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A density-functional theory is used to investigate the instability arising in superfluid4He as it flows at
velocity u just above the Landau critical velocity of rotonsvc. Confirming an early theoretical prediction by
one of usfJETP Lett.39, 511s1984dg, we find that a stationary periodic modulation of the density occurs, with
amplitude proportional tosu−vcd1/2 and wave vector equal to the roton wave vector. This density pattern is
studied for supercritical flow both in bulk helium and in a channel of nanometer cross section.
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I. INTRODUCTION

According to the Landau criterion, superfluid motion of
4He moving with velocityu is possible only ifu,vc, where
the critical velocityvc is equal to the slope of the tangent to
the roton part of the spectrumsvc,56 m/sd. As the Landau
critical velocity vc is reached, the liquid becomes unstable
against a spontaneous excitation of rotons. Reaching the ro-
ton critical velocity is difficult in practice since other types
of excitations, e.g., quantized vortices, are produced in bulk
4He well below vc. However, the occurrence of vorticity
could be suppressed by allowing4He to flow through very
narrow channels. In fact, the critical velocity for the creation
of vortex pairs in a channel of diameterD is vc

vortex

,s" /MDdlnsD /jd,1 where j is the 4He healing lengthsj
,1 Åd, so that it can exceed the roton critical velocity for
channels of nanometer size.2

Several years ago, a theoretical prediction was made by
one of us3 that superfluid4He flowing at a velocity greater
than the Landau critical velocityvc should undergo a phase
transition from a spatially homogeneous state to a layered
state characterized by a periodic density modulation in the
direction of motion. Such a modulation is stationary in the
frame moving with the fluid and has a characteristic wave-
length l=2p" /pc,3.58 Å, wherepc is the roton momen-
tum. This prediction was derived within a simplified model
describing a weakly interacting roton gas with coupling con-
stantg. The nature of the transition was found to depend on
the sign ofg: if g.0sg,0d, the transition is predicted to be
continuous sdiscontinuousd. In Ref. 3, the estimateg=2
310−38 erg cm3 sRef. 4d was used and the amplitude of the
density modulations was found to be5

Dr

r0
= 2S uAu2su − vcdpc

r0g
D1/2

, s1d

wherer0 is the bulk density anduAu2d("v−espcd) is the roton
contribution to the dynamic structure factorSsq,vd. In Ref.
3, the latter was estimated by ignoring the multiphonon part
of Ssq,vd and using thef-sum rule. A better estimate can be

extracted from neutron scattering experiments,6 where one
finds uAu2.0.9. Inserting this value in Eq.s1d, one gets

Dr/r0 . 3fsu − vcd/vcg1/2. s2d

The occurrence of this stationary nonuniform state origi-
nates from the presence of a pronounced minimum atp=pc
in the bulk4He spectrum,espd, and is similar to the structural
phase transition in crystals induced by the softening of pho-
non frequencies with some defined wavelength. In the nu-
merical simulations of Ref. 7, similar density patterns were
found in superfluid4He as a result of roton emission by a
moving ion, when the ion velocity exceedsvc. In the present
work, we systematically investigate this type of stationary
density modulations by means of density-functionalsDFd
calculations. We consider the uniform flow in bulk liquid
swith no vorticityd as well as in a nanochannel and we com-
pare our numerical results with the analytic predictions of
Ref. 3.

II. DENSITY FUNCTIONAL

We use the DF approach proposed in Ref. 8 and later
improved in Ref. 9, which gives a quite accurate description
of inhomogeneous configurations of liquid4He atT=0. The
energy of the system is expressed as

E0frg = Ecfrg +
"2

2M
E dr s=Îrd2. s3d

The explicit form of the energy functionalEc is given in the
Appendix. Thestatic equilibrium profilersr d in an arbitrary
external potential can be obtained by minimizing the func-
tional E0frg with respect to density variations, subject to the
constraint of a constant number of atoms. Thedynamicscan
be studied as well by means of the time-dependent DF
method, with the DF proposed in Ref. 9 playing the role of
the effective Hamiltonian driving the time evolution of the
system. In the dynamical case, the functional contains an
explicit dependence upon the local current density fieldj sr d
through a phenomenological term which accounts not only
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for the usual hydrodynamic current density but also for non-
local “backflow” effects. The resulting DFscalled the Orsay-
Trento functionald, which will be used in our calculations,
can be written as

Efr,vg = E0frg +E drHJ. s4d

Its explicit form is given in the Appendix. An appealing fea-
ture of the above functional, which turns out to be essential
to perform accurate time-dependent DF calculations,9,10 is
that is reproduces quantitatively not only a number of static
properties, but also the observed phonon-roton spectrum of
bulk 4He.

The minimization of the above density-current functional,
subject to the constraint of a fixed number of4He atoms and
of fixed total momentum, can be done in practice by evolv-
ing in the imaginary time domain a nonlinear Schrödinger
equation for the order parameterCsr d, where the Hamil-
tonian operator is given byH=−"2/ s2Md=2+Ufr ,vg. The
effective potentialU is defined in terms of the variational
derivative of the energy functional, and its explicit expres-
sion can be found in the Appendix. From the knowledge of
the complex wave functionC;feiQ one can get immedi-
ately the densityrsr d=f2 and the velocity field vsr d
=s" /Md=Q. Since we are interested in stationary states of
4He in the presence of a uniform flow, we minimize the
above functional in the frame of reference moving with the
liquid, which we assume to flow with some given velocityu
along thex axis: The Hamiltonian densityH thus acquires an

additional termH8=H−uP̂x, P̂x being the4He total momen-
tum component along the direction of motion.

III. BULK LIQUID

First, we address the problem of the Landau roton insta-
bility in bulk. As discussed above, we expect that whenu
.vc, the uniform density configuration is not stable, but it is
instead a metastable state corresponding to a saddle point of
the energy landscape of4He. In our case, the system is al-
lowed to reach the lowest energy configuration by following
the sdissipatived imaginary-time evolution. The calculation is
performed in a periodically repeated supercell where the size
of the cell along thex directionswhich we take as the direc-
tion of 4He motiond is L. Our procedure to trigger the insta-
bility is the following: we start with the uniform system in
the moving frame of reference and slightly perturb thesuni-
formd density with a sinusoidal modulation with a small ar-
bitrary amplitude and with a wavelengthl allowed by the
periodic boundary conditions inL. We then minimize the
functional in the frame of reference moving with some cho-
sen velocityu, with the only constraint of a constant number
of 4He atoms. IfL or l are not a multiple of the characteristic
wavelengthlc;s2pd /kc skc;pc/" being the Landau critical
wave vectord, then, irrespective of the initial perturbation and
of the particular value chosen foru, the perturbing modula-
tion rapidly smoothes out during the minimization, and the
uniform liquid state is recovered as the minimum energy
configuration.

The Landau instability shows up when the size of the cell
is such to accommodate an integer number of characteristic
wavelengthssL=7lcd. In this case, we indeed find that there
exists a threshold velocityvc separating two regimes. Ifu
.vc, the stationary state is characterized by a density with a
periodic modulation of wavelengthlc and with an amplitude
depending onu. On the contrary, whenu,vc the initial
modulation is rapidly smeared out during the minimization,
and again one finds that the density of the stationary state is
uniform. The critical velocity is found to bevc,58 m/s,
which coincides with the minimum value ofespd /p predicted
by the same DF and is also very close to the value of the
Landau critical velocity of rotons as obtained from the ex-
perimental phonon-roton spectrum. This behavior is summa-
rized in Fig. 1, where we plot the evolution of the amplitude
of the density modulation as it varies during the minimiza-
tion procedure, for four different4He velocities: the two up-
per lines haveu.vc, whereas the two lower lines haveu
,vc. Note the critical slowing down for values of the4He
velocity close to the critical valuevc, where a very long
imaginary-time evolution is required to converge towards the
equilibrium stationary state.

Different stationary density profiles along the direction of
4He motion, corresponding to different values ofu.vc, are
shown in Fig. 2. The average value of each curve corre-
sponds to the saturation density of bulk4He, r0
=0.0218 Å−3. A fit to the calculated points shows that their
shapes, at least for values ofu not too large, are almost
exactly sinusoidal, i.e.,rsxd=r0f1+sDr /r0dsinskcxdg. In Fig.
3, we also show thex component of the calculated4He ve-
locity vsr d=s" /Md=Q, in units ofvc, for the same states of
Fig. 2. Note the oscillating character of the velocity, in phase
with the density modulation, and the large amplitude of os-
cillations, which becomes more asymmetric as the velocity
increases. The spatial average of the velocity profiles shown
in Fig. 3 is zero, as expected.

The main result of this work is summarized in Fig. 4,
where we show the behavior of the amplitudeDr /r0 for u

FIG. 1. Amplitude of the density modulation along the direction
of 4He motion, computed during the functional minimization. Solid
line: u=1.29vc, dotted line:u=1.14vc, dashed line:u=0.99vc, dash-
dot line: u=0.84vc.
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.vc. We find that the lawDr /r0=1.01fsu−vcd /vcg1/2 ssolid
lined very nicely fits the numerical resultsspointsd. The ve-
locity dependence is thus the same as in Eq.s2d except for
the different numerical coefficient. Our DF calculations are
consistent with a repulsivespositive gd roton-roton interac-
tion. Using Eq.s1d and the fitting coefficient 1.01, we find
g.1.8310−37 erg cm3. It is worth stressing that direct mea-
surements ofg are not available and previous theoretical
estimates significantly differ both in magnitude and sign
ssee, for instance, Refs. 12,13, and references thereind.

IV. FLOW IN A NARROW CHANNEL

Now we investigate the motion of liquid4He in a narrow
channel of nanometer transverse dimensions. We consider

liquid 4He confined between two infinitely extended, weakly
attractive planar surfaces separated by a very small distance,
,50 Å. We model the two surfaces with an external poten-
tial which mimics the adsorption properties of the Rb sur-
face, which is the weakest surface which is wet atT=0 by
liquid 4He.11 The number of4He atoms in the system is cho-
sen in such a way that, when the4He is at rest, the equilib-
rium density near the center of the channel reaches the value
corresponding to the saturation density of bulk4He, r0.

In Fig. 5, we show the density profile along thez direc-
tion, i.e., across the channel, foru=0. The4He density de-
creases rapidly to zero near the solid surfaces on both sides
of the channel due to the4He-Rb interaction. The same in-
teraction is also responsible for the density oscillations near
the walls. The dotted line shows the value of the bulk satu-
ration densityr0. Figure 6 shows a contour plot of the den-
sity in the xz plane for the stationary state developed atu
=1.22vc. The complex pattern near the walls is again due to

FIG. 2. Density profiles along the direction of4He flow x axis.
The three profiles have been calculated, in order of increasing am-
plitude, withu=1.07, 1.22, and 1.37vc, respectively.

FIG. 3. Velocity profile along the direction of4He flow x axis.
Same values ofu as in Fig. 2.

FIG. 4. Amplitude of the density modulation as a function of the
fluid velocity. Points: DF results. Line: fitting function 1.01
fsu−vcd /vcg1/2.

FIG. 5. Density profile across the channel section.
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the4He-Rb interaction. However, the dominant feature is the
density modulation alongx in the central part of the channel.
This sinusoidal oscillation coincides, for the same value ofu,
with the one that we already obtained in bulk4He.

It is worth noticing that the DF theory could also be ap-
plied to the case of larger velocity,u@vc, where one expects
the occurrence of solitonlike structures, analogous to the
nonlinear waves discussed in Refs. 14,15 for weakly inter-
acting Bose gases. In this limit, however, one should take
care of possible mechanisms of dynamical instability. This
problem cannot be addressed within our stationary DF ap-
proach and remains open. Nevertheless, it is reasonable to
believe that the density pattern found in the present work can
be unstable at large amplitude in bulk helium, but stable in
sufficiently narrow channels.

V. CONCLUSIONS

Our DF calculations support the predictions of Ref. 3 on
the occurrence of a density pattern in the supercritical flow
just abovevc and in the absence of vorticity. Due to the short
wavelength of the density modulations, of the order of the
atomic spacing, its direct observation, with x rays for in-
stance, might be difficult. Indirect evidence of the density
modulations could, however, be measurable, for example
through their possible effects on transport properties. Re-
cently, He adsorption within a regular porous medium called
FSM-16 has been studied.16 This silica-based material is
characterized by ordered arrays of long, uniform pores, with
diameters ranging from 1.5 to 10 nm. When4He is adsorbed
within the pores, one to two solidlike layers are expected to
form, coating the internal walls of the pores, leaving, how-
ever, room for additional4He in the liquid state. A pressure
gradient between two open ends of an array of pores could in
principle be used to force liquid4He to move through this
system, until it is expelled from the pore end. If during this
process the critical velocity is reached, then the occurrence
of the above described density pattern might induce the frag-
mentation of the ejected liquid filament into regularly distrib-
uted nanodroplets. A similar process might occur in the ex-
periments of Ref. 17, where liquid4He is discharged into
vacuum through a micrometer nozzle. The structure of the
ejected filament was interpreted in terms of a Rayleigh insta-

bility, but the occurrence of density patterns near the nozzle
could also play a role.18 In this perspective, the effects of
density modulations in4He supercritical flow in this type of
experiments deserve further investigations. Finally, it is
worth mentioning that a similar phenomenon may occur in
Bose-Einstein condensed gases with dipole-dipole
interactions.19
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APPENDIX

In this work, we use the Orsay-Trento density functional
as defined in Ref. 9. The energyEc in Eq. s3d has the form

Ecfrg =
1

2
E dr E dr 8rsr drsr 8dV,sur − r 8ud +

c2

2
E drrsr d

3sr̄rd2 +
c3

3
E drrsr dsr̄rd3 +

"2

4M
asE dr E dr 8F

3sr − r 8dS1 −
rsr d
r0s

D 3 ¹ rsr d ¹ rsr 8dS1 −
rsr 8d
r0s

D .

sA1d

Here rsr d is the density of liquid4He andM is its atomic
mass. The first term contains a Lennard-Jones He-He pair
potentialV,srd screened at distances shorter than a character-
istic length h,. In the second and the third terms, the
weighted densityr̄ is the average of the density over a sphere
of radius h,, that is, r̄r ;edr 8rsr 8dPhsur −r 8ud, with Phsrd
=3/s4ph3d when r ,h andPhsrd=0 otherwise. These terms
account for the internal kinetic energy and for the increasing
contribution of the hard-core He-He repulsion when the den-
sity is increased. The last term contains the gradient of the
density at different points and corresponds to a nonlocal cor-
rection to the kinetic energy. The free parametersh, , c2, c3
are adjusted in order to reproduce the experimental values of
the density, of the energy per atom, and of the compressibil-
ity for bulk liquid 4He at zero pressure, while the width of
the Gaussian functionF and the parameteras are fixed to
reproduce the peak of the static response function in bulk
liquid. The parameterr0s is finally fixed to ensure an accu-
rate pressure dependence of the response function. A detailed
description of the various terms and the numerical values of
the parameters can be found in Ref. 9.

The termHJ appearing in Eq.s4d is given by

HJfr,vg =
rsr d

2
Mvsr d2 −

M

4
E dr 8VJsur − r 8udrsr drsr 8d

3fvsr d − vsr 8dg2, sA2d

FIG. 6. Contour plots of the density along the channel.
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where the first term is the usual hydrodynamic current den-
sity, while the second term accounts in a phenomenolog-
ical way for nonlocal effects due to the ”backflow” current
density.9

Finally, the effective potentialU entering the Hamil-
tonian operator for4He ssee textd can be readily evaluated
by functional differentiation of the energy functionals4d and
it reads

Ufr,vg =E dr 8rsr 8dV,sur − r 8ud +
c2

2
r̄sr d2 +

c3

3
r̄sr d3 +E dr 8rsr 8dfc2Phsur − r 8udr̄sr 8d

+ c3Phsur − r 8udr̄2sr 8dg +
as

2M
S1 −

rsr d
r0

D E dr 8S1 −
rsr 8d

r0
D=r8rsr 8d · =rFsur 8 − r ud

−
M

2
E dr 8VJsur − r 8udrsr 8,tdfvsr d − vsr 8dg2 +

i

2rsr d
= ·E dr 8VJsur − r 8udrsr drsr 8dfvsr d − vsr 8dg. sA3d
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