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Real-space formulation of the electrostatic potential and total energy of solids
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We develop expressions for the electrostatic potential and total energy of crystalline solids which are
amenable to direct evaluation in real space. Unlike conventional reciprocal-space formulations, no Fourier
transforms or reciprocal lattice summations are required, and the formulation is well suited for large-scale,
parallel computations. The need for reciprocal-space expressions is eliminated by replacing long-range poten-
tials by equivalent localized charge distributions and incorporating long-range interactions into boundary
conditions on the unit cell. In so doing, a simplification of the conventional reciprocal-space formalism is
obtained. The equivalence of the real- and reciprocal-space formalisms is demonstrated by direct comparison
in self-consistent density-functional calculations.
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The evaluation of the electrostatic potential and total enwise divergent summations and integrals in terms of neutral
ergy of crystalline solids has been an ongoing problem sinceensities. Alemanyet al* employ a uniform neutralizing
the earliest days of solid-state physic®.In ab initio  density in a real-space formulation of the Hartree term. lonic
density-functionalt® calculations, the electrostatic compo- terms are, however, computed as in the conventional
nent of the potential is typically written as a sum of iofdc  reciprocal-space formalism, using Fourier transforms. Other
nuclear, in the all-electron contexand electroniqHartreg real-space formulations have employed localized neutraliz-
terms. In an infinite crystal, however, each of these termsng densities to eliminate the need for reciprocal-space trans-
diverges and the sum is only conditionally convergent due tdormations altogether. Kadgemploys neutralizing Gaussian
the long-range 1/ nature of the Coulomb interaction. Simi- densities to construct a rapidly convergent expression for the
larly, the electrostatic component of the total energy is a sunerystal potential and finite total Coulomb energy in the con-
of electron-ion, electron-electron, and ion-ion terms, each ofext of a real-space Wannier function approach. The formu-
which diverges in an infinite crystal but combine to yield alation of Bacheleiet al?® employs Gaussian representations
finite total electrostatic energy per unit cell. of local ionic densities to construct total densities and poten-

It has been appreciated for some time that the divergencdmls and associated neutral terms amenable to evaluation in
and conditional convergence of such extended lattice sunreal space. Tsuchida and Tsuk&temploy a combination of
mations can be eliminated by formulating the summations idocalized and uniform neutralizing densities to construct neu-
terms of neutral densities that are well localized in realtral terms optimized for evaluation in real space. Ordagtn
and/or reciprocal (Fouriep) spac€ In the conventional al.?” form neutral terms by expressing potentials and energies
reciprocal-space approach fab initio calculations of crys- in terms of neutral pseudoatomic densities and differences of
talline solids®® divergences are eliminated by adding neu-the crystal density from these. The formulation of Fattebert
tralizing densities to otherwise divergent Coulomb terms inand Nardelf® employs neutralizing Gaussian densities and
such a way that the effects of the added densities cancel iassociated potentials, in the spirit of the classical Ewald
the final expressions. Remaining long-range interactions amnethod, to render long-range interactions short ranged.
then rendered short ranged by transforming to reciprocal Here, we develop expressions for the electrostatic poten-
space, where smooth periodic functions, of infinite extent irtial and total energy of a crystalline solid which are amenable
real space, are well localized. The resulting expressions faio direct evaluation in real space @(N) operations. The
the electrostatic potential and total energy contain structurexpression for the total energy so obtained is variational in
factors and/or Ewald sums and require at l€@glogN)  the output density and quadratically convergent. We elimi-
operations to evaluate, whexeis the number of atoms in the nate the need for reciprocal-space transformations and/or
unit cell. Furthermore, because the reciprocal space approacteutralizing analytic functions by replacing long-range po-
uses a Fourier basis, boundary conditions are necessarily ptntials by the localized charge distributions which generate
riodic in all directions. And because the approach relies orthem and incorporating long-range interactions into bound-
Fourier transforms, it is difficult to implement efficiently on ary conditions on the unit cell. In so doing, we obtain a
large-scale parallel computational architectures due to theimplification of the conventional reciprocal-space formal-
need for extensive interprocessor communications. ism.

The limitations of the reciprocal-space approach have in- In the pseudopotential approximatidrthe Kohn-Sham
spired much research on real-space and local-orbital-basedjuations of density functional thed¥are given by
approache$-2" which allow for better scaling, a variety of
boundary conditions, and eliminate the need for Fourier 1
transforms. In order to treat long-range Coulomb interactions _Tv2,, () = oo
in crystals, these approaches also generally formulate other- ZV (%) * Verrth () = et (), @
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The total ionic density in the unit cell is thus readily summed in real
space whereas the total ionic potential is not.

where i, and g; are the Kohn-Sham eigenfunctions and ei-
genvaluesy, , andv,”y'a are the local and nonlocal parts of the strycted and the total Coulomb potentiéd=V! +V,; may be

ionic pseudopotential of atom, p, is the electronic charge computed at once by a single Poisson solution subject to
density, the integrals extend over all space, and the sSUmmggriodic boundary conditions:

tions extend over all atonesand states with occupationd;.
(Atomic units are used throughoufor simplicity, we omit V() = 4mp(x), (9
spin and crystal-momentum indices and consider the case in )
which the external potential arises from the ions. The nonloWhereuporvei; may be evaluated as it2).
cal partV{‘I and exchange-correlation potentig), are deter- The abo_ve formulation exploits the fagt that, alth_ough
mined by the choice of pseudopotentials and eXchangelong_range in real space, the_rldature o_f the |on|c_poyent|als_
correlation functional, respectively| is the Coulomb outsiderc makes them physically equivalent to ionic densi-
potential arising from the ions and, is that arising from the €S localized withinr¢; and that, although depending physi-
electrons(Hartree potential cally on all ions and eIeptrons_m the crystal, the total Cou-
In an infinite crystalV! andV,, are divergent and the total lomb potential in the unit cgll.ls determined completely by
Coulomb potentiar\/(;:v1|+vH within the unit cell depends the total charge density within the cell and the boundary
on ions and electrons far from the unit cell due to the long-coNditions it must satisfy. In this sense, the contributions
range 1f nature of the Coulomb interaction. The latter con- o all charges outside the cell are folded into the boundary
stitutes a particular problem for real-space formulationsconditions on the cell, as in the reciprocal-space component
Both difficulties may be overcome, however, by repIacingOf 'ghe cla§S|caI Ewald formulati@dnand other more recent
the long-range ionic potentials by the short-range chargé€CiProcal® and real-spacé approaches. By computing the
densities which generate them and incorporating long-rangit@ Coulomb potential at once, individual divergences are
interactions into boundary conditions on the unit cell. By €liminated. By formulating it in terms of localized functions
construction, the local ionic pseudopotentialg, of each within the u_nlt ceII., its eval_uat_|on can be accomph_she_:d in
atoma vary as Z,/r (or rapidly approach thjsoutside their O(N)_ operat_|ons, since the ionic charge at gach pomt in the
respective pseudopotential cutoff radji,, whereZ, is the cell is contrllbuted by a fixed number of nglghbonng atoms
effective ionic charge andis the radial distance. They thus @nd the Poisson solution can be accomplishe®(MN) op-
correspond, by Poisson’s equation, to charge densiiigs ~€rations in real space by multilevel methdds. _
strictly localized within r, (or rapidly approaching this In the pseudopotential approximation, the total energy in
The local ionic potentials, both inside and outsidg, may — density-functional theory is given by
thus be replaced by corresponding charge densities localized

— | nl
within r .. Figure 1 shows a typical local ionic pseudopoten- Eiot=Ts+ Ee+ B + Eeet By + By, (10)
tial and corresponding ionic charge density. The total ionic
charge density is then x 1
ey r=S0 oo 2o,
|

pi=2 praX), (8

where the summation extends over all atoms in the crystal. El = _J dX pa(X)VA(X)
Since the ionic densities are localized in real space, however, el Pe nan
the summation in the unit cell is in fact finite and readily

performed in real space, unlike the summation of ionic po-

tentials. Having constructed the ionic charge density in the EN =2 f; f dx o ()M (x), (13)
unit cell, the total charge densip~p, +p may then be con- [

(12)
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whereZ, is the ionic charge of atora at positionr, and, as

in Egs. (1)<(7), the integrals extend over all space and the FIG. 2. Convergence of real-space total energy and eigenvalues
summations extend over all atormsanda’ and states with to exact values in a self-consistent GaAs calculation. Here, “exact
occupationd;. T, is the kinetic energy of the noninteracting values” were obtained from a highly converged plane-wave calcu-
system;E'el, E.. andE, are the potential energies associatedlation; and real-space values, from a series of finite-element calcu-
with the Coulomb interaction between electrons and ionslations. The asymptotic slope of—6 on the log-log scale shows
electrons and electrons, and ions and ions, respecti%'y; that bo_th total energy and eigenyalues converge tq exact values at
is the energy associated with the nonlocal part of the ioniéhe optl_m_al theoretical re_lte consistent V\gth the cub!c completeness
potential; andE,. is the exchange-correlation enerdy is of thc_e finite-element basis: the error@h®), whereh is the mesh
determined by the Kohn-Sham orbitals and occupatigfys, P29
is determined by the choice of pseudopotentials, Bpds
determined by the choice of exchange-correlation functionalEwald sums is eliminated, and the evaluation can be accom-
In an infinite crystal, the total energy per unit cell may bePplished inO(N) operations in real space.
obtained by restricting the integrals oveand summation on In terms of the total Coulomb energy, the total energy per
a in Egs.(11)—<(16) to the unit cell, while the integrals over unit cell is then
x’ and summation o@’ remain over all space. In this case,
E'eI is divergent and negative while,. andE,, are divergent
and positive due to the long-rangerInature of the Coulomb
interaction. However, in terms of the total charge dengity
and Coulomb potentiaV/c, the finite total Coulomb energy

Etot = Ts + EC + Eg: + Exc- (19)

The orbital dependence iy andER| can be eliminated in the
usual way using the Kohn-Sham equations to obtain the re-

per unit cellEc=EL,+Eq.+E, may be obtained at once: lation
1
Ec=- > J dx p(x)Ve(x) — Es, (17 T.- f dX pe(X)Vi(X) + EXN = fie;, (20)
Q 0 i

. . ) . where V'eff is the local part of the effective potential that
where() is the unit cell andks is the ionic self-energy per roqyces Kohn-Sham orbital and eigenvalues; accord-
unit cell. The ionic seIf—gnergy is s_ubtractgd so tRatcor- ing to Eq.(1), andp, is the electronic charge density corre-
responds to the conventional density-functional Coulomb eN3ponding to orbitalss according to Eq(7). Combining Egs

. - ) j : .
ergy, which excludes ionic self-energy. This self-energy may 1) (20), we arrive then at an explicit real-space expression
be computed from the ionic potentials and associated densja, the total energy per unit cell in terms of the Kohn-Sham

ties: eigenvalues:

1
=53 oo Y e=She [ o [pe<x>V'eff(x> - POV
i Q

where the summation is over atoms in the unit cell and the 1

integrals are over all space. The integrals are readily evalu- _ . 2L

ated as one-dimensional radial integrals over a finite)i/nterval P e(X)SXC(X’pe)] ¥ 2%: J P Vi aX)- - (2D)

by virtue of the spherical symmetry and short range of the

ionic densities. The remaining ion-ion energy in Ed7) In the self-consistent solution procev%ff is the local part of
corresponds to the point-ion energ¥5) by virtue of the the effective potential which produces Kohn-Sham orbitals
localization of the ionic charge densities within their respec-; and eigenvalueg;. The electronic charge densip is
tive pseudopotential cutoff radii: consistent with the frozen-constructed from the orbitals, the total charge dengitig
core approximation, there is negligible overf&p. constructed fromp,, and the total Coulomb potentidlc,

The above formulation exploits the fact that, although thefrom p. With such accounting of self-consistent inputs and
total Coulomb energy per unit cell depends physically on theoutputs, the input density/potential dependence in the first
contributions of ions and electrons throughout the crystal, iterm of (21) is exactly cancelled by the second, and the re-
is determined completely, per unit cell, by the density andsulting expression is precisely equal to the Kohn-Sham func-
potential within the unit cell. Thus the need for reciprocal-tional (10) for a given inputVes. It is thus variational in the
space transforms, structure factor computations, and/autput densityp, and quadratically convergeht® Further-
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more, it can be evaluated i®(N) operations for a given static potential and total energy of crystalline solids which
Kohn-Sham spectrum and density. are amenable to direct evaluation in real space. Unlike con-

To verify the equivalence of the present real-space formuventional reciprocal-space formulations, no Fourier trans-
lation to the conventional reciprocal-space formulation, Weforms or reciprocal lattice sums are required, and the formu-
have implemented it in a finite-element electronic structurqaion is well suited for large-scale, parallel computations.

. . :
COddé ar:jdt;:omparetd te)lllgﬁn\(/jalules and totaéggéeligles t02thospne need for reciprocal-space expressions is eliminated by
produced Dby an established plane-wave rigure replacing long-range potentials by equivalent localized

shows the convergence of the total energy and lowest few

eigenvalues produced by the real-space formulation to thosg'r9€ distributions and incorporating long-range interac-

produced by the reciprocal-space formulation in a Se|f_t|_0ns _ir?to boundary condition§ on the u_nit cell. In so doing, a
consistent crystalline GaAs calculation using the Samélm|o_I|f|cat|o_n of the conventlo_nal remproc_al-space formal-
pseudopotentia?® and exchange-correlation functiofalin ~ iSM is obtained and the resulting expressions can be evalu-
this case, the reciprocal-space results were converged &§ed directly in real space iB(N) operations.
109 Ha and so were taken as “exact” for the purposes of While the development here has been in the context of
comparison. The real-space basis was then successively @ensity-functional theory and has been demonstrated by
fined in a series of self-consistent calculations to allowfinite-element calculations, the ideas and/or expressions so
analysis of the convergence of the real-space results to exagbtained are applicable within a broad range of interaction
values. As the figure shows, both eigenvalues and total emmodels and basis sets.
ergy converge to the exact reciprocal-space values over the We thank L.H. Yang and W.E. Pickett for helpful com-
full range explored and do so at the optimal theoretical ratenents and discussions. This work was performed under the
consistent with the cubic completeness of the real-space bauspices of the U.S. Department of Energy by University of
sis. California, Lawrence Livermore National Laboratory under
In summary, we have derived expressions for the electro€ontract No. W-7405-Eng-48.

*Electronic address: pask1l@lInl.gov Analysis Vol. X (Elsevier, Amsterdam, 2003

1E. Madelung, Phys. 719, 524 (1918. 21F. Ancilotto, P. Blandin, and F. Toigo, Phys. Rev. B9, 7868

2p. P. Ewald, Ann. Phys(Leipzig) 64, 253 (1921); Géttinger (1999.

, Nachr., Math.-Phys. KI. 113, 55 (1937. 22T, Ono and K. Hirose, Phys. Rev. Le2, 5016(1999.
M. Weinert, J. Math. Phys22, 2433(1981. 23 Tsuchida and M. Tsukada, Phys. Rev.58, 5573(1995); J.

4E. Wigner and F. Seitz, Phys. Rev3, 804 (1933; 46, 509 Phys. Soc. Jpn67, 3844(1998.

; (1934 243, E. Pask, B. M. Klein, C. Y. Fong, and P. A. Sterne, Phys. Rev.
K. Fuchs, Proc. R. Soc. London, Ser. ¥51, 585(1939. B 59, 12352(1999; J. E. Pask, B. M. Klein, P. A. Sterne, and

6J. Ihm, A. Zunger, and M. L. Cohen, J. Phys.12, 4409(1979.

’P. Hohenberg and W. Kohn, Phys. Rel36, B864 (1964; W.
Kohn and L. J. Shanmibid. 140 A1133(1965.

8R. 0. Jones and O. Gunnarsson, Rev. Mod. PBys689(1989.

C. Y. Fong, Comput. Phys. Commui35 1 (2001J).
25E. 0. Kane, Phys. Rev. B1, 4600(1980.
26G. B. Bachelet, H. S. Greenside, G. A. Baraff, and M. Schliiter,
. Phys. Rev. B24, 4745(198)); G. A. Baraff and M. Schliter,
SW. E. Pickett, Comput. Phys. Rep, 115(1989. o L
103, R. Chelikowsky, N. Troullier, and Y. Saad, Phys. Rev. L&8, ibid. 28, 2296(1983; G. A. Baraff and M. Schluteripid. 30,

1240 (1994 J. R. Chelikowsky, N. Troullier, K. Wu, and Y. __ 1853(1984.

Saad, Phys. Rev. B0, 11355(1995. 27p. Ordejon, E. Artacho, and J. M. Soler, Phys. Re\6B R10441
M. M. G. Alemany, M. Jain, L. Kronik, and J. R. Chelikowsky, (1996; J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Jun-
Phys. Rev. B69, 075101(2004). quera, P. Ordejon, D. Sanchez-Portal, J. Phys.: Condens. Matter

127, P. Seitsonen, M. J. Puska, and R. M. Nieminen, Phys. Rev. B 14, 2745(_2003- _
51, 14057(1995; M. Heiskanen, T. Torsti, M. J. Puska, and R. 22J. R. Chelikowsky and S. G. Louie, Phys. Rev. B, 3470

M. Nieminen,ibid. 63, 245106(2001). (1984.
3F. Gygi and G. Galli, Phys. Rev. B2, R2229(1995. 29C. Hartwigsen, S. Goedecker, and J. Hutter, Phys. Re\&8B
14K, A. lyer, M. P. Merrick, and T. L. Beck, J. Chem. Phy%03 3641(1998.

227 (1995. 30X, Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M.
15T, L. Beck, Rev. Mod. Phys72, 1041(2000. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Tor-
16T, Hoshi, M. Arai, and T. Fujiwara, Phys. Rev. B2, R5459 rent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, and D. C.

(1995. Allan, Comput. Mater. Sci25, 478(2002.
17E. L. Briggs, D. J. Sullivan, and J. Bernholc, Phys. Rev58 31The ABINIT code is a common project of the Université

R5471(1995; 54, 14362(1996. Catholique de Louvain, Corning Incorporated, and other con-
18N. A. Modine, G. Zumbach, and E. Kaxiras, Phys. Rev.5B, tributors; URL http://www.abinit.org

10289(1997); U. V. Waghmare, H. Kim, 1. J. Park, N. Modine, 22J. P. Perdew and A. Zunger, Phys. Rev2B, 5048(1981).
P. Maragakis, and E. Kaxiras, Comput. Phys. Commu87, 331f it were desired to employ pseudopotentials with non-negligible

341 (200). core overlap, a correction is readily added in terms of two-center
197 -L. Fattebert, J. Comput. Phy$49, 75 (1999. integrals[see, e.g., O. F. Sankey and D. J. Niklewski, Phys. Rev.
203.-L. Fattebert and M. B. Nardelli, iflandbook of Numerical B 40, 3979(1989 in the context of pseudoatomic orbithls

113101-4



