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Hedin’s equations are solved perturbatively in zero dimension to count Feynman graphs for self-energy,
polarization, propagator, effective potential and vertex function in a many-body theory of fermions with
two-body interaction. Counting numbers are also obtained in theGW approximation.
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I. INTRODUCTION

Consider a system of fermions described by the Hamil-
tonianH=oihsid+oi, jvsi , jd, whereh is a single-particle op-
erator andv is the two-particle interaction. In general, to
obtain dressed correlators that describe quasiparticles and
collective excitations, one must sum over classes of diagrams
of all orders of perturbation theory inv. The random phase
approximation for the effective potential or the ladder expan-
sion for the vertex and theT matrix are two well known
examples.1 Iterative schemes are used in conserving approxi-
mations for the self-energy.2,3 The perturbative treatment of
the electron gas requires a mixed approach, with partial re-
summations; a late step in the long history of thers expan-
sion of correlation energy is the evaluation of third order
diagrams.5 In these cases, it might be useful, or at least in-
teresting, to know in advance how many diagrams are re-
quired at each order of the approximation, and how many are
left out. The counting problem is much simpler than the
original one, and is obtained by translating the recursive
equations at hand to zero dimension. Properties other than
loop content or perturbative numbers may also be evaluated:
a notable example is diagram enumeration according to their
topologies, that can be mapped to models of statistical me-
chanics on random lattices.4

In this report, I show how Feynman diagrams can be enu-
merated for the exact theory and itsGW approximation. A
useful starting point is the set of five Hedin’s equations6 for
the propagatorGs1,2d, the effective potentialWs1,2d, the
proper self-energySs1,2d, the polarizationPs1,2d, and the
vertexGs1;2,3d

Gs1,2d = gs1,2d + gs1,18dSs18,28dGs28,2d, s1d

Ws1,2d = vs1,2d + vs1,18dPs18,28dWs28,2d, s2d

Ss1,2d = iGs28;1,18dGs18,2dWs28,2d, s3d

Ps1,2d = − 2iGs1;28,29dGs2,28dGs29,2d, s4d

Gs1;2,3d = ds1,2dds1,3d

+ Gs1;28,38dGs29,28dGs38,39d
dSs2,3d

dGs29,39d
. s5d

Repeated primed space-time and internal variables are here-
after understood to be summed or integrated.gs1,2d is the

Green function of the interacting system in the Hartree ap-
proximation, with exact particle density, so that Hartree-type
insertion stadpolesd is already accounted for. In the vertex
equation, the Bethe–Salpeter kernel7 is specified as a func-
tional derivative in the same quantities involved. Therefore,
the five exact Hedin’s equations are formally closed. A dif-
ferent functional closure of Schwinger–Dyson equations,
leading to diagrammatic recursion schemes, was developed
by Kleinert et al.8,9

It is useful to restate Eq.s5d with the Hartree propagatorg
replacing the exact one,G

Gs1;2,3d = ds1,2dds1,3d + gs18,1dgs1,19d
dSs2,3d

dgs18,19d
. s6d

It states that vertex diagrams are obtained from self-energy
ones through the insertion of a bare vertex in a Hartree
propagator line, in all possible ways. A derivation is given in
the end. The formula can be advantageous when the self-
energy is approximated by some explicit expression ofg and
v, which are the free functional variables of the many-body
problem.

To cope with the vertex equation is a formidable task.10,11

A strong nontrivial simplification is theGW approximation
sGWAd, where all corrections to the bare vertex
Gs0ds1;2,3d=ds1,2dds1,3d are ignored. Eqs.s1d–s4d, with G0

replacing G, then become a closed set of integral
equations.12,13

The upmost difficulty of the problem of solving Hedin’s
or GW equations, vanishes in zero dimension of space-time,
where the perturbative solution in the interactionv is a mean
to count Feynman diagrams. The constraint of no Hartree-
type insertions makes this approach much simpler than the
usual one, based on the functional integral.14,15 Counting
numbers are also evaluated in theGWA, and the omission of
vertex corrections makes the number of diagrams grow with
a power law, instead of factorially.

II. COUNTING FEYNMAN DIAGRAMS

In zero dimension of space-time, the four Hedin’s Eqs.
s1d–s4d become algebraic, with variablesg and v, and the
functional derivative in the vertex Eq.s6d is an ordinary one.
After removing imaginary factors and replacing the factor
s−2d, due to the fermionic loop and spin summation, with a
parameter, that counts the same loops, Hedin’s equations
are
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G = g + gSG, W= v + vPW, s7d

S = GWG, P = ,G2G, G = 1 +g2]S

]g
. s8d

By searching solutions as series expansions in the variablesv
and ,, one obtains coefficients that count all Feynman
graphs, with weight one, that contribute to a perturbative
order sspecified by the power ofvd, with a given number of
fermionic loopssthe power of,d. I begin by solving for the
self-energy. Elimination ofG, W andP gives

Ss1 − gSd2 = gvGf1 − s1 − ,dgSg. s9d

It is useful to consider adimensional quantities,S=gvssxd
and x=g2v. After use of the equation forG one obtains a
differential equation forssxd

ss1 − xsd2 = S1 + xs+ 2x2]s

]x
Df1 − xss1 − ,dg. s10d

There is no standard solution of thissAbeld equation. The
perturbative expansion is evaluated

S/vg = 1 + s2 + ,dx + s10 + 9, + ,2dx2 + s74 + 91, + 23,2 + ,3dx3 + s706 + 1063, + 416,2 + 46,3 + ,4dx4

+ s8162 + 14193, + 7344,2 + 1350,3 + 80,4 + ,5dx5 + . . . s11d

=1 + 3x + 20x2 + 189x3 + 2232x4 + 31130x5 + . . . . s12d

The last line corresponds to,=1. For example, in Eq.s12d
we read that at orderv3 there are 20 self-energy diagrams;
Eq. s11d gives the more detailed information that ten graphs
come with no fermion loop, nine with a single loop and one
with two loops. At each perturbative order there is a single
diagram with the largest number of loops; the sum of such
diagrams yields the ring approximation1 Sr = igWr, where the
effective potential Wr is evaluated with ring insertions
Pr =−2ig2.

The expansions for the vertex and the polarization are
then obtainedsI omit the propagator and the effective poten-
tiald

G = 1 +x + s6 + 3,dx2 + s50 + 45, + 5,2dx3

+ s518 + 637, + 161,2 + 7,3dx4

+ s6354 + 9567, + 3744,2 + 414,3 + 9,4dx5 + . . .

s13d

=1 +x + 9x2 + 100x3 + 1323x4 + 20088x5 s14d

P/g2, = 1 + 3x + s15 + 5,dx2 + s105 + 77, + 7,2dx3 + s945 + 1044, + 234,2 + 9,3dx4

+ s10395 + 14784, + 5390,2 + 550,3 + 11,4dx5 + . . . s15d

=1 + 3x + 20x2 + 189x3 + 2232x4 + 31130x5 + . . . . s16d

Note that the counting numbers for the,=1 expansionss12d ands16d of the self-energy and the polarization are the same. This
occurs also in Q.E.D. though with smaller counting numbers, due to the cancellation of pairs of diagrams which differ by
orientation of a fermionic loop with an odd number of propagatorssFurry’s theoremd.16

I now evaluate the counting numbers in theGWA, which corresponds toG=1 in Eq. s9d. The equation for the self-energy
becomes algebraic cubic, with solution

SGW/vg = 1 + s1 + ,dx + s2 + 4, + ,2dx2 + s5 + 15, + 9,2 + ,3dx3 + s14 + 56, + 56,2 + 16,3 + ,4dx4

+ s42 + 210, + 300,2 + 150,3 + 25,4 + ,5dx5 + . . . s17d

=1 + 2x + 7x2 + 30x3 + 143x4 + 728x5 + . . . . s18d
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For ,=1, the cubic equation isss1−sxd2=1. By solving
for the inverse function,xssd=s−1−s−3/2, one locates a singu-
lar point for s8sxd in xc=4/27. The finite radius of conver-
gence for the perturbative seriess18d in GWA implies

that the number of self-energy diagrams of ordern grows
with the power laws27/4dn. In GWA the vertex function
is trivial, and the polarizationPGW=−2iGGW

2 is the
GW-dressed ring diagram

PGW/g2, = 1 + 2x + s5 + 2,dx2 + s14 + 14, + 2,2dx3 + s42 + 72, + 27,2 + 2,3dx4 + s132 + 330, + 220,2 + 44,3 + 2,4dx5 + . . .

s19d

=1 + 2x + 7x2 + 30x3 + 143x4 + 728x5 + . . . . s20d

The ,=1 expansions for the self-energy and the polarization
are again the same, as one can show thatP /g2 ands solve
the same cubic equation.

By translating to zero dimension a closed system of equa-
tions for many-body correlators, one may enumerate the
Feynman diagrams involved. I have shown this for the full
theory of interacting fermions and theGW approximation,
with the rule that a line is a Hartree propagator.
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APPENDIX A

I show that the vertex Eq.s5d can be written in the form
s6d; the simple proof is a modification of Hedin’s construc-

tion, to which I refer. I recall the definition of the vertex
function

Gs1;2,3d = ds1,2dds1,3d +
dSs2,3d
dVs1d

. sA1d

The potentialV is the sum of an external potentialswhich is
turned off at the endd and the Hartree potential
ed2vs1,2dns2d, built with the exact particle density. Hedin’s
formula is obtained by writing the functional derivative inV,
through the chain rule, as a derivative in the exact Green
function G. It is admissible to do so in terms ofg

dSs2,3d
dVs1d

=
dSs2,3d

dgs18,19d
dgs18,19d

dVs1d
.

From the Hartree equationsi]st18d−hs18d−Vs18ddgs18 ,19d
=ds18 ,19d, one evaluates the required functional derivative
dgs18 ,19d /dVs1d=gs18 ,1dgs1,19d. This ends the proof.
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