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We consider the antiferromagnetic spin-1/2 Heisenberg model on a two-dimensional bipartite quasiperiodic
tiling. The broken symmetry ground state in this model is inhomogeneous, reflecting the fact that there are a
variety of local environments in such a structure. An important symmetry of the quasicrystal, namely that of
invariance under discrete scale transformations is used to define an approximate real space renormalization
scheme for the octagonal tiling. We solve for some of the fixed point properties of this quasiperiodic antifer-
romagnet. The ground state energy and local order parameters are calculated, and the results compare favorably
with numerical values obtained by quantum Monte Carlo calculation. Despite the novel features of the ground
state in this type of antiferromagnet, there are some interesting similarities with the well-known square lattice
antiferromagnet. The most striking of these is the proximity of the values of the ground state energies of these
two paradigms for two very dissimilar classes of solids.
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I. THE EXPERIMENTAL AND THEORETICAL
BACKGROUND

Magnetism in quasicrystals can be very complex, due to
the extreme sensitivity to structural details, in such systems,
of local moment amplitudes as well as of the interactions. A
considerable simplification of the problem is however pos-
sible for the recently studied rare-earth based quasiperiodic
alloy ZnMgHo.1 The rare-earth based magnetic alloys repre-
sents a conceptually simpler system than the transition metal
alloy quasicrystals that were initially the object of experi-
mental studies, since the magnetic moments are associated
with f-orbitals, and can be assumed in the first approxima-
tion to beindependentof the local itinerant-electron density
of states.

This is to be contrasted with the earliest magnetic quasi-
crystals of the AlMn family, where the itinerant magnetic
moments on the Mn atoms depend sensitively on detailed
structural features due to thed-orbital hybridizationssee the
review by Hippertet al. in Ref. 2d. To add to the difficulties
the early alloys were metastable quasicrystals of inferior
structural quality so that the role of disorder must be consid-
ered in addition to the intrinsic behavior. Experimental re-
sults indicated a wide distribution of effective moments on
the Mn atoms, as well as of the interactions between these,
leading to a large number of unknown parameters in the
phenomenological models describing such systems. From a
theoretical viewpoint, therefore, the rare earth system is
clearly far simpler and it is this type of system that we will
now focus upon.

ZnMgHo was shown to undergo a magnetic transition into
a magnetic state characterized by short range antiferromag-
netic correlations with quasiperiodic modulation.1 The ex-
perimental results lead naturally to the question of what
properties one expects for the ground state of a quasicrystal
with short range antiferromagnetic interactions. An accept-
able starting point for models of such systems could be, as
for crystalline compounds, a Hamiltonian with short range
antiferromagnetic couplings between pairs of identical spins,
H=oJijSi .Sj .

Recent work showed that the ground state of the two di-
mensional quasiperiodic quantum antiferromagnet is inho-

mogeneous, with a structure that reflects both the multiplicity
of local geometries that one finds in the quasicrystal as well
as the heirarchical symmetry present in these systems. Figure
1 shows the results of a recent Monte Carlo study of a two-
dimensional model of quantum spins on a quasiperiodic
tiling.3 The circles on the vertices have radii that depend on
the value of the local staggered moment, a quantity that we
will define further below. The tiling considered is the eight-
fold symmetric octagonalsAmmann-Beenkerd tiling,4 in
which sites can have six possible values of coordination
numberz. Sites were occupied byS= 1

2 spins, with uniform
interactionsJi,j =J.0 along the edges of the tiling. The sys-
tem is bipartite, meaning that every spin belongs to one of
two sublattices and interactions couple only spins of different
sublattices. Analogously to the spin-1

2 square lattice antifer-
romagnet, which is now believed to have a ground state with
long range order, we expect that this quasiperiodic system,
too, has a broken symmetry ground state with long range
order. Classically, the ground state corresponds to having op-
positely directed sublattice magnetizations, with no frustra-
tion, in the sense that all bonds can be “satisfied” simulta-

FIG. 1. Inhomogeneous ground state structure on the tiling. The
circles have sizes that depend on the strength of the local order
parameter.
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neously. In the quantum case, the ground state will
correspond to zero total spin since for the octagonal tiling,
the two sublattices are equivalent.

The inhomogeneous structure of the ground state seen in
Fig. 1 is the result of the environment dependence of quan-
tum fluctuations around the Néel state in the quasicrystal.
This dependence on the local environment is one of the con-
sequences of the absence of translational invariance that
makes real space calculations so complex in the case of the
quasicrystal. In this paper we take an approach which allows
for an analytical albeit approximate treatment based on the
scale invariance of the quasiperiodic structure. The renormal-
ization transformation described here allows to calculate
some ground state properties of the quantum antiferromagnet
on the octagonal tiling. Although developed specifically for
this particular geometry, the basic idea would be expected to
hold for other inflation symmetric systems. Alternatively, by
generalizing one standard approach used for periodic solids,
one can try spin wave expansions suitably modified for this
inhomogeneous case. This has been carried out in a recent
preprint,5 where a linear spin wave theory is defined and
solved numerically on finite size systems.

Renormalization methods have been thus far primarily ap-
plied to one-dimensional models. One-dimensional models
to study the behavior of quantum spins on quasiperiodic
chains have been considered by several authors. Quantum
spin chains have been analyzed using renormalization
schemes6–8 based on the inflation symmetry of these chains.
Results for the low temperature thermodynamic properties
and correlation functions in the ground state have been ob-
tained. Using a mapping to fermionic models and techniques
of bosonization,10 it is possible to obtain interesting results
concerning the spectral gaps for a variety of different quasi-
periodic sequences, or global properties such as the magne-
tization as a function of external field. In addition, the distri-
bution of correlations in the ground state has been recently
calculated9.

In two dimensions, real space configurations have been
thus far primarily studied for classical spin models. Here, the
ground state is nontrivial only when the model includes frus-
tration. In Ref. 11, Godrecheet al. introduced a renormaliza-
tion scheme on the Penrose tiling for a Heisenberg exchange
model with competing antiferromagnetic interactions, and
were thus able to obtain a phase diagram consisting of a
variety of ordered phases. Real space spin configurations
were recently studied numerically for a classical antiferro-
magnet with frustrating interactions on the octagonal tiling,
and for a ferromagnet with long-ranged dipolar interactions
on a Penrose tiling.12 A complex distribution of magnetiza-
tions is found in these cases, reflecting the underlying quasi-
periodic structures. A quasiperiodic magnetic state with a
hierarchical ringed structure was found as well in a different
context: that of itinerant magnetism due to interacting
electrons.13

Returning to the problem of quantum Heisenberg spins
with nearest neighbor antiferromagnetic interactions, Ref. 3
presented local staggered order parameters computed using
spin-spin correlations in the ground state. It was observed
that sites of the samez have similar local order parameter
amplitudes. An explanation of this behavior was given by

considering isolated star-shaped clusters called Heisenberg
stars in Ref. 3. This provided a qualitative understanding of
the decrease of local staggered magnetizations as a function
of z, but for a more quantitative fit to the quantum Monte
Carlo sQMCd results, it is necessary to go beyond the iso-
lated cluster approximation, and take into account longer
range correlations. This can be done in a renormalization
group sRGd calculation that uses an important symmetry of
the tiling, namely invariance under discrete scale transforma-
tions called inflations. This renormalization group is a gen-
eralization of the calculation of Sierra and Martin-Delgado
for the square lattice,14 where the authors considered star-
shaped block spins formed by a central spin and its four
nearest neighbors. In their calculation, block spins formed
from these five-spin clusters are shown to interact via an
effective Heisenberg antiferromagnetic interaction on a big-
gerÎ53Î5 square lattice. The effective spin values scale to
infinity, i.e., the classical limit, under renormalization. Their
model for a translationally invariant system can, as we will
see, be adapted to our quasiperiodic case under certain ap-
proximations. We thus calculate not only the global ground
state energy as was done for the square lattice, but also the
distribution of local order parameters. We will discuss the
method, which has been briefly reported in Ref. 15, in some
detail in the present paper.

We begin with an introduction to the quasiperiodic tiling
and the spin Hamiltonian in the next two sections. The RG
scheme is described in Sec. IV. Results and discussions are
presented in Secs. V and VI. The Appendix serves to explain
some of the terminology used in the body of the paper in the
context of the so-called cut-and-project method. A number of
useful properties of the octagonal quasicrystal and its square
approximantssused for numerical computations in related
papersd are listed here for handy reference.

II. REVIEW OF GEOMETRICAL ASPECTS

A. Some general remarks

The octagonal tiling shown in Fig. 2 can be thought of as
the equivalent of the square lattice for quasiperiodic systems.

FIG. 2. A portion of the octagonal tiling showing the six differ-
ent nearest neighbor environmentsA,B, . . . ,F.
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It has therefore been frequently used for analytical and nu-
merical investigations of the effects of quasiperiodic modu-
lations in two dimensions. Spectral properties of electrons,16

transport properties,17 vibrational properties,18 and magnetic
properties3 have thus been studied for discrete models de-
fined on the octagonal tiling. The tiling is built from two
kinds of tiles, squares and 45° rhombuses. These two types
of tiles can fill the two-dimensional plane in an aperiodic
way, as Penrose first showed for the fivefold tiling named
after him.19,20

Although there is no translational invariance in a quasip-
eriodic tiling, any given tile arrangement of tiles reoccurs all
over the tiling with a certain frequency of reoccurrence—or,
alternatively viewed, there exists a mean distance of separa-
tion between such identical domains. This is referred to as
the repetitivity property of quasiperiodic tilings, and is very
different from the situation in a disordered mediumswhere
the expected distance in which one expects to find a second
region identical to the first increases exponentially with the
size of the regiond. Similarly, the property of symmetry un-
der rotations for these tilings differs from that in crystals, for
which the new and the old structures coincide exactly. For
the quasicrystal, the equivalence of the new and old tilings
holds in the “weak” sense, namely, any finite region of the
new tiling after rotation will be identical to finite regions of
the old one.

Such aperiodic structures can be built using “matching
rules.” These are local rules that determine if and how two
tiles can be laid side by sidessee Chap. 1 of Ref. 21d. Alter-
natively, tilings such as the Penrose and octagonal tilings
could be generated by a projection method down from a
higher dimensional periodic structure.22 Such an approach
can give either a deterministic, perfectly ordered tiling, or a
random one where tiles are assembled subject only to the
constraint that they should fill space without overlapping.23

Random tilings are of great theoretical interest, but we are
here interested in deterministic tilings, which have the im-
portant property of invariance under inflation/deflations, or
discrete scale invariance. This symmetry is illustrated in Fig.
3 and will be described in more detail in the next section. It

is this property that is responsible for the characteristic sin-
gular electronic and magnetic properties of such tilings and it
was first pointed out in the Penrose tiling, which is invariant
under a replacement of tiles byt-fold bigger tiles, where
t=sÎ5+1d /2.20 One can define geometrical inflation rules
for, among others, the Fibonacci chain in one dimension, the
octagonal tiling in two dimensions, and the icosahedral tiling
in three dimensions.

The renormalization approach is a natural one for such
geometrically self-similar quasiperiodic tilings, and this
structural property has been exploited in order to establish
recurrence relations for parameters occurring in discrete spin
models, electron hopping models, etc., as mentioned before
for the one-dimensional case, but also for some two-
dimensional models,11,24 where analytical methods remain
hard to implement.

Some principal properties of the octagonal tiling that are
used in the RG calculation are reviewed in the next section,
without demonstration. Although not strictly necessary to un-
derstand the calculations presented below, an understanding
of the geometrical properties of the tiling is of course impor-
tant for those wishing to improve this approximate RG
scheme and extend it to other models. The Appendix con-
tains a short description of the cut and project method pri-
marily in order to explain some of the notation used in the
main text. A detailed description of geometrical properties of
this tiling can be found, for example, in Ref. 25. The Appen-
dix also gives some properties of the square approximants
that are used in some numerical calculations, such as those
performed in Ref. 3.

B. The six local environments

The six nearest neighbor configurations, corresponding to
coordination numbersz=8,7, . . . ,3 arelabeledA,B, . . . ,F as
shown in Fig. 2. Figure 4 shows these environments sepa-
rately. In an infinite tiling, each of these types of site occurs
with a well-defined frequencyf i, wheressee Appendixd

fA = l−4, fB = l−5, fC = 2l−4,

fD1 = l−3 = fD2, fE = 2l−2, fF = l−1 s1d

with l=1+Î2. One distinguishes between two kinds ofD
sites as explained in the next section. It can be checked using
the above frequencies that the average site coordination
number on the octagonal tiling is exactly four.

C. The inflation transformation

Inflation proceeds as follows for the octagonal tiling: one
starts with a tiling composed of tiles of a given initial edge
lengthswe will assume this is equal to 1d and one reconnects
a precisely determined subset of vertices so as to obtain a

FIG. 3. Portion of originalsblackd tiling, showing sites of thea
class sblack dotsd which become sites of the new inflatedsgreyd
tiling.

FIG. 4. The six different nearest neighbor environments of the
octagonal tiling.
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new tiling of the same type as the old, i.e., having the same
set of local geometries, except for an overall scale change by
a numerical factorl=1+Î2 sFig. 4d. The sites shown as
black dots on the original tiling belong in thea class,A,B,C
and one-half theD scalledD1d sites. These become the sites
of the new bigger tiling, while the remainingsbd sites drop
out. Note that there are two varieties of fivefold sites,D1 and
D2, which belong to thea andb classes, respectively. On the
octagonal tiling, they always occur in pairs. The Appendix
mentions how the two classes ofD sites can be distinguished
in terms of their perpendicular space coordinates.27

Under inflation, the density of sites is reduced to 1/l2 of
its initial value. The sites that remain acquire new values of
the site coordination numbersz8øz. Table I lists the initial
and final values of coordination number for each of thea
class sitessnote that there are four different subcategories for
the A sites—see the Appendix for more on the properties of
these subcategoriesd.

D. Nearest neighbors ofa sites

For the four types ofa sites, the table below lists the
nearest neighborssNNd in terms of the type of site and the
number of sites of that type. This information will be useful
in determining the final block spin value at the central site, as
we will explain in Sec. III.

Table II, in conjunction with Table I allows one to deduce
how blocks are organized in the tiling. AnA site which trans-
forms to anA site after inflation corresponds, on the original
tiling to an A block surrounded by eightD1 blocks.

III. THE SPIN HAMILTONIAN

We consider onsite spinsSi si =1,Nd where all spins have
spin-12, with the HamiltonianHsN,hSij ,hJijjd,

H = o
ki,jl

JijSi . Sj , s2d

where ki , jl denotes a pair of spinsSi and Sj linked by an
edge, andJij =J.0 for such a pair. This system is bipartite
with two identicalsto be understood in the weak sensed sub-
tilings sas on the square latticed.

Finite spin clusters: A sites are surrounded by eightF
sites. If one isolated one such cluster of 8+1 spins, the low-
est energy state for classical spins is the one with the eight
peripheral spins antiparallel to the central spin. In the quan-
tum case, the ground state of the cluster is rotationally in-
variant, and corresponds to the total cluster spin valueStot
=7/2. Theothera sites correspond to total cluster spin val-
ues in the ground state ofStot=szB−1d /2=3 around aB site,
and so on. The four clusters are shown on the left-hand side
series of Fig. 5.

Clusters of each type can be defined on larger and larger
length scales, by using the inflation rules already outlined to
determine the newA,B,C, andD1 sites after inflation. Figure
5 shows the foura clusters on the next largest length scale
on the right-hand side series. Here, block spin centers are
shown with big black dots, while the sites corresponding to

TABLE I. List of a sites and their transformations under
inflation.

Initial site
sz valued

Final site
sz valued

A s8d → A,B,C or D1 s8,7,6,5d
B s7d → D2 s5d
C s6d → E s4d
D1 s5d → F s3d

TABLE II. The a sites and their nearest neighbor
environments.

a site NN site typesnumberd

A F seightd
B F sfived, E stwod
C F stwod, E sfourd
D1 D2 soned, E sfourd

FIG. 5. Thea site clusters defined on the originalsleftd and once
inflated srightd tilings.
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the b sites are indicated by smaller dots. On a yet bigger
length scale, Fig. 6 shows a “second generationA site,”
namely, a central site that remains ofA type after two infla-
tions, along with all the sites belonging to the cluster before
the two decimations.

Thea clusters on all length scales are the building blocks
for the renormalization scheme that follows.

IV. THE RENORMALIZATION TRANSFORMATION

The renormalization calculation is a generalization to an
aperiodic system of the one used for the square lattice by
Sierra and Martin-Delgado.14 We review briefly the steps of
their calculation before showing how they are modified in
the quasiperiodic case.

A. RG on the square lattice

We consider the nearest neighbor Heisenberg antiferro-
magnet described by Eq.s2d with spin-12 on the vertices and
the initial couplingJ along the edges of the squaressof side
a=1d. Figure 7 shows the five-spin blocks enclosed by
circles. The four couplings inside each block are shown out-
lined by thick grey lines. As one sees, the block spins form a
new rotated square lattice of sideÎ5 sFig. 7d. Each of the
blocks can be diagonalized exactly. With every step of RG,
only the lowest energy states of the blocks are retained to
form the basis for the effective Hamiltonian.T0 and T0

† de-
note the operators describing the transformations from the
original Hamiltoniansacting in the complete Hilbert spaced
to the effective Hamiltoniansacting in the reduced Hilbert
spaced. For a single block, the lowest energy sector corre-
sponds to spin-32, and the ground state energy ise0
=−JSs4S+1d. The couplings not already taken into account
give rise to interblock interactions, calculated by first order
perturbation theory. It is easy to check that the new block
spins will be coupled antiferromagnetically to its nearest
neighbors, like the original spins. The effective Hamiltonian
HsN,S,Jd can thus be written approximately as a sum of
single-block contributionssthe diagonal termsd and a set of
terms involving nearest neighbor blockssoff-diagonal

termsd, and the formal expression for the transformed prob-
lem reads

T0
†HsN,S,JdT0 = N8e0sJ,Sd + H8sN8,S8,J8d, s3d

where the new HamiltonianH8 has the same formsbilinear
in S8d asH, andN8=N/5. The effective spin of a block spin
is S8=3S= 3

2. The spin renormalization factor relating one of
the four boundary spins to the new block spin has been
shown to be close to the classical valuej0=Si /S8< 1

3 ssee
Ref. 14 for the exact valued. The effective interaction be-
tween two contiguous blocks isJ8=3j0

2J.
Repeating the steps of renormalization, one has ultimately

for the ground state energy per site an infinite sum as fol-
lows:

è = −
1

5o
n=0

`

5−nJsndSsnds4 3 3nS+ 1d, s4d

where Ssn+1d=3Ssnd and Jsn+1d=3j2sSsnddJsnd. Under RG, the
spins evolve to the classical limit,S→` indicating that in
the quantum case as well one has a ground state with broken
symmetry. The couplings scale to zero indicating the model
is massless. Qualitatively, thus, the RG gives the now ac-
cepted physics of the model, however, quantitatively the
value obtained forè <−0.546 is not as good as that ob-
tained by spin wave expansion and is about 15% higher than
that established by numerical calculations.28 We will return
to this point at the end of the paper.

B. RG on the octagonal tiling

On the octagonal tiling, it is clear that several kinds of
block spins must be introduced. A natural choice is to desig-
nate thea sites as block spin centers. Figure 8 shows the
positions of the block spinssblack dotsd on a portion of the
tiling. Upon inflation, the other sites will disappear, leaving
only the block variables, and some residual interactions be-
tween them. If no new couplings are generated, one will find
an effective Hamiltonian similar to the old, except for the
renormalized couplings which become site dependent. One
can repeat the process, and determine if there is convergence
to a fixed point.

FIG. 7. Five-spin unitsssurrounded by circlesd on the square
lattice. The newÎ53Î5 unit cell is shown.

FIG. 6. Second generationA cluster.
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The simple scheme outlined above cannot be imple-
mented without some modifications and approximations. The
first problem arises because the connectivity of the tiling is
such that some of the block spins overlap, that is, share two
intermediateb sites in common. This is shown by the thick
grey lines in Fig. 8, which indicate the boundary between
overlapping blocks. Overlapping occurs between contiguous
C andD1 blocks, as well as between contiguousD1 blocks.
This overlapping occurs with a finite density. One can calcu-
late this density by noting that the shared sites occur between
any two sites that are a distancel2ds apart, whereds is the
short diagonal of the rhombus. One finds, using the relative
frequencies of occurrence of squares and rhombuses that the
density of pairs isÎ2/l3, that is, about 10% of the total
number of pairs.

To deal with this problem, we therefore considered two
possible modifications of the original model,sid doubling the
number of spins on each shared site, and considering each
spin as being coupled to one block only, andsii d decoupling
the block spins by annulling one of the bonds to the left or
the right so that spins are no longer coupled on both sides.
The first modification leads to overestimating the total en-
ergy, the second to underestimating it, with respect to the
original octagonal tiling. Spin doubling on selected sites
leads to an uninteresting flow under renormalization, where
cluster energies basically repeat a scaled Heisenberg star dis-
tribution at each step. The bond dilution scheme yields a
more complicated behavior of cluster energies under renor-
malization, and is the option taken up in detail in this paper.

We note that the diluted model remains two-dimensional,
and is not of a scale invariant fractal such as the Sierpinski
gasket,29 where bonds are also deleted heirarchically but in a
way that leads to an effective fractal dimension less than
two.

The second problem is the quasiperiodic connectivity be-
tween blocks which leads ultimately to an infinite number of
environments. This is dealt with by truncating the number of
environments we choose to distinguish between. Thea sites
always have the same type of nearest neighborssgiven in

Table IId, however theb sites occur in several configurations.
We will now truncate the table of connectivities by allowing
only one type ofD2, E, andF site, and a connectivity shown
in Table III.

1. Bond dilution and the new block spins

In this section we discuss the blocks that are obtained
after dilution and the values of the effective block spin. Fig-

TABLE III. The b sites and the truncated set of nearest neighbor
environments.

b site NN site typesnumberd

D2 D1 soned, E stwod, F stwod
E a stwod, F stwod
F a soned, E stwod

FIG. 9. Block spin centerssfilled circlesd showing the central
and all peripheral blocks for three cases: top, az=5, z8=3 site;
middle az=6, z8=4 site; bottom, az=z8=8 site.

FIG. 8. Tiling showing block centerssblack dotsd. The grey
lines connect pairs of sites that are shared between two blocks.
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ure 9stopd shows in detail a centralD1 site which transforms
to an F site under inflation. The three neighboring block
spins are shown as well, with the block spin sites shown by
black dots. The original links are indicated by thin black
lines, while the new effective links on the inflated tiling are
shown by thick grey lines. Figure 9smiddled shows aC site
transforming to anE site, with the same conventions used to
denote block spin sites and new effective couplings. In this
figure one sees that two of the block spins, corresponding to
neighboringD1 blocks, overlap. The pair of sites shared be-
tween the two blocks is coupled to the left and right by a
total of four bonds. In the bond-dilution approach, one must
set two of the bonds equal to zero. This can be done in one of
two ways that treat the two blocks equitably, leaving eachD1
block with one less bond. Finally, Fig. 9sbottomd shows an
A site transformed under inflation to a finalA site. In this
case, the eightD1 blocks surrounding the center block form a
ring of overlapping blocks. There are two ways to decouple
them all by annulling eight of the 16 links joining them in a
way that treats all theD1 sites equitably. Ultimately, the bond
dilution results in an effective reduction of connectivity ofC
andD1 sites, the former have the effectivez value z̃=5 and
the latterz̃=3.

2. Spin renormalization factors

Consider a block spin composed from a cluster ofz spins
surrounding a central spin and antiferromagnetic interac-
tions. In the simplest case where all spins have the valueS,
the block has a spin ofS8=sz−1dS in the ground state. The
spin renormalization factors are taken to be equal to the clas-
sical value for simplicity, so that for a given blockjz=sz
−1d−1. The new block spinsS8 are situated on the black
circles representing the sites of the inflated lattice, while all
of the nearest neighbors are decimated in the RG transforma-
tion. Initially, all spins have the same value of spin,s0= 1

2, so
that after one inflation the block spin variables are simply
Ss1d=hSA

s1d , . . . ,SF
s1dj=h7s0,7s0,7s0,7s0,6s0,4s0,2s0j. sNote

that for E and F sites, the value of z was corrected for the
bond dilution.d In subsequent inflations, one has the follow-
ing matrix relationSsnd=sSA

snd , . . . ,SF
sndd=CSsn−1d, with

C =1
− 1 0 0 0 0 0 8

− 1 0 0 0 0 0 8

− 1 0 0 0 0 0 8

− 1 0 0 0 0 0 8

0 − 1 0 0 0 2 5

0 0 − 1 0 0 3 2

0 0 0 − 1 1 2 0

2 . s5d

Note that the number of values of the block spins after each
inflation does not grow—there are just four possible different
values of the block spin at any stage of inflation. As in the
square lattice example, the spins all tend to the classical limit
asn goes to infinity. In addition, the largest eigenvalue ofC,
3, is precisely that of the square lattice in Sec. IV A. This
eigenvalue, along with the corresponding eigenvector gives
the flow of effective spin values in the limit of largen. Thus

for largen Ssnd<3Ssn−1d. This is the same spin renormaliza-
tion as that on the square lattice wherez is everywhere equal
to 4. In both cases, the spins tend to infinity, i.e., the classical
limit, under renormalization. On the tiling, moreover, the
block spins tend to constant relative asymptotic values which
are site dependent and given by the eigenvector
s1,1,1,1,1,34 , 1

2
d.

3. Ground state energy of an isolated block

Consider the configuration ofz+1 spins of Fig. 10 in
which each of thez links represent the same antiferromag-
netic couplingJ, termed the Heisenberg starsHSd in Ref. 3.
For spin-12 variables on each site and for a given antiferro-
magnetic couplingJ between the central spin and itsz neigh-
bors, the ground state energy can be found exactly to be

es0dszd = − Jsz+ 2d/4. s6d

On the octagonal tiling, one has the seven different families
of star clusters on the tiling, with the corresponding values of
z on the right-hand side of the equation. The superscript “0”
indicates that this corresponds to the energy of unrenormal-
ized clusters. We also require the ground state energy in the
case of clusters of spins of unequal lengths. The lowest en-
ergy state of a cluster in whichz spins of unequal lengths
Si =nis0 are coupled with strengthJ to a central spinS0
=n0s0 is taken to be the following generalization of Eq.s6d:

esJ,z,hnjd = − n0JSo
i=1

z

ni + 2D/4. s7d

In the present model, although initially the couplings are all
equal, after one RG step the couplings take on different val-
ues. Therefore we shall make an approximation later that
consists of replacing the set of couplings around each site by
a single locally averaged value.

4. Proliferation of blocks under deflation

If n=snA,nB,nC,nD1d are the number of blocks in a given
region of each given type, the number of blocks of each type
after one deflation isPn where

FIG. 10. sz+1d spin clustersHeisenberg stard.

GROUND STATE OF A TWO-DIMENSIONAL… PHYSICAL REVIEW B 71, 115101s2005d

115101-7



P =1
1 0 0 8

1 0 2 5

1 0 4 2

1 1 4 0
2 . s8d

The largest eigenvalue of the proliferation matrixP is equal
to 7 so that the total number of blocks increasessdecreasesd
with the numberm of deflationssinflationsd as 7m for large
m. Notice that the proliferation of blocks is described by an
integer, and not the irrational numberl2<5.8, each of these
numbers being the answer to a different question. The former
describes the rate of growth of a finite system in terms of the
number of blocks. The latter is the scale factor of the change
of site density under inflation/deflation for the infinite quasi-
crystal, and this is not restricted to have integer values.

5. Renormalization of links

There are an infinite number of types of links since each
link couples two sites that are each unique. However, just as
we chose to truncate the size of the space of solutions by
distinguishing only seven types of sites, we can consider a
“minimal” model where it suffices to take into account only
five kinds of links. These are represented in an arrayj
=s jaF , jaE, jD1D2

, jD2F , jEFd. Here, jaF is used to denote the
link betweensA,Fd, sB,Fd, sC,Fd, and sD1,Fd pairs. Simi-
larly, jaE denotes the link connectingsB,Ed, sC,Ed, and
sD1,Ed pairs. This oversimplification of the link classifica-
tion ignores, in particular, thatE and F sites can occur in
more than one environment. However, in the first approxi-
mation, we have assumed here that one can treat all the sites
of a given family as identical out to first neighbors, and this
approximation will be foundpost factoto yield reasonably
good numerical results.

Note that there are no bonds linking sites that are sepa-
rated by a distanceds in the original tilingsrecall that this is
the shortest distance possible on the octagonal tilingd and the
same is true for the sites of the inflated tiling since our bond
dilution has the effect of decoupling such blocks.

Interblock links are all the links not taken into account in
the definition of blocks. To find the new effective links, one
also allows for bond moving, as illustrated by the following
example: consider a centralA site surrounded by eightD1
clusters. These transform to anA site with eight F sites
around it after an inflation. We wish to obtain the effective
link between the centralA and one of theF sites. The origi-
nal A site has 16 links to the eightD1 clusters, i.e., it has two
links perD1 cluster. These two links between the center and
each peripheral block are of theEF type ssee Fig. 8d. Thus
the new effective coupling between the centralA→A site
and each of the eightD1→F sites around it on the inflated
tiling is of theaF type. It is antiferromagnetic, like the origi-
nal couplings. One takes into account the spin renormaliza-
tion factors of the block spins mentioned before, namelyjA
and jD, respectively. The new coupling can then be ex-
pressed in terms of the previous generation of couplings by
the equation

jaF
s1d = 2jEF

s0djA
s0djD

s0d. s9d

For the second type of links,jaE, one sees that there are
threeEF links joining aA→B site to aC→E site, so that the
new aE link is given by

jaE
s1d = 3jEF

s0djA
s0djC

s0d. s10d

The other effective couplings can be written down similarly,
although a problem arises due to the fact already mentioned,
namely, thatE andF sites can occur in more than one local
environment. Here we chose just one option among the sev-
eral, to write down the new effectiveD2F andEF couplings.
With this truncation of the link relations, we have a system
of equations between the five old and five new couplings,
j s1d=Ms0dj s0d, where

Msnd =1
0 0 0 0 2jA

sndjD
snd

0 0 0 0 3jA
sndjC

snd

0 0 0 0 4jA
sndjB

snd

0 jB
sndjD

snd 0 jB
sndjD

snd jB
sndjD

snd

0 jC
sndjD

snd 0 jC
sndjD

snd jC
sndjD

snd
2 s11d

with the initial condition staking the zero order coupling
J=1d j s0d=s1,1,1,1,1d.

6. Averaged values of renormalized couplings

After one inflation, the new tiling has the same geometry,
with the same relative frequencies of vertices as the old til-
ing, however, the new on-site spinsSs1d and intersite cou-
plings j s1d are no longer uniform from site to site. To proceed,
we define averaged quantities—averaged renormalization
factors ji

s1d and averaged couplings, for each of the seven
types of site. The average couplings are easily found, using
the local environments listed for each of the seven families
in Tables II and III. The simplest situation occurs forA sites,
which have eightA–F links surrounding them, so that the
average coupling is justj̄A

snd= jaF
snd. For the six remaining sites

we can similarly define averaged couplings that are linear
combinations of thej snd. Dropping the superscripts, we thus
have seven averaged couplings as follows:

j̄A = jaF,

j̄B = s5jaF + 2jaEd/7,

j̄C = s2jaF + 3jaEd/5,

j̄D1
= s2jaE + jDDd/3,

j̄D2
= s2jaE + 2jDD + 2jD2Fd/5,

j̄E = s2jaE + 2jEFd/4,

j̄ F = s jaF + 2jEFd/3. s12d

Average renormalization factorsji
s1d are analogously de-

termined for each of the seven sites, and used to obtain the
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new matrixMs1d. This process is repeated and the result is a
set of recurrence relationsj sn+1d=Msndj snd with M having the
same structure as in Eq.s11d. One can now study the evolu-
tion of the matrixM under successive inflations. The maxi-
mum eigenvalue ofM at the fixed point isg5<0.15. This
results in a power law decay of the couplings for largen,
since j snd<g5j

sn−1d. The corresponding eigenvectoruv5l de-
termines the fixed point relative couplings.

7. Hamiltonian of inflated system

The effective Hamiltonian after a single inflation is now
written down much as for the case of the square lattice. After
the first renormalization there are block spins at each of the
a-class sites, whose ground state zero order energies areei

s0d

and having new interblock linksj s1d. Hs1dsNs1d ,hSi
s1dj ,hj s1djd,

whereHs1d has the same form as the original Hamiltonian in
Eq. s2d andNs1d=l−2N. The original Hamiltonian is thus de-
composed into a set of independent cluster energies and a set
of intercluster terms as follows:

H = o
jPa

f je j
s0d + Hs1d, s13d

where j can take on the valuesA, B, C or D1. The first term
is a sum over the energies of Heisenberg stars defined on the
four types of blocksa, given by Eq.s6d or equivalently by
Eq. s7d with e j

s0d;es1,z,n0=1,oni =zd.

V. RESULTS

We will discuss the calculation of the local order param-
eters and then that of the ground state energy.

A. Local staggered magnetic moments

The QMC data in Ref. 3 give values of local order param-
eters. These can be defined in terms of the local energies
around a sitei,

ei =
1

2
Jo

d

kSW i . SW i+dl, s14d

where the sum is over all the nearest neighbors of a given
site i, and the spin correlations were evaluated in the ground
state. We have added a factor1

2 per bondsthat is, the bond
energy is shared equally between the two sites at each endd.
The local order parameters are defined by31

mloc,s
num = Îei/z. s15d

It is the quantityei that we now wish to calculate.
The inflation symmetry of the quasiperiodic system al-

lows us to define clusters on length scales that increase as
powers ofl2. We would like a relation between the local
energiesei and the cluster energies, denotedEsndszd, evalu-
ated as a function ofz for bigger and bigger cluster size asn
increases. The energyper site for a cluster of theith type
tends to a certain value in the infinite size limit. We propose
that this limiting value coincides with the local energies cal-
culated by the QMC. This is based on the expectation that

there is a fixed point distribution for cluster energies, like the
one found for the block spins, and for the averaged cou-
plings.

The number of terms contributing to the cluster energy is
governed by the largest eigenvalue of the block proliferation
matrix P, so thatEsnd /7n tends to a limit asn→`. It is this
quantity that corresponds to the numerically evaluated local
energies. With this assumption, the local order parameters at
every stage of RG are found from

mloc,s
snd =ÎEsndszd

7nz
. s16d

We now describe how to calculate the cluster energies at
each stage of RG.

1. Zeroth order calculation

The zeroth approximation was obtained in Ref. 3, the en-
ergies of the clusters at this order being easily calculated
using Eq.s6d for each of the values ofz, es0d=es0d. The values
obtained are

heA
s0d, . . . ,eF

s0dj = h 5
2, 9

4,2,7
4, 7

4, 3
2, 5

4j . s17d

The staggered moments corresponding to these energies
are a simple function ofz,

mloc,s
s0d szd = Îes0dszd/z=Îz+ 2

4z
. s18d

This function is plotted in Fig. 11sad sdashed lined. In
accord with the qualitative trend of the QMC data, it shows
that mloc,s decreases with increasingz. With each additional
bond, the central spin enters into a resonant state with more
and more neighboring spins, with the result that for each
individual bond there is less amplitude for formation of a
singlet.

2. First order calculation

The seven averaged couplings at this order have the nu-
merical values,

h j̄A, . . . ,j̄ Fj = h0.14,0.13,0.12,0.10,0.16,0.24,0.29j
s19d

These averaged couplings are used in the calculation of
the ground state energy at each of the new clusters. This is
done using Eq.s7d, along with the block spin values for the
center and three surrounding blocks deduced from Eq.s5d.
The first order Heisenberg star energies for each of the seven
types of site are thus

1
eA

s1d

eB
s1d

eC
s1d

eD1
s1d

eD2
s1d

eE
s1d

eF
s1d

2 =1
es j̄A,8,hn0 = 7,Sni = 16jd

es j̄B,7,hn0 = 7,Sni = 18jd

es j̄C,6,hn0 = 7,Sni = 16jd

es j̄D1,5,hn0 = 7,Sni = 14jd

es j̄D2,5,hn0 = 6,Sni = 19jd

es j̄E,4,hn0 = 4,Sni = 18jd

es j̄ F,3,hn0 = 2,Sni = 15jd

2 . s20d
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The energy of a cluster at first order, denotedEs1d, in-
cludes this Heisenberg star energy and all zero order diago-
nal terms of the sites belonging to the cluster. These first
order energies of the clusters can be expressed as follows:

Ei
s1d = ei

s1d + eancsid
s0d +

1

2o
j=1

z

eancs jd
s0d , s21d

where j =1, . . . ,z are the nearest neighbor sites ofi, and
ancsid denotes the ancestor of sitei. This definition takes into
account the first order star cluster energy for the clusteri plus
the zero energy term for the center site, plus one-half the
zero energy terms for the surrounding sites.

To illustrate with an example, consider anA site on the
inflated tiling, with eight nearest neighborF sites around it.
The zero order energy term for anA site is the block spin
energy of its ancestorA site, namely,eA

s0d. The zero order
energy term forF sites is the energy of their ancestorD1

block spins,eD1
s0d. Finally, the Heisenberg starsHSd energy for

the A site, and with the first order effective couplingj̄A
s1d is

eA
s1d. One thus obtains the first line of Eq.s22d.

Consider another example of anF site which has three
neighbors, say anA site and twoE sites. TheF site arises

from a D1 site. The zero order block energy associated with
it is thereforeeD1

s0d. Similarly, the ancestors of the three neigh-
bors are anA and two C sites. They contribute half their
block energies, respectively,eA

s0d and eC
s0d, to the total

F-cluster energy. The total energy of theF cluster is found
by adding four zeroth order terms plus the HS energy forF
sites, which have a first-order couplingj̄ F

s1d. Other cluster
energies can be similarly obtained, and are listed as follows:

EA
s1d = eA

s1d + eA
s0d + 1

2s8eD1
s0dd,

EB
s1d = eB

s1d + eA
s0d + 1

2s2eC
s0d + 5eD1

s0dd,

EC
s1d = eC

s1d + eA
s0d + 1

2s2eD1
s0d + 4eC

s0dd,

ED1
s1d = eD1

s1d + eA
s0d + 1

2seB
s0d + 4eC

s0dd, s22d

ED2
s1d = eD2

s1d + eB
s0d + 1

2seA
s0d + 2eD1

s0d + 2eC
s0dd,

EE
s1d = eE

s1d + eC
s0d + 1

2seA
s0d + eB

s0d + 2eD1
s0dd,

EF
s1d = eF

s1d + eD1
s0d + 1

2seA
s0d + 2eC

s0dd.

3. Second order calculation and higher orders

For n=2, the energies of the seven clusters for the twice-
inflated tiling can be written out in terms of the energies
eskdszd sk=0,1,2d. It is easy to obtain the explicit expressions
since it suffices to increase all the superscripts in Eq.s22d by
one sso, for example, theei

s1d becomeei
s2dd. The zero order

energy terms are also easily obtained from the preceding
order zero energy terms by use of the proliferation matrixP
defined in Eq.s8d. We give theF cluster energy to this order,
as an example,

EF
s2d = eF

s2d + eD1
s1d + 1

2seA
s1d + 2eC

s1dd + s 5
2eA

s0d + eB
s0d + 8eC

s0d + 6eD1
s0dd .

s23d

At third order, proceeding similarly, there will be a term
in eF

s3d, four terms ines2d, and a certain number of terms in
es1d andes0d. The number of blocks of each type can be found
using the proliferation matrix to determine the number of
ancestors of each type of block. In Fig. 11sad we have com-
pared thems obtained after zerosthe dashed curved with the
results at one and two RG stepssopen circles and squaresd.
After the second step, the values ofms converge quickly as
can be seen in Fig. 11sbd which shows the thirdscirclesd and
fourth order ssquaresd results along with the QMC data,
mloc,s

snumd.

4. Predictions for the full octagonal tiling

The limiting values ofmloc,s are clearly below the QMC
data. This is to be expected, due to the bond dilution. One
must correct for the effect of the appreciable bond dilution
occurring atC andD sites in order to obtain an estimate of
the energy of the undiluted octagonal tiling. On the one hand,
the bond dilution leads to having fewer energy terms in the

FIG. 11. msszd values versusz obtained for increasing orders of
RG. The zero order analytical curve is indicated by a dashed line in
each figure.sad First scirclesd and secondsrectanglesd order RG.sbd
Third scirclesd and fourthsrectanglesd order RG and QMC data for
the full octagonal tiling. scd Adjusted fourth order datasgrey
squaresd and QMC datasgrey circlesd.
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Hamiltonian and consequently underestimating the cluster
energies. On the other hand, the loss of bonds is partly offset
by the fact that the dilution tends also to suppress frustration
and raise the local order parameter. An ad-hoc way to put
back the “missing bond-energies” is to add in one-half of the
missing link energies at each of theC and D sites. This is
easily done here by adjusting thez̃ values at each of the sites,
z̃C goes up from 5 to 5.5 whilez̃D1 is increased from 3 to 4.
Using this ad-hoc procedure we can get estimates forms
values on the original octagonal tiling. The grey squares of
Fig. 11scd were obtained by adjusting then=4 data in this
way. As the figure shows, this procedure yields a fairly good
agreement with the QMC data. The same procedure is used
to obtain the ground state energy estimate of the full octago-
nal tiling in the next section.

B. Ground state energy

The ground state energyE0 is the sum over all blocks at
all orders, of the block energies. At zero order the number of
blocks ofz-spinsNs0dszd=Nfi fi.e., proportional to the origi-
nal frequencies of occurrence given in Eq.s1dg. The density
of vertices decreases with each inflation asl2, so that

E0/N = o
iPa

f iSei
s0d +

1

l2ei
s1d + ¯ +

1

l2nei
snd + ¯ D . s24d

The block energiesesnd are the energies of blocks with a
spinS0

snd at the center, with effective couplingsj̄ snd to theSi
snd

surrounding spins. The series for the energy givese0
<−0.51. We can estimate the effect of bond dilution, as was
done for the local order parameters. Using the corrected val-
ues of z̃ explained in the preceding section, one finds an
adjusted ground state energy of about −0.59. This value of
the GS energy is significantly smaller in absolute value than
the value deduced from the QMC data in Ref. 3. We recall
that this was true of the square lattice calculation as well. In
that case, the RG calculation of Delgado and Sierra was al-
ready noted in Ref. 14 to underestimate the bonding energies
of pairs of spins because of the inadequacy of first order
perturbation theory around the Néel state. The same is pre-
sumably true of our RG on the octagonal tiling. For the
former case the RG calculation was compared with the terms
of a 1/S expansion of the ground state energy, and shown to
lack the subleading order term, resulting in the observed dis-
crepancy of values.

On the square lattice,e0 has been determined
numerically28 to high precision to be −0.6694, while finite
size scaling for the tiling32 obtains a value of −0.6581. The
closeness of the values obtained for these two very different
problems is rather surprising. It is probable that this close
proximity of values is due to the fact that the octagonal til-
ing, with its two sublattice structure and its average coordi-
nation number of 4. The differences must arise from the next
nearest neighbor distributions which differ for the two sys-
tems, although this remains to be verified by explicit calcu-
lation.

VI. DISCUSSION AND CONCLUSIONS

In conclusion, we have presented an approximate RG
scheme for ground state properties of a two-dimensional
quasiperiodic tiling that can be solved after bond dilution.
Other approximations involve the truncation of the number
of distinct sites and the number of distinct links, and replac-
ing local couplings around sites by average values in order to
simplify the effective Hamiltonian after every inflation. The
results obtained for the diluted tiling were used to get esti-
mates for the undiluted tiling. Despite these approximations,
we believe the model solved is close to the perfect two-
dimensional quasiperiodic structure, and it allows for a rather
detailed solution of real space properties of these hierarchical
structures. The results obtained by RG for local order param-
eters are close to those calculated for the full undiluted
model, after our adjustment procedure. It thus appears that
the model takes into account the most relevant aspects of the
quasiperiodic geometry of the octagonal tiling.

The RG method presented is less good at obtaining the
ground state energy, similar to the situation already noted for
the square lattice by Sierra and Martin-Delgado, who showed
that a better result is obtained by going to second order of
perturbation theory to obtain the effective Hamiltonian after
renormalization. Concerning the proximity of values of the
ground state energy in these two systems, our calculation is
not accurate enough to explain this observation. A calcula-
tion to higher order would involve further nearest neighbor
sites, improve the energy estimate and perhaps help to ex-
plain the small energy difference between the tiling and the
square lattice. It would be interesting as well to compare
results for other bipartite two-dimensional tilings, including
the Penrose tiling.

The zero temperature magnetic state of this quasiperiodic
Heisenberg antiferromagnet has a structure factor with peaks
that can be indexed using the four-dimensional indexing
schemessee Appendix Ad. The positions of the peaks is very
simply related to the positions of the peaks of the paramag-
netic state: they are situated halfway in between. In other
words, the paramagnet is indexed by four integers, while the
antiferromagnet has half-integer entries, corresponding to the
antiferromagnetic vectorq=h 1

2 , 1
2 , 1

2 , 1
2
j. This is the quasip-

eriodic analogue of the square lattice where just such a shift
occurs in reciprocal space and corresponds to the antiferro-
magnetic vectorq=h 1

2 , 1
2
j ssee Ref. 33 for a discussion along

with a simple one-dimensional version of a quasiperiodic
antiferromagnetd. The real life quasiperiodic compound
ZnMgHo was studied by neutron scattering and shown to
have short range antiferromagnetic correlations below about
20 K. These correlations lead to a magnetic superstructure
that is, as for our two-dimensional model, shifted with re-
spect to the paramagnetic state. The antiferromagnetic vector
that best fits the data has a more complicated value than the
simplest form for a 3D quasiperiodic antiferromagnetsqi

= 1
2 , i= 1,6d. This is because the magnetic unit cell is much

larger for the three-component system, due to the fact that
only the Ho sites carry a magnetic moment, resulting in
smaller spacings between peaks in reciprocal space.

Finally, the RG scheme presented here can be adapted to
discuss other discrete quasiperiodic models, such as tight-
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binding models for electrons hopping between vertices of the
tiling. It should provide a useful theoretical framework for
describing quasiperiodic tilings in general.

Note added in proof. The ground state energy of the tiling,
and that of the square lattice, is the subject of a recent Com-
ment and Reply 34.

APPENDIX A: THE CUT-AND-PROJECT METHOD

s1d One-dimensional case, the Fibonacci chain,
sid parallel space, perpendicular space,
sii d selection window.

s2d Two-dimensional case, the octagonal tiling,
sid domains of acceptance,
sii d frequencies of occurrence,
siii d inflation and deflation,
sivd reciprocal space and structure factor,
svd approximants and some of their properties.

APPENDIX B: ONE-DIMENSIONAL CASE:
THE FIBONACCI CHAIN

The cut-and-project method of obtaining quasiperiodic til-
ings is easiest to illustrate in the case of the best known
one-dimensional tiling—the Fibonacci chainssee review in
Ref. 26d. The Fibonacci chain comprises two basic tiles or
line segments of two different lengths, “long”sLd and
“short” sSd arranged in a deterministic sequence. The Fi-
bonacci chain can be generated iteratively from a singleS
segment using the following substitution rules: replace each
Sby anL, and eachL by SL. Two successive segments of the
infinite chain are shown to illustrate the substitution rules
sdashed lines representL, thick linesSd ssee Fig. 12d.

Parallel and perpendicular space: The Fibonacci se-
quence of segments, or tiles, can be generated by projecting

selected edges of a two-dimensional square lattice onto the
one-dimensional “parallel”sor physicald spaceE1 as shown
in Fig. 13. The vertical and horizontal edges project onto the
S and theL tiles, respectively. The orientation ofE1 is given
by tan−1 1/t fwheret=sÎ5+1d /2 is the golden mean, a so-
lution of t 2−t−1=0g, an irrational slope, so the tile se-
quence never repeats.

Window of selection: The edges selected for projection
onto E1 obey the following condition: the projection of the
edge onto the “perpendicular” spaceE2 must fall within the
“window of selection” W sindicated by the thick line seg-
ment representing the projection of the unit square shown in
greyd. A finite sequence of 12 edges satisfying this condition
are shown in bold in Fig. 13 and they result in the projected
structure¯LSLLSLLSLSLL̄ .

APPENDIX C: TWO-DIMENSIONAL CASE:
THE OCTAGONAL TILING

In analogy with the one-dimensional case, the octagonal
tiling is obtained from the projection ontoEi sthe physical
two-dimensional spaced of a subset of vertices of a four-
dimensional cubic lattice. The subspacesE1,E2 are now two
dimensional, and are invariant under eightfold rotations in
the four-dimensional space. The orientation of the physical
planeEi is given by the numberl=1+Î2, one of the solu-
tions ofl2−2l−1=0. Thetiles, which are projections in this
plane of the eight faces of the 4D cube, are squares and 45°
rhombuses. The verticessand edgesd that are selected for
projection in the two-dimensional perpendicular spaceE2
must fall within the window of selection shown in Fig. 14.
This octagon-shaped area is delimited by the projection of
the sides of a four-dimensional unit cube. The octagonal til-
ing has by construction the eightfold symmetry in the weak
sense already described. There are six different kinds of near-
est neighbor configurations for vertices of the tiling, denoted
A throughF as shown in Fig. 2.

Domains of acceptance:The maximum coordination
numberz=8 corresponds to the eightfold symmetricA sites.

FIG. 13. Cut-and-project method. Selected edges of a square
lattice are projected onto the parallel spacesE1d. The edges that are
selected have perpendicular spacesE2d projections that fall within
the segment markedW.

FIG. 14. Projection into perpendicular space of vertices of the
octagonal tiling. Domains corresponding to the six families are la-
beled seightfold symmetry determines labels of unmarked
domainsd.

FIG. 12. Two segments of the Fibonacci chain.
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These sites possess perpendicular space projections that al-
ways fall within the central octagon labeledA in Fig. 14.
Similarly, the projection of allz=7 sites falls within one of
the eight triangular regions adjoining the central octagonal
domain. The remainingz values likewise correspond to the
domains labeled accordingly in Fig. 14, which has exact
eightfold symmetry. The ratio of side lengths of similar poly-
gons are eitherl, or l2.

Frequencies of occurrence:The frequency of occurrence
of the ith family is proportional to the area occupied by that
family in the perpendicular space projection. It can thus be
easily verified using Fig. 14 that these frequencies arefA
=l−4; fB=l−5; fC=2l−4; fD1=l−3=; fE=2l−2; fF=l−1. The
average coordination number is exactly 4, as can be checked
using the frequencies given.

Inflations and deflations: For the octagonal tiling, the in-
flation transformation is given by a 434 matrix acting in the
four-dimensional cubic lattice, satisfyingU2−2U−1=0 and
having entries of 0 or 1 only. Projecting the subset of points
selected byu leads to a bigger tiling of the same type as the
original one. Only the highestz sites remain selected, while
the others disappear. The sites that remain are those within
the middle octagon, thea family, A, B, C, andD1. The sites
that disappear correspond to the region outside the middle
octagon.

The perpendicular space representation allows one to de-
termine rapidly the newz values of the sites that remain, one
simply rescales the acceptance domains of Fig. 14. Thus a
point that was initially in theD1 domain will find itself in the
F domain, while a point originally in theC domain falls into
E domain. A sites remainA sites if they are close to the
center of the diagram, otherwise they become one of the
other a sites after inflation. The four categories ofA sites
mentioned in Sec. II C differ by their distance from the ori-
gin in perpendicular space. The perpendicular space projec-
tion of a site determines its evolution under inflation—the
closer a site is to the center of the octagonal selection win-
dow, the longer it remains anA site under successive infla-
tions. Also, one clearly sees thatD sites come in two types,
with different perpendicular space domains. The following
resumes the old and new site types after inflation:

A → A or B or C or D1,

B → D2

C → E,

D1 → E,

The number of sites per unit area is reduced by the scale
factor l2 after each inflation, and the relative frequencies of

occurrences of each of the seven families of sites is invariant.
Reciprocal space and structure factor: The diffraction

peaks of the octagonal tiling are found at positions given by
projections into 2D of reciprocal lattice vectorsai of the 4D
cubic structure. The intensities of the peaks are not uniform
however, but depend on the Fourier transformsFTd of the
finite selection window. The main features of the diffraction
pattern are thusssee Belinet al. in Ref. 2 for more on the
topicd as follows:

sid The peaks have an eight-fold symmetry around the
peak at the origin.

sii d Peaks occur at positions corresponding to the set of
integersh, k, m, n representing the projection into the 2D
plane of the 4D vectorq=ha1+ka2+ma3+na4. That is, one
can index peaks by a set of four integers.

siii d Intensities are highly dependent on the value ofq
since the FT of the selection window is oscillatory and long
ranged. The set of eight most intense peaks nearest the origin
is used to define a quasi-Brillouin zone for the tiling.

Approximants and some of their properties: Numerical
studies of quasiperiodic systems are performed on finite
pieces of the infinite system. In particular, it has been pointed
out that periodic boundary conditions are preferable to open
or closed boundary conditions in terms of eliminating spuri-
ous states and eigenvalues. A periodic approximant is a
structure that can be periodically continued and can be aug-
mented in size so as to approach arbitrarily close to the per-
fect infinite structure.

This is, again, easiest illustrated by going back to the
Fibonacci chain. In the cut and project technique, it should
be clear that if one tilts the irrationally oriented selection
strip away from the special angle, one will obtain a periodi-
cally repeating chain every time the slope is rational.

t−1 has a series of approximants given in terms
of the Fibonacci numbers as follows:ha1, . . .j
=h1, 1

2 , 2
3 , 3

5 , . . . ,Fk/Fk+1¯ j, whereFk is thekth term in the
Fibonacci sequence defined by the recurrence relation

Fk+1 = Fk + Fk−1,
sC1d

F0 = F1 = 1,

with F0=F1=1. By increasing the value of the denominator
of the rational numberFn/Fn+1—i.e., by choosing increas-

TABLE IV. Number of sites in the first four
square approximants.

k 2 3 4 5

Nk 239 1393 8119 47321

FIG. 15. Superposition of two successive approximants.
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ingly longer approximants of the golden mean—one will get
a structure of periodFn+2. The finite sequences ofL and S
within the approximant are the same as those found in an
infinitely long chain.

For the two-dimensional case, Ref. 30 describes how to
obtain square approximants to the octagonal tiling by the
projection method. These are obtained from the approxi-
mants to the silver mean which depend on ratios of the so-
called Octonacci sequence,lk=Ok+1/Ok where

Ok+1 = 2Ok + Ok−1,
sC2d

O1 = 1, O2 = 2,

with O1=1; O2=2. These are the finite size systems used for
a number of numerical studies including the quantum Monte
Carlo calculations. Table IV shows the sizes for the first few
square approximants.

We will list some features of these approximants that may
be important to bear in mind depending on the models stud-
ied.

sid Reflection symmetrysexactd with respect to the bot-
tom left-top right diagonal.

sii d 90° Rotation symmetry around the centersapproxi-
mated.

siii d Odd parity of repetition. By this is meant that one
changes sublattice when one goes from a site to its first pe-
riodic repetition along eitherx or y directions. For a number
of numerical calculations it is easiest to restore the bipartite
property by taking a system size doubled along both direc-
tionssi.e., quadrupled unit cell with respect to the sizes given
in Table IVd.

sivd Inflation relation between approximants. Figure 15
shows a small approximant superimposed on the next largest
one.
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