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Quantum-dot cellular automata using buried dopants
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The use of buried dopants to construct quantum-dot cellular automata is investigated as an alternative to
conventional electronic devices for information transport and elementary computation. This provides a limit in
terms of miniaturization for this type of system as each potential well is formed by a single dopant atom. As
an example, phosphorous donors in silicon are found to have good energy level separation with incoherent
switching times of the order of microseconds. However, we also illustrate the possibility of ultrafast quantum
coherent switching via adiabatic evolution. The switching speeds are numerically calculated and found to be
tens of picoseconds or less for a single cell. The effect of decoherence is also simulated in the form of a
dephasing process and limits are estimated for operation with finite dephasing. The advantages and limitations
of this scheme over the more conventional quantum-dot based scheme are discussed. The use of a buried donor
cellular automata system is also discussed as an architecture for testing several aspects of buried donor based
guantum computing schemes.
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I. INTRODUCTION of microseconds. We also investigate an alternative ultrafast

The use of quantum systems to perform computing task&Picosecon#iswitching mechanism, namegoherentevolu-
is an area of continued interest, both in the context of fullytion between defined system eigenstates. This approach is
coherent quantum computers and the more general area gentral to the use of buried donors and is also applicable to
nanocomputing. Recently there has been much interest igoherent tunneling between quantum dots or superconduct-
producing an experimental analog of cellular automata at thég systems. This constitutes an alternative evolution mecha-
micro or even nanometer scaté This could provide an al- nism for QDCA schemes where coherence can be maintained
ternative architecture with which to build standard logiclong enough for the cell to be switched from one classical
gates and information channels, which have low dissipationstate to another without the need for long coherence times
and fewer control gates compared to conventional transistovhich are typically required for quantum computing applica-
based logic. Significant progress has been made in this aré@ns. The relevant time scales and appropriate pulsing se-
with the experimental demonstration of quantum-dot cellulaiquences with and without dephasing are discussed and the
automata(QDCA) cells constructed from aluminum quan- scaling behavior of the system is investigated.
tum dot$® and GaAs/AlGaAs heterostructurzRecently,
the operation of the functional components of a QDCA logic
gate has been demonstrated experimentalifis type of [l. QUANTUM-DOT CELLULAR AUTOMATA
system has also been investigated as a possible architecture

for quantum computing using QDCA qubitand more re- dots containing two mobile electrons which can move be-

cently as a candidate for a decoherence-free subSpace. tween the dots via tunnel junctions. The electrons tend to

In this paper we explore an alternative QDCA architecture : R L
. ) . . . : occupy diagonally opposite sites to minimize the energy due
using buried dopants in semiconductors, as this provides by diag Y opp 9y

. ) . fb the Coulombic interaction. These two groufma compu-
very strongly confined potential and well-characterized en- tiona) states are labeled zero and one, see Fig. 1, where

fergy Ievelts. A recent ptr_oposal _descri:es r;:charge-dbased ql.Jtt’ " indicates the position of the electrons. The next highest
S(i)lricoqnlfg’qluvrce ;:k(])cr)nv\? l':hlg'?thiusslcrr]gatge?]?pca%mbuesapp())line(zjrsto Igenergetic states are noncomputational states and ideally are
system of dopants arranged in the layout of a QDCA. We
refer to these structures as buried dopant cellular automata
(BDCA). Such a device could be fabricated by either direct
atomic placement:*3or ion-implantationt>'4Numerical es-
timates are given for the case of phosphorous donors in sili-
con but the concepts are generally applicable to other dop-
ants. This is of particular interest given the recent advances
in single dopant placement and cluster based charge transfer
experiments using phosphorous in silicén.

Conventional QDCA rely orincoherentevolution (gov-
erned by theT, relaxation time to mediate transitions be- FIG. 1. Two possible states for a basic QDCA cell where the 0
tween the logical states. For phosphorous donors in silicoand 1 states constitute the ground or “computational” states and “e”
we estimate this relaxation time and find it to be of the ordetabels the position of the electrons.

The simplest QDCA is a cell composed of four quantum
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FIG. 2. Layouts for a QDCA wirga) and inverter(b) which
demonstrate information transfer and binary inversion, respectively,
after Tougaw and LentRef. 1).
only transiently populated during correct operation. (b)

If two dots are placed next to each other, one cell influ-
ences the state of the other cell via capacitative coupling. In  FIG. 3. (&) The ground states of the buried donor BDCA cell
an array of cells, when the first cell is switched from onewhere the positions of the electrons “e” are designated by(Top
computational state to the other, the rest of the chain relaxe@nd bottom(B). These computational states are referred toT&s
to minimize the energy of the total system. The result of thisand[BT), and are assigned the logical values of 0 and 1, respec-
relaxation is to transfer the state information of the initial tively- (b) The excited or “noncomputational” states are lab¢Tet
cell along the chain without net electron flow and minimal and |BB), respectively, and correspond to the first excited state of
energy dissipation. The speed at which this switching occuré® system.
is governed by the incoherent tunneling rate of the junctions, X
the inverse of which is referred to as tfig or relaxation effective Bohr radiugag) and effective energyE*) of the
time. Classical information processing can be performed irdonor electron in terms of the effective mass of the donor
this scheme, as shown in Fig. 2 for a QDCA wire andelectron and the dielectric constant of the substrate,
inverter! It is also possible to realize nontrivial classical

. _ . . % rne
computation, such as a full-adder, using this sché&me. ag= eﬁa& (1)
Ill. BURIED DONORS AND THE HYDROGENIC . _ m* 1
APPROXIMATION B e 2)

The use of buried donors in a semiconductor matrix hasrpe advantage of this approach is that solving a hydrogenic
been discussed for charge-based quantum comptid®  system with a small number of electrons is more tractable
While the advantages of semiconductor fabrication and gatghan a full electron calculation of the phosphorous donor
control are well known, the fast dephasing and relaxationyithin a silicon lattice. These results also generalize to other
effects mean that charge-based quantum computing usinghallow donor systems. We will concentrate on phosphorous
buried donors is still technically difficult. On the other hand gonors in silicon and therefore quote the appropriate energy
the QDCA architecture is not as seriously affected byjeyels, where the conversion is 13.6 eV in a hydrogenic sys-
dephasing or relaxation, as the system is always in thgam s approximately equal to 20 meV for Si:P. The effective
ground state when it is measured. We will investigate thegohr radius of the phosphorous electron is approximately 3

possibility of using this concept for building QDCA based nm for an effective electron mass* =0.2m, and a dielectric
systems using phosphorous donors in sili¢giP), which  gonstante=11.7.

we term a BDCA. The basic idea is to construct an array of

four ionized donors which contains two “free” electrons,

thgrefore mimicking the. Iquut of a convgn_tiongl QDCA. IV. EEEECTIVE HAMILTONIAN

This also represents a limit in terms of miniaturization for

this form of nanocomputing as each potential well is created To provide a convenient formalism, we construct an ef-

by only one donor atom. fective Hamiltonian using the pseudospin approach to de-
In order to provide a model for the Si:P donor system, wescribe the BDCA system. By defining each pair of phosphor-

will use the effective mass or “hydrogenic” approximation in ous donors and their shared electron as a single pseudospin

which the outer shell electron of a phosphorous donor imbject we can define two states, t¢p) and bottom(B),

silicon can be treated as a hydrogen orbital with the energiewhich specify the position of the electron. Each BDCA cell

and distances scaled appropriately. A more complete treathen consists of a pair of these objects where the computa-

ment of effective mass theory for shallow donors is given bytional states ardTB)=|0) and |BT)=|1), respectively, as

Kohn” Equationg(1) and(2) give the scaling factors for the shown in Fig. a).
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In this way, the labeling for the noncomputational states is
|TT) and|BBY), as shown in Fig. @). Initially we will assume
that the electrons cannot move laterally so each electron it
bound to its particular donor pair, as indicated by the ellipses
in Fig. 3. This would correspond to a situation where the
direction of tunneling is controlled by confining potentials or
the geometry of the cell. A more complete justification for
this assumption is given later.

Once the position of the electrons is encoded using this,
pseudospin approach, an effective Hamiltonian can be devel '
oped using the Pauli spin representation,

Heit = €107 + €205 + A107 + Ay0% + 0105 + Iy o 0
+ Jzzaiaé + ‘]xza):I(.Oé + sza':zlo)z(v (3 1k

where the usual Pauli matrices are defined as 0 ', T T T T T
0 1 0 —i 1 0 10 20 30 40 50 60
o= , oY=, . o .
10 i 0 0 -1

Side Length R [nm]
The notationo; is used to refer to the matrix applied to the
ith donor pair and the coefficientsA, andJ are determined
as follows.
The true hydrogenic Hamiltonidh of the two electron/
four donor system is givefin scaled atomic unijsby

8
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FIG. 4. Energy difference between the grou(ig}y) and first
excited(Eg,) states of a square BDCA cell made up of phosphorous
donors in silicon. The energy difference is computed for various
donor separation§R) by numerically integrating the Schrodinger
equation. The points are full quantum mechanical calculations using
the LCAO approach and the solid line is the energy difference de-

PR— 1 1 1 1 1 1 1 termined analytically from simple electrostatic arguments, (B1.
H=-Vi-V5-2| —+ —+—+—+—+—+—
lMa Toa T Top Tic Tac Tid _ .
(2-V2)E* ag
+i—i>, (4) Bex=Bgs=—— 1 (6)
Foa T2

wherer;; is the separation between tité electron and the WhereR if the side length of the BDCA cell in nm arej
jth donor(j=a,b,c,d) andry, is the separation between the =3 nm,E*=20 meV are the effective Bohr radius and effec-
electrons. Numerically evaluating this Hamiltonian within tive ground state energy, respectively. This approximation is

the basis of four state§TB),|BT),|TT), and|BB)) enables found to be valid in the region where the electron wave func-
the elements of the matrix tions do not strongly overlap with each other but deviate

from the numerical results fdR=<10 nm.
Hij = (wi[H| )

) Assuming a Boltzmann distribution for the energy states
to be found. The elements of E(h) are then equated to the

at finite temperature, the occupation probabil(iBg,) of the

coefficients in Eq(3) to determine an effective Hamiltonian. €xcited state¢|TT) and|BB)) is given by
The basis of states is represented using a linear combination AE/KgT 7)
of atomic orbitalfLCAO). We use the antisymmetric spatial '

wave function for the K molecule as our basis wave func- whereEg—E,=AE>0 is the energy difference between the
tion. The spin-orbit coupling for donor electrons in silicon is ground and excited states. For a separation of 15 nm, we
known to be very smalif and therefore spin effects may be require an operating temperature<o8 K to achieve>99%
neglected as the spin and charge degrees of freedom are agcupation of the computational states. For an operating tem-
sumed to be separable at all times. The elements ofHq. perature of 100 mK, the occupancy of the computational
are then used to obtain estimates for the numerical coeffistates is approximately 100%.

Pex = e_

cients in the effective HamiltoniafH.¢) for a square BDCA
cell of side lengthr.

We estimate the energy differentg,,—Eyo) between the
excited (noncomputational and ground (computational

For the rest of the discussion, we will use the numerical
coefficients calculated for a square cell of side length 15 nm.
As this is equivalent to a cell size of approximately 5 Bohr
radii, the electrons can be said to be well localized and over-

states of one cell as a function of system size. This energhap effects are not significant. In order to simplify the situa-
gap gives an estimate of the temperature at which the systetion, we will also set thes™, 0*¢*, and o¥o¥ type terms to
must be operated to ensure that the noncomputational stateero and then reintroduce them later in a systematic fashion.
are not thermally excited. The energy difference for a rangd his corresponds to a situation where a surface gate potential
of separations is plotted in Fig. 4. The points are found usings used to control overlap of the electron wave functions and
the LCAO approach while the line is an approximation foundtherefore control the tunneling rate between donors. For
using electrostatic arguments based on the geometry of tHarge cells sizes, this is a good approximation to the physical
system and has the form situation as the tunneling rate without an applied barrier bias
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FIG. 5. Simplified layout of a BDCA chain, where the cell size 3 oof
is labeledR and the cell spacingS) is the distance between the 2 05l
center of neighboring cells. The symmetry and barrier surface gate:l%” 10
are used to perform switching and control the tunneling rate, re- A5
spectively. The circles represent the position of the donors. The 20l
position of the electrons “e” is shown for the ground state configu- “t
ration which corresponds to some nonzero bias on the control gate 2571
with the labeled polarity. The position of the electrons are measured 39
with single-electron transisto(SET). 35 . '1 : (') . ; . >

Symmetry Potential (E_) [meV]
will be very low. For small cell sizes there will be wave-
function overlap even without a barrier gate. In this case a FIG. 6. Eigenspectrum for a four donor cell as the symmetry
confining potential can be used to localize the electrons angotential(Eg) is swept from -2 to ZmeV) with no applied barrier
provide more control over the tunneling characteristicspotential(Eg=0).
Given these approximations, many of the terms in(Bgare
approximately zero and the only significant term f@r  sumption that when the separation is large enough tunneling
=15 nm isJ,,=1.21 meV which is due to the Coulombic only occurs between donor pairs and not along the BDCA

repulsion between the electrons. chain. The use of compensating gates could also be used to
confine the electrons and therefore prevent tunneling in un-
V. BDCA SWITCHING wanted directions.

The effect of these surface gates has been modeled as
To study how a BDCA cell would switch from one com- pureg* ando? terms in the Hamiltonian due to the symmetry
putational state to another, we consider the effect of controhf the system. We estimate the surface gate voltages to be
gates and nearby cells. We propose a structure where pairs ¢f0—1000 mV depending on the donor depth and the pres-
donors are positioned in a line with a surface “barrier” gateéence of an oxide barrier layer, based on estimated gate volt-
constructed between them which is used to control the tunages for Charge_qubifglzj-Assuming arbitrary h|gh precision
neling rate between the pairs of donors. At the end of then donor placement, the barrier gate has an equal effect on
chain, “symmetry” gates allow the system to be switcheddonors on either side of the barrier and can be considered a
from one state to another, depending on the bias appliegyyre o* gate. The barrier gate would also indue¥™ and
Sensitive electrometers, such as single-electron transistogs ;v style coupling but this is expected to be small com-
(SET),?® are used to measure the position of the electron apared to thel,, and pures* coupling. In addition, the barrier
the other end of the chain. A diagram of this concept isgate can also have a negative bias applied to improve the
shown in Fig. 5. localization of the computational states during readout,
Most of the following section refers to a single BDCA cell though this is not directly modeled here. While the symmetry
made from two pairs of donors for simplicity, but the discus-gates would not be pure? (having some residuat* effect
sion applies equally to a long chain of donor pairs. The effectjye to wave-function overlaghis could also be compen-
of the barrier(B) and symmetry gatelsS) for this cell can be  sated for by using the barrier gate or additional compensation
included by adding terms to the effective Hamiltonian, Eq.gates.
(3), of the form In Fig. 6 the eigenspectrum for a single BDCA cell is
; plotted as a function of the symmetry gate poten(i&)) for
Es()o1 - Eg(t)(01 + o), ®) zero barrier gate potential. The computational st#f€s)
where the magnitude of the coefficieriEs andEg) are con-  and|BT)) are localized even for a very small symmetry po-
trolled by the voltages applied to the gates. tential. Also note that the two computational states are de-
The symmetry gates localize the system in one of the tw@enerate when there is no potential difference applied to the
computational states, based on the gate’s polarity. The volontrol gates, as expected.
ages applied to each symmetry gate have equal magnitude
but oppositg sign to ensure a symmetri_cal effect on the cha_in. VI. INCOHERENT SWITCHING
The barrier gate controls the tunneling rate between pairs
of donors by repelling or attracting the electron clouds. If If we allow the system to evolve via incoherent relaxation
there is a large enough separation between donors, the barrign direct analogy with the quantum-dot schemebe tran-
gate is required to allow tunneling by reducing the potentialsition from a high to a low energy eigenstate of the system is
barrier that the electron feels. This justifies our initial as-mediated by phonons in the lattice. For the moment we will
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ignore the effect of the barrier gate and assume the electrons IBB) 7y 2.03 meV
are well localized. This situation is valid over time scales
greater than the dephasing time of the donor wave function [,@
or where the barrier gate has a negative bias producing a o7
high potential barrier. To obtain an estimate for this rate, we ) 0-39 meV
assume that the electrons within a BDCA cell can relax in- FA(”T
dependently and we therefore use a similar approach to that [BT) -0.39 meV
used to estimate the relaxation rate for charge-qubits based | L |
on buried donorg??® Following the approach used by
Barrett and Milburd® and Bockelmann and Bastattiwe \ \
write the relaxation rate due to thermal phonons, IT8) -2.03 meV
64D2q[Ng(E, T,y + a][1 - sind;R)] FIG. 7. Energy level diagram for a single BDCA cell in the
[pn= > > , (9)  presence of a well-localized neighboring cell, where the cell size
mphegl(Girag)” + 4] R=15 nm and there is a cell spaciBg30 nm. The direct transition

where a=1 for emission and 0 for absorption of a phonon, (IBT)—|TB)) is suppressed as the interaction is phonon mediated
g is the wave number of a phonon with a magnitude equaﬂ‘d must therefore proceed via single-elect_ron transitions. The two
to the energy difference between the Ste(tq$f|=E/ﬁCS), R (fII’St' orde) decay path; from one computfa.tlonal state to the other
is the separation between the donors ang{E,Tph) are |Ilustrat¢d_W|th their associated transition rates for absorption
=[exp(E/kgTpn) —1]7! is the Bose occupation function for a (A) and emissior(E).

bath of phonons at temperatufg,. We have ignored effects
due to coherent tunneling and used the following
parameter® for Si:P whereD=3.3 eV is the deformation
potential, p=2329 kg m?® is the density of siliconc,=9.0

ture of 3 K, the calculated relaxation ralgq,=1.1 MHz,
which gives a switching time of 0.2s. This is almost two
orders of magnitude slower than the estimated maximum
% 10° ms? is the speed of sound in silicon, ang=3 nm is switching rates of 90 MHz for Al/Al-oxide QDCA
structure$ at 70 mK. This is to be expected as there are no

the effective Bohr radius of the donor electron. defined | , in the buried d Th
To estimate the incoherent switching time, we calculate?€/N€d tunnel junctions in the buried donor case. The

the energy levels for a BDCA cefthe target cejlassuming  SWitching time is shown in Fig. 8 for a range of operating
that a neighboring cell is well-localized. In the incoherent!eMmperatures and _ceII siz¢R) with the spacing betV\_/een
limit, we can assume that each electron is well-localized and€ighboring cells given by the cell center-to-center distance

so the effect of the neighbor cell is to lift the degeneracy of>- 2R While the switching rate does vary with cell size, the
the computational states of the target cell. For a cell of sidé€mperature effects dominate in this regime as the system

lengthR=15 nm and cell spacing=30 nm, a well-localized requirgs enough thermal energy to mediate th_e t\{vo—eilectron
neighbor induces an energy splitting of 1.64 meV betweeriransition. At higher temperatures, faster SW|tch_|ng is ex-
the computational states of the target cell. This is calculate§€Cted but the occupation of the ground state is reduced,
using the difference in electrostatic repulsion between th&ccording to Eq(7), resulting in an overall loss of fidelity.
target cell and its neighbor. The splitting caused by the
neighboring cell can be modeled as a bias on the symmetn
gate of the target cell. In this case the equivalent symmetry
gate bias isEg=0.82 meV. The resulting energy levels can 100 |
be read from Fig. 6. Using these energy levels we can cal- ;
culate the relaxation rate from the first excited state to the
ground statg|BT)—|TB)) and estimate the switching time
of the system. Relaxation in this system is phonon mediatecE 1o | .
and therefore acts on each electron separately. This mears, T=2K ]
the direct transition from statiBT) to state|TB) is sup- [
pressed and instead the system must relax via a cotunneling \\

e [u

T

chin

(two electron process which requires absorption and emis-% 41 T=aK i
sion of phonons to reach the ground state. The two possible¢ ; T=4K ]
(first orde) decay paths are illustrated in Fig. 7 for the en- \/
ergy levels corresponding to a symmetry potential of 0.82 : I=3k 1
meV. 01 i 1 i 1 " ] " 1

To estimate the total relaxation rate, we add the cotunnel- 10 20 30 40 50 60
ing rategC for the two possible paths, Cell Size (R) [nm]

ot = F(Al)rle)ﬁ FSAZ)F(Ez)h (10) FIG. 8. Incoherent switching time calculated for a range of cell

sizes(R) with the spacing between the neighboring cells given by

the cell center-to-center distan8e2R. Higher operating tempera-
Wherel“fiizz) are defined in Fig. 7 anB is the energy of the tures result in faster switching times but also result in higher excited
|k)th state. For these energy levels and an operating temperstate populations, reducing the overall readout fidelity.

|Eqrry~Egnl  |Ege — Epnl’
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FIG. 10. The symmetryEg) and splitting(Eg) potentials which
are applied to the system to achieve adiabatic evolution, whése
the time over which the pulse is applied and the standard deviation
of the pulses(o) is set toty/6. Byayx and Sy are the maximum

) o . . barrier and symmetry potentials and are used to control the amount
While the switching time is slow compared to modern ot yynneling and localization, respectively.

microelectronics, it does demonstrate that if the system is

initially set up in some excited state it will decay to the ' .
ground state. This process could be used to intialize the sys- The energy gap between the ground and first excited state

- allows adiabatic evolution to be used to shift the population
tem in a known state. from one computational state to the other, provided that the
adiabatic criteria are satisfied. The adiabatic criteria can be

FIG. 9. Eigenspectrum for a four donor cell as the symmetry
potential(Eg) is swept from -2 to ZmeV) with an applied barrier
potential(Eg) of 1.2 meV.

VII. COHERENT SWITCHING stated &%
An alternative to thancoherentswitching is to use the JH
high tunneling rates of charge-based quantum-computing € m g

schemes to perforrmoherentswitching of the BDCA chain. 5
As we have relatively strong coupling between electrons in (e[H|e) - (glH|g)|
this system, we can consider adiabqtic evolution as a mechgshere lg) and |e) are the ground and first excited states,
ms_m_tq switch from one_computatlonal state tq the,Oth‘?rrespectively. The pulse scheme given in Fig. 10 can be ap-
This is in exact analogy with the technique of rapid adiabatiqyjieq in order to achieve the energy level splitting while still
passage for electromagnetically induced population transfetnsyring the computational states are highly populated for
of atoms and molecule8. While this method has similar yeadout. This involves applying a Gaussian pulse to the bar-
advanta%es to the adiabatic switching discussed by Lent angh; gate while simultaneously switching the control gates
Tougaw?® the method discussed here is entirely coherent angtom gne polarity to the other. The following functions were
therefpre does not re_Iy on dissipation to ensure the groungsed for the barrier and symmetry gate potentials:
state is always occupied. )

The effect of the barrier potential on the eigenspectrum of Eq(0) =B exp{— (t- tE[Z) ] (12)
a BDCA cell is shown in Fig. 9, this time with an applied B max 20 |’
barrier potential of 1.2 meV. The effect of this is to lower the
barrier within each donor pair, delocalizing the electron and t—t,/2
increasing the coupling between the donors. For a barrier Es(t)zsﬂaxerf{_(_apl_)}’ 13

. . \Nzo

potential of 1.2 meV there is now an energy gap between the
ground and first excited states at the point of zero symmetryheret, is the total time over which the pulse sequence is
potential. At this point the eigenstates include contributionsapplied ando is the standard deviation of the pulse, which
from all four basis states, not just the computational stateswas set tor=t,/6. By, and Sy, are the maximum barrier

When Eg=S,.x and Eg=1.2 meV the computational and symmetry potentials, respectively.
ground state population has been reduced to 8@8mpared The resulting eigenspectrum is shown for this pulse se-
to without barrier gate induced coupling between the doquence in Fig. 11 as a fraction of the pulse titge The
norg. For example, wherEg=—2 meV the lowest energy degeneracy of the first two states is lifted but the computa-
eigenstate is  0.39T)+0.89TB)+0.14BT)+0.17BB),  tional states are still strongly populaté#99.999% before
whereas forEg=2 meV it is 0.17TT)+0.14TB)+0.89BT)  and after the application of the pulse schemeEgs-0 att
+0.39BB) when written out in the position basis. =0 andt=t,.

<1, (11)
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FIG. 11. Eigenspectrum for a four donor cell as the pulse
scheme given in Eq912) and (13) is applied to the barrier and
symmetry gates, respectively, wher§,,,=2 meV and By
=1.2 meV.

FIG. 12. (Color online Population of states as a function of
time showing complete population transfer from the s{a@) to
state|BT) while only transiently populating the noncomputational
states(|BB) and|TT)). The time over which the pulse sequence is

applied ist,=100 ps and the effects of decoherence are ignored.
VIIl. TIME DEPENDENT BEHAVIOR AND THE EFFECT

OF DEPHASING .

L[p]=T"[p - diagp)]. (15

As we are only considering a relatively small basis of

states, we solve the density matrix master equation(Ef,  Figure 14 shows the probability of successful transfer from
to study the time dependence of the system including decane computational state to the other as a function of total

herence. The equation of motion is pulse time and dephasing timB. The region of=99%
_ transfer is enclosed by the dotted contour line on the plot.
L The region in the top right corner corresponds to the system
p= g[H'P] +Llpl, (14) dephasing faster than it is being switched, resulting in a loss

of fidelity. The final state in this region is a uniform mixture

where the Liouvillian(L[p]) describes the decoherence of
the system. Integrating Eq14) in the limit of no decoher- 1.0

ence (L[p]=0) gives the pure state of the system as it

evolves over time. Figure 12 shows the state population for
the pulse sequence given in Sec. VII over a pulse tige 08|
=100 ps. The system is initially ifTB) and is then adiabati-
cally switched to|BT) while only transiently occupying the

c
o
noncomputational states. € 06| .
To determine the fidelity of transfer, we plot the final §
occupation probability of each state as a function of total &
pulse time(t,) assuming we start in staf€B), Fig. 13. Three @ o4} -
[v]
[N

distinct regions can be identified. For pulse times of less tharg
0.1 ps, the pulse sequence is applied too quickly for the
system to evolve, which is to be expected as the pulse time it o2}
much less than the tunneling rates of the system. Pulse time
of greater than 20 ps satisfy the adiabatic criteria, @4),

and the system moves smoothly from one computational o.0 i — PR
state to the other with a fidelity c99.95%. Between these 01 ! 10
regions we see that after switching the noncomputational Total Pulse Time (ip) [ps]

states are occupied with varying prObabllltleS.' FIG. 13. (Color onling Final population of states as a function

T(_) study the effects of decoherence, we |ntrod|.ﬂﬁp] of total pulse time(ty), ignoring the effects of decoherence. High
#0 in Eq. (14). As we have shown that the relaxation rate figejity transfer (=99.95% between computational states is ob-
(1/Ty) due to phonons is expected to be of the order ofserved for pulse times greater than 20 ps. For pulse times of less
microseconds, we will only consider a phenomenologicakhan 0.1 ps the system does not have time to evolve from its initial
I',=1/T, (pure dephasingate. We model this as a decay of state. Between these times, the noncomputational states are partially
the off-diagonal terms of the density matrix, occupied.
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10" 1.7 71 1 T T T T T T v 1T T
108 Fit Equation:
10" los Bmax=A*exp(-N/n)+B0
{07 16 BO 1.32 :0.01[meV] | |
" A 0.49 :0.01 [meV]
10 {0.6 . n 42 :02
— >
‘Tm g
= = 15
10" E m  Calculated
o Exponential Fit
10
10 14| i
10’
10°
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FIG. 14. (Color online Probability of successful transfer as a Number of donor pairs (N)

function of both total pulse time and dephasing time. The region of

=99% successful transfer is enclosed by the dotted contour line in  FIG. 15. Scaling behavior for the maximum barrier coupling

the bottom right corner. (Bmax Which can be applied while still maintaining the minimum
energy gap at the center of the eigenspectiiiine degeneracy

of the computational and noncomputational states point). Bax is calculated for increasing numbers of donors pairs
: and then fitted to an exponential function.

From Fig. 14 we see that even with finite dephasing, there
is a window within which coherent transfer can still occur. N . )
For dephasing of 500 ps and a total pulse time of 20 ps, Rositioned at the center of the eigenspect(ig. 11) where

transfer probability of>99% can be achieved. Es=0. This puts a limit on the maximum barrier coupling
(Bmax Which can be applied in order to introduce an energy
IX. SCALABILITY OF THE BURIED DONOR SCHEME gap. Figure 15 shows the maximum couplif®},,) which
The buried donor scheme can be scaled by adding mOI%tlll maintains the minimum energy gap at the center of the

pairs of donors in a similar fashion to that used for theelgenspectr.um. . . .
quantum-dot system to form a line of cells. The incoherent Th_e sc;almg behavior of the maximum allowable barrier
switching time for a line of cells is predicted to scale ap-COUpIIng Is fitted to an exponential decay,

proximately linearly based on simulations of quantum-dot By~ 0.49 exgi— N/4.2) + 1.32, (17)
systemg® To compare this to the scaling of the coherent 2

scheme discussed in Sec. VII, we estimate the time to adiawhereN is the number of donor pairs arg},., is the maxi-
batically switch a chain of buried-donor cells. As shown inmum barrier coupling in meV.

Fig. 5, this configuration involves a “strip” barrier gate run-  The exact behavior of the system for large numbers of
ning the length of the chain and a pair of symmetry gates atlonors is computationally expensive to calculate. We can
one end. The switching of the chain is achieved by applyingbtain an estimate for the minimum pulse tirttg) which

the same pulse sequence given earlier, Efd.and(13), to  still provides high fidelity(=99.95%) transfer by observing
coherently follow the adiabatic path from one computationalthe scaling of the adiabatic time,

state to the other. This is incorporated into an effective

Hamiltonian of the form _ 6\2Sy(€elo?|g)
adiab= K= = 12 (18)
N-1 N |Egad

N
Hert = Es(t)o? + EB(t)E o+ ‘JZZE oloh, (16 with increasing number of donor pairs, whetés a scaling

constant used to compare the minimum evolution time with

whereN is the number of donor pairs. The interaction termthe previous calculations. This equation is derived by assum-
Jz7 is approximated using Ed6) where J,,=(Es—Eg9)/2  ing that the adiabatic criteria, E¢L1), must be less than X/
for a given cell sizeR. This model assumes that the entire to achieve adiabatic evolution and noting that the time de-
chain forms a pure state throughout the transfer, which mugivative of Eq.(8) simplifies considerably at the degeneracy
be performed within the dephasing time of the system. In thigoint (the center of the eigenspectrum, Fig).14t this point
case the minimum evolution time will increase with the num-the majority of the Hamiltonian is constant in time and the
ber of donor pairs and is controlled by the scaling behaviotime derivative of the symmetry bias, E(L3), gives the
of the energy gap between the ground state and the firstumerical prefactors of Eq18). We usex=20 ps as this is
excited state. The energy gap is limited by the height of théhe required pulse time to achiewe99.95% fidelity when
potential barrier the electron sees which is controlledcgy  switching a single cell comprised of two donor pairs with a

To simplify the analysis we will ignore decoherence andcell size of R=15 nm. Figure 16 shows,gi,, for up to 12
only consider situations where the minimum energy gap iglonor pairs(6 QDCA cellg calculated by diagonalizing the
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600 — T — T — T T just those based on buried donors. The adiabatic pathway
) allows for fast switching and high fidelity with minimal re-
500 | 2 R=15nm A q'uir.ements on gate timing and accuracy and in this way is
e R=30nm A similar to coherent transfer by adiabatic pass®gehe con-
A R=50 nm N ] struction of an array of coherent BDCA cells would also
400 |- ] provide a demonstration of the scalability of semiconductor
! quantum computing schemes.
A . The advantages of using adiabatic evolutioather than

A ° coherent oscillationsto measure the decoherence properties
A ° ] of a charge qubit has been investigated by Barrett and
200 - a . . Milburn.?? The use of BDCA cells for this type of experi-
® L ment has other advantages as well. A line of BDCA cells
100 L N . . arranged with a series of sensitive electrometers along its
s " length would enable the switching and decoherence proper-
] ties of the system to be more accurately measured. As there
is more than one electron moving during a switching cycle,
the use of correlated measurements between all of the elec-
trometers(in the style of those used recently for detecting

FIG. 16. Scaling behavior df,qas a function of number of  Single electron transfer within a double-dot structt#®

donor pairs in a BDCA chain for various cell size®). This gives ~ Wwould provide a more accurate measurement than measuring
an estimate for the scaling of the minimum allowable evolutionthe movement of just one electron.
time for high fidelity transfer.

t-d'-b [ps]
w
(=]
(=]
L
1

>
®
n

1 M 1 M 1 L 1
6 8 10 12
Number of Donor Pairs (N)

N HEe b
~F-m @

effective Hamiltonian of the system, E{L6), for several XI. CONCLUSION

different cell sizes. As the cell size is increased, the Coupiing The use Of buried dopants has been investigated as a pos-
between pairs of donors is reduced and so the minimungjbje implementation of quantum-dot cellular automata, spe-
switching time increases. cifically for the case of phosphorous donors in silicon. The
While tagiap may underestimate the minimum allowable time and energy scales for this system were investigated and
evolution time, we expect the scaling behavior of the systeny model developed to describe the system evolution.
to be similar. The scaling behavior is approximately linear Eqr operating temperatures of less than 1 K, the ground
for these system parameters, though it will ultimately be restate occupation was found to be approximately 100%. The
stricted by the decoherence time of the system. This could bgcoherent switching time for a BDCA cell was found to be
improved with a Stronger bias field or by bringing the donorSSk)W (Of order microsecond&ompared to other QDCA ar-
closer together. chitectures due to the lack of a defined electron tunneling
At present, more detailed simulations of |OgiC StructureSpathway and poor Coup“ng between Ce"s_ The use of Coher-
such as those shown in Fig. 2 are required to demonstrate tht evolution to provide fast and controllable switching of
viability of classical processing using BDCA. Based onBpCA cells was investigated for the case where quantum
simulations of incoherent adiabatic switchitfgwe expect coherence can be maintained throughout the switching pro-
the coherent control techniques discussed in Sec. VIl to bgess. This was found to provide a fast and effective switching

applicable to more complex logic structures. mechanism with a cell of side length 15 nm having a coher-
ent switching time of 20 ps and a fidelity of greater than
X. APPLICATION TO SOLID-STATE QUANTUM 99.95%.
COMPUTING The effects of dephasing on this process were investigated

and found to have minimal effect as long as the dephasing

The use of BDCA hgs a num'b.er of a'p.phcatlons for SOi'd'time is approximately 10—100 times greater than the switch-
state quantum computing, specifically silicon based architec

, o ing time. The scaling behavior of the system was investi-
tures. L|ne_s of BDCA c_ells coyld be used to initialize charge ated for a simple line of cells and found to scale approxi-
based qubits and provide an interface between the nanoscaie : .

. ) ately linearly with the number of cells.

features of the qubits themselves and the microscale control
electronics. This would help to shield the qubits from the
decoherence effects of the surrounding support electronics. ACKNOWLEDGMENTS
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way to transfer classical information between nodes in a This work was supported in part by the Australian Re-
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