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The use of buried dopants to construct quantum-dot cellular automata is investigated as an alternative to
conventional electronic devices for information transport and elementary computation. This provides a limit in
terms of miniaturization for this type of system as each potential well is formed by a single dopant atom. As
an example, phosphorous donors in silicon are found to have good energy level separation with incoherent
switching times of the order of microseconds. However, we also illustrate the possibility of ultrafast quantum
coherent switching via adiabatic evolution. The switching speeds are numerically calculated and found to be
tens of picoseconds or less for a single cell. The effect of decoherence is also simulated in the form of a
dephasing process and limits are estimated for operation with finite dephasing. The advantages and limitations
of this scheme over the more conventional quantum-dot based scheme are discussed. The use of a buried donor
cellular automata system is also discussed as an architecture for testing several aspects of buried donor based
quantum computing schemes.

DOI: 10.1103/PhysRevB.71.115302 PACS numberssd: 85.35.Gv, 03.67.Lx

I. INTRODUCTION

The use of quantum systems to perform computing tasks
is an area of continued interest, both in the context of fully
coherent quantum computers and the more general area of
nanocomputing. Recently there has been much interest in
producing an experimental analog of cellular automata at the
micro or even nanometer scale.1,2 This could provide an al-
ternative architecture with which to build standard logic
gates and information channels, which have low dissipation3

and fewer control gates compared to conventional transistor
based logic. Significant progress has been made in this area
with the experimental demonstration of quantum-dot cellular
automatasQDCAd cells constructed from aluminum quan-
tum dots4,5 and GaAs/AlGaAs heterostructures.6 Recently,
the operation of the functional components of a QDCA logic
gate has been demonstrated experimentally.7 This type of
system has also been investigated as a possible architecture
for quantum computing using QDCA qubits8 and more re-
cently as a candidate for a decoherence-free subspace.9

In this paper we explore an alternative QDCA architecture
using buried dopants in semiconductors, as this provides a
very strongly confined potential and well-characterized en-
ergy levels. A recent proposal describes a charge-based qubit
for quantum computing using phosphorous donors in
silicon.10,11 We show that this treatment can be applied to a
system of dopants arranged in the layout of a QDCA. We
refer to these structures as buried dopant cellular automata
sBDCAd. Such a device could be fabricated by either direct
atomic placement12,13 or ion-implantation.11,14 Numerical es-
timates are given for the case of phosphorous donors in sili-
con but the concepts are generally applicable to other dop-
ants. This is of particular interest given the recent advances
in single dopant placement and cluster based charge transfer
experiments using phosphorous in silicon.15

Conventional QDCA rely onincoherentevolution sgov-
erned by theT1 relaxation timed to mediate transitions be-
tween the logical states. For phosphorous donors in silicon
we estimate this relaxation time and find it to be of the order

of microseconds. We also investigate an alternative ultrafast
spicosecondd switching mechanism, namelycoherentevolu-
tion between defined system eigenstates. This approach is
central to the use of buried donors and is also applicable to
coherent tunneling between quantum dots or superconduct-
ing systems. This constitutes an alternative evolution mecha-
nism for QDCA schemes where coherence can be maintained
long enough for the cell to be switched from one classical
state to another without the need for long coherence times
which are typically required for quantum computing applica-
tions. The relevant time scales and appropriate pulsing se-
quences with and without dephasing are discussed and the
scaling behavior of the system is investigated.

II. QUANTUM-DOT CELLULAR AUTOMATA

The simplest QDCA is a cell composed of four quantum
dots containing two mobile electrons which can move be-
tween the dots via tunnel junctions. The electrons tend to
occupy diagonally opposite sites to minimize the energy due
to the Coulombic interaction. These two groundsor compu-
tationald states are labeled zero and one, see Fig. 1, where
“e” indicates the position of the electrons. The next highest
energetic states are noncomputational states and ideally are

FIG. 1. Two possible states for a basic QDCA cell where the 0
and 1 states constitute the ground or “computational” states and “e”
labels the position of the electrons.
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only transiently populated during correct operation.
If two dots are placed next to each other, one cell influ-

ences the state of the other cell via capacitative coupling. In
an array of cells, when the first cell is switched from one
computational state to the other, the rest of the chain relaxes
to minimize the energy of the total system. The result of this
relaxation is to transfer the state information of the initial
cell along the chain without net electron flow and minimal
energy dissipation. The speed at which this switching occurs
is governed by the incoherent tunneling rate of the junctions,
the inverse of which is referred to as theT1 or relaxation
time. Classical information processing can be performed in
this scheme, as shown in Fig. 2 for a QDCA wire and
inverter.1 It is also possible to realize nontrivial classical
computation, such as a full-adder, using this scheme.16

III. BURIED DONORS AND THE HYDROGENIC
APPROXIMATION

The use of buried donors in a semiconductor matrix has
been discussed for charge-based quantum computing.10,14,15

While the advantages of semiconductor fabrication and gate
control are well known, the fast dephasing and relaxation
effects mean that charge-based quantum computing using
buried donors is still technically difficult. On the other hand
the QDCA architecture is not as seriously affected by
dephasing or relaxation, as the system is always in the
ground state when it is measured. We will investigate the
possibility of using this concept for building QDCA based
systems using phosphorous donors in siliconsSi:Pd, which
we term a BDCA. The basic idea is to construct an array of
four ionized donors which contains two “free” electrons,
therefore mimicking the layout of a conventional QDCA.
This also represents a limit in terms of miniaturization for
this form of nanocomputing as each potential well is created
by only one donor atom.

In order to provide a model for the Si:P donor system, we
will use the effective mass or “hydrogenic” approximation in
which the outer shell electron of a phosphorous donor in
silicon can be treated as a hydrogen orbital with the energies
and distances scaled appropriately. A more complete treat-
ment of effective mass theory for shallow donors is given by
Kohn.17 Equationss1d ands2d give the scaling factors for the

effective Bohr radiussaB
* d and effective energysE* d of the

donor electron in terms of the effective mass of the donor
electron and the dielectric constant of the substrate,

aB
* = e

me

m*
aB, s1d

E * =
m*

me

1

e2E. s2d

The advantage of this approach is that solving a hydrogenic
system with a small number of electrons is more tractable
than a full electron calculation of the phosphorous donor
within a silicon lattice. These results also generalize to other
shallow donor systems. We will concentrate on phosphorous
donors in silicon and therefore quote the appropriate energy
levels, where the conversion is 13.6 eV in a hydrogenic sys-
tem is approximately equal to 20 meV for Si:P. The effective
Bohr radius of the phosphorous electron is approximately 3
nm for an effective electron massm* =0.2me and a dielectric
constante=11.7.

IV. EFFECTIVE HAMILTONIAN

To provide a convenient formalism, we construct an ef-
fective Hamiltonian using the pseudospin approach to de-
scribe the BDCA system. By defining each pair of phosphor-
ous donors and their shared electron as a single pseudospin
object we can define two states, topsTd and bottomsBd,
which specify the position of the electron. Each BDCA cell
then consists of a pair of these objects where the computa-
tional states areuTBl= u0l and uBTl= u1l, respectively, as
shown in Fig. 3sad.

FIG. 2. Layouts for a QDCA wiresad and invertersbd which
demonstrate information transfer and binary inversion, respectively,
after Tougaw and LentsRef. 1d.

FIG. 3. sad The ground states of the buried donor BDCA cell
where the positions of the electrons “e” are designated by topsTd
and bottomsBd. These computational states are referred to asuTBl
and uBTl, and are assigned the logical values of 0 and 1, respec-
tively. sbd The excited or “noncomputational” states are labeleduTTl
and uBBl, respectively, and correspond to the first excited state of
the system.
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In this way, the labeling for the noncomputational states is
uTTl anduBBl, as shown in Fig. 3sbd. Initially we will assume
that the electrons cannot move laterally so each electron is
bound to its particular donor pair, as indicated by the ellipses
in Fig. 3. This would correspond to a situation where the
direction of tunneling is controlled by confining potentials or
the geometry of the cell. A more complete justification for
this assumption is given later.

Once the position of the electrons is encoded using this
pseudospin approach, an effective Hamiltonian can be devel-
oped using the Pauli spin representation,

Heff = e1s1
z + e2s2

z + D1s1
x + D2s2

x + Jxxs1
xs2

x + Jyys1
ys2

y

+ Jzzs1
zs2

z + Jxzs1
xs2

z + Jzxs1
zs2

x, s3d

where the usual Pauli matrices are defined as

sx = F0 1

1 0
G, sy = F0 − i

i 0
G, sz = F1 0

0 − 1
G .

The notationsi is used to refer to the matrix applied to the
ith donor pair and the coefficientse ,D, andJ are determined
as follows.

The true hydrogenic Hamiltonian18 of the two electron/
four donor system is givensin scaled atomic unitsd by

H = − ¹1
2 − ¹2

2 − 2S 1

r1a
+

1

r2a
+

1

r1b
+

1

r2b
+

1

r1c
+

1

r2c
+

1

r1d

+
1

r2d
−

1

r12
D , s4d

wherer ij is the separation between theith electron and the
j th donors j =a,b,c,dd andr12 is the separation between the
electrons. Numerically evaluating this Hamiltonian within
the basis of four statessuTBl , uBTl , uTTl, and uBBld enables
the elements of the matrix

Hij = kciuHuc jl s5d

to be found. The elements of Eq.s5d are then equated to the
coefficients in Eq.s3d to determine an effective Hamiltonian.
The basis of states is represented using a linear combination
of atomic orbitalssLCAOd. We use the antisymmetric spatial
wave function for the H2 molecule as our basis wave func-
tion. The spin-orbit coupling for donor electrons in silicon is
known to be very small19 and therefore spin effects may be
neglected as the spin and charge degrees of freedom are as-
sumed to be separable at all times. The elements of Eq.s5d
are then used to obtain estimates for the numerical coeffi-
cients in the effective HamiltoniansHeffd for a square BDCA
cell of side lengthR.

We estimate the energy differencesEex−Egsd between the
excited snoncomputationald and ground scomputationald
states of one cell as a function of system size. This energy
gap gives an estimate of the temperature at which the system
must be operated to ensure that the noncomputational states
are not thermally excited. The energy difference for a range
of separations is plotted in Fig. 4. The points are found using
the LCAO approach while the line is an approximation found
using electrostatic arguments based on the geometry of the
system and has the form

Eex − Egs=
s2 −Î2dE * aB

*

R
, s6d

whereR is the side length of the BDCA cell in nm andaB
*

=3 nm,E* =20 meV are the effective Bohr radius and effec-
tive ground state energy, respectively. This approximation is
found to be valid in the region where the electron wave func-
tions do not strongly overlap with each other but deviate
from the numerical results forR&10 nm.

Assuming a Boltzmann distribution for the energy states
at finite temperature, the occupation probabilitysPexd of the
excited statessuTTl and uBBld is given by

Pex < e−DE/kBT, s7d

whereEex−Egs=DE.0 is the energy difference between the
ground and excited states. For a separation of 15 nm, we
require an operating temperature of,3 K to achieve.99%
occupation of the computational states. For an operating tem-
perature of 100 mK, the occupancy of the computational
states is approximately 100%.

For the rest of the discussion, we will use the numerical
coefficients calculated for a square cell of side length 15 nm.
As this is equivalent to a cell size of approximately 5 Bohr
radii, the electrons can be said to be well localized and over-
lap effects are not significant. In order to simplify the situa-
tion, we will also set thesx,sxsx, and sysy type terms to
zero and then reintroduce them later in a systematic fashion.
This corresponds to a situation where a surface gate potential
is used to control overlap of the electron wave functions and
therefore control the tunneling rate between donors. For
large cells sizes, this is a good approximation to the physical
situation as the tunneling rate without an applied barrier bias

FIG. 4. Energy difference between the groundsEgsd and first
excitedsEexd states of a square BDCA cell made up of phosphorous
donors in silicon. The energy difference is computed for various
donor separationssRd by numerically integrating the Schrödinger
equation. The points are full quantum mechanical calculations using
the LCAO approach and the solid line is the energy difference de-
termined analytically from simple electrostatic arguments, Eq.s6d.
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will be very low. For small cell sizes there will be wave-
function overlap even without a barrier gate. In this case a
confining potential can be used to localize the electrons and
provide more control over the tunneling characteristics.
Given these approximations, many of the terms in Eq.s3d are
approximately zero and the only significant term forR
=15 nm is Jzz=1.21 meV which is due to the Coulombic
repulsion between the electrons.

V. BDCA SWITCHING

To study how a BDCA cell would switch from one com-
putational state to another, we consider the effect of control
gates and nearby cells. We propose a structure where pairs of
donors are positioned in a line with a surface “barrier” gate
constructed between them which is used to control the tun-
neling rate between the pairs of donors. At the end of the
chain, “symmetry” gates allow the system to be switched
from one state to another, depending on the bias applied.
Sensitive electrometers, such as single-electron transistors
sSETd,20 are used to measure the position of the electron at
the other end of the chain. A diagram of this concept is
shown in Fig. 5.

Most of the following section refers to a single BDCA cell
made from two pairs of donors for simplicity, but the discus-
sion applies equally to a long chain of donor pairs. The effect
of the barriersBd and symmetry gatessSd for this cell can be
included by adding terms to the effective Hamiltonian, Eq.
s3d, of the form

ESstds1
z − EBstdss1

x + s2
xd, s8d

where the magnitude of the coefficientssES andEBd are con-
trolled by the voltages applied to the gates.

The symmetry gates localize the system in one of the two
computational states, based on the gate’s polarity. The volt-
ages applied to each symmetry gate have equal magnitude
but opposite sign to ensure a symmetrical effect on the chain.

The barrier gate controls the tunneling rate between pairs
of donors by repelling or attracting the electron clouds. If
there is a large enough separation between donors, the barrier
gate is required to allow tunneling by reducing the potential
barrier that the electron feels. This justifies our initial as-

sumption that when the separation is large enough tunneling
only occurs between donor pairs and not along the BDCA
chain. The use of compensating gates could also be used to
confine the electrons and therefore prevent tunneling in un-
wanted directions.

The effect of these surface gates has been modeled as
puresx andsz terms in the Hamiltonian due to the symmetry
of the system. We estimate the surface gate voltages to be
100–1000 mV depending on the donor depth and the pres-
ence of an oxide barrier layer, based on estimated gate volt-
ages for charge-qubits.10,21Assuming arbitrary high precision
in donor placement, the barrier gate has an equal effect on
donors on either side of the barrier and can be considered a
pure sx gate. The barrier gate would also inducesxsx and
sysy style coupling but this is expected to be small com-
pared to theJZZ and puresx coupling. In addition, the barrier
gate can also have a negative bias applied to improve the
localization of the computational states during readout,
though this is not directly modeled here. While the symmetry
gates would not be puresz shaving some residualsx effect
due to wave-function overlapd this could also be compen-
sated for by using the barrier gate or additional compensation
gates.

In Fig. 6 the eigenspectrum for a single BDCA cell is
plotted as a function of the symmetry gate potentialsESd for
zero barrier gate potential. The computational statessuTBl
and uBTld are localized even for a very small symmetry po-
tential. Also note that the two computational states are de-
generate when there is no potential difference applied to the
control gates, as expected.

VI. INCOHERENT SWITCHING

If we allow the system to evolve via incoherent relaxation
sin direct analogy with the quantum-dot schemesd, the tran-
sition from a high to a low energy eigenstate of the system is
mediated by phonons in the lattice. For the moment we will

FIG. 5. Simplified layout of a BDCA chain, where the cell size
is labeledR and the cell spacingsSd is the distance between the
center of neighboring cells. The symmetry and barrier surface gates
are used to perform switching and control the tunneling rate, re-
spectively. The circles represent the position of the donors. The
position of the electrons “e” is shown for the ground state configu-
ration which corresponds to some nonzero bias on the control gates
with the labeled polarity. The position of the electrons are measured
with single-electron transistorssSETd.

FIG. 6. Eigenspectrum for a four donor cell as the symmetry
potentialsESd is swept from −2 to 2smeVd with no applied barrier
potentialsEB=0d.
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ignore the effect of the barrier gate and assume the electrons
are well localized. This situation is valid over time scales
greater than the dephasing time of the donor wave function
or where the barrier gate has a negative bias producing a
high potential barrier. To obtain an estimate for this rate, we
assume that the electrons within a BDCA cell can relax in-
dependently and we therefore use a similar approach to that
used to estimate the relaxation rate for charge-qubits based
on buried donors.22,23 Following the approach used by
Barrett and Milburn22 and Bockelmann and Bastard,24 we
write the relaxation rate due to thermal phonons,

Gph =
64D2qif

3 fnBsE,Tphd + agf1 − sincsqifRdg
pr"cs

2fsqifaBd2 + 4g4 , s9d

wherea=1 for emission and 0 for absorption of a phonon,
qif is the wave number of a phonon with a magnitude equal
to the energy difference between the statessuqif u=E/"csd, R
is the separation between the donors andnBsE,Tphd
=fexpsE/kBTphd−1g−1 is the Bose occupation function for a
bath of phonons at temperatureTph. We have ignored effects
due to coherent tunneling and used the following
parameters22 for Si:P whereD=3.3 eV is the deformation
potential, r=2329 kg m−3 is the density of silicon,cs=9.0
3103 ms−1 is the speed of sound in silicon, andaB=3 nm is
the effective Bohr radius of the donor electron.

To estimate the incoherent switching time, we calculate
the energy levels for a BDCA cellsthe target celld assuming
that a neighboring cell is well-localized. In the incoherent
limit, we can assume that each electron is well-localized and
so the effect of the neighbor cell is to lift the degeneracy of
the computational states of the target cell. For a cell of side
lengthR=15 nm and cell spacingS=30 nm, a well-localized
neighbor induces an energy splitting of 1.64 meV between
the computational states of the target cell. This is calculated
using the difference in electrostatic repulsion between the
target cell and its neighbor. The splitting caused by the
neighboring cell can be modeled as a bias on the symmetry
gate of the target cell. In this case the equivalent symmetry
gate bias isES=0.82 meV. The resulting energy levels can
be read from Fig. 6. Using these energy levels we can cal-
culate the relaxation rate from the first excited state to the
ground statesuBTl→ uTBld and estimate the switching time
of the system. Relaxation in this system is phonon mediated
and therefore acts on each electron separately. This means
the direct transition from stateuBTl to state uTBl is sup-
pressed and instead the system must relax via a cotunneling
stwo electrond process which requires absorption and emis-
sion of phonons to reach the ground state. The two possible
sfirst orderd decay paths are illustrated in Fig. 7 for the en-
ergy levels corresponding to a symmetry potential of 0.82
meV.

To estimate the total relaxation rate, we add the cotunnel-
ing rates20 for the two possible paths,

GTotal =
GA

s1dGE
s1d"

uEuTTl − EuBTlu
+

GA
s2dGE

s2d"

uEuBBl − EuBTlu
, s10d

whereGA,E
s1,2d are defined in Fig. 7 andEukl is the energy of the

uklth state. For these energy levels and an operating tempera-

ture of 3 K, the calculated relaxation rateGTotal=1.1 MHz,
which gives a switching time of 0.9ms. This is almost two
orders of magnitude slower than the estimated maximum
switching rates of 90 MHz for Al/Al-oxide QDCA
structures5 at 70 mK. This is to be expected as there are no
defined tunnel junctions in the buried donor case. The
switching time is shown in Fig. 8 for a range of operating
temperatures and cell sizessRd with the spacing between
neighboring cells given by the cell center-to-center distance
S=2R. While the switching rate does vary with cell size, the
temperature effects dominate in this regime as the system
requires enough thermal energy to mediate the two-electron
transition. At higher temperatures, faster switching is ex-
pected but the occupation of the ground state is reduced,
according to Eq.s7d, resulting in an overall loss of fidelity.

FIG. 7. Energy level diagram for a single BDCA cell in the
presence of a well-localized neighboring cell, where the cell size
R=15 nm and there is a cell spacingS=30 nm. The direct transition
suBTl→ uTBld is suppressed as the interaction is phonon mediated
and must therefore proceed via single-electron transitions. The two
sfirst orderd decay paths from one computational state to the other
are illustrated with their associated transition rates for absorption
sAd and emissionsEd.

FIG. 8. Incoherent switching time calculated for a range of cell
sizessRd with the spacing between the neighboring cells given by
the cell center-to-center distanceS=2R. Higher operating tempera-
tures result in faster switching times but also result in higher excited
state populations, reducing the overall readout fidelity.
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While the switching time is slow compared to modern
microelectronics, it does demonstrate that if the system is
initially set up in some excited state it will decay to the
ground state. This process could be used to intialize the sys-
tem in a known state.

VII. COHERENT SWITCHING

An alternative to theincoherentswitching is to use the
high tunneling rates of charge-based quantum-computing
schemes to performcoherentswitching of the BDCA chain.
As we have relatively strong coupling between electrons in
this system, we can consider adiabatic evolution as a mecha-
nism to switch from one computational state to the other.
This is in exact analogy with the technique of rapid adiabatic
passage for electromagnetically induced population transfer
of atoms and molecules.25 While this method has similar
advantages to the adiabatic switching discussed by Lent and
Tougaw,26 the method discussed here is entirely coherent and
therefore does not rely on dissipation to ensure the ground
state is always occupied.

The effect of the barrier potential on the eigenspectrum of
a BDCA cell is shown in Fig. 9, this time with an applied
barrier potential of 1.2 meV. The effect of this is to lower the
barrier within each donor pair, delocalizing the electron and
increasing the coupling between the donors. For a barrier
potential of 1.2 meV there is now an energy gap between the
ground and first excited states at the point of zero symmetry
potential. At this point the eigenstates include contributions
from all four basis states, not just the computational states.

When ES=Smax and EB=1.2 meV the computational
ground state population has been reduced to 80%scompared
to without barrier gate induced coupling between the do-
norsd. For example, whenES=−2 meV the lowest energy
eigenstate is 0.39uTTl+0.89uTBl+0.14uBTl+0.17uBBl,
whereas forES=2 meV it is 0.17uTTl+0.14uTBl+0.89uBTl
+0.39uBBl when written out in the position basis.

The energy gap between the ground and first excited state
allows adiabatic evolution to be used to shift the population
from one computational state to the other, provided that the
adiabatic criteria are satisfied. The adiabatic criteria can be
stated as27

KeU ]H

]t
UgL

ukeuHuel − kguHuglu2
! 1, s11d

where ugl and uel are the ground and first excited states,
respectively. The pulse scheme given in Fig. 10 can be ap-
plied in order to achieve the energy level splitting while still
ensuring the computational states are highly populated for
readout. This involves applying a Gaussian pulse to the bar-
rier gate while simultaneously switching the control gates
from one polarity to the other. The following functions were
used for the barrier and symmetry gate potentials:

EBstd = BmaxexpF−
st − tp/2d2

2s2 G , s12d

ESstd = SmaxerfF−
st − tp/2d

Î2s
G , s13d

where tp is the total time over which the pulse sequence is
applied ands is the standard deviation of the pulse, which
was set tos= tp/6. Bmax and Smax are the maximum barrier
and symmetry potentials, respectively.

The resulting eigenspectrum is shown for this pulse se-
quence in Fig. 11 as a fraction of the pulse timetp. The
degeneracy of the first two states is lifted but the computa-
tional states are still strongly populateds.99.999%d before
and after the application of the pulse scheme asEB<0 at t
=0 andt= tp.

FIG. 9. Eigenspectrum for a four donor cell as the symmetry
potentialsESd is swept from −2 to 2smeVd with an applied barrier
potentialsEBd of 1.2 meV.

FIG. 10. The symmetrysESd and splittingsEBd potentials which
are applied to the system to achieve adiabatic evolution, wheretp is
the time over which the pulse is applied and the standard deviation
of the pulsesssd is set totp/6. Bmax and Smax are the maximum
barrier and symmetry potentials and are used to control the amount
of tunneling and localization, respectively.
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VIII. TIME DEPENDENT BEHAVIOR AND THE EFFECT
OF DEPHASING

As we are only considering a relatively small basis of
states, we solve the density matrix master equation, Eq.s14d,
to study the time dependence of the system including deco-
herence. The equation of motion is

ṙ = −
i

"
fH,rg + Lfrg, s14d

where the LiouvilliansLfrgd describes the decoherence of
the system. Integrating Eq.s14d in the limit of no decoher-
ence sLfrg=0d gives the pure state of the system as it
evolves over time. Figure 12 shows the state population for
the pulse sequence given in Sec. VII over a pulse timetp
=100 ps. The system is initially inuTBl and is then adiabati-
cally switched touBTl while only transiently occupying the
noncomputational states.

To determine the fidelity of transfer, we plot the final
occupation probability of each state as a function of total
pulse timestpd assuming we start in stateuTBl, Fig. 13. Three
distinct regions can be identified. For pulse times of less than
0.1 ps, the pulse sequence is applied too quickly for the
system to evolve, which is to be expected as the pulse time is
much less than the tunneling rates of the system. Pulse times
of greater than 20 ps satisfy the adiabatic criteria, Eq.s11d,
and the system moves smoothly from one computational
state to the other with a fidelity ofù99.95%. Between these
regions we see that after switching the noncomputational
states are occupied with varying probabilities.

To study the effects of decoherence, we introduceLfrg
Þ0 in Eq. s14d. As we have shown that the relaxation rate
s1/T1d due to phonons is expected to be of the order of
microseconds, we will only consider a phenomenological
G2=1/T2 spure dephasingd rate. We model this as a decay of
the off-diagonal terms of the density matrix,

Lfrg = G2fr − diagsrdg. s15d

Figure 14 shows the probability of successful transfer from
one computational state to the other as a function of total
pulse time and dephasing timeT2. The region ofù99%
transfer is enclosed by the dotted contour line on the plot.
The region in the top right corner corresponds to the system
dephasing faster than it is being switched, resulting in a loss
of fidelity. The final state in this region is a uniform mixture

FIG. 11. Eigenspectrum for a four donor cell as the pulse
scheme given in Eqs.s12d and s13d is applied to the barrier and
symmetry gates, respectively, whereSmax=2 meV and Bmax

=1.2 meV.

FIG. 12. sColor onlined Population of states as a function of
time showing complete population transfer from the stateuTBl to
stateuBTl while only transiently populating the noncomputational
statessuBBl and uTTld. The time over which the pulse sequence is
applied istp=100 ps and the effects of decoherence are ignored.

FIG. 13. sColor onlined Final population of states as a function
of total pulse timestpd, ignoring the effects of decoherence. High
fidelity transfer sù99.95%d between computational states is ob-
served for pulse times greater than 20 ps. For pulse times of less
than 0.1 ps the system does not have time to evolve from its initial
state. Between these times, the noncomputational states are partially
occupied.
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of the computational and noncomputational states.
From Fig. 14 we see that even with finite dephasing, there

is a window within which coherent transfer can still occur.
For dephasing of 500 ps and a total pulse time of 20 ps, a
transfer probability of.99% can be achieved.

IX. SCALABILITY OF THE BURIED DONOR SCHEME

The buried donor scheme can be scaled by adding more
pairs of donors in a similar fashion to that used for the
quantum-dot system to form a line of cells. The incoherent
switching time for a line of cells is predicted to scale ap-
proximately linearly based on simulations of quantum-dot
systems.26 To compare this to the scaling of the coherent
scheme discussed in Sec. VII, we estimate the time to adia-
batically switch a chain of buried-donor cells. As shown in
Fig. 5, this configuration involves a “strip” barrier gate run-
ning the length of the chain and a pair of symmetry gates at
one end. The switching of the chain is achieved by applying
the same pulse sequence given earlier, Eqs.s12d ands13d, to
coherently follow the adiabatic path from one computational
state to the other. This is incorporated into an effective
Hamiltonian of the form

Heff = ESstds1
z + EBstdo

i=1

N

si
x + JZZo

i=1

N−1

si
zsi+1

z , s16d

whereN is the number of donor pairs. The interaction term
JZZ is approximated using Eq.s6d where JZZ=sEex−Egsd /2
for a given cell sizeR. This model assumes that the entire
chain forms a pure state throughout the transfer, which must
be performed within the dephasing time of the system. In this
case the minimum evolution time will increase with the num-
ber of donor pairs and is controlled by the scaling behavior
of the energy gap between the ground state and the first
excited state. The energy gap is limited by the height of the
potential barrier the electron sees which is controlled byEB.

To simplify the analysis we will ignore decoherence and
only consider situations where the minimum energy gap is

positioned at the center of the eigenspectrumsFig. 11d where
ES=0. This puts a limit on the maximum barrier coupling
sBmaxd which can be applied in order to introduce an energy
gap. Figure 15 shows the maximum couplingsBmaxd which
still maintains the minimum energy gap at the center of the
eigenspectrum.

The scaling behavior of the maximum allowable barrier
coupling is fitted to an exponential decay,

Bmax< 0.49 exps− N/4.2d + 1.32, s17d

whereN is the number of donor pairs andBmax is the maxi-
mum barrier coupling in meV.

The exact behavior of the system for large numbers of
donors is computationally expensive to calculate. We can
obtain an estimate for the minimum pulse timestpd which
still provides high fidelitysù99.95%d transfer by observing
the scaling of the adiabatic time,

tadiab= k
6Î2Smax

Îp

keus1
zugl

uEgapu2
, s18d

with increasing number of donor pairs, wherek is a scaling
constant used to compare the minimum evolution time with
the previous calculations. This equation is derived by assum-
ing that the adiabatic criteria, Eq.s11d, must be less than 1/k
to achieve adiabatic evolution and noting that the time de-
rivative of Eq.s8d simplifies considerably at the degeneracy
point sthe center of the eigenspectrum, Fig. 11d. At this point
the majority of the Hamiltonian is constant in time and the
time derivative of the symmetry bias, Eq.s13d, gives the
numerical prefactors of Eq.s18d. We usek=20 ps as this is
the required pulse time to achieveù99.95% fidelity when
switching a single cell comprised of two donor pairs with a
cell size of R=15 nm. Figure 16 showstadiab for up to 12
donor pairss6 QDCA cellsd calculated by diagonalizing the

FIG. 14. sColor onlined Probability of successful transfer as a
function of both total pulse time and dephasing time. The region of
ù99% successful transfer is enclosed by the dotted contour line in
the bottom right corner.

FIG. 15. Scaling behavior for the maximum barrier coupling
sBmaxd which can be applied while still maintaining the minimum
energy gap at the center of the eigenspectrumsthe degeneracy
pointd. Bmax is calculated for increasing numbers of donors pairs
and then fitted to an exponential function.
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effective Hamiltonian of the system, Eq.s16d, for several
different cell sizes. As the cell size is increased, the coupling
between pairs of donors is reduced and so the minimum
switching time increases.

While tadiab may underestimate the minimum allowable
evolution time, we expect the scaling behavior of the system
to be similar. The scaling behavior is approximately linear
for these system parameters, though it will ultimately be re-
stricted by the decoherence time of the system. This could be
improved with a stronger bias field or by bringing the donors
closer together.

At present, more detailed simulations of logic structures
such as those shown in Fig. 2 are required to demonstrate the
viability of classical processing using BDCA. Based on
simulations of incoherent adiabatic switching,26 we expect
the coherent control techniques discussed in Sec. VII to be
applicable to more complex logic structures.

X. APPLICATION TO SOLID-STATE QUANTUM
COMPUTING

The use of BDCA has a number of applications for solid-
state quantum computing, specifically silicon based architec-
tures. Lines of BDCA cells could be used to initialize charge
based qubits and provide an interface between the nanoscale
features of the qubits themselves and the microscale control
electronics. This would help to shield the qubits from the
decoherence effects of the surrounding support electronics.
The use of BDCA lines could also provide an on-chip path-
way to transfer classical information between nodes in a
solid-state implementation of a semiclassical or type-II quan-
tum computer.28

The adiabatic evolution discussed here could be applied to
many types of coherent systems based on quantum dots, not

just those based on buried donors. The adiabatic pathway
allows for fast switching and high fidelity with minimal re-
quirements on gate timing and accuracy and in this way is
similar to coherent transfer by adiabatic passage.29 The con-
struction of an array of coherent BDCA cells would also
provide a demonstration of the scalability of semiconductor
quantum computing schemes.

The advantages of using adiabatic evolutionsrather than
coherent oscillationsd to measure the decoherence properties
of a charge qubit has been investigated by Barrett and
Milburn.22 The use of BDCA cells for this type of experi-
ment has other advantages as well. A line of BDCA cells
arranged with a series of sensitive electrometers along its
length would enable the switching and decoherence proper-
ties of the system to be more accurately measured. As there
is more than one electron moving during a switching cycle,
the use of correlated measurements between all of the elec-
trometerssin the style of those used recently for detecting
single electron transfer within a double-dot structure30,31d
would provide a more accurate measurement than measuring
the movement of just one electron.

XI. CONCLUSION

The use of buried dopants has been investigated as a pos-
sible implementation of quantum-dot cellular automata, spe-
cifically for the case of phosphorous donors in silicon. The
time and energy scales for this system were investigated and
a model developed to describe the system evolution.

For operating temperatures of less than 1 K, the ground
state occupation was found to be approximately 100%. The
incoherent switching time for a BDCA cell was found to be
slow sof order microsecondsd compared to other QDCA ar-
chitectures due to the lack of a defined electron tunneling
pathway and poor coupling between cells. The use of coher-
ent evolution to provide fast and controllable switching of
BDCA cells was investigated for the case where quantum
coherence can be maintained throughout the switching pro-
cess. This was found to provide a fast and effective switching
mechanism with a cell of side length 15 nm having a coher-
ent switching time of 20 ps and a fidelity of greater than
99.95%.

The effects of dephasing on this process were investigated
and found to have minimal effect as long as the dephasing
time is approximately 10–100 times greater than the switch-
ing time. The scaling behavior of the system was investi-
gated for a simple line of cells and found to scale approxi-
mately linearly with the number of cells.
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FIG. 16. Scaling behavior oftadiab as a function of number of
donor pairs in a BDCA chain for various cell sizessRd. This gives
an estimate for the scaling of the minimum allowable evolution
time for high fidelity transfer.
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