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Density pattern in supercritical flow of liquid “He
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A density-functional theory is used to investigate the instability arising in supeftdéas it flows at
velocity u just above the Landau critical velocity of rotong Confirming an early theoretical prediction by
one of uJJETP Lett.39, 511(1984], we find that a stationary periodic modulation of the density occurs, with
amplitude proportional tgu-v.)*? and wave vector equal to the roton wave vector. This density pattern is
studied for supercritical flow both in bulk helium and in a channel of nanometer cross section.
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I. INTRODUCTION extracted from neutron scattering experiméntshere one

. o . . finds |A|2=0.9. Inserting this value in Ed1), one gets
According to the Landau criterion, superfluid motion of Al g q) 9

“He moving with velocityu is possible only ifu<uv., where Aplpo = 3[(u-ve)lve]*2. (2)

the critical velocityv,. is equal to the slope of the tangent to Th  this stat i tate origi

the roton part of the spectrufa.~56 m/9. As the Landau € occurrence ot this stationary nonunitorm state origi-
nates from the presence of a pronounced minimum=gt,

critical velocity v, is reached, the liquid becomes unstable.n the bulk?He spectrume(p), and is similar to the structural
against a spontaneous excitation of rotons. Reaching the r6—h ¢ i P tf Ip ' duced bv th fteni £ oh
ton critical velocity is difficult in practice since other types phase transition n crystals induced by the softéning ot pho-

of excitations, e.g., quantized vortices, are produced in bul&]on.frelqgen(ili's W|thfs|;)rr;e7def|n(?ld vgavelingtht.t In the nu-
“He well below v.. However, the occurrence of vorticity merical simulations of Ret. 7, simiiar density patterns were

could be suppressed by allowiflile to flow through very found in superfluid*He as a result of roton emission by a

narrow channels. In fact, the critical velocity for the creationMoving 1on, when the lon 'veloc[ty exce¢d§ In the pregent
of vortex pairs in a channel of diametdd is v?°"e" work, we systematically investigate this type of stationary

c : . T .
~ (A/MD)In(D/§),* where ¢ is the *He healing length( density modulations by means of density-functioifF)

~1 A), so that it can exceed the roton critical velocity for calculations. We consider the uniform flow in bulk liquid
channéls of nanometer size (with no vorticity) as well as in a nanochannel and we com-

. - are our numerical results with the analytic predictions of
Several years ago, a theoretical prediction was made b of 3
one of ug that superfluid*He flowing at a velocity greater T
than the Landau critical velocity, should undergo a phase
transition from a spatially homogeneous state to a layered Il. DENSITY FUNCTIONAL

state characterized by a periodic density modulation in the .
direction of motion. Such a modulation is stationary in the, We use the DF approach proposed in Ref. 8 and later

frame moving with the fluid and has a characteristic Wave-IrnprOVEd in Ref. 9, which gives a quite accurate description

length \=2mh /p, ~ 3.58 A, wherep, is the roton momen- of inhomogeneous copfigurations of liguitle atT=0. The
tum. This prediction was derived within a simplified model energy of the system is expressed as

describing a weakly interacting roton gas with coupling con- %2 -

stantg. The nature of the transition was found to depend on Eolp] =Edlp] + M f dr (Vp)?. (3

the sign ofg: if g>0(g<0), the transition is predicted to be

continuous (discontinuous In Ref. 3, the estimatgy=2  The explicit form of the energy function& is given in the
X 10738 erg cn? (Ref. 4 was used and the amplitude of the Appendix. Thestatic equilibrium profilep(r) in an arbitrary

density modulations was found to*be external potential can be obtained by minimizing the func-
) P tional Eg[ p] with respect to density variations, subject to the
Ap _ |AI*(u=ve)pe constraint of a constant number of atoms. Hyaamicscan
— =2 , 1) . .
Po pod be studied as well by means of the time-dependent DF

method, with the DF proposed in Ref. 9 playing the role of
wherepy is the bulk density anfA[>s(hw—e(p,)) is the roton  the effective Hamiltonian driving the time evolution of the
contribution to the dynamic structure factdfg,w). In Ref.  system. In the dynamical case, the functional contains an
3, the latter was estimated by ignoring the multiphonon parexplicit dependence upon the local current density fjéidl
of S(q,w) and using the-sum rule. A better estimate can be through a phenomenological term which accounts not only
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for the usual hydrodynamic current density but also for non- 1.5
local “backflow” effects. The resulting Dfealled the Orsay-

Trento functional, which will be used in our calculations,

can be written as

E[p,v]=Eq[p] + J drH;. (4)

bp/py,

Its explicit form is given in the Appendix. An appealing fea-
ture of the above functional, which turns out to be essential 0.5
to perform accurate time-dependent DF calculatfblfsis

that is reproduces quantitatively not only a number of static
properties, but also the observed phonon-roton spectrum of

bulk *He. I i oralarmavont el et ey S
The minimization of the above density-current functional, 0 1000 2000 3000
subject to the constraint of a fixed number*sfe atoms and # of time steps

of fixed total momentum, can be done in practice by evolv-

ing in the imaginary time domain a nonlinear Schrodinger FIG. 1. Amplitude of the density modulation along the direction
equation for the order parametdf(r), where the Hamil- of “He motion, computed during the functional minimization. Solid
tonian operator is given byl =-%2/(2M)V2+U[p,v]. The Iine:_uzl.ZQJC, dotted lineu=1.14, dashed lineu=0.9%., dash-
effective potentialU is defined in terms of the variational 9ot line:u=0.84.

derivative of the energy functional, and its explicit expres-
sion can be found in the Appendix. From the knowledge ofi
the complex wave functioW = ¢€® one can get immedi-
ately the densityp(r)=¢? and the velocity fieldv(r)

=(A/M)V©. Since we are interested in stationary states o v, the stationary state is characterized by a density with a

He in the presence of a uniform flow, we minimize the heiqdic modulation of wavelengtk, and with an amplitude
above functional in the frame of reference moving with thedepending onu. On the contrary, wheni<u, the initial
. : c

liquid, which we assume to flow with some given veloaity  qqyation is rapidly smeared out during the minimization,
along thex axis: The Hamiltonian densityl thus acquires an 504 again one finds that the density of the stationary state is
additional termH’ =H-uP;, P, being the’He total momen-  uniform. The critical velocity is found to be.~58 m/s,
tum component along the direction of motion. which coincides with the minimum value efp)/p predicted
by the same DF and is also very close to the value of the
Landau critical velocity of rotons as obtained from the ex-
perimental phonon-roton spectrum. This behavior is summa-
First, we address the problem of the Landau roton instarized in Fig. 1, where we plot the evolution of the amplitude
bility in bulk. As discussed above, we expect that when of the density modulation as it varies during the minimiza-
> ., the uniform density configuration is not stable, but it is tion procedure, for four differerfiHe velocities: the two up-
instead a metastable state corresponding to a saddle point pér lines haveu>uv,, whereas the two lower lines hawe
the energy landscape 8He. In our case, the system is al- <v.. Note the critical slowing down for values of tifele
lowed to reach the lowest energy configuration by followingvelocity close to the critical value., where a very long
the (dissipative imaginary-time evolution. The calculation is imaginary-time evolution is required to converge towards the
performed in a periodically repeated supercell where the sizequilibrium stationary state.
of the cell along the direction(which we take as the direc- Different stationary density profiles along the direction of
tion of “He motion is L. Our procedure to trigger the insta- “He motion, corresponding to different valuesw#f v, are
bility is the following: we start with the uniform system in shown in Fig. 2. The average value of each curve corre-
the moving frame of reference and slightly perturb thei-  sponds to the saturation density of bulkHe, p,
form) density with a sinusoidal modulation with a small ar- =0.0218 A3, A fit to the calculated points shows that their
bitrary amplitude and with a wavelength allowed by the shapes, at least for values of not too large, are almost
periodic boundary conditions ih. We then minimize the exactly sinusoidal, i.ep(x)=py[1+(Ap/pg)sin(kx)]. In Fig.
functional in the frame of reference moving with some cho-3, we also show th& component of the calculatette ve-
sen velocityu, with the only constraint of a constant number locity v(r)=(%/M)V ®, in units ofv,, for the same states of
of “He atoms. IfL or \ are not a multiple of the characteristic Fig. 2. Note the oscillating character of the velocity, in phase
wavelength\.= (2m)/k; (k.= p./% being the Landau critical ~with the density modulation, and the large amplitude of os-
wave vecto), then, irrespective of the initial perturbation and cillations, which becomes more asymmetric as the velocity
of the particular value chosen for the perturbing modula- increases. The spatial average of the velocity profiles shown
tion rapidly smoothes out during the minimization, and thein Fig. 3 is zero, as expected.
uniform liquid state is recovered as the minimum energy The main result of this work is summarized in Fig. 4,
configuration. where we show the behavior of the amplitudlp/p, for u

The Landau instability shows up when the size of the cell
s such to accommodate an integer number of characteristic
wavelengthgL=7\.). In this case, we indeed find that there
xists a threshold velocity. separating two regimes. Ui

Ill. BULK LIQUID
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@ FIG. 4. Amplitude of the density modulation as a function of the
FIG. 2. Density profiles along the direction Hfie flow x axis. fluid velocity. Points: DF results. Line: fitting function 1.01
The three profiles have been calculated, in order of increasing ani{u-v.)/v.]"2
plitude, withu=1.07, 1.22, and 1.3#%,, respectively.

liquid “He confined between two infinitely extended, weakly
>v.. We find that the lawAp/py=1.01 (u-v.)/vc]¥? (solid  attractive planar surfaces separated by a very small distance,
line) very nicely fits the numerical resultpoints. The ve- ~50 A. We model the two surfaces with an external poten-
locity dependence is thus the same as in @y.except for tial which mimics the adsorption properties of the Rb sur-
the different numerical coefficient. Our DF calculations areface, which is the weakest surface which is weTat0 by
consistent with a repulsivépositive g) roton-roton interac- liquid “He* The number ofHe atoms in the system is cho-
tion. Using Eq.(1) and the fitting coefficient 1.01, we find sen in such a way that, when tfide is at rest, the equilib-
g=1.8x 103" erg cn¥. It is worth stressing that direct mea- rium density near the center of the channel reaches the value
surements ofg are not available and previous theoretical corresponding to the saturation density of bie, po.
estimates significantly differ both in magnitude and sign In Fig. 5, we show the density profile along thelirec-
(see, for instance, Refs. 12,13, and references therein tion, i.e., across the channel, fa=0. The*He density de-

creases rapidly to zero near the solid surfaces on both sides

of the channel due to th#He-Rb interaction. The same in-

IV. FLOW IN A NARROW CHANNEL teraction is also responsible for the density oscillations near
. . . - . the walls. The dotted line shows the value of the bulk satu-
Now we investigate the motion of liquitHe in a narrow 'on densit Ei 6 sh i lot of the d

channel of nanometer transverse dimensions. We considé?tlo.n ensitypo. FIgUre 6 shows a contour piot of the den-
Sity in the xz plane for the stationary state developeduat
=1.22 .. The complex pattern near the walls is again due to
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FIG. 3. Velocity profile along the direction §He flow x axis.
Same values ofl as in Fig. 2. FIG. 5. Density profile across the channel section.
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50 L bility, but the occurrence of density patterns near the nozzle
) == ) ) ) ) . .
ﬂﬁﬂﬁﬂﬁﬂﬁ ﬁﬂﬁﬁf could also play a rolé® In this perspective, the effects of
a0t X density modulations ifHe supercritical flow in this type of
1 experiments deserve further investigations. Finally, it is
a0 1 worth mentioning that a similar phenomenon may occur in
g i Bose-Einstein condensed gases with dipole-dipole
. interactions'®

)
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FIG. 6. Contour plots of the density along the channel.

the “He-Rb interaction. However, the dominant feature is the APPENDIX
density modulation along in the central part of the channel.
This sinusoidal oscillation coincides, for the same valueg, of
with the one that we already obtained in bdHe.
It is worth noticing that the DF theory could also be ap-
lied to the case of larger velocity> v, where one expects 1 , , , Co
Fhe occurrence of so?itonlike slguctares, analogousp to theEC[p]_Efdr fdr p0)p(rVellr = |)+Ejdrp(r)

nonlinear waves discussed in Refs. 14,15 for weakly inter-

2
acting Bose gases. In this limit, however, one should take % 2+%fdr r 3+ﬁ_ fdr f dr'F
care of possible mechanisms of dynamical instability. This (pr) 3 P (pr) 4M s

In this work, we use the Orsay-Trento density functional
as defined in Ref. 9. The ener@y in Eqg. (3) has the form

problem cannot be addressed within our stationary DF ap- () (')
proach and remains open. Nevertheless, it is reasonable to X(r —r’)<1—p—) X V p(r) Vp(r’)<1—p—).
believe that the density pattern found in the present work can Pos Pos
be unstable at large amplitude in bulk helium, but stable in (A1)

sufficiently narrow channels.

Here p(r) is the density of liquid*He andM is its atomic
V. CONCLUSIONS mass. The first term contains a Lennard-Jones He-He pair
Our DF calculations support the predictions of Ref. 3 Onpo.tentialvg(r) screened at distances shorter t_han a character-
the occurrence of a density pattern in the supercritical flowStic 1ength hy. In the second and the third terms, the
just abovev, and in the absence of vorticity. Due to the short Weighted density is the average of the density over a sphere
wavelength of the density modulations, of the order of thedf radius hy, that is, p, = fdr’p(r )lIx(|r =r"|), with Tl(r)
atomic spacing, its direct observation, with x rays for in-=3/(47h*) whenr <h andIly(r)=0 otherwise. These terms
stance, might be difficult. Indirect evidence of the densityaccount for the internal kinetic energy and for the increasing
modulations could, however, be measurable, for examp|§0ntributi0n of the hard-core He-He repulsion when the den-
through their possible effects on transport properties. Resity is increased. The last term contains the gradient of the
cently, He adsorption within a regular porous medium calleddensity at different points and corresponds to a nonlocal cor-
FSM-16 has been studiéfl.This silica-based material is rection to the kinetic energy. The free parametgrsc,, c;
characterized by ordered arrays of long, uniform pores, wittre adjusted in order to reproduce the experimental values of
diameters ranging from 1.5 to 10 nm. Whéte is adsorbed the density, of the energy per atom, and of the compressibil-
within the pores, one to two solidlike layers are expected tdty for bulk liquid *He at zero pressure, while the width of
form, coating the internal walls of the pores, leaving, how-the Gaussian functiofr and the parametess are fixed to
ever, room for additionafHe in the liquid state. A pressure reproduce the peak of the static response function in bulk
gradient between two open ends of an array of pores could iquid. The parametepy; is finally fixed to ensure an accu-
principle be used to force liquiHe to move through this rate pressure dependence of the response function. A detailed
system, until it is expelled from the pore end. If during this description of the various terms and the numerical values of
process the critical velocity is reached, then the occurrencée parameters can be found in Ref. 9.
of the above described density pattern might induce the frag- The termH; appearing in Eq(4) is given by
mentation of the ejected liquid filament into regularly distrib-

uted nanodroplets. A similar process might occur in the ex- p(r) M

periments of Ref. 17, where liquitHe is discharged into HJ[P,V]:7MV(f)2—Zfdf'VJ(f =1 )p(r)p(r’)
vacuum through a micrometer nozzle. The structure of the

ejected filament was interpreted in terms of a Rayleigh insta- X[v(r) = v(r")]?, (A2)
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where the first term is the usual hydrodynamic current den- Finally, the effective potentiall entering the Hamil-
sity, while the second term accounts in a phenomenologtonian operator fofHe (see text can be readily evaluated
ical way for nonlocal effects due to the "backflow” current by functional differentiation of the energy functiorid) and
density? it reads

U[p,V]=fdr’p(r’)Ve(|r—f’|)+%ﬁr)2+%3ﬁ(r)3+fdr'p(r’)[Cth(lf—f'l)ﬁr’)

+c3Hh<|r—r'|>?(r'>]+$(1—@)fdr'(l—w)vﬂp(m-er(lr'—rD
2M Po Po

i
2p(r)

—%Jdr'VJ(lf =" Dp(r’lo(r) —o(r )P + v -fdf’VJ(lr =r'Dp)p(r)Iv(r) —=v(rH].  (A3)
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