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We develop expressions for the electrostatic potential and total energy of crystalline solids which are
amenable to direct evaluation in real space. Unlike conventional reciprocal-space formulations, no Fourier
transforms or reciprocal lattice summations are required, and the formulation is well suited for large-scale,
parallel computations. The need for reciprocal-space expressions is eliminated by replacing long-range poten-
tials by equivalent localized charge distributions and incorporating long-range interactions into boundary
conditions on the unit cell. In so doing, a simplification of the conventional reciprocal-space formalism is
obtained. The equivalence of the real- and reciprocal-space formalisms is demonstrated by direct comparison
in self-consistent density-functional calculations.
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The evaluation of the electrostatic potential and total en-
ergy of crystalline solids has been an ongoing problem since
the earliest days of solid-state physics.1–6 In ab initio
density-functional7,8 calculations, the electrostatic compo-
nent of the potential is typically written as a sum of ionicsor
nuclear, in the all-electron contextd and electronicsHartreed
terms. In an infinite crystal, however, each of these terms
diverges and the sum is only conditionally convergent due to
the long-range 1/r nature of the Coulomb interaction. Simi-
larly, the electrostatic component of the total energy is a sum
of electron-ion, electron-electron, and ion-ion terms, each of
which diverges in an infinite crystal but combine to yield a
finite total electrostatic energy per unit cell.

It has been appreciated for some time that the divergences
and conditional convergence of such extended lattice sum-
mations can be eliminated by formulating the summations in
terms of neutral densities that are well localized in real
and/or reciprocal sFourierd space.2 In the conventional
reciprocal-space approach forab initio calculations of crys-
talline solids,6,9 divergences are eliminated by adding neu-
tralizing densities to otherwise divergent Coulomb terms in
such a way that the effects of the added densities cancel in
the final expressions. Remaining long-range interactions are
then rendered short ranged by transforming to reciprocal
space, where smooth periodic functions, of infinite extent in
real space, are well localized. The resulting expressions for
the electrostatic potential and total energy contain structure
factors and/or Ewald sums and require at leastOsN log Nd
operations to evaluate, whereN is the number of atoms in the
unit cell. Furthermore, because the reciprocal space approach
uses a Fourier basis, boundary conditions are necessarily pe-
riodic in all directions. And because the approach relies on
Fourier transforms, it is difficult to implement efficiently on
large-scale parallel computational architectures due to the
need for extensive interprocessor communications.

The limitations of the reciprocal-space approach have in-
spired much research on real-space and local-orbital-based
approaches10–27 which allow for better scaling, a variety of
boundary conditions, and eliminate the need for Fourier
transforms. In order to treat long-range Coulomb interactions
in crystals, these approaches also generally formulate other-

wise divergent summations and integrals in terms of neutral
densities. Alemanyet al.11 employ a uniform neutralizing
density in a real-space formulation of the Hartree term. Ionic
terms are, however, computed as in the conventional
reciprocal-space formalism, using Fourier transforms. Other
real-space formulations have employed localized neutraliz-
ing densities to eliminate the need for reciprocal-space trans-
formations altogether. Kane25 employs neutralizing Gaussian
densities to construct a rapidly convergent expression for the
crystal potential and finite total Coulomb energy in the con-
text of a real-space Wannier function approach. The formu-
lation of Bacheletet al.26 employs Gaussian representations
of local ionic densities to construct total densities and poten-
tials and associated neutral terms amenable to evaluation in
real space. Tsuchida and Tsukada23 employ a combination of
localized and uniform neutralizing densities to construct neu-
tral terms optimized for evaluation in real space. Ordejónet
al.27 form neutral terms by expressing potentials and energies
in terms of neutral pseudoatomic densities and differences of
the crystal density from these. The formulation of Fattebert
and Nardelli20 employs neutralizing Gaussian densities and
associated potentials, in the spirit of the classical Ewald
method, to render long-range interactions short ranged.

Here, we develop expressions for the electrostatic poten-
tial and total energy of a crystalline solid which are amenable
to direct evaluation in real space inOsNd operations. The
expression for the total energy so obtained is variational in
the output density and quadratically convergent. We elimi-
nate the need for reciprocal-space transformations and/or
neutralizing analytic functions by replacing long-range po-
tentials by the localized charge distributions which generate
them and incorporating long-range interactions into bound-
ary conditions on the unit cell. In so doing, we obtain a
simplification of the conventional reciprocal-space formal-
ism.

In the pseudopotential approximation,9 the Kohn-Sham
equations of density functional theory7,8 are given by

−
1

2
¹2cisxd + Vef fcisxd = «icisxd, s1d

PHYSICAL REVIEW B 71, 113101s2005d

1098-0121/2005/71s11d/113101s4d/$23.00 ©2005 The American Physical Society113101-1



Vef f = VI
l + VI

nl + VH + Vxc, s2d
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l = o

a
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Vxc = Vxcsx;red, s6d

re = − o
i

f ici
*sxdcisxd, s7d

whereci and «i are the Kohn-Sham eigenfunctions and ei-
genvalues,VI,a andVI,a

nl are the local and nonlocal parts of the
ionic pseudopotential of atoma, re is the electronic charge
density, the integrals extend over all space, and the summa-
tions extend over all atomsa and statesi with occupationsf i.
sAtomic units are used throughout.d For simplicity, we omit
spin and crystal-momentum indices and consider the case in
which the external potential arises from the ions. The nonlo-
cal partVI

nl and exchange-correlation potentialVxc are deter-
mined by the choice of pseudopotentials and exchange-
correlation functional, respectively.VI

l is the Coulomb
potential arising from the ions andVH is that arising from the
electronssHartree potentiald.

In an infinite crystal,VI
l andVH are divergent and the total

Coulomb potentialVC=VI
l +VH within the unit cell depends

on ions and electrons far from the unit cell due to the long-
range 1/r nature of the Coulomb interaction. The latter con-
stitutes a particular problem for real-space formulations.
Both difficulties may be overcome, however, by replacing
the long-range ionic potentials by the short-range charge
densities which generate them and incorporating long-range
interactions into boundary conditions on the unit cell. By
construction, the local ionic pseudopotentialsVI,a of each
atoma vary as −Za/ r sor rapidly approach thisd outside their
respective pseudopotential cutoff radiirc,a, whereZa is the
effective ionic charge andr is the radial distance. They thus
correspond, by Poisson’s equation, to charge densitiesrI,a
strictly localized within rc,a sor rapidly approaching thisd.
The local ionic potentials, both inside and outsiderc,a, may
thus be replaced by corresponding charge densities localized
within rc,a. Figure 1 shows a typical local ionic pseudopoten-
tial and corresponding ionic charge density. The total ionic
charge density is then

rI = o
a

rI,asxd, s8d

where the summation extends over all atoms in the crystal.
Since the ionic densities are localized in real space, however,
the summation in the unit cell is in fact finite and readily
performed in real space, unlike the summation of ionic po-
tentials. Having constructed the ionic charge density in the
unit cell, the total charge densityr=rI +re may then be con-

structed and the total Coulomb potentialVC=VI
l +VH may be

computed at once by a single Poisson solution subject to
periodic boundary conditions:

¹2VCsxd = 4prsxd, s9d

whereuponVef f may be evaluated as ins2d.
The above formulation exploits the fact that, although

long range in real space, the 1/r nature of the ionic potentials
outsiderc makes them physically equivalent to ionic densi-
ties localized withinrc; and that, although depending physi-
cally on all ions and electrons in the crystal, the total Cou-
lomb potential in the unit cell is determined completely by
the total charge density within the cell and the boundary
conditions it must satisfy. In this sense, the contributions
from all charges outside the cell are folded into the boundary
conditions on the cell, as in the reciprocal-space component
of the classical Ewald formulation2 and other more recent
reciprocal-3 and real-space14 approaches. By computing the
total Coulomb potential at once, individual divergences are
eliminated. By formulating it in terms of localized functions
within the unit cell, its evaluation can be accomplished in
OsNd operations, since the ionic charge at each point in the
cell is contributed by a fixed number of neighboring atoms
and the Poisson solution can be accomplished inOsNd op-
erations in real space by multilevel methods.15

In the pseudopotential approximation, the total energy in
density-functional theory is given by

Etot = Ts + EeI
l + EeI

nl + Eee+ EII + Exc, s10d

Ts = o
i

f i E dx ci
*sxdS−

1

2
¹2Dcisxd, s11d

EeI
l = −E dx resxdVI

lsxd, s12d

EeI
nl = o

i

f i E dx ci
*sxdVI

nlcisxd, s13d

FIG. 1. Local partVI,a of Si pseudopotential29 and correspond-
ing localized charge densityrI,a. The potential has a long-range 1/r
tail whereas the corresponding density is localized in real space.
The total ionic density in the unit cell is thus readily summed in real
space whereas the total ionic potential is not.
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Eee=
1

2
E E dx dx8

resxdresx8d
ux − x8u

, s14d

EII =
1

2 o
a,a8Þa

ZaZa8

uta − ta8u
, s15d

Exc = −E dx resxd«xcsx;red, s16d

whereZa is the ionic charge of atoma at positionta and, as
in Eqs. s1d–s7d, the integrals extend over all space and the
summations extend over all atomsa anda8 and statesi with
occupationsf i. Ts is the kinetic energy of the noninteracting
system;EeI

l , Eee, andEII are the potential energies associated
with the Coulomb interaction between electrons and ions,
electrons and electrons, and ions and ions, respectively;EeI

nl

is the energy associated with the nonlocal part of the ionic
potential; andExc is the exchange-correlation energy.Ts is
determined by the Kohn-Sham orbitals and occupations,EeI

nl

is determined by the choice of pseudopotentials, andExc is
determined by the choice of exchange-correlation functional.

In an infinite crystal, the total energy per unit cell may be
obtained by restricting the integrals overx and summation on
a in Eqs.s11d–s16d to the unit cell, while the integrals over
x8 and summation ona8 remain over all space. In this case,
EeI

l is divergent and negative whileEee andEII are divergent
and positive due to the long-range 1/r nature of the Coulomb
interaction. However, in terms of the total charge densityr
and Coulomb potentialVC, the finite total Coulomb energy
per unit cellEC=EeI

l +Eee+EII may be obtained at once:

EC = −
1

2
E

V

dx rsxdVCsxd − Es, s17d

whereV is the unit cell andEs is the ionic self-energy per
unit cell. The ionic self-energy is subtracted so thatEC cor-
responds to the conventional density-functional Coulomb en-
ergy, which excludes ionic self-energy. This self-energy may
be computed from the ionic potentials and associated densi-
ties:

Es = −
1

2o
a
E dx rI,asxdVI,asxd, s18d

where the summation is over atoms in the unit cell and the
integrals are over all space. The integrals are readily evalu-
ated as one-dimensional radial integrals over a finite interval
by virtue of the spherical symmetry and short range of the
ionic densities. The remaining ion-ion energy in Eq.s17d
corresponds to the point-ion energys15d by virtue of the
localization of the ionic charge densities within their respec-
tive pseudopotential cutoff radii: consistent with the frozen-
core approximation, there is negligible overlap.33

The above formulation exploits the fact that, although the
total Coulomb energy per unit cell depends physically on the
contributions of ions and electrons throughout the crystal, it
is determined completely, per unit cell, by the density and
potential within the unit cell. Thus the need for reciprocal-
space transforms, structure factor computations, and/or

Ewald sums is eliminated, and the evaluation can be accom-
plished inOsNd operations in real space.

In terms of the total Coulomb energy, the total energy per
unit cell is then

Etot = Ts + EC + EeI
nl + Exc. s19d

The orbital dependence inTs andEeI
nl can be eliminated in the

usual way using the Kohn-Sham equations to obtain the re-
lation

Ts −E
V

dx resxdVef f
l sxd + EeI

nl = o
i

f i«i , s20d

where Vef f
l is the local part of the effective potential that

produces Kohn-Sham orbitalsci and eigenvalues«i accord-
ing to Eq.s1d, andre is the electronic charge density corre-
sponding to orbitalsci according to Eq.s7d. Combining Eqs.
s16d–s20d, we arrive then at an explicit real-space expression
for the total energy per unit cell in terms of the Kohn-Sham
eigenvalues:

Etot = o
i

f i«i +E
V

dx FresxdVef f
l sxd −

1

2
rsxdVCsxd

− resxd«xcsx;redG +
1

2o
a
E dxrI,asxdVI,asxd. s21d

In the self-consistent solution process,Vef f
l is the local part of

the effective potential which produces Kohn-Sham orbitals
ci and eigenvalues«i. The electronic charge densityre is
constructed from the orbitals, the total charge densityr is
constructed fromre, and the total Coulomb potentialVC,
from r. With such accounting of self-consistent inputs and
outputs, the input density/potential dependence in the first
term of s21d is exactly cancelled by the second, and the re-
sulting expression is precisely equal to the Kohn-Sham func-
tional s10d for a given inputVef f. It is thus variational in the
output densityre and quadratically convergent.9,28 Further-

FIG. 2. Convergence of real-space total energy and eigenvalues
to exact values in a self-consistent GaAs calculation. Here, “exact
values” were obtained from a highly converged plane-wave calcu-
lation; and real-space values, from a series of finite-element calcu-
lations. The asymptotic slope of,−6 on the log-log scale shows
that both total energy and eigenvalues converge to exact values at
the optimal theoretical rate consistent with the cubic completeness
of the finite-element basis: the error isOsh6d, whereh is the mesh
spacing.
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more, it can be evaluated inOsNd operations for a given
Kohn-Sham spectrum and density.

To verify the equivalence of the present real-space formu-
lation to the conventional reciprocal-space formulation, we
have implemented it in a finite-element electronic structure
code24 and compared eigenvalues and total energies to those
produced by an established plane-wave code.30,31 Figure 2
shows the convergence of the total energy and lowest few
eigenvalues produced by the real-space formulation to those
produced by the reciprocal-space formulation in a self-
consistent crystalline GaAs calculation using the same
pseudopotentials29 and exchange-correlation functional.32 In
this case, the reciprocal-space results were converged to
10−9 Ha and so were taken as “exact” for the purposes of
comparison. The real-space basis was then successively re-
fined in a series of self-consistent calculations to allow
analysis of the convergence of the real-space results to exact
values. As the figure shows, both eigenvalues and total en-
ergy converge to the exact reciprocal-space values over the
full range explored and do so at the optimal theoretical rate
consistent with the cubic completeness of the real-space ba-
sis.

In summary, we have derived expressions for the electro-

static potential and total energy of crystalline solids which
are amenable to direct evaluation in real space. Unlike con-
ventional reciprocal-space formulations, no Fourier trans-
forms or reciprocal lattice sums are required, and the formu-
lation is well suited for large-scale, parallel computations.
The need for reciprocal-space expressions is eliminated by
replacing long-range potentials by equivalent localized
charge distributions and incorporating long-range interac-
tions into boundary conditions on the unit cell. In so doing, a
simplification of the conventional reciprocal-space formal-
ism is obtained and the resulting expressions can be evalu-
ated directly in real space inOsNd operations.

While the development here has been in the context of
density-functional theory and has been demonstrated by
finite-element calculations, the ideas and/or expressions so
obtained are applicable within a broad range of interaction
models and basis sets.
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