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We present a variational solution of tilematrix integral equation within a local approximation. This
solution provides a simple form for thé matrix similar to Hubbard models but with the local interaction
depending on momentum and frequency. By examining the ladder diagrams for irreducible polarizability, a
connection between this interaction and the local-field factor is established. Based on the obtained solution, a
form for the T-matrix contribution to the electron self-energy in addition to @& term is proposed. In the
case of the electron-hole multiple scattering, this form allows one to avoid double counting.
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I. INTRODUCTION theory, the dynamical factdj(q, w) is linked to the XC ker-
nel fyc(q,w). The latter plays the role of the time-dependent
As aresult of the first cycle of an iterative solution of the (TD) XC interaction in addition to the Coulomb repulsiogn

Hedin equations,the commonly used3W approximation  As a result, the response functi®can be written &%
(GWA) models the electron self-energy as the prodict

=iGgW, of a noninteracting Green functioB, and a dy- R(q) = P(q) + P(q)vc(|a))R(q), (1)
namically screened Coulomb interacti@v obtained within ) ) T !

the random phase approximatiéRPA). The GWA that de- v_vhere the irreducible polarizability is defined by the equa-
scribes the long-range screening well has been successful‘i?n

applied to a broad spectrum of materials where the interac- o0 0

tion is not too strong and screening effects dominate. How- P(@) =P+ PQ)Txc(@P@). 2

ever, the GWA encounters d|ff|CU|t|dﬁrSt of all in its de- Here and in the fo”owing we use the four-momentum vari-

scription of the satellite structurén the case of systems with gple g as a shorthand fofq, w). In Eq. (2) P° is the RPA

localized states where short-range interaction prevaiRor irreducible polarizability andyc(q)=-v.(|a))G(q).

such systems, one has to use a theory beyond the GWA. This |, order to derive Eq(2) from the Hedin equation for the

theory can be based on both an improvement of the RPA t@,equcible polarizability

get a more realistic screening picture and an inclusion into

calculations of the electron self-energy of the higher-order 2i

terms in the screened interaction. P(q)=- (2 J dkGK)G(k-q)A(k,q), 3
The first attempt to improve the RPA by including the 7

effects of the exchange-correlatidC) hole is well known  where G(k) is the Green function and(k,q) is the vertex

to have been undertaken by Hubbardho introduced the  fynction1® the latter must depend ame four-momenturmy

so-called local-field factor. The concept of the latter is thatonly (see, e.g., Refs. 14 and)15.e.,

all corrections to the RPA can be formally reduced to it.

However, the Hubbard local-field fact@i(q) includes the 1

frequency-independent exchange hole correction only. Dia- Alkg)=— 0( ()’

: ; . 1 -fxc(@)P™()

grammatically suclg(q) can be exactly derived by summing

the ladder diagrams for irreducible polarizability wittan- ~ which finally leads toP(q)=P%(q)A(q).

tactinteraction and noninteracting Green functigsee, e.g., Diagrammatically such a form for the vertex function has

Ref. 5. In order to explicitly include into consideration the been obtained by Richardson and Ashcroft in Ref. 8, using a

full static XC hole around the screening electron, Singwi local approximatiof® within a variational approach. They

al.% have obtained more sophisticated expressiondiar) have summed an infinite number of self-energy, exchange,

which contains the equilibrium static pair-correlation and fluctuation terms in the diagrammatic expansion ofin

function/ Further essential improvements in the derivationcontrast to the Hubbard(q), the local-field factor derived

of the local-field factor have recently been done by differentby this summation is a dynamical one.

authors(see, e.g., Refs. 8—1Qvho have studied the fre- The representatiof#) of the vertex function allows one to

quency dependence of the XC hole. include vertex corrections into the calculation of the electron
The concept of the local-field factor has taken on a newself-energy(see, e.g., Refs. 5, 15, and)1Thus, the concept

physical meaning in time-dependent density-functionalof the local-field factor suggested by Hubbard considerably

theory (TDDFT).!! In the TDDFT within linear response simplifies a problem of vertex corrections calculations in nu-

(4)
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merical applications and transfers all weight of the problem 1ennnnne?
to calculations of the local-field factéor XC kerne) for real )
systems. 1 7 2 oA AC

Fundamentally distinct way to go beyond the GWA is
based on the use of tiematrix*®1° The T-matrix approxi- f r
mation (TMA) originally was established to study strongly /
correlated fermion systems with short-range interaction and3
is strictly valid in the limit of an almost filled or, because of %
particle-hole symmetry, an almost empty b&ké! This ap-  (a
proximation allows one to include processes involving mul-
tiple scattering between two electrons or two holes. This fact 1 2
makes the TMA capable of describing a satellite structure, |
for example, in N£%22-24However, these calculations were 1
performed using either a statically screened model

interactio* or the Hubbard parametés within Hubbard
models?®-22In the latter, theT matrix in momentum space

W =
F N V]
—

N

i~

LFy)
r<

S
(¥}
Q
»

L =
F N V]
-

777

N

depends only omne four-momentunias well as the vertex 3 4
function (4) expressed in terms of the local-field fadtand %
schematically can be represented as (b) 3 4

U FIG. 1. Feynman diagrams faf’¢, (a) andT%", (b) in coordi-

T()=—""""—, (5) nate space. Th€ matrix is shown by the shaded square. The wiggly
1-UK(q) lines signify the dynamically screened Coulomb interactdrThe
solid lines with arrows represent the Green funct@&n
whereK(q) is the Fourier transform of the product of two
Green functions. In contrast to E@), an object of principal II. T MATRIX
concern here is thiocal interactionU.

Heuristically combining the simplification of Hubbard

models, theT-matrix formalism of Ref. 24, and aontact
interactionWW=W(r,r’;w=0)8r-r’) as in Ref. 25, &GW
+T matrix approach has recently been developed in Ref. 2
This approach has effectively been applied to an excite
electron lifetime in ferromagnetic Fe and Ni. In fact, com- - 122426 : .
paring with the Hubbard models, one can find that the mod %Ip%t.er equatidd (Feynman diagrams are shown in
short-range interactiotd in the method of Ref. 26 is re- e
placed by the statically screened Coulomb interaction T (1 23 4)=W(1,28(1-235(2-4)
Wo(q,w=0). The possibility of such replacement was re- 7
cently suggested by several auth#$22°Additionally, the
importance of frequency dependence of the Hubhardas
been demonstrated in Ref. 29.

The motivation of this work is to find a way that allows us X Ty (1,2'3,9), (6)

to get the same result as the Hubbard model simplification . . . .
for the T-matrix which is free of model parameters and with whereW is the dynamically screened Coulomb interaction

the momentum- and frequency-dependent local screened iﬁ‘nd‘r labels the spina can be specified ase in the case

teraction. In order to accomplish this, we employ a varia—Of ”_“““P'e scattering petween two electrons or holes and as
tional metho@3to solve the Bethe-Salpeter equation for thee“h in the case of maultl_ple scattering between an electrt_)n and
T matrix within a local approximation. As a result, tie & hole. The kernek_, , is the product of the Green functions
matrix depends only on one four-dimensional wave vectorGs(1,2):
such as the vertex function expressed in terms of the local-

In this section we present mathematical expressions
which lead to a simple form for th€ matrix depending on a
four-momentum only. We start from tllematrix as an object

hich will help us in our treatment of the ladder diagrams
%é/oth for the irreducible polarizability and for the electron
elf-energyX. The matrix is defined by the following Bethe-

+W(1,2) f d1'd2'K® ,(1,21',2")

KE(1,21",2') =iG,(1,1)G,(2,2),

field factor.
The paper is organized as follows. In Sec. Il, we construct
variational functionals and obtain from the vanishing of their Ki:r(1,2|1',2') =iG,(1,1)G,.(2',2).

variational derivative a solution of th&-matrix integral

equation. In order to connect this solution with the results We have used the shorthand notatioa (t,,t;). As in the
known from the literature, in Sec. Ill we sum the exchangemajority of practical scheme#ncluding the commonly used
terms in the diagrammatic expansion of the irreducible polocal-density approximation schemesve suggest for sim-
larizability by using theT matrix obtained. In Sec. IV we plicity that the system considered has properties of a homo-
derive basic formulas for the electron self-energy beyond thgeneous system. As a result, thanatrix (6) in momentum
GWA. Finally, the conclusions are given in Sec. V. space has the forth
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\ KU‘(r’,Q(k) = (2 )4G (Q -+ )GU’(k) (10)
P p and
A\ a -
— e ®%,,(0,kQ) = 8(q-K) ~W(xq F Kk, o(£3Q 7 K),
/Ps (11)
p7 \{)4 one derives from the starting equati(8) the relation

fqu’iar(qyk:Q)Figr(k,qﬂQ) =Wq¥q). (12

The integral Eq(12) can also be obtained from the van-
ishing of a functional derivative
OFG,W,I']
P2 cA Yo’ — ., =0, (13

\\p1 P ’/ oy,(a,9',Q)

+ whereF, a functional of three independent variabf@sW,

/Pa P4\\ ﬁ andT’, is given by
p7 \ / FG,W,T]

ps P4 1
FIG. 2. Feynman diagrams féi, (a) andI‘;h, (b) in momen-
tum space. x{f dp®? (k,p,QT% . (p,a',Q) — 2W(xk F q')}
ngf(plv P2lP3,Ps) = (277)4FZU,(p1, P2|P3, Pa)
Xo[prxpy=(psxp)].  (7)

In the notations, we use the upper sign for the and the

@
)
N

XKS Q( -Q¥q ) (14)

Taking a trial solution in the spirit of the local approximation

lower sign for thee-h case. Thes-function in Eq.(7) reflects of Ref. 8
the conservation of total four-momentum in a homogeneous @ ;A T
system and r;,.(a,9,Q=I.(Q), (15)
« we find that
¢ . (P1, P2l Ps. Pa)
= W(x )+ f dkWK)G,(py T KIGy(py + K) [N (o) Wou (O (16)
= +p; + +— + + oo’ = ~ !
P1+ P3 (2m)° P1 P2 1-% L (QK®.(Q)
XI5, (py Ko+ Klpa, Pa). ®  where

Feynman diagrams fdr? , are shown in Fig. 2. It is conve-

[o% _ a
nient to introduce the total center-of-mass wave vector and Ko’o”(Q) - f dew',Q(p)’
the relative wave vectofs

Q=p1tP,=Pst Py 4=5(PLF P2, ' =35(Ps T Py). W Q) =[K® L (QT M (QIK”,(Q] ™,

In terms of these new variables the functiBﬁU, from
Eq. (8) can be cast into the form given by

M7, (Q) = J dqdpey, o(@W(A -~ p) Ky, o(P).
r,(a9,Q

Thus, we have obtained tiematrix as a function of the
e (1 1 1 o1 total center-of-mass wave vectQronly. Comparing Eq(16)
=T, EQ +tq EQ + Q|§Q+ q.* EQ +q ). with Eq. (5), one can see that instead of the Hubbard param-
9 eterU we have a momentum- and frequency dependent local
( mteractmnW ,(Q). The structure 011““ - In terms of this
Defining local |nteract|on is schematically |Ilustrated in Fig. 3.
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FIG. 3. A diagrammatic representation of the trial solution
I'? (Q), Eq. (16), shown for thee-e (up-directed arrow on the

right-hand part of the bubbllﬁiﬂ,) ande-h (down-directed arroyv
cases.

Ill. IRREDUCIBLE POLARIZABILITY

We will show here that th& matrix (16) produces the
irreducible polarizability in the form of Eq(2) with the
local-field factor existing in the literature. Actually, the

matrix allows one to sum the all-order exchange diagrams in

the irreducible polarizability diagrammatic expansicorre-
sponding Feynman diagrams are shown in Fig. 4

P(1,2 =P%1,2) + >, f d3d4d5d6G,(1,3)G,(4,1)

X T¢N(3,45,6)G,(2,6)G,(5,2). (17)

In momentum space, we have
P(p)=-2> f dkdwiﬁ?,p(k){ sk-q)

1 1
+ Ff;'l(k toPatop, p) Kf;'lp(q)} . (19

By substituting thel matrix (16) into Eq.(18) one obtain¥

1 1
3y 4
c cr—l—cn/ro-
.

2 2

FIG. 4. Feynman diagrams for the irreducible polarizabifitin
coordinate space. The RPA bublén the lefj and the ladder dia-
grams(on the righj expressed in terms of th€ matrix (shaded
square are represented here.
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2 2
1
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3 3
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1 2
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(b)

FIG. 5. Feynman diagrams for the dirgded and exchangéb)
terms of the electron self-energy.

P(p) = - >, KE(p)[1 -WE(p)KE ()] .

o

(19

As a result, knowing thaPO(Q):—E(,Kf;E(Q), in the local
approximation the irreducible polarizabiliti(q) for para-
magnetic systems has the following familiar foffn:

P(p) = PUAP)A(p) = PU(P)[1 +u(@)G(p)PUP)™ (20)

with the local-field factor g(p):\7\/€‘h(p)/200(p), where

Weh(p) =13 WeN(p). This factor and the exchange part of
the local-field factor of Ref. 8 are formally the same.
Next, we naotice that, by representing the local interaction

as \7\Ph:vcl?:, the local-field factor can be expressed in
terms of the RPA dielectric response functiefe1-vP°
and the first order correctioteV=p.3,M" to £° as

oo

1, As®
28 [1-ooF (21)

A similar expression for the imaginary part gfq) and with

the longitudinal Lindhard dielectric function instead &ff
was obtained in Ref. 9, wheras? contains the leading
corrections to the RPA calculated within the model of the
homogeneous electron gas.A&0, the factor21) is akin to

the static local-field factor which has been calculated and
parametrized in Ref. 27.

Thus, in thee-h case, we have the transparent connection
between the obtained local interaction and the exchange part
of the local-field factor arising from the first order W
exchange irreducible polarizability diagram. In this sense,

the interaction\e™ agrees conceptually with the XC kernel
considered in Ref. 35.

IV. SELF-ENERGY

In this section we show how the electron self-energy and
the T matrix (16) are related. As is knowt,2425the electron
self-energy obtained from th& matrix consists of a direct
term and an exchange ofieeynman diagrams are shown in
Fig. 5. The direct term
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FIG. 6. Four redundant diagrams originated from TR& matrix
(left column) and from theT®" matrix (right column.

39(1,39 =-i>, f d2d4{G,(4,2TS%.(1,23,4)

+G (2,750 (1,23,4)} (22)

hase-e ande-h contributions, while the exchange term
3%(2,3 =i f d1d4G,(4,)To(1,23,4) (23

is defined by the spin-diagonal part of tm&® matrix only.
The Fourier transform of these terms leads to

$4(p) = (2;)@ f dkG, (K
S
and
sip)= o [ akeytors 222K ek 29

correspondingly. It is obvious from Eq&4) and (25) that
with the T matrix of Eq. (16) the exchange term and the
spin-diagonal part of the-e contribution in the direct term

PHYSICAL REVIEW B 71, 115104(2005
T80 (0 =TS (OIKE (W, (W .

On retaining the second order \Wjj item in 75, we
provide, thereby, the cancellation of the spin-diagoea
part of 24(p) and3*(p). Thus, additionally to th&W term,
we obtain as al matrix contribution to the electron self-
energy the following:

i
(2m)*
+ 2 G (TN (p- k).

o

3o(p)=- f dk{G_,(KT55(p+Kk)

(26)

Now we have only one term

i
(2m)*

Si(p)=- f AKG (K~ PWES (K (WS, k),

which should be excluded from thE&-matrix contribution
(26). As a result, the electron self-energy can be expressed as
3,=38W+3 -3’ The lastitem is an analog of the so-called
double counting terr®?* In contrast to Ref. 26, such item is
present at the-e contribution only.

Employing the established connection betwez’/ﬁh(q)
andG(q), one can, in principle, evaluate tA&"-matrix con-

tribution (26) (denoted a§Teh) to the self-energy, addition-
ally to the GW term, by using one of the local-field factors
existing in the literature. But at present it can be seemingly
done only for the homogeneous electron gas for which these
factors have been obtained and parametrized.

Here, in order to roughly estimate the magnitudéﬂffh,
we exploit the stati¢j(q) of Ref. 27. We have calculated the
imaginary part of the electron self-energy for two values of
the electron density corresponding to aluminidrg=2.07
and potassiunir,=4.86. Our results are shown in Fig. 7. It

. . e-h . .
follows from the figure that in generdl™  is essentially less
then 36V especially in the region where the decay due to
creation of plasmons prevails. However, in the vicinity of the
Fermi wave vector th@®"-matrix contribution amounts on
average to~50% (70%) in relation to theGW term for rg

are, in fact, identical except for a sign. As a result, as well a2 07(4.86). This fact says that the contribution in question

in the Hubbard models, these terms are canceled.

We notice here that, by substituting tAe matrix as a
solution of Eq.(12) into Egs.(24) and(25), one obtain¥ for
the direct term four lowest order diagrartshown in Fig. 6
which disagree with the solution of the Hedin equatidhis
order to avoid this problem, first of all, following Refs. 24
and 26, we merely separate the first order exchange (tien
GWA electron self-energy terlﬁff"") from others. Next, we
formally expand thel matrix (16) into series, put into con-
sideration a new valug_, containing the secontbr third

in the e-h case and higher order irVija, items, and connect
this value with theT matrix. This procedure yields

T2 (K) =TS8 (OKES (WSS (K),

can be important in calculations of the decay of excited elec-
trons whose initial energy is close to the Fermi energy. It is
clear from the insets in Fig. 7 that the multiple scattering
leads to shortening of the lifetime of such electrons. Note
also that the values of the rat®™ /36W become greater
when the electron density decreases.

V. CONCLUSIONS

In conclusion, we have presented a variational solution of
the Bethe-Salpeter equation which determinesTthmatrix
describing multiple scattering both between two electrons or
two holes and between an electron and a hole. The solution
has been obtained within a local approximation. The
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FIG. 7. The imaginary part of the electron
self-energy In2[|q|,e(q)] of the electron gas as
a function of momentumq| at rg=2.07 (alu-
minium) and rs=4.86 (potassium Im3%" and
Im ET&h are shown by dashed and dotted lines,
respectively. Solid line represents the sum of
these terms. Insets: the electron lifetimér the
corresponding values, versus the excitation en-
ergy E-Er. Dashedsolid) line showsr obtained
from Im W (Im[SCW+3T°")). &(q) is the free
electron energy andp (Er) is the Fermi wave
vector (energy.

lImz(lql.e(@))l (eV)
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