PHYSICAL REVIEW B 71, 113305(2005

Electron correlations in a quantum dot with Bychkov-Rashba coupling
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We report on a theoretical approach developed to investigate the influence of the Bychkov-Rashba interac-
tion on a few interacting electrons confined in a quantum dot. We note that the spin-orbit coupling profoundly
influences the energy spectrum of interacting electrons in a quantum dot. Interelectron interaction causes level
crossings in the ground state and a jump in magnetization. As the coupling strength is increased, that jump is
shifted to lower magnetic fields. Low-field magnetization will therefore provide a direct probe of the spin-orbit
coupling strength in a quantum dot.
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It has long been recognized that a two-dimensional elec- #2 )
tron gas(2DEG) in narrow-gap semiconductors, particularly &k = 2m*k * ak,

in InAs-based systems with its high values of théactor,
exhibit zero-field splitting due to the spin-orbitSO with an energy separatiogo=E*—-£ =2ak for a givenk.

coupling! This coupling is also the driving mechanism for The corresponding wave functions are
making futuristic devices based on controlled spin transport,

such as a spin transistd?,where the electron spins would 1 1

precess(due to the SO couplingwhile being transported WE(k k) = ik k) eketiky = | ik +k, |ehketiky,
through the 2DEG channel. Tuning of this precession in the o o V2 i;ky

proposed spin transistor would provide an additional control

crucial for the rapidly emerging field of semiconductor orthogonal and o] x*)=0. Therefore in the statek* the

spintronics® Hence the upsurge of mtere_st in recent years for, pins of the electrons lie in they plane and point in opposite
a better understanding of the SO coupling in nanostructure irections. In addition

systems.
The spin-orbit interaction in semiconductor heterostruc- . o 2K, . . 2k,
tures can be caused by an electric field perpendicular to the (Xloxx? = K <X‘|Uy|X'> =" e

2DEG. Riding on an electron, this electric field will fedt as
an effective magnetic field lying in the plane of the 2DEG, i.e., the spins arg@erpendicularto the momentunk,,k,).
perpendicular to the 2D wave vecthrof the electron. We Spatial alignment of spins therefore depends on the wave

consider the Bychkov-Rashi{BR) Hamiltonian®° vector!
Spin-orbit interaction and electron-electron interactions
. ~ are responsible for a variety of interesting effects in quantum
Her = —2(|Z X E) -0, dots® In this paper, we present a numerically exact treatment
(2mge) of the BR Hamiltonian in a system of interacting electrons

confined in a parabolic quantum d@D)”® under the influ-
G. ence of an external magnetic field. More specifically, we ex-
" plore the energy spectra and magnetizétioha few inter-
acting electrons in a quantum dot in the presence of SO
coupling. It should be pointed out that while a large number
of theoretical work has been reported as yet in the literature
for a 2DEG? and a QDBY*?with spin-orbit coupling, in most
cases, the electron-electron interaction has been igriored
52 ( 2P ) _ ( P (;) treated within an approximatié® due to its inherent com-
-— +ial oy — -0y |, plexity.

2m x N Let us begin with the single-electron states. Unlike the
case of a circular quantum dot with hard walls where exact

where « is the SO coupling parameter which is sample de-analytical results for the single-electron energy spectfimm
pendent and is proportional to the electric figidterfacial the presence of the SO interactioare available, for the
and externally applied Experimentally observed values@f more realistic case of a parabolic QD, the energy spectrum
lie in the range of 5—45 meV nmThe energy dispersion can only be obtained numerically. In the presence of the BR
then consists of two branches: interaction, the Schrédinger equation consists of two parts:

where E is the confining electric field at the 2DE
o=(oy,0y,0,) denotes the Pauli spin matrices, amis the
speed of light. The single-electron Hamiltonian for the
2DEG with the electric field normal to the interface,

E:(O,O,EZ), takes the form

EYAIPY
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ﬁZ
==V oV o)y =gyl
2m
P e +yl 3
_2m*V Y=oVl +ou(n) gt =gyt (1) g
w
where ¢ is a two-component spinor,
l/,T
(%) .
¢
V=9l dx+i(dl dy), andv.(r) is the confinement potential.
We seek a solution of the form
Yl =1, (nem?’, s
[]
. £
=1 (nem?, w
which with Eq. (1) yields m;=m,-1(=m). In the case of a
parabolic confinement potentiabC:%m*wSrz, the radial
equations are
2
1" ’ m X 1/2 7 1 —
XfT+fT+(V_&_Z)fT_BX (fl+ 2 fl —0,
3 s
[]
£
" 2 (m + 1)2 X 1/2( ¢1 m w
xfl+fl+(y— x _4_1 f +pBx fi_&fT =0,
where x=r?/a?, a’=hl/(Mwy), v=el(2hwy) and S
=m'aa/#?. When =0 (i.e., «=0), Eq. (3) reduces to two 10, 1 2 3 4 5
uncoupled Laguerre equations with solutions B (T)
f.=f = e—xIZX\m\/2L|m\
77 'nm no FIG. 1. Energy spectrum of a two-electron InAs quantum dot
versus the applied magnetic field for different values of the
fl = fomets Bychkov-Rashba interaction parametefmeV nm). For clarity, at
. . each value of the magnetic field and for a given total angular mo-
with the energies . .
mentum, only the lowest energy is plotted. The Zeeman energy is
|Im|+1 also included.
Vpm=n+ T (4)
o velocity wq related to the harmonic confinement potential
In the presence of an external magnetic fiBlthe term we have to substitute the effective angular velocity
B2 ieBh 9 eaB (o e—iﬁ) 1 = wo(1+w?/ (4wd))? where w.=eB/(m'c) is the cyclotron
S o Aot +Z B
BT 8m'c2 2m'can 2hic \€’ 0 291507 frequency.

For theB+ 0 case which is our main concern here, we use
has to be added to the spinor Hamiltonian Here the first  the following expansion:
two terms(diagona) are due to the interaction of the orbital " .
motion and the magnetic field. The thifdondiagonalterm _ 1 _ |
- . > . fT—E Cofrm fl—E Crfrme-
originates from the vector potential pdt(B/2)(-y,x,0) in n=0 n=0 '

the minimal coupling scheme/ 4[5 X (p—e/cA)], of the SO o the angular momentm=0 we find that the expansion
interaction. The last term gives the Zeeman energies of thgofficients satisfy the equatidis

components of the spinors. Wh@s0 the functiond ,,, will

still be eigenstates of the Hamiltonian provided that we re-

_ el =Bros I
place the single particle energieg,, with the expressions (v = vom)Cp = 2[77 (n+m+1)c,+ 77 NGy 4],

_ |m| +1 We + gueB

o

Wo=n+ m+o : B -
2 20" Tann (= V)G = S L7 Ch+ 77Chal,

where signsoc=z1 correspond to the upper and lower
components of the spinor. Furthermore, for the angulaand the equations
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FIG. 3. Magnetization in the ground state for various values of
the SO coupling strength and for the two QD systems.

g=14 andm’/my=0.014,¢=17.88,g=40, respectively. InSh
guantum dots are also considered here because of itsghigh
values and a relatively large (~14 meV nm.'* In both
systems, we choosewy=7.5 meV. The energy spectrum of
the two-electron state in InAs QD is shown in Fig. 1 for
various values of the BR coupling parameterSimilar re-
sults for InSb QD are presented in Fig. 2.
0 1 2 3 4 5 The essential feature of the energy spectra=0 is that
B(T) with the increase in the magnetic field, the ground state
moves fromJ=0 to J=2 (J=m+s, is the total angular mo-

FIG. 2. The same as in Fig. 1, but for the InSb quantum dotmentun). This is already well established in the literat8ire.

system. This level crossing persists for a nonzero valuexpbut the
crossing point shifts to lower magnetic fields. This shift of
B _ the crossing point can perhaps be observed experimentally
(v- VrTnn)CrT1 =" 5[77 C# + 77+Cﬁ+1], by a variety of ways, such as capacitance spectroscopy, or by
transport spectroscopy.

The results for magnetization at the ground state, defined
asM=-¢E/JB, whereE is the total energy of the system, of
quantum dots with or without the BR interaction is presented
in Fig. 3. Magnetization is a fundamental thermodynamic
quantity that reflects the change of the ground state electron
energy in a magnetic fielt?, thereby providing valuable in-

E (meV)

10 L !

(v= vhme)oh= = DT (n=mich+ 7nci. o),

for states withm<0, and 7*=1+e&B/(%c). Solutions of
these eigensystems provide the single-electron eneggies

and the spinor wave functiong[Eq. (2)], which have been ¢, ation about many-electron dynamics of the QD in a

investigated earlier by several authors in a variety of Ways. aonetic field. We have established earlier that oscillations
For a system of interacting electrons we diagonalize the

bodv Hamiltonian in a basi e ¢ , n magnetization in a few electron-quantum dots are a direct
many-body Hamiltonian in a basis consisting of noninteract,\qequence of the effects related to the electron-electron

ing many-body states, which in turn are constructed as antiyeraction between the two-dimensional electrons confined
symmetrized direct products of the two-component spinorg, yhe dot?. A jump in M occurs at a magnetic field where
¢. Since the Coulomb force is independent of the Spify,e ground state changes from one angular momentum to
orienation we evaluate the sum another(Figs. 1 and 2 Similar behavior is also expected in
o o P a nanoscopic quantum ring With increasing strength of,
<%1%2|VC°U'|‘/'A3¢"4>_U§:’T <¢>\i‘/’%§|vcou'|%§%i>’ this jump ﬁ] rr?agnetizatigg at the energyg-llevel grossing is
vee pushed to lower magnetic fields. For the InAs QD this shift
A=(n,m), of four terms. An explicit expression for these can be as large as1.5 Tesla when is increased from zero
terms for a parabolic QD can be found in Ref. 8. to 40 meV nm. Therefore, low-field magnetization measure-
In our numerical investigations, we choose InAs and InSkhments of quantum dots could be a direct probe of the SO
quantum dots with parametersn’/m,=0.042, e=14.6, coupling strength.
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In closing, we have developed a theoretical approactmove to weaker fields and the jump in magnetization shows
where the SO interaction is treated via exact diagonalizatiom large shift to weaker magnetic fields. This result can be
of the Hamiltonian for interacting electrons confined in aexploited to tune the SO coupling strength that might be
parabolic QD. Coulomb interaction causes energy levels t@seful for spin transport. Our theoretical approach can be
cross and at the crossing point magnetization shows a jumpxtended to include a larger number of electrons in the dot.

In a magnetic field the strength of the SO coupling is pro-petails will be published elsewhere.

portional to the field(in addition to the coupling parameter
and the angular momentymHence, the effect of the cou-
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