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Ground state of a two-dimensional quasiperiodic quantum antiferromagnet
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We consider the antiferromagnetic spin-1/2 Heisenberg model on a two-dimensional bipartite quasiperiodic
tiling. The broken symmetry ground state in this model is inhomogeneous, reflecting the fact that there are a
variety of local environments in such a structure. An important symmetry of the quasicrystal, namely that of
invariance under discrete scale transformations is used to define an approximate real space renormalization
scheme for the octagonal tiling. We solve for some of the fixed point properties of this quasiperiodic antifer-
romagnet. The ground state energy and local order parameters are calculated, and the results compare favorably
with numerical values obtained by quantum Monte Carlo calculation. Despite the novel features of the ground
state in this type of antiferromagnet, there are some interesting similarities with the well-known square lattice
antiferromagnet. The most striking of these is the proximity of the values of the ground state energies of these
two paradigms for two very dissimilar classes of solids.
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|. THE EXPERIMENTAL AND THEORETICAL mogeneous, with a structure that reflects both the multiplicity
BACKGROUND of local geometries that one finds in the quasicrystal as well

Magnetism in quasicrystals can be very complex, due t&S the heirarchical symmetry present in these systems. Figure
the extreme sensitivity to structural details, in such systemsl shows the results of a recent Monte Carlo study of a two-
of local moment amplitudes as well as of the interactions. Adimensional model of quantum spins on a quasiperiodic
considerable simplification of the problem is however posdiling.® The circles on the vertices have radii that depend on
sible for the recently studied rare-earth based quasiperiodihe value of the local staggered moment, a quantity that we
alloy ZnMgHo? The rare-earth based magnetic alloys reprewill define further below. The tiling considered is the eight-
sents a conceptually simpler system than the transition metébld symmetric octagonalAmmann-Beenker tiling,* in
alloy quasicrystals that were initially the object of experi- which sites can have six possible values of coordination
mental studies, since the magnetic moments are associatBdmberz. Sites were occupied bg:% spins, with uniform
with f-orbitals, and can be assumed in the first approximainteractions; ;=J>0 along the edges of the tiling. The sys-
tion to beindependenbf the local itinerant-electron density tem js bipartite, meaning that every spin belongs to one of
of states. _ _ _ ‘two sublattices and interactions couple only spins of different
cryg?ellfslsoftothbee Xﬁ\;‘gﬁt;ﬂyw'tv\t‘hgg ?ﬁél'ﬁfgerp;r?tng:gﬂggg"sublattices. Analogously to the spﬁﬁsquare lattice antifer-

' - .~ romagnet, which is now believed to have a ground state with
moments on the Mn atoms depend sensitively on detaile na ran rder. we expect that thi ineriodi tem
structural features due to thieorbital hybridization(see the ong range order, we expect hat this quasiperiodic system,

too, has a broken symmetry ground state with long range

review by Hippertet al. in Ref. 2. To add to the difficulties der. Classically. th J d havi
the early alloys were metastable quasicrystals of inferio2rder- Classically, the ground state corresponds to having op-

structural quality so that the role of disorder must be considPOSitely directed sublattice magnetizations, with no frustra-
ered in addition to the intrinsic behavior. Experimental re-tion, in the sense that all bonds can be “satisfied” simulta-

sults indicated a wide distribution of effective moments on
the Mn atoms, as well as of the interactions between these,

leading to a large number of unknown parameters in the — % —

phenomenological models describing such systems. From a N A N A A A

theoretical viewpoint, therefore, the rare earth system is [

clearly far simpler and it is this type of system that we will a

now focus upon. AN D N T4
ZnMgHo was shown to undergo a magnetic transition into A ~ LA

a magnetic state characterized by short range antiferromag-

netic correlations with quasiperiodic modulatibThe ex- VYN L o

perimental results lead naturally to the question of what DNy N N

properties one expects for the ground state of a quasicrystal

with short range antiferromagnetic interactions. An accept- T

able starting point for models of such systems could be, as N ¢4

for crystalline compounds, a Hamiltonian with short range D&

antiferromagnetic couplings between pairs of identical spins,

H=XJ;S.S. FIG. 1. Inhomogeneous ground state structure on the tiling. The

Recent work showed that the ground state of the two dicircles have sizes that depend on the strength of the local order
mensional quasiperiodic quantum antiferromagnet is inhoparameter.
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correspond to zero total spin since for the octagonal tiling,
the two sublattices are equivalent.

The inhomogeneous structure of the ground state seen in
Fig. 1 is the result of the environment dependence of quan-
tum fluctuations around the Néel state in the quasicrystal. E
This dependence on the local environment is one of the con-
sequences of the absence of translational invariance that
makes real space calculations so complex in the case of the
quasicrystal. In this paper we take an approach which allows
for an analytical albeit approximate treatment based on the
scale invariance of the quasiperiodic structure. The renormal-
ization transformation described here allows to calculate / \ ;

neously. In the quantum case, the ground state will 4 ;

some ground state properties of the quantum antiferromagnet
on the octagonal tiling. Although developed specifically for N
this particular geometry, the basic idea would be expected to N . o
hold for other inflation symmetric systems. Alternatively, by ~ FIG. 2. A portion of the octagonal t'“”g ShOW'”g the six differ-
generalizing one standard approach used for periodic solid§nt nearest neighbor environme#sB, .
one can try spin wave expansions suitably modified for this
inhomogeneous case. This has been carried out in a rececdnsidering isolated star-shaped clusters called Heisenberg
preprint® where a linear spin wave theory is defined andstars in Ref. 3. This provided a qualitative understanding of
solved numerically on finite size systems. the decrease of local staggered magnetizations as a function

Renormalization methods have been thus far primarily apef z, but for a more quantitative fit to the quantum Monte
plied to one-dimensional models. One-dimensional model€arlo (QMC) results, it is necessary to go beyond the iso-
to study the behavior of quantum spins on quasiperiodidated cluster approximation, and take into account longer
chains have been considered by several authors. Quanturange correlations. This can be done in a renormalization
spin chains have been analyzed using renormalizatiogroup (RG) calculation that uses an important symmetry of
scheme$® based on the inflation symmetry of these chainsthe tiling, namely invariance under discrete scale transforma-
Results for the low temperature thermodynamic propertiesions called inflations. This renormalization group is a gen-
and correlation functions in the ground state have been okeralization of the calculation of Sierra and Martin-Delgado
tained. Using a mapping to fermionic models and techniquefor the square lattic& where the authors considered star-
of bosonizatiort? it is possible to obtain interesting results shaped block spins formed by a central spin and its four
concerning the spectral gaps for a variety of different quasinearest neighbors. In their calculation, block spins formed
periodic sequences, or global properties such as the magniem these five-spin clusters are shown to interact via an
tization as a function of external field. In addition, the distri- eﬁectwe Heisenberg antiferromagnetic interaction on a big-
bution of correlations in the ground state has been recentlger V5 x \5 square lattice. The effective spin values scale to
calculated. infinity, i.e., the classical limit, under renormalization. Their

In two dimensions, real space configurations have beemodel for a translationally invariant system can, as we will
thus far primarily studied for classical spin models. Here, thesee, be adapted to our quasiperiodic case under certain ap-
ground state is nontrivial only when the model includes frus-proximations. We thus calculate not only the global ground
tration. In Ref. 11, Godrechet al. introduced a renormaliza- state energy as was done for the square lattice, but also the
tion scheme on the Penrose tiling for a Heisenberg exchangtistribution of local order parameters. We will discuss the
model with competing antiferromagnetic interactions, andmethod, which has been briefly reported in Ref. 15, in some
were thus able to obtain a phase diagram consisting of detail in the present paper.
variety of ordered phases. Real space spin configurations We begin with an introduction to the quasiperiodic tiling
were recently studied numerically for a classical antiferro-and the spin Hamiltonian in the next two sections. The RG
magnet with frustrating interactions on the octagonal tiling,scheme is described in Sec. IV. Results and discussions are
and for a ferromagnet with long-ranged dipolar interactionspresented in Secs. V and VI. The Appendix serves to explain
on a Penrose tiling? A complex distribution of magnetiza- some of the terminology used in the body of the paper in the
tions is found in these cases, reflecting the underlying quastontext of the so-called cut-and-project method. A number of
periodic structures. A quasiperiodic magnetic state with auseful properties of the octagonal quasicrystal and its square
hierarchical ringed structure was found as well in a differentapproximants(used for numerical computations in related
context: that of itinerant magnetism due to interactingpapers$ are listed here for handy reference.
electrons'3

Returning to the problem of quantum Heisenberg spins
with nearest neighbor antiferromagnetic interactions, Ref. 3 Il. REVIEW OF GEOMETRICAL ASPECTS
presented local staggered order parameters computed using
spin-spin correlations in the ground state. It was observed
that sites of the same have similar local order parameter  The octagonal tiling shown in Fig. 2 can be thought of as
amplitudes. An explanation of this behavior was given bythe equivalent of the square lattice for quasiperiodic systems.

A. Some general remarks
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FIG. 4. The six different nearest neighbor environments of the
octagonal tiling.

e K A cd K4 4

R is this property that is responsible for the characteristic sin-
v 4 . . . age .
F A . gular .electr(_)nlc and magnetlc propertllt_as of su_ch plmgs a_nd it
A e was first pointed out in the Penrose tiling, which is invariant
VA AV A AR 4 F i . . .
I under a replacement of tiles bifold bigger tiles, where
A N a4 7 Al

& =(v5+1)/22° One can define geometrical inflation rules

L7 for, among others, the Fibonacci chain in one dimension, the
octagonal tiling in two dimensions, and the icosahedral tiling
in three dimensions.

FIG. 3. Portion of originalblack) tiling, showing sites of thex The renormalization approach is a natural one for such

class(black dotg which become sites of the new inflatégrey) geometrically self-similar quasiperiodic_: tilings, and thi§
tiling. structural property has been exploited in order to establish

recurrence relations for parameters occurring in discrete spin

. models, electron hopping models, etc., as mentioned before
It has therefore been frequently used for analytical and NUror the one-dimensional case. but also for some two-

merical investigations of the effects of quasiperiodic mOdu'dimensionaI model&:24 where analytical methods remain
lations in two dimensions. Spectral properties of electféns ’

transport propertie¥, vibrational propertied® and magnetic

' hard to implement.

. ; ) Some principal properties of the octagonal tiling that are
p_ropertleé have thus begn studied f(_)r dllscret.e models de'used in thpe RGpcaIF():uIapltion are reviewedgin the negt section,
fined on the octagonal tiling. The tiling is built from Wo i ot qemonstration. Although not strictly necessary to un-
kinds of tiles, squares and 45° rhombuses. These tWo typegy qtand the calculations presented below, an understanding
of tiles can fill the_ two-dimensional pla_ne In an aperiodic of the geometrical properties of the tiling is of course impor-
way, as Penrose first showed for the fivefold tiling ”amedtant for those wishing to improve this approximate RG

i 19,20 : -

after him. . . . . . . scheme and extend it to other models. The Appendix con-
Although there is no translational invariance in a quasiP+4ins a short description of the cut and project method pri-

eriodic tiling, any given tile arrangement of tiles reoccurs all

- ) . marily in order to explain some of the notation used in the
over the tiling with a certain frequency of reoccurrence—or

i . : . 'main text. A detailed description of geometrical properties of
alternatively viewed, there exists a mean distance of separgg;q tiling can be found, for example, in Ref. 25. The Appen-

tion betvv_e_e_n such identical doma'F‘S-.Th.'$ IS referrgd 0 gy also gives some properties of the square approximants
the repetitivity p“’p?”y .Of q.ua5|p('ar|od|c tilings, gnd IS VeIY that are used in some numerical calculations, such as those
different from the situation in a disordered medigwhere rPderformed in Ref. 3

the expected distance in which one expects to find a seco
region identical to the first increases exponentially with the
size of the region Similarly, the property of symmetry un-
der rotations for these tilings differs from that in crystals, for The six nearest neighbor configurations, corresponding to
which the new and the old structures coincide exactly. Focoordination numbers=8,7, ...,3 ardabeledA,B, ... ,F as
the quasicrystal, the equivalence of the new and old tilingshown in Fig. 2. Figure 4 shows these environments sepa-
holds in the “weak” sense, namely, any finite region of therately. In an infinite tiling, each of these types of site occurs
new tiling after rotation will be identical to finite regions of with a well-defined frequency;, where(see Appendix
the old one.

Such aperiodic structures can be built using “matching
rules.” These are local rules that determine if and how two
tiles can be laid side by sidsee Chap. 1 of Ref. 21Alter- for=N"=fpp, fe=207% fe=n"t (1)

natively, tilings such as the Penrose and octagonal ti””9§vith A=1+y2. One distinguishes between two kinds Df

EF’“r'ld be. gengrateld by_ a .projecticzél%metr;]od down frorrr: &ites as explained in the next section. It can be checked using
igher dimensional periodic structuteSuch an approach he ahove frequencies that the average site coordination

can give either a deterministic, perfectly ordered tiling, or a, ,-\ver on the octagonal tiling is exactly four.
random one where tiles are assembled subject only to the

constraint that they should fill space without overlappihg.
Random tilings are of great theoretical interest, but we are
here interested in deterministic tilings, which have the im- Inflation proceeds as follows for the octagonal tiling: one
portant property of invariance under inflation/deflations, orstarts with a tiling composed of tiles of a given initial edge
discrete scale invariance. This symmetry is illustrated in Figlength(we will assume this is equal to &nd one reconnects

3 and will be described in more detail in the next section. Ita precisely determined subset of vertices so as to obtain a

B. The six local environments

fa=A™ fg=N\"° fo=207%

C. The inflation transformation
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TABLE |. List of « sites and their transformations under

inflation.

Initial site Final site
(z value (z value
A (8) — A,B,CorD, (8,7,6,5
B (7) — D, (5
C (6) — E (4)
D; (5 — F@®3

new tiling of the same type as the old, i.e., having the same
set of local geometries, except for an overall scale change by

a numerical facton=1+y2 (Fig. 4). The sites shown as
black dots on the original tiling belong in theclassA,B,C

and one-half thé (calledD;) sites. These become the sites

of the new bigger tiling, while the remaining3) sites drop
out. Note that there are two varieties of fivefold sites,and
D,, which belong to thexr and B classes, respectively. On the

octagonal tiling, they always occur in pairs. The Appendix

mentions how the two classesBfsites can be distinguished
in terms of their perpendicular space coordinates.
Under inflation, the density of sites is reduced ta4 6f

its initial value. The sites that remain acquire new values of

the site coordination numbew <z Table | lists the initial
and final values of coordination number for each of the

class sitegnote that there are four different subcategories for
the A sites—see the Appendix for more on the properties of

these subcategories

D. Nearest neighbors ofa sites

For the four types ofa sites, the table below lists the
nearest neighbor@\N) in terms of the type of site and the
number of sites of that type. This information will be useful

in determining the final block spin value at the central site, as

we will explain in Sec. Ill.

Table 11, in conjunction with Table | allows one to deduce
how blocks are organized in the tiling. Aksite which trans-
forms to anA site after inflation corresponds, on the original
tiling to an A block surrounded by eigtd, blocks.

Ill. THE SPIN HAMILTONIAN

We consider onsite spir§ (i=1,N) where all spins have
spin<, with the HamiltonianH(N,{S},{J;;}),

TABLE |lI.
environments.

The « sites and their nearest neighbor

«a site NN site typénumbey
A F (eight
B F (five), E (two)
C F (two), E (four)
D, D, (one, E (four)

PHYSICAL REVIEW B 71, 115101(2009
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FIG. 5. Thea site clusters defined on the origin&ft) and once
inflated (right) tilings.

H=>JS.S;, 2

(i)
where(i,j) denotes a pair of spin§; and §; linked by an
edge, andJ;;=J>0 for such a pair. This system is bipartite
with two identical(to be understood in the weak sensab-
tilings (as on the square lattice

Finite spin clusters A sites are surrounded by eight
sites. If one isolated one such cluster of 8+1 spins, the low-
est energy state for classical spins is the one with the eight
peripheral spins antiparallel to the central spin. In the quan-
tum case, the ground state of the cluster is rotationally in-
variant, and corresponds to the total cluster spin vé&ye
=7/2. Theother « sites correspond to total cluster spin val-
ues in the ground state &,=(zz—1)/2=3 around &B site,
and so on. The four clusters are shown on the left-hand side
series of Fig. 5.

Clusters of each type can be defined on larger and larger
length scales, by using the inflation rules already outlined to
determine the new, B, C, andD; sites after inflation. Figure
5 shows the fouw clusters on the next largest length scale
on the right-hand side series. Here, block spin centers are
shown with big black dots, while the sites corresponding to

115101-4



GROUND STATE OF A TWO-DIMENSIONAL.. PHYSICAL REVIEW B 71, 115101(2005

AW
78\ S\ uBN

.\ '. C o’ N )
YA Y ALY
Ol S
AL AL B

\g
/e

PE4dAN
(KN

\e

."
5
7

20
e
\$/,
‘o

Y]

NYEAR
-\
S S e RNPA4
"0 .(0” \ /

S
/o
FIG. 6. Second generatioh cluster. FIG. 7. Five-spin unitgsurrounded by circlgson the square
lattice. The newy5X 5 unit cell is shown.

the B sites are indicated by smaller dots. On a yet bigger
length scale, Fig. 6 shows a “second generatorsite,”  terms, and the formal expression for the transformed prob-
namely, a central site that remainsAfype after two infla- lem reads
:Ir?;?\,/vil?jg%ivrr;?i;:!he sites belonging to the cluster before T}EH(N,S,J)TO: N'ey(3,S) +H'(N',S,3), 3)
The « clusters on all length scales are the building blockswhere the new Hamiltoniakl’ has the same forrthilinear
for the renormalization scheme that follows. in §') asH, andN’=N/5. The effective spin of a block spin
is S’:3S:§. The spin renormalization factor relating one of

the four boundary spins to the new block spin has been
IV. THE RENORMALIZATION TRANSFORMATION shown to be close to the classical valzj{g,:S/S’x% (see

The renormalization calculation is a generalization to anRef. 14 for the exact valye The effective interaction be-
aperiodic system of the one used for the square lattice bjve€en two contiguous blocks & =3&;J. .
Sierra and Martin-Delgad¥. We review briefly the steps of Repeating the steps of renormalization, one has ultimately
their calculation before showing how they are modified infor the ground state energy per site an infinite sum as fol-
the quasiperiodic case. lows:

P
Ty L]
.\
ALY
\@
%
5
.
&
o>
[ )
o)

~
N

1 o0
=-=2 5S4 x 3"S+ 1), 4
A. RG on the square lattice e 5,12:% ( ) @

We consider the nearest neighbor Heisenberg antiferroypere gm0 =39m and JMD=3£2(5M) 3", Under RG, the
magnet described by E¢R) with spin on the vertices and  gpins evolve to the classical limi§— = indicating that in
the initial couplingJ along the edges of the squar@s side  the quantum case as well one has a ground state with broken
a=1). Figure 7 shows the five-spin blocks enclosed bysymmetry. The couplings scale to zero indicating the model
circles. The four couplings inside each block are shown outig massless. Qualitatively, thus, the RG gives the now ac-
lined by thick grey lines. As one sees, the block spins form &epted physics of the model, however, quantitatively the
new rotated square lattice of sidé& (Fig. 7). Each of the  yajue obtained fore,~-0.546 is not as good as that ob-
blocks can be diagonalized exactly. With every step of RGtajned by spin wave expansion and is about 15% higher than

only the lowest energy states of the blocks are retained tghat established by numerical calculatiGsVe will return
form the basis for the effective Hamiltonialy and T} de- g this point at the end of the paper.

note the operators describing the transformations from the

original Hamiltonian(acting in the complete Hilbert space B. RG on the octagonal tiling

to the effective Hamiltoniarfacting in the reduced Hilbert On the octagonal tiling, it is clear that several kinds of
spacg. For a single block, the lowest energy sector correjock spins must be introduced. A natural choice is to desig-
sponds to spiry, and the ground state energy B nate thea sites as block spin centers. Figure 8 shows the
=-JS4S+1). The couplings not already taken into accountpositions of the block spintlack dot$ on a portion of the
give rise to interblock interactions, calculated by first ordertiling. Upon inflation, the other sites will disappear, leaving
perturbation theory. It is easy to check that the new blockonly the block variables, and some residual interactions be-
spins will be coupled antiferromagnetically to its nearesttween them. If no new couplings are generated, one will find
neighbors, like the original spins. The effective Hamiltonianan effective Hamiltonian similar to the old, except for the
H(N,S,J) can thus be written approximately as a sum ofrenormalized couplings which become site dependent. One
single-block contributiongthe diagonal termsand a set of can repeat the process, and determine if there is convergence
terms involving nearest neighbor blocke&off-diagonal to a fixed point.

115101-5
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FIG. 8. Tiling showing block centergblack dots. The grey
lines connect pairs of sites that are shared between two blocks.

The simple scheme outlined above cannot be imple-
mented without some modifications and approximations. The
first problem arises because the connectivity of the tiling is
such that some of the block spins overlap, that is, share two
intermediateB sites in common. This is shown by the thick
grey lines in Fig. 8, which indicate the boundary between
overlapping blocks. Overlapping occurs between contiguous
C andD; blocks, as well as between contigudDs blocks.

This overlapping occurs with a finite density. One can calcu-
late this density by noting that the shared sites occur between
any two sites that are a distankéd, apart, wherel, is the

short diagonal of the rhombus. One finds, using the relative
frequencies of occurrence of squares and rhombuses that the
density of pairs isv2/\3, that is, about 10% of the total
number of pairs.

To deal with this problem, we therefore considered two
possible modifications of the original modél, doubling the
number of spins on each shared site, and considering each
spin as being coupled to one block only, &iidl decoupling
the block spins by annulling one of the bonds to the left or
the right so that spins are no longer coupled on both sides.
The first modification leads to overestimating the total en-
ergy, the second to underestimating it, with respect to the
original octagonal tiling. Spin doubling on selected sites
leads to an uninteresting flow under renormalization, where
cluster energies basically repeat a scaled Heisenberg star dis-
tribution at each step. The bond dilution scheme yields a
more complicated behavior of cluster energies under renor-
malization, and is the option taken up in detail in this paper.

We note that the diluted model remains two-dimensional,
and is not of a scale invariant fractal such as the Sierpinski
gasket® where bonds are also deleted heirarchically but in a
way that leads to an effective fractal dimension less than
two.

The second problem is the quasiperiodic connectivity be-
tween blocks which leads ultimately to an infinite number of . . . .
environments. This is dealt with byxcruncating the number of FIG. 9, .BlOCk spin centerfilled C'rdeS)_Show'ng ﬂ,]f Ce'.mfal
environments we choose to distinguish between. Zsites and all peripheral blocks for three cases: topz=b, /=3 site;

. . - middle az=6, z' =4 site; bottom, &=2'=8 site.
always have the same type of nearest neighlfgigen in

TABLE III. The B sites and the truncated set of nearest neighborTable 1l), however the3 sites occur in several configurations.

environments. We will now truncate the table of connectivities by allowing
only one type oD,, E, andF site, and a connectivity shown

B site NN site typénumbej  in Table III.

D> D1 (ong, E (two), F (two) 1. Bond dilution and the new block spins

E a (two), F (two) ) . . _

= a (0ne, E (two) In this section we discuss the blocks that are obtained

after dilution and the values of the effective block spin. Fig-

115101-6
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ure 9(top) shows in detail a centrd, site which transforms
to an F site under inflation. The three neighboring block
spins are shown as well, with the block spin sites shown by
black dots. The original links are indicated by thin black
lines, while the new effective links on the inflated tiling are
shown by thick grey lines. Figure @niddle) shows aC site
transforming to ark site, with the same conventions used to
denote block spin sites and new effective couplings. In this
figure one sees that two of the block spins, corresponding to
neighboringD, blocks, overlap. The pair of sites shared be-
tween the two blocks is coupled to the left and right by a
total of four bonds. In the bond-dilution approach, one must
set two of the bonds equal to zero. This can be done in one of
two ways that treat the two blocks equitably, leaving eBgh
block with one less bond. Finally, Fig. @otton) shows an

A site transformed under inflation to a final site. In this
case, the eighd, blocks surrounding the center block form a
ring of overlapping blocks. There are two ways to decouple
them all by annulling eight of the 16 links joining them in a

way that treats all th®, sites equitably. Ultimately, the bond " ; '
dilution results in an effective reduction of connectivity@f ~ ion @s that on the square lattice wherie everywhere equal

andD, sites, the former have the effectizevalueZ=5 and to 4. In both cases, the spins tend to infinity, i.e., the classical
the Iatter’izé. limit, under renormalization. On the tiling, moreover, the

block spins tend to constant relative asymptotic values which
are site dependent and given by the eigenvector
(1,1,1,1,13,2).

FIG. 10. (z+1) spin cluster(Heisenberg star

for largen SW~3SMY, This is the same spin renormaliza-

2. Spin renormalization factors

Consider a block spin composed from a cluster spins
surrounding a central spin and antiferromagnetic interac- 3. Ground state energy of an isolated block
tions. In the simplest case where all spins have the v8lue  Consider the configuration af+1 spins of Fig. 10 in
the block has a spin &' =(z-1)Sin the ground state. The \yhich each of thez links represent the same antiferromag-
spin renormalization factors are taken to be equal to the clasretic couplingd, termed the Heisenberg stdiS) in Ref. 3.
sical value for simplicity, so that for a given blo&=(z  For spin4 variables on each site and for a given antiferro-
-1)™%. The new block spinsS' are situated on the black magnetic coupling between the central spin and isieigh-

circles representing the sites of the inflated lattice, while albors, the ground state energy can be found exactly to be
of the nearest neighbors are decimated in the RG transforma-

tion. Initially, all spins have the same value of spigs3, SO €92 =-J(z+2)/4. (6)

that after one inflation the block spin variables are simplyon the octagonal tiling, one has the seven different families

SW={SY, ... .8} ={7s0, 7%, 70, 750,650,450, 2%} (Note  of star clusters on the tiling, with the corresponding values of

that for E and F sites, the value of z was corrected for the z on the right-hand side of the equation. The superscript “0”

bond dilution) In subsequent inflations, one has the follow- indicates that this corresponds to the energy of unrenormal-
ing matrix relationS(m:(S(:), SF”)):CS(“‘D, with ized clusters. We also require the ground state energy in the
case of clusters of spins of unequal lengths. The lowest en-

-1 0 0 0 00SE ergy state of a cluster in which spins of unequal lengths
-1 0 0 O OO0 8 S=n;s, are coupled with strengtd to a central sping,
-1 0 0 O 0O 8 =ngS is taken to be the following generalization of E):
c=|-1 0 0 0 0 0 8]. (5) z
0 1.0 0 025 eJ,z{np) =-npd| X ni+2]/4. (7)
i=1
0O 0 -1 0 032

In the present model, although initially the couplings are all
0 0 0 -112 equal, after one RG step the couplings take on different val-

Note that the number of values of the block spins after eachies. Therefore we shall make an approximation later that

inflation does not grow—there are just four possible differentconsists of replacing the set of couplings around each site by

values of the block spin at any stage of inflation. As in thea single locally averaged value.

square lattice example, the spins all tend to the classical limit

asn goes to infinity. In addition, the largest eigenvalueGf

3, is precisely that of the square lattice in Sec. IV A. This If n=(na,ng,Nc,Np1) are the number of blocks in a given

eigenvalue, along with the corresponding eigenvector givesegion of each given type, the number of blocks of each type

the flow of effective spin values in the limit of large Thus  after one deflation i¥n where

4. Proliferation of blocks under deflation
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For the second type of linkg,g, one sees that there are
threeEF links joining aA— B site to aC— E site, so that the
(8) new «E link is given by

11 4 0 J2=30eYe?. (10

The other effective couplings can be written down similarly,
although a problem arises due to the fact already mentioned,

with the numbem of deflations(inflationg as 7" for large ~ "a@mely, thate andF sites can occur in more than one local
m. Notice that the proliferation of blocks is described by an€nvironment. Here we chose just one option among the sev-
integer, and not the irrational numbe#~5.8, each of these €al, 1o write down the new effectivi,F andEF couplings.
numbers being the answer to a different question. The formef/ith this truncation of the link relations, we have a system
describes the rate of growth of a finite system in terms of thé_)(';)equ(aoy?o?s between the five old and five new couplings,
number of blocks. The latter is the scale factor of the changé  =M"i"", where

of site density under inflation/deflation for the infinite quasi- 0 0 0 0 25(;) Dn)

crystal, and this is not restricted to have integer values. ) 1)
0 0 0 0 3&va

e
o o o
A N O
N 01

The largest eigenvalue of the proliferation matfixs equal
to 7 so that the total number of blocks increagdscreases

5. Renormalization of links MP=| 0 0 0 0 480 (11
There are an infinite number of types of links since each 0 S(B") Dn) 0 §<§)§<§) é‘g]) Dn)
link couples two sites that are each unique. However, just as 0 EMED g g g g
C SD C SD C §D

we chose to truncate the size of the space of solutions by

distinguishing only seven types of sites, we can consider &ith the initial condition (taking the zero order coupling
“minimal” model where it suffices to take into account only J=1) j©=(1,1,1,1,2.

five kinds of links. These are represented in an arjay

=(jaF+Jak:iD,D, i, F:JEF)- Here, j,¢ is used to denote the 6. Averaged values of renormalized couplings

:'”Il‘ between(A, F), %B"T_)’k(C'F)' and(Dy,F) pairs. Simi- After one inflation, the new tiling has the same geometry,
arly, joe denotes the link connectin@,E), (C,E), and it the same relative frequencies of vertices as the old til-
(D4,E) pairs. This oversimplification of the link classifica- ing, however, the new on-site spirﬁ” and intersite cou-
tion ignores, in particular, tha and F sites can occur in - pjingsj® are no longer uniform from site to site. To proceed,
more than one environment. However, in the first approxiyve define averaged quantities—averaged renormalization
mation, we have assumed here that one can treat all the Sitgg.5 £ ang averaged couplings, for each of the seven
of a given family as identical out to first neighbors, and th'stypes of site. The average couplings are easily found, using
approximation will be founcpost factoto yield reasonably  he |ocal environments listed for each of the seven families

good numerical results. in Tables Il and Ill. The simplest situation occurs fsites,

Note that there are no bonds linking sites that are sepgyhich have eightA—F links surrounding them, so that the
rated by a distancds in the original tiling (recall that this is ) _ s (n)

the shortest distance possible on the octagonal Jitmgl the average coupling is Jui =14~ For the six remaining sites

same is true for the sites of the inflated tiling since our bondévsm%ai:a;g?liag]}'tﬁ?IA?eD?ger?r?e?hgoguplQr%scr}hg[ 3\::: tlrllr:jesar
dilution has the effect of decoupling such blocks. 9 bping b Pis,

Interblock links are all the links not taken into account in have seven averaged couplings as follows:
the definition of blocks. To find the new effective links, one

also allows for bond moving, as illustrated by the following JA= JaF:
example: consider a centrdl site surrounded by eighd, —

clusters. These transform to ah site with eightF sites J8=Blar + 2i0)/7,
around it after an inflation. We wish to obtain the effective

link between the centrah and one of thé= sites. The origi- ie=(2jur+ 3.5,
nal A site has 16 links to the eiglit; clusters, i.e., it has two

links perD; cluster. These two links between the center and — , ,

each peripheral block are of tH&F type (see Fig. 8 Thus io, = (Ziee * joo)/3,
the new effective coupling between the centfal- A site

and each of the eighb, —F sites around it on the inflated o= (2j e+ 2iop * 2ip.0)/5,
tiling is of the aF type. It is antiferromagnetic, like the origi- 2 2

nal couplings. One takes into account the spin renormaliza- _

tion factors of the block spins mentioned before, nanggly Je=(2j e+ 2jep)/4,
and &, respectively. The new coupling can then be ex-

pressed in terms of the previous generation of couplings by J_F = (j e + 2iep)/3. (12

the equation )
(1) — i (0) 0) £(0) Average renormalization factoré ) are analogously de-
Jof = 2JEréa o - (9 termined for each of the seven sites, and used to obtain the
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new matrixM®. This process is repeated and the result is ahere is a fixed point distribution for cluster energies, like the
set of recurrence relatio§*?=M®j™ with M having the one found for the block spins, and for the averaged cou-
same structure as in E¢L1). One can now study the evolu- plings.

tion of the matrixM under successive inflations. The maxi-  The number of terms contributing to the cluster energy is
mum eigenvalue oM at the fixed point isys=~0.15. This  governed by the largest eigenvalue of the block proliferation
results in a power law decay of the couplings for large matrix P, so thatE™/7" tends to a limit as1— . It is this
sincej™ =~ v (™Y The corresponding eigenvectrs) de-  quantity that corresponds to the numerically evaluated local

termines the fixed point relative couplings. energies. With this assumption, the local order parameters at
every stage of RG are found from
7. Hamiltonian of inflated system =0 @
The effective Hamiltonian after a single inflation is now Miges = \ o, (16)

written down much as for the case of the square lattice. After

the first renormalization there are block spins at each of the We now describe how to calculate the cluster energies at
a-class sites, whose ground state zero order energieéoére each stage of RG.

and having new interblock linkg?. HO(N® {SV}, {0}, 1. Zeroth order calculation

whereH® has the same form as the original Hamiltonian in
Eq. (2) andN®=X\"2N. The original Hamiltonian is thus de-
composed into a set of independent cluster energies and a
of intercluster terms as follows:

The zeroth approximation was obtained in Ref. 3, the en-
& ies of the clusters at this order being easily calculated
using Eq.(6) for each of the values af e?=¢?. The values
obtained are
= 0 (1)

H=2 fig?+HY, 13 @, % ={5282128.5. (17)
The staggered moments corresponding to these energies

wherej can take on the values, B, C or Dy. The first term . :
RLe a simple function of,

is a sum over the energies of Heisenberg stars defined on t
four types of blocksy, given by Eq.(6) or equivalently by

—— [z+2
Eq. (7) with e}O)E e(1,z,np=1,2n,=2). ml(gg,s(z) =\e9(2)/z= 4z (18)

This function is plotted in Fig. 1&) (dashed ling In
V. RESULTS accord with the qualitative trend of the QMC data, it shows
We will discuss the calculation of the local order param-that M s decreases with increasirg With each additional
eters and then that of the ground state energy. bond, the central spin enters into a resonant state with more
and more neighboring spins, with the result that for each
individual bond there is less amplitude for formation of a
A. Local staggered magnetic moments singlet.
The QMC data in Ref. 3 give values of local order param-
eters. These can be defined in terms of the local energies
around a site,

2. First order calculation

The seven averaged couplings at this order have the nu-
merical values,

1 o o e -
6=2-J>(S.S:», (14) {in .. .jrt={0.14,0.13,0.12,0.10,0.16,0.24,0.29
)

"2
(19
where the sum is over all the nearest neighbors of a given . . .
sitei, and the spin correlations were evaluated in the groung. These averaged couplings are used in the calculation of
state. We have added a facl%)rper bond(that is, the bond the ground state energy at each of the new clusters. This is

; : one using Eq(7), along with the block spin values for the
?ﬂzr%/cz zrr\ggrac:)aegt:gg}[/et)se t;/\;zedne:if:]zévlvg)ysnes at each ené:jenter and three surrounding blocks deduced from(E).

The first order Heisenberg star energies for each of the seven

mum = ez, (15)  types of site are thus

It is the quantitye; that we now wish to calculate. D e(ja8{np=73n=16})

The inflation symmetry of the quasiperiodic system al- ) T _ -
lows us to define clusters on length scales that increase as € E(J_E"7’{n° 7.2 =18)
powers of\%. We would like a relation between the local e(cl) €(jc,6,{np=7,2n;=16})
energiese, and the cluster energies, denote®(z), evalu- o |- — _ o 20
ated as a function of for bigger and bigger cluster size as G(DS 6(21’5’{%_ rEn=14) . (20
increases. The energyer sitefor a cluster of theith type G(DS €(jp2,5{ng=6,2n; = 19})
tends to a certain value in the infinite size limit. We propose €E — _ _
that this limiting value coincides with the local energies cal- @ €(jg,4.{np=42n,=18})

culated by the QMC. This is based on the expectation that e(j_F,3,{n0: 2,2n,=15)
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from aD; site. The zero order block energy associated with
itis thereforee(Doi. Similarly, the ancestors of the three neigh-
bors are amA and two C sites. They contribute half their

block energies, respectivelyef) and eg)), to the total

F-cluster energy. The total energy of thecluster is found
by adding four zeroth order terms plus the HS energyHor

sites, which have a first-order couplir]T&). Other cluster
energies can be similarly obtained, and are listed as follows:

D=+ 9+ Ko
0=+ 0+ 22+ 5.
= el 49 + oy D),
E(Dli = e(Dl% + ef) + %(E(BO) + 468))), (22
= i+ o+ 0+ 2 24D,

D= 40+ 30+ 024,
0)

B = oY + 49+ (60 + 260).

3. Second order calculation and higher orders

For n=2, the energies of the seven clusters for the twice-

FIG. 11. m(2) values versug obtained for increasing orders of inﬂated tiling can be written out in terms of the energies
RG. The zero order analytical curve is indicated by a dashed line if™(2) (k=0,1,2. It is easy to obtain the explicit expressions

each figure(a) First (circles and secondrectanglesorder RG.(b)
Third (circles and fourth(rectanglesorder RG and QMC data for
the full octagonal tiling.(c) Adjusted fourth order datdgrey
squaresand QMC datagrey circles.

The energy of a cluster at first order, denoed, in-

cludes this Heisenberg star energy and all zero order diago-, _
nal terms of the sites belonging to the cluster. These firsEF
order energies of the clusters can be expressed as follows:

z
1

1)_ (1 0 0
B =4 0132 e (@)

j=1
where j=1, ...z are the nearest neighbor sites ipfand
andi) denotes the ancestor of siteThis definition takes into
account the first order star cluster energy for the clugpéus

since it suffices to increase all the superscripts in(E8). by

one (so, for example, theri(l) becomeei(z)). The zero order
energy terms are also easily obtained from the preceding
order zero energy terms by use of the proliferation ma®rix
defined in Eq(8). We give theF cluster energy to this order,
as an example,

= e B 2 (30 + 0+ 8D + 6.
(23

At third order, proceeding similarly, there will be a term
in e(Fs), four terms ine?, and a certain number of terms in
eV and €. The number of blocks of each type can be found
using the proliferation matrix to determine the number of
ancestors of each type of block. In Fig.(4lwe have com-
pared than obtained after zer¢the dashed curyewith the
results at one and two RG stefispen circles and squanes

the zero energy term for the center site, plus one-half théfter the second step, the valuesrof converge quickly as

zero energy terms for the surrounding sites.

To illustrate with an example, consider &nsite on the
inflated tiling, with eight nearest neighbgrsites around it.
The zero order energy term for asite is the block spin
energy of its ancestoA site, namely,ef). The zero order
energy term forF sites is the energy of their ancestdy
block spins,eg)i. Finally, the Heisenberg stéHS) energy for
the A site, and with the first order effective couplin ) is
ef). One thus obtains the first line of E(®2).

Consider another example of & site which has three
neighbors, say ai site and twoE sites. TheF site arises

can be seen in Fig. 14) which shows the thirdcircles and

fo(urtf; order (squarep results along with the QMC data,
numj
mIoc,s .

4. Predictions for the full octagonal tiling

The limiting values ofm, s are clearly below the QMC
data. This is to be expected, due to the bond dilution. One
must correct for the effect of the appreciable bond dilution
occurring atC andD sites in order to obtain an estimate of
the energy of the undiluted octagonal tiling. On the one hand,
the bond dilution leads to having fewer energy terms in the
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Hamiltonian and consequently underestimating the cluster VI. DISCUSSION AND CONCLUSIONS

energies. On the othgr hand, the loss of bonds is partly off_set In conclusion, we have presented an approximate RG
by the fact that the dilution tends also to suppress frustratiogcheme for ground state properties of a two-dimensional
and raise the local order parameter. An ad-hoc way to pUuasiperiodic tiling that can be solved after bond dilution.
back the “missing bond-energies” is to add in one-half of thegther approximations involve the truncation of the number
missing link energies at each of ti@and D sites. This is  of distinct sites and the number of distinct links, and replac-
easily done here by adjusting thealues at each of the sites, ing local couplings around sites by average values in order to
Zc goes up from 5 to 5.5 whilgp, is increased from 3 to 4. simplify the effective Hamiltonian after every inflation. The
Using this ad-hoc procedure we can get estimatesnfpr results obtained for the diluted tiling were used to get esti-
values on the original octagonal tiling. The grey squares omates for the undiluted tiling. Despite these approximations,
Fig. 11(c) were obtained by adjusting the=4 data in this we believe the model solved is close to the perfect two-
way. As the figure shows, this procedure yields a fairly gooddimensional quasiperiodic structure, and it allows for a rather
agreement with the QMC data. The same procedure is usatktailed solution of real space properties of these hierarchical
to obtain the ground state energy estimate of the full octagostructures. The results obtained by RG for local order param-
nal tiling in the next section. eters are close to those calculated for the full undiluted
model, after our adjustment procedure. It thus appears that
the model takes into account the most relevant aspects of the
B. Ground state energy quasiperiodic geometry of the octagonal tiling.
The RG method presented is less good at obtaining the
The ground state enerdy, is the sum over all blocks at ground state energy, similar to the situation already noted for
all orders, of the block energies. At zero order the number othe square lattice by Sierra and Martin-Delgado, who showed
blocks of z-spinsN©(z)=Nf; [i.e., proportional to the origi- that a better result is obtained by going to second order of
nal frequencies of occurrence given in Efj)]. The density perturbation theory to obtain the effective Hamiltonian after
of vertices decreases with each inflation\sso that renormalization. Concerning the proximity of values of the
ground state energy in these two systems, our calculation is
not accurate enough to explain this observation. A calcula-
tion to higher order would involve further nearest neighbor
sites, improve the energy estimate and perhaps help to ex-
plain the small energy difference between the tiling and the
The block energieg™ are the energies of blocks with a square lattice. It would be interesting as well to compare
spin " at the center, with effective couplingiT@) to thea“‘) results for other bipartite two-dimensional tilings, including
surrounding spins. The series for the energy giegs the Penrose tiling. _ _ o
~-0.51. We can estimate the effect of bond dilution, as was The zero temperature magnetic state of this quasiperiodic
done for the local order parameters. Using the corrected valHeisenberg antiferromagnet has a structure factor with peaks
ues of% explained in the preceding section, one finds anthat can be indexed using the four-dimensional indexing
adjusted ground state energy of about -0.59. This value otchemesee Appendix A The positions of the peaks is very
the GS energy is significantly smaller in absolute value thar$imply related to the positions of the peaks of the paramag-
the value deduced from the QMC data in Ref. 3. We recalletic state: they are situated halfway in between. In other
that this was true of the square lattice calculation as well. Ivords, the paramagnet is indexed by four integers, while the
that case, the RG calculation of Delgado and Sierra was apntiferromagnet has half-integer entries, corresponding to the
ready noted in Ref. 14 to underestimate the bonding energiedtiferromagnetic vectoq={3,3,3,3}. This is the quasip-
of pairs of spins because of the inadequacy of first ordegriodic analogue of the square lattice where just such a shift
perturbation theory around the Néel state. The same is pr&ccurs in reciprocal space and corresponds to the antiferro-
sumably true of our RG on the octagonal tiling. For themagnetic vectog=1{3,3} (see Ref. 33 for a discussion along
former case the RG calculation was compared with the termwith a simple one-dimensional version of a quasiperiodic
of a 1/S expansion of the ground state energy, and shown t@ntiferromagnet The real life quasiperiodic compound
lack the subleading order term, resulting in the observed disZnMgHo was studied by neutron scattering and shown to
crepancy of values. have short range antiferromagnetic correlations below about
On the square lattice,e, has been determined 20 K. These correlations lead to a magnetic superstructure
numerically?® to high precision to be —-0.6694, while finite that is, as for our two-dimensional model, shifted with re-
size scaling for the tilin§f obtains a value of —-0.6581. The spect to the paramagnetic state. The antiferromagnetic vector
closeness of the values obtained for these two very differerthat best fits the data has a more complicated value than the
problems is rather surprising. It is probable that this closesimplest form for a 3D quasiperiodic antiferromagn/lqit
proximity of values is due to the fact that the octagonal tiI—=%,i= 1,6). This is because the magnetic unit cell is much
ing, with its two sublattice structure and its average coordidarger for the three-component system, due to the fact that
nation number of 4. The differences must arise from the nexbnly the Ho sites carry a magnetic moment, resulting in
nearest neighbor distributions which differ for the two sys-smaller spacings between peaks in reciprocal space.
tems, although this remains to be verified by explicit calcu- Finally, the RG scheme presented here can be adapted to
lation. discuss other discrete quasiperiodic models, such as tight-

1 1
EO/N=E f|<€|(0)+P6|(l)+ AN +F€i(n)+ ...). (24)

iea
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FIG. 12. Two segments of the Fibonacci chain.

binding models for electrons hopping between vertices of the
tiling. It should provide a useful theoretical framework for
describing quasiperiodic tilings in general.

Note added in proofThe ground state energy of the tiling,
and that of the square lattice, is the subject of a recent Com-
ment and Reply 34.

APPENDIX A: THE CUT-AND-PROJECT METHOD FIG. 14. Projection into perpendicular space of vertices of the

octagonal tiling. Domains corresponding to the six families are la-

(1) One-dimensional case, the Fibonacci chain, beled (eightfold symmetry determines labels of unmarked

(i) parallel space, perpendicular space,

. . . domains.
(i) selection window.
(2) Two-dimensional case, the octagonal tiling, ) ) )
(i) domains of acceptance selected edges of a two-dimensional square lattice onto the
(i) frequencies of occurrer’me one-dimensional “parallel{or physical spaceE; as shown
(iii ) inflation and deflation ' in Fig. 13. The vertical and horizontal edges project onto the
(iv) reciprocal space and ’structure factor Sand thelL tiles, respectively. The orientation & is given
(v) approximants and some of their properties. by tar! 1/7 [wherer=(y5+1)/2 is the golden mean, a so-

lution of 72—7-1=0], an irrational slope, so the tile se-

guence never repeats.
APPENDIX B: ONE-DIMENSIONAL CASE: Window of selectionThe edges selected for projection
THE FIBONACCI CHAIN onto E, obey the following condition: the projection of the

The cut-and-project method of obtaining quasiperiodic til-€d9€ onto the “perpendicular” spakg must fall within the
ings is easiest to illustrate in the case of the best knownWindow of selection”W (indicated by the thick line seg-
one-dimensional tiling—the Fibonacci chaisee review in Ment representing the projection of the unit square shown in
Ref. 26. The Fibonacci chain comprises two basic tiles ord"€Y- A finite sequence of 12 edges satisfying this condition

line segments of two different lengths, “longl) and &re shown in bold in Fig. 13 and they result in the projected

“short” (S) arranged in a deterministic sequence. The Fi-Structure---LSLLSLLSLSLL .

bonacci chain can be generated iteratively from a sii®le
segment using the following substitution rules: replace each APPENDIX C: TWO-DIMENSIONAL CASE:
Shy anL, and each. by SL Two successive segments of the THE OCTAGONAL TILING
infinite chain are shown to illustrate the substitution rules
(dashed lines represeht thick lines9) (see Fig. 12

Parallel and perpendicular spaceThe Fibonacci se-
quence of segments, or tiles, can be generated by projecti

In analogy with the one-dimensional case, the octagonal
tiling is obtained from the projection ontl, (the physical
ntwo-dimensional spageof a subset of vertices of a four-
dmensional cubic lattice. The subspaégsE, are now two
dimensional, and are invariant under eightfold rotations in
‘ the four-dimensional space. The orientation of the physical
planeE, is given by the numbex=1+y2, one of the solu-
tions ofA2-=2\—1=0. Thetiles, which are projections in this
plane of the eight faces of the 4D cube, are squares and 45°
rhombuses. The verticegmnd edgesthat are selected for
projection in the two-dimensional perpendicular sp&te
must fall within the window of selection shown in Fig. 14.
This octagon-shaped area is delimited by the projection of
the sides of a four-dimensional unit cube. The octagonal til-
ing has by construction the eightfold symmetry in the weak
sense already described. There are six different kinds of near-

FIG. 13. Cut-and-project method. Selected edges of a squar@St neighbor configurations for vertices of the tiling, denoted
lattice are projected onto the parallel spéEg). The edges that are A throughF as shown in Fig. 2.
selected have perpendicular spdEg) projections that fall within Domains of acceptanceThe maximum coordination
the segment marked. numberz=8 corresponds to the eightfold symmetAcsites.
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TABLE IV. Number of sites in the first four ‘vm / /JIN NN\
square approximants. ~B’A\~ﬂ' ~.‘ .E
R i M PR s
e EE
Ny 239 1393 8119 47321 }(A¢< :“4 ”L: }(Ag ?4’,‘:;)‘
These sites possess perpendicular space projections that al- ’-A"n“‘."-a"n“‘i‘.‘
ways fall within the central octagon labele&din Fig. 14. W“"ﬂWﬂ\’ﬂ‘VI
Similarly, the projection of alk=7 sites falls within one of ’E¢) (‘E #) (:E‘
the eight triangular regions adjoining the central octagonal
domain. The remaining values likewise correspond to the n"‘{’! ’Anq ’.4’B
domains labeled accordin in Fi [ DK D P A—EKL
gly in Fig. 14, which has exact }nv’n<}.{>n‘vn{
eightfold symmetry. The ratio of side lengths of similar poly- ’Aﬂ’&ﬂb‘““

gons are eithek, or \2.
Frequencies of occurrenc&he frequency of occurrence

of theith family is proportional to the area occupied by that occurrences of each of the seven families of sites is invariant.
family in the perpendicular space projection. It can thus be Reciprocal space and structure factofhe diffraction
easily verified using Fig. 14 that these frequencies fare peaks of the octagonal tiling are found at positions given by
=N"% fg=N\"% fe=2\7% fp;=N"3=; fe=2\"% fe=\"1. The  projections into 2D of reciprocal lattice vectaasof the 4D
average coordination number is exactly 4, as can be checkedlibic structure. The intensities of the peaks are not uniform
using the frequencies given. however, but depend on the Fourier transfaffifT) of the
Inflations and deflationsFor the octagonal tiling, the in- finite selection window. The main features of the diffraction
flation transformation is given by ax44 matrix acting in the ~ pattern are thussee Belinet al. in Ref. 2 for more on the
four-dimensional cubic lattice, satisfying?-2U-1=0 and topic) as follows:
having entries of 0 or 1 only. Projecting the subset of points (i) The peaks have an eight-fold symmetry around the
selected by leads to a bigger tiling of the same type as thePeak at the origin. N _
original one. Only the highest sites remain selected, while (i) Peaks occur at positions corresponding to the set of
the others disappear. The sites that remain are those withijt€gersh, k, m, n representing the projection into the 2D
the middle octagon, the family, A, B, C, andD,. The sites Plane of the 4D vectog=ha, +ka,+mas+na,. That is, one

: : : : an index peaks by a set of four integers.
ghcatlgéj;appear correspond to the region outside the midde (iii) Intensities are highly dependent on the valuegof

. . ince the FT of the selection window is oscillatory and long
The perpendlcular space representatlon allows one to déénged. The set of eight most intense peaks nearest the origin
termine rapidly the newvz values of the sites that remain, one

- ) : is used to define a quasi-Brillouin zone for the tiling.

S'”F‘p'y rescale_s _the acceptance do_ma|_ns .Of l_:|g. 1.4' Thus 2 Approximants and some of their propertidgdumerical

point thgt wasllnltlally.m th.dj.l d°”?a'” will find !tselfm.the studies of quasiperiodic systems are performed on finite

E %%rr?waalirr]{ Vp\\lhélifei F;g'nq;?r:f'gi?gz Ii? EES dgrrgag]o?gstémt%e pieces of the infinite system. In particular, it has been pointed

center of .the diaaram. otherwise the ybecome one of thout that periodic boundary conditions are preferable to open
. gram, y . ; ©r closed boundary conditions in terms of eliminating spuri-

other « sites after inflation. The four categories Afsites ous states and eigenvalues. A periodic approximant is a

mentioned in Sec. Il C differ by their distance from the ori- structure that can be periodically continued and can be aug-

ginin perpgndmular space. The pe_rpendlcular_ SPACE PrOJCGL o hted in size so as to approach arbitrarily close to the per-
tion of a site determines its evolution under |nflat|on—thefect infinite structure

closer a site is to the center of the octagonal selection win- This is, again, easiest illustrated by going back to the

ggnws’ tgles(ljonogneer (I:tlerz:ralsnese:ﬁhfaliesi:legds(r)nswgcﬁwetsvxs/g/? 'nélj' Fibonacci chain. In the cut and project technique, it should
) ' y YPES, he clear that if one tilts the irrationally oriented selection

\r/é'glljrggfse;ﬁgtoﬁ’grgﬁgﬂngtzptacisdgfl eru?ri'lal—igi,fouowmgstrip away from the special angle, one will obtain a periodi-
yp ' cally repeating chain every time the slope is rational.

FIG. 15. Superposition of two successive approximants.

A—AorBorCorD;, 71 has a series of approximants given in terms
of the Fibonacci numbers as follows:{ay,...}
B— D, ={1,3,2,%, ... Fi/Fiy -}, whereF, is thekth term in the
Fibonacci sequence defined by the recurrence relation
C—E, Frer=Fet Feers
(C1)
DlHE, FO:Flzli

The number of sites per unit area is reduced by the scaleith Fo=F;=1. By increasing the value of the denominator
factor \? after each inflation, and the relative frequencies ofof the rational numbeF,/F,,,—i.e., by choosing increas-
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ingly longer approximants of the golden mean—one will get

a structure of periodr,,,. The finite sequences &f and S

PHYSICAL REVIEW B 71, 115101(2009

We will list some features of these approximants that may
be important to bear in mind depending on the models stud-

within the approximant are the same as those found in aied.

infinitely long chain.

(i) Reflection symmetryexac) with respect to the bot-

For the two-dimensional case, Ref. 30 describes how t@om left-top right diagonal.
obtain square approximants to the octagonal tiling by the (jj) 90° Rotation symmetry around the centepproxi-
projection method. These are obtained from the approximate_
mants to the silver mean which depend on ratios of the so- (i) Odd parity of repetition. By this is meant that one

called Octonacci sequencg,=0O,,,/ Oy where

Ok+1= 20k + Oy-1,
(C2

01:1, 02:2,

changes sublattice when one goes from a site to its first pe-
riodic repetition along eithex or y directions. For a number

of numerical calculations it is easiest to restore the bipartite
property by taking a system size doubled along both direc-
tions(i.e., quadrupled unit cell with respect to the sizes given

with O;=1; O,=2. These are the finite size systems used foin Table V).
a number of numerical studies including the quantum Monte (iv) Inflation relation between approximants. Figure 15
Carlo calculations. Table IV shows the sizes for the first fewshows a small approximant superimposed on the next largest

square approximants.
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