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Hedin’s equations and enumeration of Feynman diagrams
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Hedin’s equations are solved perturbatively in zero dimension to count Feynman graphs for self-energy,
polarization, propagator, effective potential and vertex function in a many-body theory of fermions with
two-body interaction. Counting numbers are also obtained irGf#éapproximation.
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[. INTRODUCTION Green function of the interacting system in the Hartree ap-
Consider a system of fermions described by the Hamil'%r;):rlg]oarfl(otgaWcl)tlz;;;a(z:atlr%a}o\rgc'zgceonusr:?é ds?otrha};ﬁﬁgrsg;gge
tonianH=2h(i)+;-jv(i,j), whereh is a single-particle op- . b y . iy
erator andv is the two-particle interaction. In general, to equation, the Bethe—Salpeter kerhisl specified as a func-
v P ) g ' _tional derivative in the same quantities involved. Therefore,

obtain dressed correlators that describe quasiparticles andy five exact Hedin's equations are formally closed. A dif-

collective excitations, one must sum over classes of diagramf%rent functional closure of Schwinger-Dyson equations

of all order; of perturbatlon_ theory 0. The random phase leading to diagrammatic recursion schemes, was developed
approximation for the effective potential or the ladder expan—by Kleinert et al®®

sion for the Vef‘ex and tha matrix are two Wel.l known . Itis useful to restate Ed5) with the Hartree propagator
exampled. Iterative schemes are used in conserving apProXic. 1o cing the exact onG
mations for the self-enerdgy? The perturbative treatment of P g
the electron gas requires a mixed approach, with partial re- 55(2,3
summations; a late step in the long history of tgexpan- [(1;2,3=4(1,2)4(1,3) +9(1'-1)9(1.1")m-
sion of correlation energy is the evaluation of third order '
diagrams’ In these cases, it might be useful, or at least in-It states that vertex diagrams are obtained from self-energy
teresting, to know in advance how many diagrams are reenes through the insertion of a bare vertex in a Hartree
quired at each order of the approximation, and how many arpropagator line, in all possible ways. A derivation is given in
left out. The counting problem is much simpler than thethe end. The formula can be advantageous when the self-
original one, and is obtained by translating the recursiveenergy is approximated by some explicit expressiog and
equations at hand to zero dimension. Properties other than which are the free functional variables of the many-body
loop content or perturbative numbers may also be evaluategiroblem.
a notable example is diagram enumeration according to their To cope with the vertex equation is a formidable t&sk
topologies, that can be mapped to models of statistical meA strong nontrivial simplification is th&W approximation
chanics on random latticés. (GWA), where all corrections to the bare vertex
In this report, | show how Feynman diagrams can be enuF©(1;2,3=48(1,28(1,3) are ignored. Eqg1)—4), with Ty
merated for the exact theory and N approximation. A replacing I, then become a closed set of integral
useful starting point is the set of five Hedin’s equatfofts ~ equationg?13

(6)

the propagatoiG(1,2), the effective potentialM(1,2), the The upmost difficulty of the problem of solving Hedin’s
proper self-energe.(1,2), the polarizationlI(1,2), and the or GW equations, vanishes in zero dimension of space-time,
vertexI'(1;2,3 where the perturbative solution in the interactiois a mean

) . ) to count Feynman diagrams. The constraint of no Hartree-
G(1,2=9(1,2 +9(1,1)x(1',2)G(2',2), D type insertions makes this approach much simpler than the
usual one, based on the functional intedgfaP Counting
W(1,2) =v(1,2) +v(1,1)II(1',2")W(2',2), (2 numbers are also evaluated in B&/A and the omission of
vertex corrections makes the number of diagrams grow with
2(1,2=il'(2";1,1)G(1",2W(2’,2), (3 a power law, instead of factorially.

(1,2 = - 21(1:2,2/G(2,2)G(2",2), (4) Il. COUNTING FEYNMAN DIAGRAMS

In zero dimension of space-time, the four Hedin's Eqgs.
(1)—(4) become algebraic, with variablesand v, and the
53(2,3) functional derivative in the vertex E¢) is an ordinary one.
36(2'.3)" (5  After removing imaginary factors and replacing the factor
' (=2), due to the fermionic loop and spin summation, with a
Repeated primed space-time and internal variables are herparameterf that counts the same loops, Hedin’s equations
after understood to be summed or integragd.,?) is the are

I'(1:2,39=61,28(1,3

+I'(1;2,3')G(2",2')G(3',3")
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G=g+0g3G, W=y +vIIW, (7) S(1-g3)%=gul1-(1-¢)g2]. (9)
Py It is useful to consider adimensional quantiti&s; gvs(x)
S=GWI, [=¢GT, I'=1 +92(9—g- (8)  andx=g%. After use of the equation fof' one obtains a

differential equation fois(x)
By searching solutions as series expansions in the variables
and ¢, one obtains coefficients that count all Feynman
graphs, with weight one, that contribute to a perturbative
order (specified by the power af), with a given number of
fermionic loops(the power off). | begin by solving for the There is no standard solution of thi8bel) equation. The
self-energy. Elimination o5, W andII gives perturbative expansion is evaluated

s(1-x9)?= (1 +XS+ ZXZ(?—i)[l -xs1-0)]. (10

Slhvg=1+(2+€)x+ (10 + K + €252+ (74 + 99X + 2307+ £3)x° + (706 + 1063 + 416¢% + 46> + ¢4)x*

+ (8162 + 14198 + 734402 + 13500° + 80€* + ¢5)x° + ... (12
=1+ 3+ 20x° + 189¢ + 223%* + 311306 + ... . (12
[
The last line corresponds #=1. For example, in Eq(12) ['=1+x+(6+30)x*+ (50 + 4% + 5¢2)x3
we read that at order® there are 20 self-energy diagrams; ) a4
Eq. (11) gives the more detailed information that ten graphs +(518+ 63% + 1614~ + T€°)X

come with no fermion loop, nine with a single loop and one 2 3 o5
with two loops. At each perturbative order there is a single +(6354+ 9567 + 37447+ 4147+ OC+ ..
diagram with the largest number of loops; the sum of such (13
diagrams yields the ring approximatiol, =igW,, where the
effective potential W, is evaluated with ring insertions
I1,=-2ig?

The expansions for the vertex and the polarization are
then obtained! omit the propagator and the effective poten-
tial)

=1 +x+ 9%x% + 100¢ + 1323¢* + 20088° (14)

I1/g%€ =1 + 3+ (15 + 50)x? + (105 + 77 + 7€2)x3 + (945 + 1044 + 234¢% + 9¢3)x*

+ (10395 + 14784 + 53902 + 550¢% + 116)x° + ... (15)

=143+ 202 + 189 + 223X%* + 311305 + ... . (16)

Note that the counting numbers for the 1 expansion$12) and(16) of the self-energy and the polarization are the same. This
occurs also in Q.E.D. though with smaller counting numbers, due to the cancellation of pairs of diagrams which differ by
orientation of a fermionic loop with an odd number of propagatéisry’s theorem'®

| now evaluate the counting numbers in {B8/A which corresponds tb=1 in Eq.(9). The equation for the self-energy
becomes algebraic cubic, with solution

Sowvg=1+(1+E)X+(2+40+€2)x%+ (5+ 15 + 92+ £3)x3 + (14 + 56 + 5602 + 1603 + £*)x*

+ (42 +21Q + 30002 + 15003 + 25¢4 + €5)x° + ... (17)

=1+ X+ T2+ 308+ 1434+ 728 + ... . (18)
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For ¢=1, the cubic equation is(1-sx?=1. By solving that the number of self-energy diagrams of ordegrows
for the inverse functionx(s)=s1-s%2, one locates a singu- with the power law(27/4)". In GWA the vertex function
lar point for s'(x) in x,=4/27. The finite radius of conver- is trivial, and the polarizationTlg,=-2iG%,, is the
gence for the perturbative serig€d8) in GWA implies  GW-dressed ring diagram

HoW/020 =1+ 2+ (5+20)x%+ (14 + 14 + 202)x + (42 + 72X + 270% + 203)x* + (132 + 33@ + 2200% + 4463 + 20Hx° + ...
(19

=14+ X+ 72+ 303+ 1433+ 7285 + ... . (20)

The £=1 expansions for the self-energy and the polarizatiortion, to which | refer. | recall the definition of the vertex
are again the same, as one can show Ihéai® ands solve  function
the same cubic equation.

By translating to zero dimension a closed system of equa- I'(1:2,3=61,281,3 + 52(2,3 ' (A1)
tions for many-body correlators, one may enumerate the V(1)
Feynman diagrams involved. | have shown this for the full
theory of interacting fermions and tH@W approximation,
with the rule that a line is a Hartree propagator.

The potentiaV is the sum of an external potenti@hich is

turned off at the end and the Hartree potential

Jd2u(1,2)n(2), built with the exact particle density. Hedin's

formula is obtained by writing the functional derivative\iy

through the chain rule, as a derivative in the exact Green
This work was funded in part by the EU’s 6th Framework function G. It is admissible to do so in terms of

Programme through the NANOQUANTA Network of Excel- .

lence (NMP4-CT-2004-500198 (2,3 _ 62(2,3 51,17

V(1)  6g(1',17) V(D)

From the Hartree equatiofiid(t;)—h(1’)-V(1'))g(1’,1")
| show that the vertex E(5) can be written in the form =4&(1,1"), one evaluates the required functional derivative
(6); the simple proof is a modification of Hedin’s construc- 69(1’,1")/6V(1)=g(1’,1)g(1,1"). This ends the proof.
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