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The magnetic properties of the diluted magnetic semiconductorssDMSd sGa,MndAs and sGa,MndN are
investigated by means of an effective Heisenberg model, whose exchange parameters are obtained from
first-principle calculations. The finite-temperature properties of the model are studied numerically using a
method based upon the Tyablikov approximation. The method properly incorporates the effects of positional
disorder present in DMS. The resulting Curie temperatures forsGa,MndAs are in excellent agreement with
experimental data. Due to percolation effects and noncollinear magnetic structures at higher Mn concentra-
tions, our calculations predict forsGa,MndN very low Curie temperatures compared to mean-field estimates.
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I. INTRODUCTION

FerromagneticsIII,Mn d-V diluted magnetic semiconduc-
tors sDMSd have attracted considerable attention among sci-
entists during the past years.1,2 Their investigation has been
driven by the idea of using their coupled electronic and mag-
netic degrees of freedom to construct electronic devices
ranging from fast nonvolatile memories to quantum
computers.3 To date, however, technical applicability has
been limited by the fact that most known DMS have Curie
temperaturesTC below room temperature.2,4–7

For the development of ferromagnetic DMS with higher
Curie temperatures, it is important to understand theoreti-
cally the magnetism in these materials and to develop theo-
ries which provide reliable qualitativeand quantitative pre-
dictions. The magnetism in these materials is due to
magnetic moments localized at magnetic impurities, which
interact with each other indirectly via holes in the valence
and impurity band of the host semiconductor. Therefore, for
the description, one often employs an effective Heisenberg
model, whose exchange parameters are determined by the
interaction between the localized moments and the holes.8–15

However, the magnetic impurities are mainly randomly dis-
tributed over the sites of the crystal lattice. This positional
disorder breaks the translational symmetry of the crystal and
thus greatly complicates the theoretical description of the
material. Studies based on the mean-field approximation
sMFAd8,9 or the random-phase approximationsRPAd com-
bined with the virtual-crystal approximationsVCAd10 neglect
the effects of the positional disorder in DMS. Approaches
based on percolation theory11,12 account for the randomness
of the impurity positions, but require a simple functional
dependence of the exchange parameters on the interspin dis-
tance and treat the magnetism itself only on a mean-field
level. Monte-CarlosMCd simulations13–16 seem to provide a
better way to include the positional disorder, but these are
numerically expensive and usually assume classical spins.
However, a proper treatment of the positional disorder of the
localized moments and their quantum nature is needed to
make reliable predictions about the magnetic properties of
DMS.17,18

In a previously published article,9 the exchange param-
eters of an effectivesclassicald Heisenberg Hamiltonian have
been calculated from first principles for Ga1−xMnxAs and
Ga1−xMnxN. There, however, these had only been used to
calculate Curie temperatures within MFA. More recently, re-
sults of classical MC simulations on the basis of these ex-
change parameters have been presented.15 Here, we employ a
different approach19,20 to investigate the properties of the ef-
fective Heisenberg Hamiltonian. This approach generalizes
the Tyablikov approximation21 to systems with positional
disorder, which is treated numerically exactly. Furthermore,
the method assumes quantum spins. The quantum fluctua-
tions of the spins are treated within random-phase approxi-
mation, which goes beyond MFA and the classical-spin ap-
proximation. It should be mentioned that a similar approach
has been proposed in Ref. 22.

II. MODEL

Details of the electronic-structure calculation for
Ga1−xMnxAs and Ga1−xMnxN and the extraction of the ex-
change parametersJsRd as a function of the Mn-Mn distance
R can be found in Ref. 9. Here, these exchange parameters
are used as input for a “diluted” Heisenberg model,

H = − o
i,j=1

N

Jijei ·ej , s1d

in which only a fraction of the lattice sites is occupied by a
spin. Hence,i and j label the occupied lattice sites only,
whose total number isN, andei =sSi

x,Si
y,Si

zd / s"Sd is the nor-
malized spin operator of the localized magnetic moment at
lattice sitei with lattice vectorRi and Jij =JsuRi −R jud. The
magnitudeSof the spins is absorbed by the exchange param-
eters due to the particular way in which these are calculated
from the electronic structure.

The finite-temperature properties of Hamiltonians1d are
studied using a generalization of the Tyablikov approxima-
tion to systems without translational symmetry.19,20The gen-
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eralization treats the positional disorder in the spin system
numerically exactly except that a uniform magnetization is
assumed. Furthermore, the effects of low-energy quantum
excitations, i.e., magnons, are included. Within this approxi-
mation, the local magnon spectral density is given by.19,20

SiisEd = 2"2kSzl
1

N
o
r=1

N

dSE −
2"kSzl
"2S2 ErD , s2d

where theEr are the eigenvalues of the Hamilton matrixH,
which is defined by its matrix elementsHij =di jon=1

N Jin−Jij .
These eigenvalues also determine the Curie temperature,

kBTC =
2

3

SsS+ 1d
S2 S 1

N
o

r

1

Er
D−1

. s3d

To evaluate this expression for a given set ofEr’s, the value
of S has to be fixed. For Mn ions in Ga1−xMnxAs and
Ga1−xMnxN, S=5/2 should be appropriate.2 However, this
choice is not consistent with the calculation of the exchange
parameters from the electronic structure, where classical
spins are assumed. Therefore, we will use Eq.s3d in the limit
S→`, which yieldsTC values a factor 5/7 less than forS
=5/2.

Due to the positional disorder of the spins present in
DMS, the eigenvalues cannot be computed by Fourier trans-
formation ofH. However, the eigenvalues may be obtained
by the numerical diagonalization of the Hamilton matrix for
a finite system. In our calculations, we used systems of
,10 000 spins, which were randomly distributed over the
lattice sites of a cubic section of an face-centered-cubicsfccd
lattice with periodic boundary conditions. For each concen-
trationx of Mn ions, we averaged the spectral densities over
eight random configurations.

III. RESULTS

In Fig. 1, the Mn-Mn exchange interactionsJsRd in
Ga1−xMnxAs and in Ga1−xMnxN are shown as functions of
the Mn-Mn distanceR for several concentrationsx. In
Ga1−xMnxAs, the falloff of the interaction withR is compa-
rably slow. In Ga1−xMnxN, the interaction between nearest
neighbors is much larger than in Ga1−xMnxAs, but Mn mo-
ments further apart are only very weakly coupled.

Figure 2 shows the resulting magnon spectral densities.
For Ga1−xMnxAs, the spectrum is smooth and continuous.
For Ga1−xMnxN, one can recognize remnants of peaks typical
for nearest-neighbor interaction at low concentrations, which
are broadened by small long-ranged interactions. Compared
to Ga1−xMnxAs, there is a large spectral density at low ener-
gies for Ga1−xMnxN. For concentrationsxù0.08, antiferro-
magnetic interactions come into play and negative magnon
energies appear, indicating a ground state which is not a
saturated ferromagnet.20

The Curie temperatures calculated using Eq.s3d are
shown in Fig. 3. For Ga1−xMnxAs, the calculated values
agree remarkably well with the experimental values of opti-
mally annealed samples.5,6,24 Furthermore, the calculated

curve suggests that slightly higherTC’s might be achieved by
further increasing the Mn contentx, but values above 300 K
seem rather unlikely.

Since experimental values forTC in Ga1−xMnxN are quite
controversial sreported values range from 0 K to 940

FIG. 2. Local magnon spectral densitySiisEd for sadGa1−xMnxAs
and sbd Ga1−xMnxN for various concentrationsx of Mn.

FIG. 1. Exchange interactionsJsRd between Mn ions of distance
R in sad Ga1−xMnxAs andsbdGa1−xMnxN for various concentrations
x sfrom Refs. 9 and 23d.
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K,4,26–30d we refrain from a comparison here. However, the
Curie temperatures we calculated are quite low compared to
earlier mean-field estimatesse.g, in Ref. 2d. These lowTC
values despite the high values of the nearest-neighbor ex-
change may be explained as follows: For concentrations well
below the nearest-neighbor percolation thresholdcP<0.2,31

even a large nearest-neighbor exchange does not contribute
substantially to the stability of the magnetic phase. Since the
exchange parameters for larger interspin distances are very
small in Ga1−xMnxN, ferromagnetic order can only be estab-
lished at very low temperatures. Note that the drop ofTC for
xù0.08 may be due to the used approximation. As indicated
by the magnon spectra seen in Fig. 2, the system’s ground
state is different from a saturated ferromagnet, but a such
uniform magnetic state is assumed in the approximation.

Figure 4 presents a comparison of the the Curie tempera-
tures calculated using different approximations for the effec-
tive Heisenberg model. TheTC values obtained by MC simu-
lations are slightly higher than the ones calculated by the
presented approach, whereas both MFA and VCA-RPA yield
much higherTC’s. For Ga1−xMnxAs, the difference is about a
factor 2 to 8. For Ga1−xMnxN, the difference is even much
larger. This is due to the fact that the MFA and VCA-RPA do
not take into account percolation effects. Large nearest-
neighbor interactions yield large Curie temperatures even for
concentrations well below the nearest-neighbor percolation
threshold. However, for such concentrations, the nearest-
neighbor interaction strength should not play an important
role for the ferromagnetic stability, which can be easily seen
by considering the case of nearest-neighbor interaction
only.20

IV. SUMMARY

In this paper, we presented a method for calculating the
magnetic properties of ferromagnetic DMS. The method ap-
plies a Tyablikovlike approximation for systems with posi-
tional disorder to an effective Heisenberg Hamiltonian,
whose exchange parameters where obtained by first-principle
calculations. Unlike in MFA or VCA-RPA, no approxima-
tions with respect to the positional disorder are made apart
from the simplification of a uniform magnetization. As the
main advantage over classical MC simulations, the presented
treatment of the effective Heisenberg model admits quantum
spins and thus may open up a way towards a fully quantum-
mechanical treatment of magnetism in DMS. Furthermore,
the numerical effort is fairly low compared to MC simula-
tions.

Our calculations ofTC for Ga1−xMnxAs show excellent
agreement with experimental data. For Ga1−xMnxN, we ob-
tained very low Curie temperatures despite high effective
nearest-neighbor exchange parameters, which shows the im-
portance of percolation effects. Moreover, for both
Ga1−xMnxAs and Ga1−xMnxN, the TC values we found are
much lower than MFA and VCA-RPA values. These results
support recent findings obtained by using MC simulations in
combination with first-principle methods.15,16

The presented model should be improved by using a self-
consistent method describing the electronic degrees of free-
dom at finite temperaturesssuch as, e.g., in Refs. 32 and 33d.
In order to obtain a fully quantum mechanical theory, quan-
tum spins should be used instead of classical spins in the
calculation of the effective exchange parameters from the
electronic structure. This will also remove the ambiguity in
the choice ofS. Furthermore, the treatment of the effective
Heisenberg model may be extended to allow for a site-
dependentkSi

zl. In addition, the model might be improved in

FIG. 3. Calculated Curie temperatureTC of sad Ga1−xMnxAs
fcompared with experimental values of annealed samplessRefs. 5,
6, 24, and 25dg and sbd Ga1−xMnxN for various concentrationsx of
Mn ions.

FIG. 4. Comparison of the Curie temperaturesTC of
Ga1−xMnxAs sdiamondsd and Ga1−xMnxN ssquaresd obtained by the
presented approachssolid line, filled symbolsd, VCA-RPA sdashed
line, filled symbolsd, MFA sdotted line, filled symbolsd, and MC
sdash-dotted line, open symbols, taken from Ref. 15d.
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order to handle systems with a ground state deviating from a
saturated ferromagnet. Furthermore, clustering and other
forms of short-range chemical ordering may also be included
into the model in order to investigate their effects on mag-
netic stability. Finally, the method should be applied to other
DMS.
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