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The role of the electron-phonon interaction in the Holstein-Hubbard model is investigated in the metallic
phase close to the Mott transition and in the insulating Mott phase. The model is studied by means of a
variational slave boson technique. At half-filling, mean-field static quantities are in good agreement with the
results obtained by numerical techniques. By taking into account Gaussian fluctuations, an analytic expression
of the spectral density is derived in the Mott insulating phase showing that an increase of the electron-phonon
coupling leads to a sensitive reduction of the Mott gap through a reduced effective repulsion. The relation of
the results with recent experimental observations in strongly correlated systems is discussed.
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I. INTRODUCTION

The understanding of the properties of Mott insulators
such as CaTiO3 and V2O3 represents a long-standing prob-
lem. As suggested by Mott,1 the strong Coulomb repulsion
among the electrons can cause a metal-insulator transition
opening a gap in the density of states that is usually known
as Mott gap. The correlation-driven metal-insulator transition
is often investigated within the framework of the Hubbard
lattice Hamiltonian which takes into account the electron in-
teraction through the on-site repulsion termU. As developed
by Hubbard,2 two subbands generically called lower and up-
per Hubbard bands separated by the Mott gap of the order of
the energyU arise in the excitation spectrum for large
enough repulsion.

The correlation effects are important not only on the in-
sulating side but also on the metallic phase where a great
deal of insight has been obtained by using the Gutzwiller
wave function.3 A progress toward the understanding of the
metal-insulatorsMI d transition has been made by the refor-
mulation of the problem in terms of slave bosons,4 which
reproduces the Gutzwiller approximation at the saddle-point
level and allows to study the effects of Gaussian fluctuations
in the metallic5 and in the insulating phase.6 In this state the
resulting single-particle spectral function consists of two
broad incoherent contributions reminiscent of the lower and
upper Hubbard bands. An overall description of the Mott
transition in the Hubbard model can be obtained by means of
the dynamical mean field theorysDMFTd that is exact in the
limit of infinite dimension.7 The study of the infinite dimen-
sional model has essentially confirmed the validity of the
description obtained when slave boson fluctuations about the
mean-fieldsMFd are considered.

Although the Hubbard Hamiltonian captures the funda-
mental properties of systems near the Mott transition, it does
not take into account the role of the lattice degrees of free-
dom. Actually, the presence of strong electron-phonon
sel-phd interactions has been pointed out in several systems,
such as cuprates,8,9 manganites,10 and V2O3.

11 In addition to
the on-site repulsion, the most natural model incorporates a
short-range interaction of the electrons with local phonon

modes of constant frequencyv0.
12 This model is described

by the Holstein-Hubbard HamiltonianH

H = − t o
ki,jl,s

cis
† cjs + Uo

i

ni↑ni↓ + v0o
i

ai
†ai

+ gv0o
i

nisai + ai
†d. s1d

Heret is the electron transfer integral between nearest neigh-
bor sites ki , jl of a d-dimensional simple cubic lattice,
cis

† scisd createssdestroysd an electron with spins at the site
i andni =osnis=oscis

† cis is the local density operator. In Eq.
s1d ai

†said is the creationsannihilationd phonon operator at the
site i, and the parameterg represents the coupling constant
between electrons and local displacements. The dimension-
less parameterl=g2v0/W, with W=2dt bare electron half-
bandwidth, is typically used to measure the strength of the
el-ph interaction in the adiabatic regime characterized by
small values of the ratiog=v0/ t. Within this regime the
Coulomb repulsion is found to dominate the properties of the
metallic phase also with a sizableel-ph coupling.13 Further-
more, there is a very little softening of the phonon frequency
on the approach to the Mott transition since the Hubbard
term U suppresses charge fluctuations.13 Actually within the
Mott phase the spectral density shows phonon side bands
whose peaks are separated by multiples of the bare frequency
v0.

14 Finally, close to the Mott transition at finite density, an
intermediateel-ph coupling leads to the phase separation be-
tween a metal and an insulator.15

In this paper the study of the Holstein-Hubbard model
focuses on the role of theel-ph interaction in modifying the
physical properties of the electrons close to the metal-
insulator transition and in the insulating Mott phase. The
starting point of the approach is the generalized Lang-Firsov
transformation16 U=eV, with

V = go
i

fknil + f isni − knildgsai − ai
†d, s2d

where the parametersf i take into account the polaronic local
density fluctuations which couple to the lattice distortions.
The next step is the functional-integral representation in
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terms of the four-slave bosonsei, pis, and di obtained by
imposing the equivalence with the original model through
the Lagrange multipliersli

s1d andlis
s2d.4 First we consider the

MF solution at half-filling, then slave boson Gaussian fluc-
tuations on the top of the MF finding that the resulting Mott
gap is sensitively reduced with increasingl since it is deter-
mined by theel-el repulsion renormalized by the effects of
the el-ph coupling. Finally the relation of the results with
recent experimental observations in strongly correlated sys-
tems is discussed.

The MF solution in the paramagnetic homogeneous phase
is obtained by replacing the Bose fields with their mean val-
uesskeil=e0, kdil=d0, kpisl=p0d and by assumingf i = f, li

s1d

=l0
s1d, andlis

s2d=l0
s2d.17 The resulting mean-field Hamiltonian

is characteristic of free fermion quasiparticles and phonons
and the mean double occupation is controlled byUeff
=U+2g2v0sf2−2fd.

At half-filling the MF energy per siteu is given by a
simple functional depending onf andd0

u = qe−f2g2
«̄ + Ueffd0

2 − g2v0, s3d

with q=8d0
2−16d0

4 and«̄ mean bare kinetic energy. The Mott
phase is the insulating state for largeUeff.0 characterized
by q=0, d0=0, and the energy per site equal to −g2v0 schar-
acteristic energy of the limitU / t=`d. When Ueff becomes
negative, an on-site bipolaron solution sets in corresponding
to d0

2=0.5, f =1, and energyu=U /2−2g2v0.
In Fig. 1 the phase diagram at half-filling is reported for

g=0.2 in the three-dimensional case. By analyzing the be-
havior of d0, it is found that the transition to MI is always
found to be second order, that to the bipolaronic insulator
sBId is first order, finally that between MI and BI is again
discontinuous in excellent agreement with the results derived
by the DMFT solution.13 In particular we notice that, with
increasingl, the line separating theM and MI phases shifts
to values ofU larger thanUc, the critical value in the absence

of the el-ph coupling. Actually the Mott transition is influ-
enced by theel-ph interaction since it isUeff that governs the
transition and it becomes smaller with increasingl. There-
fore, the conditionUeff.Uc, characteristic of a transition
driven by theel-el interaction, implies that the transition oc-
curs for larger values of the bareU. Within the MF approach
the interplay betweenel-el andel-ph interactions in affecting
the Mott phase is essentially linked to the value of the pa-
rameter f that, at fixed adiabaticity ratio andl, is weakly
decreasing with increasingU and it is of the order ofg /4d in
the adiabatic regime near the Mott transition. The transition
line betweenM and MI phases is given byl.sU−Ucd /
s2fWd.sU−Ucd /gt. Therefore, as shown in the inset of Fig.
1, the dependence of the Mott transition line onl becomes
also more pronounced with an increase of the adiabaticity
ratio g. In the atomic limitsg=`d we recover the exact so-
lution without metallic phase withf =1 andUc=0 sthe dotted
line in Fig. 1 corresponding tol=U /2Wd.

While the Mott transition is driven by the growth of the
spin susceptibility, the transition fromM to BI is character-
ized by the enhancement of the charge fluctuations inducing
a decrease of the effective repulsion. In Fig. 2 we report the
MF results for the spectral weightZ at the Fermi energy
sequal tom/m*d. Within the MF approach we simply have
Z=qe−f2g2

. Far from the Mott transitionsU /Uc smalld Z de-
creases with an increase of theel-ph coupling as expected for
any localizing interaction. However, near the Mott phase, the
effects due to the reduction ofUeff become more marked and
are able to induce the enhancement ofZ with increasingl
that, again, is in good agreement with DMFT results.13

The MF solution can be readily generalized at densities
different from half-filling. Within the MF approach some of
us have shown that the interplay of strong localel-el and
el-ph interactions can push the system toward a phase sepa-
ration between states characterized by different lattice
distortions.17 The phase coexistence occurs for intermediate
values of theel-ph coupling and its relevance within the
Hubbard-Holstein model has been confirmed also by DMFT
works.15

The task of including charge fluctuations described by the
e andd fields is simplified in the Mott phase by the fact that

FIG. 1. The phase diagramU /W versusl at half-filling for g
=0.2 in the three-dimensional case. The transition lines separate the
metallic stateM from the Mott insulator MI and the bipolaronic
insulator BI. The dotted line is the locus whereU−2g2v0=0. In the
inset, the transition line between the metallic and Mott insulating
phase is shown for different adiabaticity ratiosg.

FIG. 2. The difference between the spectral weightZ at finite l
and its value atl=0 for some values of the ratioU /Uc in the
three-dimensional simple cubic lattice.
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at the MF level the Bose fieldse and d are not condensed
se0=d0=0d, while p0=1/Î2.6 At the Gaussian level the fluc-
tuations of thee andd fields are actually decoupled, not only
from those of thep fields, but also from the phononica
fields. Clearly the matrix elements of the fluctuating fieldse
and d are renormalized byel-ph contributions because of
Ueff. The procedure of calculation is the following: we start
at densities different from half-fillingsn,1d, then we calcu-
late the quantities in the limitn→1− for values of the param-
eters where the system is in the Mott phase at half-filling.6

The inclusion of Gaussian fluctuations allows to calculate
the one-particle spectral functionAsvd of the insulating Mott
phase in the limitn→1− sat MF it is identically zerod. The
incoherent contribution arises from the complicated motion
of a quasiparticle surrounded by the cloud of charge and
lattice excitations that it leaves behind. In the limitn→1− it
is possible to derive an analytic expression of the spectral
function Asvd yielding, at zero temperature,

Asvd = e−g2f2Ãsvd + e−g2f2o
n=1

`
sg2f2dn

n!
us− v − nv0dÃsv + nv0d

s4d

+ e−g2f2o
n=1

`
sg2f2dn

n!
usv − nv0dÃsv − nv0d, s5d

with usxd the Heaviside function and the functionÃsvd akin
to that obtained for the Hubbard model withU=Ueff.

6

The first term of Eq.s5d is the product of two quantities,
with an e−f2g2

renormalization factor due toel-ph coupling.
The second and the third term in Eq.s5d represent the con-
tribution due to the phonon replicas of the hole and particle
type, respectively.18 We notice that these terms provide a
non-negligible spectral weight to the total spectral density at

energies out of the gap ofÃsvd. Therefore, the Mott gap of

the system is determined by the functionÃsvd and it is sim-
ply given byD=Ueffj. As shown in Fig. 3, the reduction of
the gap with increasingl can be also of the order of bare half

bandwidthW.19 Finally, we stress that the calculated gap is
traceable to the difference of the chemical potentials atn
=1 andn=1−, in analogy with the results of the Hubbard
model.6 For n=1 we havems1d=U /2−2g2v0, while for n
=1− the chemical potential isms1−d=ms1d−Ueffj /2. Since
the system has particle-hole symmetry, the gapD can be
obtained asD=2fms1d−ms1−dg=Ueffj.

In Fig. 4 we report the difference between the gap at finite
l and that atl=0 as a function of the adiabaticity ratio.
Since the attraction between the electrons gets larger with
increasingg, the resulting Mott gap is more reduced. How-
ever, in the strongel-ph coupling regimesl larger than 1d
there is no dependence on the adiabaticity ratio since the
particles localized by the strong correlation are small po-
larons. In fact, in this regime the MF solution at finite density
is minimized for f =1 yielding the effective interactionUeff
=U−2g2v0 for any finite value of adiabatic ratio. In the inset
of Fig. 4 we show the variation of the effective interaction
Ueff as a function of the adiabaticity ratio, making the com-
parison with the behavior of the Mott gap. In the regime
wherel,1, the quantityj affects the magnitude of the gap
and its dependence on the adiabaticity ratio, while in the
strong coupling regimej.1, implying that the gap in units
of W is just Ueff/W=U /W−2l.

In this work we have seen that in the metallic phase close
to the Mott transition the spectral weightZ is enhanced and
the gap in the insulating Mott phase is reduced asl is raised.
These behaviors can be related to some recent experimental
and theoretical studies in V2O3 and Cr-doped V2O3 sRefs.
11, 20, and 21d, where the Mott gap is unexpectedly small
and in the metallic phase the quasi-particle peak in the pho-
toemission spectrum has a significantly large weight in com-
parison with that theoretically predicted. We suggest that the
inclusion of theel-ph interaction could be able to partially
fill the discrepancies between the experimental observations
and the theoretical studies. Clearly the single orbital model is
not sufficient to fully explain the electronic and magnetic

FIG. 3. The renormalized density of statesN for different values
of the el-ph coupling constantl as a function of the frequencyv. FIG. 4. The difference between the gap atl=0 and that at finite

l in units of the bare half-bandwidthW as function of the adiaba-
ticity ratio for different values of theel-ph coupling. In the inset the
effective repulsionUeff and the Mott gapD as a function of the
adiabaticity ratiog.
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structure of such systems,22 so a proper multiorbital theory
has to be considered in order to obtain a better agreement of
the theory with experiments.21 The results due to the reduc-
tion of the effective repulsion caused by theel-ph coupling
are valid when the lattice distortions are coupled to charge
fluctuations like in the model of Eq.s1d. However for general
models the issue is delicate since there are interactions such
as the Jahn-Teller coupling for which the phonon-mediated
attraction could be even diminished by strong correlations.23

Finally we can argue the modifications of the spectral
properties at densities near the MI phase or at half-filling just
under the edge of localization. Clearly there is a finite spec-
tral weight at the Fermi energy where quasi-particle states
begin to appear. Therefore, in addition to the incoherent con-
tribution at high energy, the spectral density presents also the
coherent term. Close to the metal-insulator transition the co-
herent term could not be strongly affected by theel-ph cou-
pling. In fact, for the combined effect of the strong correla-
tion and el-ph coupling the quasiparticle band can be
narrower than the phonon energyv0 implying the impossi-
bility of the single phonon scattering between the quasipar-

ticles. Therefore near the Mott transition theel-ph coupling
affects mainly the incoherent term of the spectral density.
This result is in agreement with recent experiments on
Bi2Sr2CaCu2O8+d made using angle-resolved photoemission
spectroscopy.9 In fact it has been found that the oxygen iso-
tope substitution mainly influences the broad high energy
humps.

In conclusion, we have discussed the role of theel-ph
interaction in modifying the physical properties of the elec-
trons in the metallic phase close to the Mott transition and in
the MI phase. The approach to study the Holstein-Hubbard
model has been based on a variational slave boson technique
that provides results in agreement with DMFT. An analytic
expression of the spectral density is derived in the Mott
phase showing that due to the reduced effective repulsion the
Mott gap decreases as theel-ph coupling constant increases.
In this paper we have mainly discussed the phases without
long-range order. The study of broken symmetry phases is
possible within the slave-boson formalism4 and it is left for
future work.
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