per dot we can
write oki

a8,ki
arā,ā8dki

a−ki
a8,Gmi

=Nra,a8.

To facilitate work with rā,ā8
s1,jdsvd we make the following

reasonable assumptions. Since we neglect interdot electron
tunneling in the lattice the energy of stateā does not depend
on k i

a, i.e., Eā=Ea;En,l and, thus,Eā,ā8=Ea,a8. As the fol-
lowing calculations showVā,ā8

s jd svd is also independent ofk i
a

andGmi
, andVā,ā8

s jd svd=Va,a8
s jd svd fsee Eq.s25dg.

Taking into account the above assumptions and employ-
ing Eq. s1d we find thatseffectived polarizability of the QD
located in the latticescontainingN interacting QDsd a j jsvd
=ā j jsvd /N can be rewritten in the form

a j jsvd =
− e

Ẽjsvd
o
a,a8

r̃a8,a
s1,jdsvdza,a8, s18d

with

r̃a,a8
s1,jdsvd ;

1

N
o

ki
a,ki

a8

dki
a−ki

a8,Gmi

rā,ā8
s1,jdsvd =

Va,a8
s jd svdna,a8

Ea,a8 − "v − iGa,a8
.

s19d

FIG. 3. Dependence ofsb̄a,a8;a,a8
s jd

dd sad, sb̄b,b8;b,b8
s jd

dd sbd, −sb̄a,a8;b,b8
s jd

dd scd, andsb̄g,g8;g,g8
s jd

dd sdd upond/2R for normalscircle symbolsd and
in-plane ssquare symbolsd incident light polarizations for a square lattice of SQDs atR=95 Å with the Bessel wave functions and one
electron per QD. The solid lines represent the DDA. The symbols labelling the zero level are to emphasize that the “zero” is also calculated
sit is the self-interaction valued.
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The perturbing potentialsinside a particular QDd is the
sum of the external perturbing potential and the potential
induced due to the intradot and interdot dynamice-e inter-
action fsee Eq.s4dg. To properly take into account the inter-
dot e-e interaction it is convenient to have each lattice site
labeled bysl ,kd, wherel andk are the integers. The sites0,0d
contains the origin of the coordinate system. The radius-
vector to the volume associated with thesl ,kdth SQD is de-
noted byr̃ lk8 . Then

Vs jdindsr ,vd =
e2

4pee0
o

l,k=−`

` E dr̃ lk8
1

ur − r̃ lk8 u o
b̄,b̄8

r
b̄,b̄8

s1,jdsvd

3F
b̄8

* sr̃ lk8 dFb̄sr̃ lk8 d. s20d

Note that the summation includes the term withl =0 and
k=0 which represents the intradote-e interaction. Conse-
quently, the problem of the self-interaction of one electron in
a QD with itself appears. It is important to note that Eq.s20d
represents theexistingpotential; the self-interaction does not
matter yet. The self-interaction problem arises when we cal-
culate the matrix elements ofVs jdsr ,vd for the potentialex-
periencedby an electronssee Sec. II A 1d. So this self-
interaction problem will be addressed further.

Now, by using the vectorRlk=sld1,kd2,0d, we introduce
the radius vectorr 8= r̃ lk8 −Rlk which is originated in the cen-
ter of thesl ,kdth SQD. Employing the 2D Fourier transform
in the x1-x2 plane of the periodic lattice

1

ur − r̃ lk8 u
=

1

ur − sr 8 + Rlkdu
=

2p

S
o
qi

eiqidlk
1

qi

e−qiux3−x38ue−iqisr i−r i8d,

s21d

we can rewrite Eq.s20d in the following form:

Vs jdindsr ,vd =
e2

2ee0S
o
qi

o
l,k=−`

`

eiqidlk
1

qi

e−iqir i

3E dx38e
−qiux3−x38u o

b̄,b̄8

F
b̄8,b̄

s jd+ sqi,x38drb̄,b̄8

s1,jdsvd,

s22d

wheredlk=sld1,kd2d. The vectorqi=sq1,q2d, having dimen-
sion of reciprocal length, can be considered as the wave vec-
tor of the collective excitation associated with interlevel tran-
sitions.

The form factorF
b̄8,b̄

s jd+
sqi ,x3d is defined by

F
b̄8,b̄

s jd+ sqi,x3d =E dr iFb̄8

* sr dFb̄sr deiqir i. s23d

In Eq. s22d we take the advantage of the summation over
sl ,kd as ol,k=−`

` eiqidlk=Ndqidlk,0 which imposes the periodic
boundary conditions onqi, so that, in effect,qi=Gmi

. Thus,
we conclude that in the approximation used here, i.e., when

Eextsr ,td=ejẼjsvde−ivt, only the collective excitations with
qi=Gmi

can be excited by the external radiation.

For the form factor we find thatF
b̄8,b̄

s jd±
sGmi

,x3d

=dki
b8−ki

b,±Gmi

Fb8,b
s jd± sGmi

,x3d, with

Fb8,b
s jd± sGmi

,x3d =E dr iCb8
* sr i,x3de±iGmi

r iCbsr i,x3d. s24d

In Eq. s24d the integration is carried out over one SQD which
is possible due to the periodicity of the wave function ac-
cording to Eq.s16d.

Then, taking the matrix element ofVs jdindsr ,vd between
statesā and ā8= āmi

8 we get

Vā,ā8
s jdindsvd ; Va,a8

s jdindsvd = o
b,b8

bs jdsa,a8;b,b8dr̃b,b8
s1,jdsvd,

s25d

where

bs jdsa,a8;b,b8d =
e2

2ee0d1d2
o
Gmi

1

Gmi

E dx3dx38e
−Gmi

ux3−x38u

3Fa,a8
s jd−sGmi

,x3dFb8,b
s jd+ sGmi

,x38d, s26d

andGmi
= uGmi

u. Here the relationN/S=d1d2 is used. One can
check thatbs jdsc,c8 ;c,c8d.0 and bs jdsa,a8 ;b ,b8d,0 if a
Þb and/ora8Þb8 for the lattice of spherical QDs.

It should also be noted that the exponential factor

e−Gmi
ux3−x38u in Eq. s26d appears because the two-dimensional

lattice is built by the three-dimensional quantum dots; more
precisely, the QDs have nonzero size in the directione3 nor-
mal to the plane of the lattice. One can suggest that when this
size of the dot becomes comparable withd1 and/ord2, the
presence of the exponential factor in some situations could
impact the strength of the dynamic long-range Coulomb in-
teraction in the lattice.

We find from Eqs.s19d, s25d, and s26d that r̃a,a8
s1,jdsvd is

defined by Eq.s5d if n=a, n8=a8 s=b, s8=b8, %
nn8
s1,jdsvd

= r̃a,a8
s1,jdsvd, Ls jdsn ,n8 ;s ,s8d=bs jdsa,a8 ;b ,b8d, and Nnn8

=na,a8.
Now the problem of the self-interaction should be figured

out. Equationss25d and s26d represent the potential experi-
enced by a certain electron in a certain QD of the lattice due
to interaction of that electron with all the electrons in the
lattice. Thus, this potential includes the interdote-e interac-
tion as well as the intradote-e interaction. It is important to
note that these two contributions cannot be separated in Eqs.
s25d and s26d. The interdot interaction is described correctly
by these equations for any number of electrons per dot. How-
ever, Eqs.s25d ands26d do include the self-interaction of an
electron through the intradote-e interaction as is described in
Sec. II A 1 for a single SQD. Thus, this self-interaction con-
tribution to the DE shift is calculated separately by Eq.s13d
and then subtracted from the value of the DE shift given by
Eq. s26d. Note that this way of solution of the self-interaction
problem is justified within our approximation when the elec-
tron eigenstates in the QDs are assumed to be untouched by
the static interdote-e interaction.
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An analysis of the obtained relationships reveals very im-
portant general features of the depolarization effect in sys-
tems of quantum dots which allows us to solve the problem
of the electron self-interaction. First of all, comparing the
relationships for the case of a single SQD in Sec. II A 1 and
the above relationships for the lattice one can see that they
are strongly related. In fact, the relationships for the lattice
are transformed into the corresponding relationships for
single dot, in part Eq.s26d is rendered into Eq.s11d, when
the step of the summation overGmi

is sufficiently small so
that the summation limits the integration. Since this limit is
realized whendl →`, it means that the DE in the lattice with
a sufficiently largedl comes close to the DE in a single SQD.
Our numerical calculations confirm that for any directionej
of the radiation polarization

lim
d/2R→`

bs jdsa,a8;b,b8d = Lsa,a8;b,b8d. s27d

For simplicity we consider a square lattice withd=d1
=d2 in the further analysis. Inspection of the obtained results
ssee also Sec. II Bd indicates that strength of the DE shift is
controlled not only by the factorsbs jdsa,a8 ;b ,b8d them-
selves but rather by productsba,a8;b,b8

s jd =bs jdsa,a8 ;
b ,b8dÎna,a8nb,b8. Whena=b and a8=b8 sand na,a8ù1d this
is the case of the self-interaction and, consequently,ba,a8;a,a8

s jd

contains the self-interaction contribution. However, when we
consider only the coupling between different transitions, i.e.,
whenaÞb and/ora8Þb8 sandna,a8 ,nb,b8ù1d this isnot the
case of the self-interaction.

It is important to mention the case of only a single elec-
tron per QD which occupies a degenerated levelfsuch as
s1,1,md in SQDg so that this one electron can be at statea or
b fs1, 1, 0d or s1,1, ±1d in SQDg with different probabilities.
Consequently, the one electron can participate in transitions
of different types, a�a8 and b�b8, with different prob-
abilities. Then we can calculateba,a8;b,b8

s jd which includesno
self-interaction contribution.

The above discussion suggests that the effects associated
with self-interaction can be excluded replacingba,a8;b,b8

s jd by

b̄a,a8;b,b8
s jd = fbs jdsa,a8;b,b8d

− Lsa,a8;a,a8dda,bda8,b8gÎna,a8nb,b8. s28d

Note that expression forb̄a,a8;b,b8
s jd can be rewritten in a

form analogous to Eq.s15d as

b̄a,a8;b,b8
s jd =

e2

ee0d
b̃a,a8;b,b8

s jd , s29d

whereb̃a,a8;b,b8
s jd is a dimensionless function ofd andR. In the

case of the infinite barriersthe Bessel wave functionsd
b̃a,a8;b,b8

s jd depends only on the ratiod/2R.
It is very important to note that the term withGmi

=0 in
Eq. s26d is determining the radical difference between the
DE shift for the normal and in-plane light polarization: the
contribution of the interdote-e interaction into the DE shift
is positive for the normal light polarization and negative for

the in-plane light polarization.sWe assume that the self-
interaction is excluded.d

At this point we would like to emphasize that the relation-
ships obtained in this subsection are general and can be ap-
plied to the 2D rectangular nontunneling lattice of identical
quantum dots of other shape and size. The shape of the dots
is taken into account by Eq.s24d.

B. Interlevel optical response of quantum dot systems

Now we are able to find out explicit expressions fora,
which describes the effective polarizability of a QD in the
lattice as well as the polarizability of single QD, by applying
Eqs.s1d ands5d. In the following the diagonal components of
a are obtained for two-state and four-state electron systems
which can be realized depending upon the number of elec-
trons per dot. The course of the development is identical for
the single QD and for the lattice. As has been mentioned in
the former case the polarizability tensor reduces to scalar
a j j =a, i.e., it is independent on the light polarization. To
unify the final relationships we introduce the quantity
Bs jdsa,a8 ;b ,b8d which takes the value ofLsa,a8 ;b ,b8d
or bs jdsa,a8 ;b ,b8d for the single QD or the lattice,

respectively. Moreover, we also defineB̄a,a8;b,b8
s jd to be

L̄a,a8;b,b8 or b̄a,a8;b,b8
s jd , correspondingly.

For further analysis the following symmetry relations for
the spherical QDs are important:Bs jdsa,a8 ;b ,b8d
=Bs jdsb ,b8 ;a,a8d, Bs jdsa,a8 ;b ,b8d=Bs jdsa8 ,a;b8 ,bd, and
Bs jdsa,a8 ;b ,b8d=−Bs jdsa,a8 ;b8 ,bd, Bs jdsa,a8 ;b ,b8d
=−Bs jdsa8 ,a;b ,b8d. Note also thatBs jdsc,c8 ;c,c8d.0 and
Bs jdsa,a8 ;b ,b8d,0 if aÞb and/ora8Þb8.

We would like to stress that to simplify the further con-
sideration we assume that the broadening parameter is inde-
pendent of the level index, i.e.,Gn8n;G, with G taken as a
phenomenological parameter. Discussion of other situations
when the level index is important for the broadening param-
eter is beyond the scope of this paper.

1. Two-state electron system

Let us consider a pair of levelsa and a8 sEa8.Ea and
na,a8.0d between which dipole transitions are allowed.
Note, that thea8→a transition can be resonantsif "v
<Ea8,ad while the a→a8 transition is always nonresonant.
We call the collective mode associated with thea�a8 tran-
sitions as thea mode. If we neglect another transitionsthe
diagonal approximationd then the direct calculations show
that the polarizability can be written in the following form:

a j jsvd =
2uma8,au2na,a8Ea8,a

sẼa8,a
s jd d2 − s"vd2 − i2"vG

, s30d

wherema8,a=−eza8,a is matrix element of the electron dipole
moment and

sẼa8,a
s jd d2 = Ea8,a

2 + 2Ea8,aB̄a,a8,a,a8
s jd . s31d

In Eq. s30d G2 is omitted in the denominator sinceG2

! sẼa8,a
s jd d2.
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Thus, we see that in the diagonal limit the dynamice-e
interaction affects only the resonant energy. If we neglect

this interaction thenẼa8,a
s jd =Ea8,a and the above expression

reduces to the well known one-electron expressionssee, e.g.,
Ref. 21d.

The imaginary part ofa j jsvd can be written in the form

a j j9 svd =
4uma8,au2na,a8Ea8,a"vG

fsẼa8,a
s jd d2 − s"vd2g2 + s2"vGd2

. s32d

When only the resonant transitions are taken into account

sthe resonant approximationd anduB̄a,a8,a,a8
s jd u!Ea8,a the above

equation simplifies to the form

a j j9 svd =
uma8,au2na,a8G

sĒa8,a
s jd − "vd2 + G2

, s33d

whereĒa8,a
s jd =Ea8,a+B̄a,a8,a,a8

s jd .

It should be noted thatẼa8,a
s jd

.Ea8,a and Ēa8,a
s jd

.Ea8,a in
case of normal occupation of the levelssna,a8.0d, except

Ẽa8a
s jd

,Ea8a and Ēa8a
s jd

,Ea8a for the lattice, in-plane light po-
larization si.e., j =1,2d, andnaa8=1 ssee Fig. 1d.

The considered above two-state approximation is valid
only when electron transitions between two bound states
play dominant role for a given photon energy. For example,
such a situation takes place when electrons are excited from

the occupied lowest state of SQD,a=s1,0,0d, to the first
semptyd excited statea8=s1,1,0d and simultaneously"v
<E1,1−E1,0. It is important to note that in a single QD the
lowest states1,0,0d must be occupied by two electrons whose
transitions form the collective excitationsthea moded due to
the intradote-e interaction. On the other hand, at least one
electron per dot is required for the lattice where thea mode
of the collective lattice excitation is formed due to the inter-
dot e-e interaction.

2. Four-state electron system

Now we consider a system of four states, namely,a and
a8 sEa8.Ea and na,a8.0d, and b and b8 sEb8.Eb and
nb,b8.0d, with the allowed dipole transitions area�a8 sthe
a moded andb�b8 stheb moded only. In the diagonal limit
the four-state system reduces to two noninteracting two-state
systems describing thea andb modes separately. When cou-
pling between the above modes is taken into account the
polarizability can be written as

a j jsvd =
− e

Ẽjsvd
fr̄a8,a

s1,jdsvdsxjda,a8 + r̄b8,b
s1,jdsvdsxjdb,b8g, s34d

wherer̄c8,c
s1,jdsvd= r̃c8,c

s1,jdsvd− r̃c,c8
s1,jdsvd.

Application of Eq.s5d to the four-level model gives sets
of two equations forr̄a8,a

s1,jdsvd and r̄b8,b
s1,jdsvd. Substituting the

solutions of these equations into Eq.s34d we get

a j jsvd = e2 − fAjsvd + iBjsvdg
fs"v−

s jdd2 + G2 − s"vd2 − i2"vGgfs"v+
s jdd2 + G2 − s"vd2 − i2"vGg

, s35d

where

Ajsvd = 2Ea8,ausxjda8,au2na,a8hfsẼb8,b
s jd d2 + G2g − s"vd2j

+ 2Eb8,busxjdb8,bu2nb,b8hfsẼa8,a
s jd d2 + G2g − s"vd2j

− 8Ea8,aEb8,busxjda8,asxjdb8,bB̄a,a8,b,b8
s jd uÎna,a8nb,b8,

s36d

Bjsvd = − 4"vGfEa8,ausxjda8,au2na,a8 + Eb8,busxjdb8,bu2nb,b8g,

s37d

and

s"v±
s jdd2

=
1

2
fsẼa8,a

s jd d2 + sẼb8,b
s jd d2g

±
1

2
ÎfsẼa8,a

s jd d2 − sẼb8,b
s jd d2g2 + 16Ea8,aEb8,bsB̄a,a8;b,b8

s jd d2.

s38d

The above equations clearly show that in the four level
systems the intermode couplingscontrolled by the parameter

B̄a,a8,b,b8
s jd d leads to the formation of new mixed modes. In the

presence of the broadening, the peak positions in the absorp-
tion spectra appear at the energies denoted by"vres−

s jd and
"vres+

s jd which can be associated with the eigenenergies of the
mixed modes. Our numerical simulations show that, numeri-
cal values of these energies are very close to"v−

s jd and"v+
s jd,

respectively, i.e.,"vres−
s jd <"v−

s jd and "vres+
s jd <"v+

s jd ssee also
Fig. 7d. As one can expect the above energies differ from the

eigenenergies of the uncoupled modesẼa8,a
s jd and Ẽb8,b

s jd , with
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"vres−
s jd ,minsẼa8,a

s jd ,Ẽb8,b
s jd d and"vres+

s jd .maxsẼa8,a
s jd ,Ẽb8,b

s jd d. Cor-
rections induced by the mode coupling are largest when the

difference betweenẼa8,a
s jd and Ẽb8,b

s jd vanishes. In this regime

the separation between the low-energy peaksat "vres−
s jd d and

the high-energy peaksat "vres+
s jd d in the spectrum ofPs jd can

be approximated by

DEs jd ; "vres+
s jd − "vres−

s jd < "v+
s jd − "v−

s jd = 2uB̄a,a8,b,b8
s jd u.

s39d

The considered above four-state system can be used for
modelling optical properties of the SQD when the two lowest
energy levelsfstatess1, 0, 0d ands1,1,md with m=0,−1,1g
are occupied, and the following electron transitions from
statess1,1,md to vacant corresponding statess1,2,md play a
dominant role:s1,1,0d� s1,2,0d, s1,1,1d� s1,2,1d, and
s1,1,−1d� s1,2,−1d.

One can check, employing the diagonal approximation,
that the transitions s1,1,1d� s1,2,1d and s1,1,−1d
� s1,2,−1d have the same matrix elements of the perturbing
potential. Thus, only two kinds of the optically active transi-
tions are distinguished: s1,1,0d� s1,2,0d and
s1,1, ±1d� s1,2, ±1d. Then it is convenient to introduce the
following notation: a=s1,1,0d, a8=s1,2,0d, b=s1,1, ±1d,
andb8=s1,2, ±1d. It should be especially emphasized that it
is the high symmetry of the SQD that allows the degenera-
tion of the energy levels, i.e.,Ea=Eb=E1,1, Ea8=Eb8=E1,2,
and consequentlyEa8,a=Eb8,b=Es1,2ds1,1d. Thus, the intermode
coupling in such a SQD has resonant character so that we
can expect a strong influence of thee-e coupling on the
interlevel absorption spectra of the SQD. Note that in the
dipole approximation no transitions from the lowest level
s1,0,0d are possible: to the second level due to the Pauli
principle and to the third level due to the selection ruleDl
=1.

It is also important to stress that the couplingsdue toVindd
between the considered above dipole active modes and opti-
cally inactive modessassociated witha�b8 and b�a8
transitionsd does not play any role sinceBa,a8;a8,b

s jd =Bb,b8;b8,a
s jd

;0. Working in the four level model we neglect the coupling
between the dipole transitionssDl =1d and multipole excita-
tionssDl ù2d. It has a good justification because in the struc-
tures considered here thessingle electrond resonant energies
corresponding to the dipole transitionssEa8,a=Eb8,bd and
multipole transitionssE1,Dl −E1,0d differ strongly.

3. Modified oscillator strength approach

Inspection of Eq.s35d shows that it is very complicated
for analysis and allows us to get information about the influ-
ence of the intermode coupling on the height of the absorp-
tion peaks only by means of the numerical calculations. This
complexity is mainly caused by rigorous treatment of the
broadening even if the dependence ofGa,a8 on the level index
is neglected for simplicitysi.e., Ga,a8=Gd. Fortunately, it is
the concept of the modified oscillator strengthsMOSd that let
us drastically simplify and enhance the analysisssee, e.g.,
Ref. 28d.

In this section we are going to exploit the concept of the
MOS. Comparison of the exact relationship for the polariz-
ability and that obtained in the MOS approachfnamely, Eqs.
s35d ands46dg enables us to estimate the applicability of the
MOS approach. To the best of our knowledge such a com-
parison and application of the concept of the MOS to QD
systems have not been discussed in the literature.

The MOS concept is based on the assumption that broad-
ening parameterG is much smaller than the uncoupled mode
energy. Modeling each peak on the spectra by thed func-
tions, i.e., whenG=0, the polarizability of the multimode
system is presented by a very compact general expression

a j jsvd =
e2"2

m0
o
h

f̃h
s jd

s"vh
s jdd2 − s"vd2 , s40d

where f̃h
s jd is the modified oscillator strength corresponding to

the hth eigenenergy.
Applying the MOS concept to the case of the four-state

system considered here the relationships for the modified

oscillator strengthf̃−
s jd and f̃+

s jd associated with the eigenener-
gies"v−

s jd and"v+
s jd, respectively, are obtained with the help

of Eq. s35d in a very simple form

f̃−
s jd = F f̃a8,a

1/2 cos
u j

2
− f̃b8,b

1/2 sin
u j

2
G2

, s41d

f̃+
s jd = F f̃a8,a

1/2 sin
u j

2
+ f̃b8,b

1/2 cos
u j

2
G2

, s42d

with

tanu j =
4Ea8,a

1/2 Eb8,b
1/2 uB̄a,a8;b,b8

s jd u

sẼb8,b
s jd d2 − sẼa8,a

s jd d2
, s43d

where f̃c8,c= fc8,cnc,c8, fc8,c=s2m0/"2dEc8,cuzc,c8u
2 is the oscil-

lator strength corresponding to thec8→c transitions in the
absence of the DE, andm0 is the free electron mass. As was
shown in Ref. 29 the following sum ruleoa8fa,a8
=kaum0/m* ual is fulfilled, wherem* is the spatially depen-
dent effective mass.

In the above equations tanu j represents the intermode

coupling, with tanu j =0 stands for no couplingsB̄a,a8;b,b8
s jd

=0d, i.e., the diagonal approximation. Equationss41d and
s42d let us write the MOS sum rule as

f̃−
s jd + f̃+

s jd = f̃a8,a + f̃b8,b, s44d

which tells us that the sum of the modified oscillator
strengths is independent of the intermode coupling: if due to

the coupling f̃−
s jd increases thenf̃+

s jd decreases accordingly,
and vice versa.

From Eqs.s41d and s42d it is readily obtained that the
relative height of the peaks is represented by the MOS ratio
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f̃−
s jd/ f̃+

s jd = Stan
u j − u j

s0d

2
D2

, s45d

where ftansu j
s0d /2dg2= f̃a8,a

s jd / f̃b8b
s jd . Note that u j

s0d=p /2 for

f̃a8,a= f̃b8,b. The caseu j =0 corresponds to the absence of the
intermode interactionsthe diagonal approximationd, i.e.,

f̃−/ f̃+; f̃a8,a/ f̃b8,b. One can see that the MOS ratiof̃−
s jd / f̃+

s jd is
an even function ofu j −u j

s0d with its minimum zero value at
u j =u j

s0d. Thus, with increasing intermode coupling, which
corresponds to increasingu j from zero tou j

s0d, the height of

the low-energy peak decreases and vanishessi.e., f̃−
s jd;0d at

u j =u j
s0d. This vanishing of the low-energy peak means that

due to the intermode coupling all the energy of the collective
excitations in the system is concentrated in the high-energy

modified mode. Forf̃a8,a= f̃b8,b the low-energy peak never

vanishes to zero sinceu j
s0d=p /2 requiresuB̄a,a8;b,b8

s jd u→`, ac-

cording to Eq.s43d. For f̃a8,a
s jd

Þ f̃b8,b
s jd there is the finite value,

uB̄a,a8;b,b8
s jd u= uB̄a,a8;b,b8

s jd u0, that corresponds to strong intermode
coupling, at which the low-energy peak vanishes to zero.
According to the MOS sum rule, the height of the high-
energy peak increases with growing intermode coupling for
u j ,u j

s0d. We should note that this prediction of the peak
height behavior is confirmed with high accuracy by our nu-
merical simulations of Eq.s35d.

Within the MOS approach the relationship for the com-
plex polarizability of the four-state system, with the broad-
ening being incorporated, is reasonably presented in the fol-
lowing simple form:

a j jsvd =
e2"2

m0
F f̃−

s jd

s"v−
s jdd2 − s"vd2 − i2"vG

+
f̃+

s jd

s"v+
s jdd2 − s"vd2 − i2"vG

G . s46d

It should be emphasized that the parameter which determines
the applicability and accuracy of the MOS approach for the
systems of interacting modes is the ratio ofG and the char-
acteristic interlevel spacing of the system, i.e.,gMOS
=2G /Ec8,c.

Note that Eq.s46d exactly describes the systems of non-
interacting modesfthe diagonal approximation, see Eq.
s30dg, when the height of the peaksmore precisely the area

under the peakd is proportional tof̃a8,a, which is treated as
the MOS associated with thea mode of the collective exci-
tations.

Note also that the expressions analogous to the above
ones were derived in our previous paper28 where the inter-
subband collective modes were considered in quantum well
with two lowest subbandsn=1 andn=2 occupied. There the
collective modes were associated with 1→2 and 2→3 inter-
subband transitions. However, in contrast to the SQD, the
intermode coupling in QWs can have resonant character only
when appropriate conditions are met.28,30

4. Dipole-dipole interaction approximation

It is really worth mentioning a special and important ap-
proach to investigating the interdot dynamice-e interaction
in the QD systems. It is the dipole-dipole interaction ap-
proximationsDDAd. Within the DDA the QDs of the lattice
are treated as point dipoles which interact with each other.
Note that the DDA is based on the assumption that the total
field affecting the electrons in a QD can be assumed to be a
uniform field in the volume of the QD.

Here we are going to exploit the DDA for the cases of QD
systems when QDs are populated by many electrons and,
especially, a few different types of the interstate electron
transitions are allowed. To our best knowledge such cases
have not been rigorously investigated taking into account the
mode mixing and electron self-interaction.

Developing as in Ref. 31 we obtain the following elegant
relation between the polarizabilityasvd of an isolated single
QD and theseffectived polarizability a j jsvd of the QD lo-
cated in a system of QDs:

a j jsvd =
asvd

1 − Ss jdasvd
. s47d

The configuration parameterSs jd, appearing in the above
equation, represents the summation over the QDs to get the
field at a given QD created by all the rest dipoles of the
systemfsee Eq.s1.4d in Ref. 31g. For the considered here
infinite 2D square latticeSs jd=js jd /d3 and js1d=js2d=−j0/2,
js3d=j0, with j0=−ok,l=−`8` sk2+ l2d−3/2>−9.0336 sthe term
with k= l =0 is excluded in the summationd.

It should be emphasized that Eq.s47d is general and can
be applied for a variety of QD systems. Another advantage of
Eq. s47d is its independence of the kind of QDs in the sys-
tems. All the information about the electronic structure of the
dot and particular intradote-e interactions is sacrificed in
asvd, which is calculated by Eqs.s30d and s35d when

B̄a,a8;c,c8
s jd = L̄a,a8;c,c8 and the polarization indexj is omitted.

Using these expressions forasvd we can obtain by means of

Eq. s47d the relationships forB̄a,a8;c,c8
s jd for QD systems within

the DDA.
When the QD is considered as a two-state electron system

sthe diagonal approximationd the application of Eq.s47d re-
sults in Eqs.s30d–s33d with

B̄c,c8;c,c8
s jd = L̄c,c8;c,c8 − umc,c8u

2nc,c8S
s jd. s48d

For the four-state system,s47d results in Eqs.s35d–s38d
with, in addition to Eq.s48d, the following relation takes
place:

B̄a,a8;b,b8
s jd = L̄a,a8;b,b8 − uma,a8mb,b8uÎna,a8nb,b8S

s jd. s49d

The amazingly simple relationshipss48d ands49d are very
easy to exploit and allow us to make important conclusions.
sid In the DDA the interdote-e interaction is controlled by
the bare dipoles ma,a8 and mb,b8 sindependently of the
strength of intermode mixingd, by the number of the elec-
trons in the dots, and by the configuration of the QD system
si.e., dimension, size, and orderd. sii d Within the DDA the
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effects associated with intradot and interdote-e interactions
can be analyzed completely separately. In addition, assuming
sid andsii d to be valid, the above relationships can be applied
to other systems of identical QDs, and, moreover, even to
systems of nonidentical QDs, provided the bare dipoles and
the number of the electrons are known for each dot. In the
next section the validity of the DDA is checked by compari-
son of the numerical results for the DE shift calculated with

the help of Eqs.s48d ands49d, and with the help ofb̄a,a8;c,c8
s jd .

III. NUMERICAL RESULTS AND DISCUSSION

In this section we discuss in detail the results of numerical

calculations. Numerical calculations forb̄a,a8;c,c8
s jd have been

performed for systems of SQDs with infinite and finite po-
tential barrier. Both the two-state and four-state systems are
investigated. However, the effective polarizability is consid-
ered only for the lattice of SQDs with finite potential barrier
and we restrict it to the four-state system since it reveals
much more interesting features of the DE than the two-state
model.

We consider a square latticesd1=d2=dd of identical GaAs
SQDs in Al0.3Ga0.7As medium. The parameters used are: the
offset of the potential well isU0=227.9 meV, the electron
effective masses in the dot and barrier aremd=0.066m0 and
mb=0.092m0, respectively.G=1 meV ande=13.18. As has
been mentioned, the difference between the dielectric con-
stants of the dot and barrier materials is neglected. We as-
sume that each dot contains a fixed number of electrons:
NQD=8 f2 at the lowest levels1, 0, 0d and 6 at the next level
s1,1,mdg for the four-state system, andNQD=2 fat s1,0,0dg
for the two-state system.

For the four-state system the dot radiusR=95 Å is chosen
so that the dot contains only one more vacant energy level
fstatess1,2,mdg in addition to the two occupied levels. Note
that this situation is far from the infinite deep SQDs case.
Self-consistent solution of Eq.s7d gives E1,0=−91 meV,
E1,1=−55.4 meV, andE1,2=−10.7 meV. For comparison,
when the static intradote-e interaction is neglectedE1,0
=−184.2 meV, E1,1=−138.3 meV, andE1,2=−82.3 meV.
Thus, the direct Coulomb interaction reduces the energy
separation between statess1,2,md and s1,1,md from
56 to 44.7 meV.

It should be noted that the exchange-correlation interac-
tion reduces the effect of the direct Coulomb interaction so
that the bound levels in the dot drop down by about 30 meV
ssee Fig. 1 in Ref. 26d. However, the interlevel gap changes
by nearly 2 meV. The effect of the exchange-correlation in-
teraction also means that the considered three-bound level
SQDs can be realized at a considerably smaller radius. A
special case should be mentioned when one of the levels
involved in the transitions is located very close to the QD
top. Then the exchange-correlation effect can be substantial.

Numerical simulations show that the electron tunnelling
between the dotsswith R=95 Åd can be practically ignored
for d.400 Å. For the four-state system the following dipole
transitions are considered:a�a8 and b�b8, with na,a8=2
andnb,b8=4.

For comparison we consider also the two-state system
with transitionss1,0,0d� s1,1,0d only. The notations used
areg=s1,0,0d andg8=s1,1,0d with ng,g8=2.

Note that for the infinitely deep SQD with one electron
the dipole matrix element takes a very simple form, useful
for approximate evaluation for other SQDs, as

uzc,c8u = RMc,c8, s50d

where Ms1,0,0ds1,1,0d=0.306, Ms1,1,0ds1,2,0d=0.315,
Ms1,1,±1ds1,2,±1d=0.273. Then f s1,1,0ds1,2,0d / f s1,1,±1ds1,2,±1d
=1.331.

To calculate the depolarization shifted transition energy
for the 2DRLSQD it is most convenient to utilize the Carte-
sian coordinate systemsx,y,zd with axis orientation depend-
ing on the polarization of the light. Namely, for the normal
s“'” d incident light polarizations j =3d: x=x1, y=x2, and z
=x3. For the in-plane incident light polarization withj =1:
x=x2, y=x3, z=x1; and with j =2: x=x3, y=x1, z=x2. sFor
square 2DRLSQDs these two polarizations are equivalent
and will be labeled by “i.”d

We compare our numerical results with those obtained
within the modified oscillator strength approachfsee Eq.
s46dg and the DDAfsee Eqs.s48d ands49dg. We would like to
note that the numerical calculations require high accuracy
and are very time consuming especially ford/2R.5. To
make conclusions about accuracy when comparing the data
presented in the figures one should keep in mind that differ-
ent computer codes are used for calculation of
b'sa,a8 ;c,c8d, bisa,a8 ;c,c8d, and Lsa,a8 ;c,c8d. In addi-
tion, any value ofbs jdsa,a8 ;c,c8d is a sum of a great deal
smore than 100 ford/2R.2d of the termsfsee Eq.s26dg
calculated for differentm1 and m2, and the accuracy of the
calculations depends on the value ofm1s2dR/d. This makes
the calculated data in the figures look similar to “experimen-
tal” data, because no two values in the figures are calculated
with exactly the same accuracy. Note that the simplicity of
the DDA becomes very attractive in the above context.

A. Lattice of SQDs with one electron per dot

It is very convenient and instructive to consider first a
lattice of SQDs with one electron per dot. As there is no
intradote-e interaction in such a lattice the DE is formed due
to the interdote-e interaction. Let us make the basic proper-
ties of the DE in the lattice clear.

Figures 1 and 2 present the numerical results obtained by
Eq. s28d as well as the data obtained within the DDA. To
truly estimate the accuracy, note that these figures are re-
duced from source figures, which look similar to Figs. 4sdd
and 5sdd, by setting the intradot effect to zero as it is the pure
self-interaction. For comparison the correction to the inter-
level gap caused by the static interdote-e interactionssee
Fig. 8d is shown in Fig. 1 too.

From Figs. 1 and 2 one can conclude the following.
sid The DDA represents the DE shift caused by dynamic

interdot e-e interaction very well for both the infinite and
finite deep SQDs with one electron per dot for transitions
g�g8 even when interdot separation is comparable with 2R
swhich means practically at anyd/2Rd.
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FIG. 4. Dependence ofb̄a,a8;a,a8
s jd sad, b̄b,b8;b,b8

s jd sbd, −b̄a,a8;b,b8
s jd scd, and b̄g,g8;g,g8

s jd sdd for normal scircle symbolsd and in-planessquare
symbolsd incident light polarizations upon the interdot distance in a square lattice of finite deep SQDs atR=95 Å. na,a8=2, na,b8=4, and
ng,g8=2. The intradot dynamice-e interaction is represented by the dot lines with triangular symbols. The solid lines represent the DDA.

FIG. 5. Dependence ofb̄a,a8;a,a8
s jd sad, b̄b,b8;b,b8

s jd sbd, −b̄a,a8;b,b8
s jd scd, and b̄g,g8;g,g8

s jd sdd for normal scircle symbolsd and in-planessquare
symbolsd incident light polarizations upon the radius of finite deep SQDs atd=600 Å. na,a8=2, nb,b8=4, andng,g8=2. Intradot dynamic
e-e interaction is represented by the dot lines with triangular symbols. The solid lines represent the DDA.
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sii d A decrease of the confining potential causes an in-
crease of the absolute value of the DE shift because of the
increase of the dipole matrix elements through modification
of the electron wave functions and their extent beyond the
QD boundary.

siii d An infinite deep QD approximation results in an es-
sential underestimation of the DE shift.

sivd The DE shift induced by the interdot interaction,
practically vanishes ford/2R.5.

svd An increase of the dipole matrix elements with grow-
ing QD size is responsible for the increase of the absolute
value of the DE shift associated with the interdote-e inter-
action.

svid At a fixed electron sheet densityswhend=constd the
DE shift changes just because of the change of the QD size.

One can see that for spherical QDs the exponential factor
ssee Sec. II A 2d does not manifest itself. Note the increase of
the dipole matrix elementsuzc,c8u with decreasing potential
barrier fagainst the values by Eq.s50d in the bracketsg at R
=95 Å: uzs1,0,0ds1,1,0du=36.2 Å s29.1 Åd, uzs1,1,0ds1,2,0du=40.1 Å
s29.9 Åd, anduzs1,1,±1ds1,2,±1du=34.7 Å s25.9 Åd. The value of
Mc,c8 in Eq. s50d decreases with growingR, especially at
95 Å,R,150 Å up to 10%.

B. Lattice of infinitely deep SQDs

It is also convenient is to discuss features ofb̄a,a8;c,c8
s jd for a

square lattice of infinite deep SQDs assuming for simplicity
Vscsrd=0. sThen the one-electron wave functions can be writ-
ten in terms of the Bessel functions.d The advantage of such

a simplified model is thatb̃a,a8;c,c8
s jd in Eq. s29d then depends

only upon ratiod/2R, which means thatsb̄a,a8;c,c8
s jd

dd is com-
mon for any square lattice of infinitely deep SQDs with the

one-electron wave functions. Thus, havingsb̄a,a8;c,c8
s jd

dd calcu-

lated we can getb̄a,a8;c,c8
s jd for any lattice periodd and dot

radiusR. Further we use labelb̄s jd sand b̄d when speaking

about b̄a,a8;a,a8
s jd , b̄b,b8;b,b8

s jd , b̄a,a8;b,b8
s jd , and b̄g,g8;g,g8

s jd indepen-
dently of specific transitionssand light polarizationd.

In addition to sb̄a,a8;c,c8
s jd

dd, the values ofsL̄a,a8;c,c8Rd are
also independent ofR and common for all single SQDs.

Then havingb̄a,a8;c,c8
s jd and L̄a,a8;c,c8 it is easy to separate the

DE shift associated with the interdot and intradot dynamic
e-e interactions.

To illustrate the strength of the interdote-e interaction in
the system with one electron per dot, we present in Figs.

3sad–3sdd the variation ofsb̄a,a8;c,c8
s jd

dd as a function ofd/2R.
For na, nc electrons per QD at statesa andc, respectively, the
values in Figs. 3sad–3sdd should be multiplied byÎnanc.

From Figs. 3sad–3sdd one can conclude that the DDA rep-
resents the contribution of the dynamic interdote-e interac-
tion in the DE shift well for any type of electron transition
and any d/2R for the Bessel wave functions. Figures

3sad–3sdd show also that the values ofb̄ for different transi-
tions can differ considerably.

To exploit the great advantage of the applicability of the
DDA for the case of many electrons per dot one should know
the values ofLa,a8;c,c8. The numerical values ofsLa,a8;c,c8Rd
are as follows: La,a8;a,a8R=405.0 meV Å, Lb,b8;b,b8R
=265.7 meV Å, La,a8;b,b8R=−223.8 meV Å, Lg,g8;g,g8R

=392.3 meV Å. To obtainsL̄a,a8;c,c8Rd for na andnc electrons
at the levelsa and c, respectively, these values should be
multiplied bysÎnanc−da,cd. Note that for more than one elec-
tron in a single SQD the DE shift due to the intradote-e
interaction decreases with growing QD size. This is associ-
ated with decrease of thee-e interaction potential in a bigger
restricting room.

We want to emphasize that the numerical valuessfor 1
,d/2R,5d obtained above are common for any infinitely
deep SQD with one-electron wave functions, which are ei-
ther single dots or form the square lattice. A change of the
dielectric constant changes the values according to Eqs.s15d
ands29d. In part it moves all of the lines in Fig. 3 up or down
on the scale. These values are very useful for an instant
approximate estimation even for SQDs with finite barrier and
many electrons.

C. Lattice of SQDs with finite potential barrier

Wave functions of electrons are modified by a finite po-
tential barrier of the quantum dot and, in addition, by the

FIG. 6. Dependence ofa'9 svd sad and ai9svd sbd upon photon
energy of incident radiation for square lattice of finite deep SQDs
described in the text.R=95 Å andd=400 Å. na,a8=2 andnb,b8=4.
The solid line represents results obtained including intermode cou-
pling into the dynamice-e interaction. Dash lines correspond to the
diagonal approximationsi.e., no intermode couplingd. Dash-dotted
lines are obtained neglecting dynamic Coulomb interaction. In the
two last approximations the separate contributions associated with
a-mode andb-mode toa'9 svd andai9svd are also presented by thin
lines.
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statice-e interactionssee furtherd. The dot radius becomes an

important parameter for this effect. As a result,b̃a,a8;c,c8
s jd in

Eq. s29d is a function not of the ratiod/2R but of R and d

independently, and, thus, values ofb̄a,a8;c,c8
s jd are specific for

each system.
Figures 4 and 5 present the DE shift in the lattice of SQDs

for two-state sNQD=2d and four-statesNQD=8d systems.
These figures demonstrate all the features of the DE shift
disclosed in the two previous subsections. It is worth empha-
sizing that in Figs. 4–6 both the interdot and intradote-e
interaction work together.

First of all, Figs. 4 and 5 confirm that the DDA represents
the DE shift well due to the dynamic interdote-e interaction
for the square lattice of the finite deep SQDs for any type of
electron transitions and practically anyd/2R. Note that the
match with the DDA in the figuressas well as in Figs. 1–3d
can be treated as excellent if the accuracy for the calculated

b̄ and L̄a,a8;c,c8 is adopted to be within 0.5%.
Figure 5 gives a good illustration of the opposite effect of

change of the QD size upon the influence of the interdot and
intradot dynamice-e interaction on the DE. Note that the
contribution of the interdot interaction to the DE shift is the

difference betweenb̄a,a8;c,c8
s jd and L̄a,a8;c,c8, which is repre-

sented within the DDA as the difference between the solid
and dot lines in Fig. 5.

With growing R the absolute value of the DE shift in-
creasessdecreasesd for the interdotsintradotd interaction, and
the shift due to the interdot interaction is more sensitive to
the R change. It is important to note that the relative contri-
bution of the interdot and intradote-e interaction into the DE
shift is determined by the size of the SQDs.sNote that, in
general, in addition to the QD size, the QD shape can also
affect the relative contribution.d Figure 5 also shows that it is
the contribution of the intradot interaction that determines
the overall value of the DE shift for our QD systems.

It is important to notice the reducing effect of the decrease
of the confinement potential on the contribution to the DE

shift caused by the intradote-e interaction. As it is with the
growing QD size the reason is the spreading out of the elec-
tron wave functions in the bigger space, which reduces the
intradot e-e interaction. Note that the static intradote-e in-
teraction results in an additional extension of the wave func-
tions. The values ofLa,a8;c,c8 for the considered finite deep
SQDssee Figs. 4 and 5d are about 30% less than those for the
infinite deep SQDsseeLa,a8;c,c8R in Sec. III Bd.

It should be noted that forR.100 Å the interlevel spac-
ing comes close to the energies of LO phonons in the system
and a more careful analysis, including the coupling of the
collective modes with the above phonons, is needed which is
beyond the scope of this paper. According to our numerical

calculations, the value ofb̄ for 2DRLSQD withd1Þd2 can

be roughly taken as an average betweenb̄ values for square
lattices with lattice periodsd1 and d2, if d1 and d2 are
rather close to each other. However, when
maxsd1,d2d /minsd1,d2d.2 the DE shift in such a lattice ap-
pears to be smallersin the absolute valuesd than that for the
square lattice with the period being minsd1,d2d.

Figure 6 displays absorption spectrafmore exactly
a119 svd=a229 svd;ai9svd anda339 svd;a'9 svdg for the normal
and in-plane polarization of incident radiation atd=400 Å.
The presented results illustrate the importance of the dy-
namic interdot interaction very well. This interaction causes
the shift of the positions of two peaks in the absorption spec-
tra to the energies"vres−

' , "vres+
' and"vres−

i , "vres+
i . The po-

sitions of the high-energy peaks are determined from the
spectrum ssee also Fig. 7d to be "vres+

' =54.69 meV and
"vres+

i =53.15 meV. The positions of the low-energy peaks
are hard to determine from the spectra. That is why we take
them as close to the calculated values"v−

' and "v−
i :

"vres−
' <"v−

'=43.9 meV and"vres−
i <"v−

i =44 meV.
Figure 6 also shows the substantial influence of the inter-

mode coupling on the absorption spectra. Due to the near
resonant character of this coupling considerable splitting of

FIG. 7. Near-peak absorption spectra of the
four-state system including the intermode cou-
pling predicted by the MOS approachssolid lines
with diamondsd are compared with the corre-
sponding exact spectrassolid linesd represented
by solid lines in Fig. 6. The position of the peaks
is marked by the vertical dash line.
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the peaks and considerable redistribution of the oscillator
strength takes place. Note that observation of the double
peak structure in the absorption spectra is possible when the
broadening energyG is sufficiently small. For biggerG the
two peaks on the spectra cannot be distinguished: the lower-
energy peak practically vanishes. However, the position of
the higher energy peak can be correctly determined only by
taking into account the intermode interaction. It should be
emphasized that all six electrons at the second levels1,1,md
contribute to the depolarization shift.

A simulation shows that even in the absence of the mode
coupling sthe diagonal approximationd the resonant energies
deviate from the level separation. For example, takingd
=400 Å we get Ẽa8,a

s1d =Ẽa8,a
s2d =Ẽa8,a

i
=47.4 meV and Ẽb8,b

s1d

=Ẽb8,b
s2d =Ẽb8,b

i
=50.2 meV, Ẽa8,a

s3d =Ẽa8,a
' =51.1 meV andẼb8,b

s1d

=Ẽb8,b
s'd =48.1 meV. Note, that although the depolarization

shift is substantial the differenceuẼa8,a
s jd −Ẽb8,b

s jd u is small

s!Ẽa8,a
s jd d. The relative intensity of thea andb modes is de-

scribed in the diagonal approximation by the ratiof̃a8,a/ f̃b8,b
which takes the value 2/3.

Figures 1–6 demonstrate a strong dependence of the DE
upon the polarization of the incident light: the resonance
photon energy for the normal light polarization is always
bigger than that for the in-plane light polarization. It is im-
portant to note that in our approximations the difference be-
tween these resonance energies can be treated as independent
of the static interdot interaction. In addition, our numerical
calculations for the case of the in-plane polarization reveal
different contributions to the DE from the lattice sites of
different lattice rows. Atd=400 Å, only the sites in the row
perpendicular to the polarization direction contribute to the
DE. At d.500 Å the situation changes: the dots in the row
along the polarization direction make a major contribution to
the DE. This again points to the importance of ratiod/2R for
the polarization dependence of the DE.

Figure 7 demonstrates that the approach of the modified
oscillator strength excellently represents the absorption spec-
tra of the considered four-state electron system. The posi-
tions of the peakssmore precisely the resonant energiesd
within the MOS approach are calculated by Eq.s38d as
"v−

'=43.9 meV, "v+
'=54.72 meV, and "v−

i =44 meV,
"v+

i =53.2. One can see in Figs. 7sbd and 7sdd that the error
in the high-energy peak positionsinduced by the broadeningd
u"v+

s jd−"vres+
s jd u for G=1 meV is near 0.03 meV, that is, prac-

tically negligible. As Figs. 7sad and 7scd show the error of the
position of the low-energy peaks is hard to determine. The
height of the high-energy peaks is predicted very accurately
s,1%d within the MOS approach forG=1 meV. The error
for the low-energy peak height, being about 5%, is associ-
ated with the considerable contribution of the tail of the
high-energy peak. Note that the MOS approach predicts very
accurately not only the ratio of the height of the peaks, but
also the absolute value of the peak height, especially the
high-energy peak height. Our numerical simulations confirm
with high accuracy the vanishing of the low-energy peaks at

uB̄a,a8;b,b8
' u0=8.154 meV anduB̄a,a8;b,b8

i u0=7.488 meV. Com-

paring these values with those of our system,uB̄a,a8;b,b8
' u

=5.742 meV anduB̄a,a8;b,b8
i u=4.765 meV, we can conclude

that there is strong intermode coupling in the system. That is
why the low-energy peak is so weak in the spectra.

As is mentioned in Sec. II B 3 the ratiogMOS determines
the accuracy of the results obtained within the MOS ap-
proach. Our numerical simulations show that the MOS ap-
proach is very accurate atG=3 meVsgMOS=0.13d in predict-
ing the position and height of the high-energy peak.sThe
low-energy peak is not observed.d Even at G=7 meV
sgMOS=0.31d the error of the peak position is about 0.2 meV,
while the error of the peak height is near 1%. Thus, we can
conclude that the MOS approach excellently represents the
multimode systems for reasonable values ofG.

Above we have considered the effect ofd on the DE at
fixed NQD. Now we discuss the influence ofNQD on the DE

at fixed d. The DE is determined by values ofb̄a,a8;a,a8
s jd ,

b̄b,b8;b,b8
s jd and b̄a,a8;b,b8

s jd . Calculations show thatNQD affects

these values mainly directly by means ofna,a8 and nb,b8,
while the influence ofNQD on values of bsa,a8 ;c,c8d
sthrough a change of parameters of the electron system in the
dotd is weak. It should be emphasized thatNQD denotes the
number of electronsin QDs, not in the whole structure.fNu-
merical results show that decrease ofNQD by 1 induces in-
crease ofEa,a8 by about 1–1.5 meVswhile Ea decreases by
about 10 meV for different levelsd, and the dipole matrix
elements decrease by about 1.5%, i.e., are practically un-
touched.g

Finally, we want to emphasize that the analytical results
and the majority of the obtained numerical results demon-
strating new interesting and important features of the DE are
valid for the systems of quantum dots of other shape. The
specific spherical shape of dots utilized in this work makes
some resultssespecially the intermode couplingd much more
pronounced due to the resonance conditions for the interac-
tion. Inspection shows that all these results are applied to
ellipsoidal quantum dots with an eccentricity of up to 15%.
In an ellipsoidal dots states1,l ,0d is split off from states
s1,l ,−1d ands1,l ,1d which are not split off from each other
sl =1,2d. Rather a small eccentricity supports the resonance
conditions.10

It should be noted that the presented numerical results
describe rather smalls95 Åd identical spherical quantum dots
in an ideal square 2D lattice with rather small periods. Un-
fortunately, the currently manufactured quantum dots of such
a size are not identical enough and are not organized into a
regular lattice. This makes a direct quantitative comparison
of our numerical results with the available experimental data
difficult.

As it has been mentioned, measurements of the influence
of interdot coupling on the interlevel resonance frequencies
have been performed by Yakimovet al.2 However, the au-
thors investigated only a dense array ofsdisorderedd p-type
Ge/Si self-assembled anisotropic and inhomegeneously
broadened quantum dots. Nevertheless, the results reported
in the above paper show the considerable contribution of the
interdot coupling to the DE. They observed, in particular, not
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only a characteristic absorption peak shift but also a narrow-
ing sinduced by the DEd of the inhomogeneously broadened
absorption line. This indicates that inhomogeneous broaden-
ing cannot be simply incorporated into the broadening pa-
rameterG.

IV. CONCLUSION

In conclusion, the depolarization effect on the interlevel
response of the electron systems is investigated in detail for
single SQDs as well as for two-dimensional square lattices of
SQDs. It is established that photon absorption due to the
dipole interlevel transitions in an individual SQD is consid-
erably affected by the dynamic direct intradote-e interaction.
The linear optical response of dense packed 2D lattices of
SQDs can be additionally affected by the DE associated with
the dynamic direct interdote-e interaction. The correct de-
scription of the above interaction should take into account
so-called umklapp processes. It is established that the elec-
tron self-interaction is an unavoidable problem for the QD
systemssespecially with a relatively small number of elec-
tronsd and should be dealt with care when we work in the
self-consistent field approach.

Values are found which can be used for a fast approximate
estimation of the DE shift inany single SQD and 2D square
lattice of SQDs. It was established that the dipole-dipole in-
teraction approximation well represents the DE shift associ-
ated with the dynamic interdote-e interaction for any type of
electron transition, for practically any size parameters of the
lattice, and for any potential barrier of the SQDs. In part, it
was shown that in this approximation the effects associated
with the intradot and interdot dynamice-e interaction can be
analyzed separately. The obtained results indicate also that
the DE can cause not only the blueshift but also peak split-
ting sdue to intermode couplingd when two lowest levels are
occupied. The approach employing the concept of the modi-
fied oscillator strength is very useful for describing the effect
associated with the above-mentioned intermode coupling.

Strong dependence of the DE upon the incident light po-
larization was demonstrated for the dense packed lattice. It
was shown that the difference between the resonant photon
energies for the normal and in-plane light polarization can be
treated as independent of the static interdot interaction.

The three-dimensional nature of the QD systems was
found to cause a number of effects. It was shown that ratio
d/2R, the dot radiusR, and the lattice periodd can be used
as driving parameters defining the features of the system re-
sponse. It was shown that with growing dot radius the abso-
lute value of the DE shift associated with the intradotsinter-
dotd dynamice-e interaction decreasessincreasesd, so thatR
can determine the dominant contributionsof the intradot or
interdot interactiond to the total shift.

It was also found that a decrease of potential barrier of
quantum dots increasessdecreasesd the strength of the DE
associated with the interdotsintradotd e-e interaction. The
presented results disclose some important physical aspects of
the electromagnetic response of QD lattices, in particular,
strong dependence on the polarization of the incident radia-
tion, effect of the size parameterssd and Rd of the lattice,

which can manifest themselves experimentally and be useful
for application.
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APPENDIX: EFFECT OF STATIC NET INTERACTION
ON EIGENSTATES IN LATTICE OF NONTUNNELING

IDENTICAL SQDs

An electron in a dot experiences the electrostatic interac-
tion with the electrons in all other dots as well as with all the
positive charges in the system. The interaction with the posi-
tive charges depends directly upon the distribution of the
donors in the lattice, which makes any calculations of this
interaction specific for each distribution. The overall effect of
this interaction is some compensation of the effect of the
static interdote-e interaction, and the measure of the com-
pensation depends upon the positive charges distribution. In
addition depending upon this distribution the lattice of iden-
tical SQDs can become a lattice of nonidentical SQDssin the
sense of nonidentical electron eigenstates, interlevel gaps,

FIG. 8. Shift of theE1,0 ssquare symbolsd and E1,1 striangle
symbolsd energy, and modification of the gap between themE1,1

−E1,0 scircle symbolsd due to the static interdote-e interaction as
function of the interdot distance.R=95 Å. One electron is per QD.
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etc.d that contributes to inhomogeneous effect on the spectra.
In our approach we restrict to the static interdot electron-
electron interaction and neglect the interaction with the posi-
tive charges. This allows us to avoid bounding to a specific
donor distribution. On the other hand, it let us estimate the
maximum effect of the static interdot interaction in the lat-
tice.

We assume that the effect of the interdot statice-e inter-
action on the electron eigenstates can be treated as a small
perturbation, so that the change of the electron eigenfunc-
tions can be neglected in the first approximation and the
correction to the energy levels is

Eā = Ea
s0d + Va,a

stat, sA1d

where Va,a
stat is the matrix element of the static interdote-e

interactionswithout the self-interactiond Vstatsr d given by

Vstatsr d =
e2

4pee0
o

i,k=−`

` E dr 8
1

ur − r̃ ik8 uoc̄

uFc̄sr̃ ik8 du2nc̄.

sA2d

Developing in the same fashion as in Sec. II A 2 we obtain

Va,a
stat= o

c
bstatsa,a;c,cd, sA3d

where

bstatsa,a;c,cd = b̃statsa,a;c,cdnc − bself
statsa,a;c,cd sA4d

and

b̃statsa,a;c,cd =
e2

2ee0d1d2
o
Gmi

1

Gmi

E dx3dx38e
−Gmi

ux3−x38u

3Fa,asGmi
,x3dFc,csGmi

,x38d, sA5d

where bself
statsa,a;c,cd=limd→`b̃statsa,a;c,cd is the self-

interaction term. HereFc,csGmi
,x38d is calculated by Eq.s24d,

with the upper index “6” omitted as it is not important.
Note, that the form of the relationships for theb for the static
interdot e-e interaction is the same as for the dynamice-e
interaction.

It is seen thatVa,a
stat.0 and, thus, each level moves up in

the energy scale. It is Important to note that each level moves
up differently, so that the interlevel spacings increase due to
the interdote-e static interaction. An interesting feature of
Eq. sA3d is thatVa,a

stat is different for differenta which means
that the static interdot interaction splits the states which share
the same energy level in a single QD.

One can notice that the effect of the number of the elec-
trons on the modification of the resonant photon energy is
different for the dynamic and static interdote-e interactions.
The DE shift is proportional to the number of the electrons in
the dotfsee Eq.s28dg. The shift of each level due to the static
interdote-e interaction is also proportional to the number of
the electrons in the dotfsee Eq.sA4dg, however, the inter-
level spacing is affected by the electron number only slightly.
Figure 8 illustrates the change of the two lowest levels and
the gap between them because of the static interdote-e in-
teraction.
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