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In recent work, we discussed the difference between electrons and holes in energy band in solids from a
many-particle point of view, originating in the electron-electron interaction, and argued that it has fundamental
consequences for superconductivity. Here we discuss the fact that there is also a fundamental difference
between electrons and holes already at the single particle level, arising from the electron-ion interaction. The
difference between electrons and holes due to this effect parallels the difference due to electron-electron
interactions,holes are more dressed than electrons. We propose that superconductivity originates in “undress-
ing” of carriers fromboth electron-electron and electron-ion interactions, and that both aspects of undressing
have observable consequences.
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I. INTRODUCTION

Hamiltonians used to describe many-body phenomena in
solids are usually electron-hole symmetricsby electrons and
holes it is meant the charge carriers at the Fermi energy when
the Fermi level is near the bottom and near the top of the
band, respectivelyd. Instead, in the first paper of this series1

and other recent work2 we have argued that holes are funda-
mentally different from electrons, due to the different effect
of electron-electron interaction for carriers at the bottom and
the top of a band. We have proposed a class of model Hamil-
tonians, “dynamic Hubbard models,” to describe this phys-
ics, and argued that this physics plays a fundamental role in
superconductivity.3,4 These electron-holeasymmetricHamil-
tonians describe quasiparticles that become increasingly
dressed by the electron-electron interaction as the Fermi
level rises from the bottom to the top of the band, and give
rise to superconductivity driven by quasiparticle
“undressing.”5 They also display many characteristic features
that are observed in highTc cuprates.

In these Hamiltonians, the electron-electron interaction
breaks electron-hole symmetry, however the single particle
part of the Hamiltonians is still electron-hole symmetric. In
this paper we point out that in real solids a fundamental
electron-hole asymmetry already exists at the single-electron
level, which parallels the electron-hole asymmetry arising
from electron-electron interactions. This physical effect is
also missing in the tight binding Hamiltonians commonly
used to describe correlated electrons in solids. Just as quasi-
particles in real solids are increasingly dressed byelectron-
electroninteractions as the Fermi level rises in the band,1 we
point out here that they are also increasingly dressed by the
electron-ioninteraction as the Fermi level rises. Furthermore
we argue that because when holes pair the band becomes
locally less full, undressing fromboth the electron-electron
interactionand the electron-ion interaction will take place.
Remarkably, as we will discuss, experimental evidence that
undressing from the electron-ion interaction takes place upon
the transition to the superconducting state has been known,
even if not fully appreciated, for a long time. The fact that
electrons undress from the electron-ion interaction when
they pair has also fundamental consequences for
superconductivity.6

The central character in this paper is in fact not the hole,
but the “invisible” antibonding electron, the electron at the
Fermi level when the Fermi level is near the top of the band.
Using the language of “holes” rather than “electrons” in fact
obscures the essential physics since these antibonding elec-
trons are the ones that undress and carry the supercurrentsas
electrons, not as holesd in the superconducting state.

II. TIGHT BINDING ELECTRONIC ENERGY BANDS

The tight binding Hamiltonians usually considered such
as the Hubbard model have a single-particle part of the form

H0 = − o
i j s

tijcis
† cjs, s1d

wherecis
† creates an electron in Wannier orbitalwisrd cen-

tered at lattice sitei. This Hamiltonian may or may not be
electron-hole symmetric. However if we restrict ourselves to
nearest neighbor hopping on a hypercubic lattice as is usu-
ally done,

H0 = − t o
ki j ls

scis
† cjs + H.c.d s2d

then the Hamiltonian is electron-hole symmetric, as can be
seen from the fact that the canonical transformation

cis = s− 1didis
† s3d

leaves it invariant. The band energy is

ek = − 2to
n=1

d

coskna s4d

with a the lattice spacing andd the dimensionality. The ef-
fective mass for carriers at the bottom of the band is inde-
pendent of direction and given by

m* = F 1

"2S ]2ek

]kx
2 D

k=0
G−1

=
"2

2ta2 s5d

and the effective mass at the top of the band has the same
magnitude as Eq.s5d and opposite sign.
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When one includes electron-electron interactions that do
not break electron-hole symmetry, e.g., in an extended Hub-
bard model,

H = H0 + o
i j

Vijninj s6d

or electron-phonon interactions as in the Holstein or Su-
Schrieffer-Heeger models, or electron-spin interactions as in
the Kondo lattice model, the Hamiltonian retains electron-
hole symmetry and hence the properties of the system are
identical for band fillingne and 2−ne, with ne the number of
electrons per site. Instead, adding a correlated hopping term7

or electron-boson interactions of particular forms as in dy-
namic Hubbard models3,4 breaks electron-hole symmetry and
leads to qualitatively new physics.

Here however we want to focus on the fact that in writing
down the noninteracting Hamiltonian Eq.s2d we have al-
ready eliminated an important source of electron-hole asym-
metry, arising from the electron-ion interaction. The
electron-hole transformation Eq.s3d says that the wave func-
tion of an electron at the bottom of the band is essentially the
samesexcept for a phase factord as the one for an electron at
the top of the band. Note also that the Wannier orbitals used
to define the Hamiltonian Eq.s2d need to be orthogonal to
each other. Schematically, this can be represented by the
wave functions shown in Fig. 1. Here indeed the states at the
bottom and the top of the band are equivalent, since one can
be transformed into the other by the operationwisrd→
s−1diwisrd. However in fact the real situation is very different
and no such electron-hole symmetry exists even at the single
particle level.

III. REAL ELECTRONIC ENERGY BANDS

Real electronic energy bands can be obtained from band
structure calculation schemes, and the eigenstates certainly
do not look like the states depicted in Fig. 1. Here we wish to
focus on what we believe is the key universal aspect that
differentiates the states at the bottom and the top of any
electronic band.

The essential physics can be illustrated clearly with a di-
atomic molecule. Ifwisrd is an atomic orbital at atomi =1, 2,
the bonding and antibonding atomic orbitals in a linear com-
bination of atomic orbitalssLCAOd scheme are given by

fb,a =
w1srd ± sw2srd
f2s1 ± sSdg1/2 , s7ad

S= sw1,w2d, s7bd

s = S/uSu s7cd

with the upperslowerd sign corresponding to bondingsanti-
bondingd states. Fors orbitals, the sign of the overlap matrix
element is positive and theevenlinear combination gives the
lowest energy molecular orbital, the bonding orbital, and the
odd linear combination gives the high energy antibonding
orbital. For p orbitals S is negative and the situation is re-
versed. However the key point is that the lowest molecular
orbital is always the linear combination that yields high elec-
tronic charge density between the ions, and the other one has
a node in the electronic wave function at the midpoint be-
tween the ions. Conversely, the low energy bonding orbital
has always lower charge density at the ion site than the an-
tibonding orbital.

For an energy band we argue that the electronic states
look qualitatively as shown in Fig. 2, independent of which
atomic orbital gave rise to the band. The point is that the
states at the bottom of the band have lowest energysby defi-
nitiond, which is achieved by piling up electronic charge den-
sity in the region where it can most benefit from the electron-
ion potential, namely in the interstitial region between ions;
at the same time, due to normalization, the charge density at
the ionic site is reduced compared to the free atom situation,
and the resulting smooth wave function also has a low ki-
netic energy. Instead, the states at the top of the band are
constrained by the fact that they must be orthogonal to the
states below them. This causes the wave function to have a
node in the region between the ions, and a higher amplitude
at the ionic site than for the isolated ion; as a consequence,
these states have a high potential energy, since they do not
take maximal advantage of the electron-ion potential, and a
high kinetic energy because the wave function is spiky rather
than smooth.

Because the wave function at the bottom of the band is
more smooth, it resembles more the free electron plane-wave
function, which gives rise to a uniform electronic density.
The wave functions at the top of the band give rise to a
nonuniform charge density, quite unlike free electron wave
functions. Furthermore the effective mass defined by Eq.s5d

FIG. 1. Electronic states in a tight binding band. The states at
the top of the band and those at the bottom of the band are related
by a canonical transformation. This will be the case if they are
Bloch sums ofnonoverlappingWannier orbitals with wave vectork
andp−k, respectively.

FIG. 2. Electronic states in a real band. The states at the bottom
sbondingd have a high density of charge in between the ions, and a
smooth wave function. The states at the topsantibondingd have a
node in the charge density between the ions and a spiky wave
function.
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will be positive near the bottom of the band, as the free
electron mass, and negative near the top of the band. We
conclude that quite generally the single-particle electronic
states near the bottom of the band are more free-electron-like
than those near the top of the band.

We argue that these are universal physical differences be-
tween electronic states at the bottom and top of electronic
energy bands, determined by the facts that states at the bot-
tom have low energy and states at the top have high energy,
and by the exclusion principle. These are real physical dif-
ferences that cannot be eliminated away by canonical trans-
formations. Fors orbitals the energy versusk relation looks
like that in Fig. 2, while forp orbitals it is inverted, with the
lowest states atk,p and the highest states atk,0. In both
cases the electronic wave function looks qualitatively as in
Fig. 2 in the region between the ions, except that for a band
deriving fromp orbitals the wave function has an additional
node exactly at the ionic site for all states in the band. The
same considerations apply to bands originating in other or-
bitals.

The physical difference between states at the bottom and
top of the band is also embodied in their name, bonding and
antibonding, respectively. The high interstitial electronic
density of the bonding orbitals gives rise to an attractive
interaction between ions, binding the solid together; instead,
the vanishing electronic charge density between ions of the
antibonding electrons causes a repulsive interaction between
ions, which tends to break the solid apart. This is why lattice
instabilities are associated with the presence of antibonding
states at the Fermi energy, i.e., with bands that are almost
full. As is well known, superconductivity is also often asso-
ciated with the presence of lattice instabilities nearby in the
phase diagram,8 indicating a connection between antibonding
states and superconductivity.

IV. WEAK COUPLING

It was noted already by Bloch that the very different tight
binding and weak binding starting points for the description
of electronic states in solids give complementary and very
similar pictures. The fact that electrons at the bottom of the
band are more similar to free electrons than those at the top
of the band discussed in the last section is very evident from
the weak coupling point of view. Perturbation theory in the
electron-ion potentialUK yields for the band energy

ek = ek
0 + o

K

uUKu2

ek
0 − ek−K

0 s8d

with ek
0="2k2/2me the free electron energysme= free elec-

tron massd andK reciprocal lattice vectors. Starting from the
state atk=0 energy denominators are large, so the second
term in Eq.s8d is small and the energy versusk relation is
almost free-electron-like. The wavelengthl=2p /k is large
and the electronic wave function

wk = wk
0 + o

K

UK

ek
0 − ek−K

0 wk−K
0 s9ad

is almost the free-electron plane wave

wk
0 =

1
ÎV

e1kW·rW. s9bd

The effective mass tensor is given by

S 1

m* D
i j

=
1

"2

]2ek

]ki ] kj
=

1

me
di j +

1

"2

]2

]ki ] kj
o
K

uUKu2

ek
0 − ek−K

0

s10d

and is almost isotropic and free-electron-like for smallk
since the second term in Eq.s10d is small.

As the Fermi level rises electrons at the Fermi surface
become increasingly dressed by the electron-ion interaction,
the wave vectork increases, the energy denominators in Eqs.
s8d–s10d decrease and the electronic energy, wave function,
and effective mass increasingly deviate from the free elec-
tron values, as the second terms in Eqs.s8d–s10d become
increasingly important compared to the first terms. Qualita-
tively, as the wavelengthl decreases, the electrons become
increasingly aware of the existence of the discrete ionic po-
tential due to the fact that the wavelength of the electronic
wave function becomes closer to that of the ionic potential.

Consider for definiteness a simple cubic lattice. The per-
turbative expressions Eqs.s8d–s10d break down when the
wave vectork approaches one half of the smallest reciprocal

lattice vectorsKW =s2p /adl̂, with l̂ one of the three principal
axis, i.e., when the wave vector approaches the edge of the
Brillouin zone, or the electronic wavelength approaches
twice the ionic charge wavelength. Then, nearly degenerate
perturbation theory yields for the state near the top of the
band

ek =
ek

0 + ek−K
0

2
−ÎS ek

0 − ek−K
0

2
D2

+ uUKu2, s11ad

wk =
wk

0 + wk−K
0

Î2
, s11bd

1

m* =
1

me
−

"2

4me
2

K2

uUKu
. s11cd

The wave functionwksrd,cosskrd, k,p /a is zero at the
midpoint between the atoms, just as the tight binding picture
also predicts. Because the ionic potential has broken the de-
generacy with the other linear combination of free electron
wave functions,wk8srd,sinskrd, the charge density associated
with the states at the top of the band is nonuniform unlike the
free electron case. Beyond lowest order perturbation theory
these wave functions get modified by the ionic potential that
pulls the electronic charge closer to the regions of positive
charge. The dependence of energy on wave vector is very
different from the free electron case, and in particular the
effective mass Eq.s11cd is negative for smalluUKu which is
the regime where these expressions are valid.

These facts are of course well known.9 However it is not
usually stressed that they reflect a fundamental physical dif-
ference between states at the bottom and the top of electronic
energy bands, i.e., between bonding and antibonding elec-
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trons, or equivalently between electrons and holes.
For the lowest band in a solid these considerations then

imply that electronic states at the bottom of the band are not
very different from free-electron states, and in particular that
the electronic density is nearly uniform and not strongly
modulated by the ionic potential. The electron-ion interaction
has an increasing effect in modifying the electronic density
and the energy-momentum relation from the free-electron
values as the states approach the top of the band. We argue
that the same physics will be true for other bands. Let us first
consider the results of the perturbation theory discussed
above for the second band. The wave functionwk8srd
,sinskrd at the bottom of the second band has a node at the
ionic site but is smooth in the interstitial region, as free-
electron wave funcions are. The effective mass at the bottom
of the second band is given by Eq.s11cd with a positive sign
for the second term, hence is positive as for free electrons.
Even though it is smaller than the free-electron mass, second
order contributions of the form Eq.s8d will increase its value
towards the free-electron mass. For example, the dominant
contribution in second order fork,p /a comes fromK8
=4p /a in Eq. s8d and yields

1

m* =
1

me
S1 +

"2p2

mea
2uUKu

−
a4me

2uUK8u
2

2p4"4 D s12d

and contributions from otherK values will increase it further.
At the top of the second band, i.e., atk=2p /a, degenerate
perturbation theory withK=4p /a again yields negative ef-
fective mass. More generally, we know from pseudopotential
theory10 that one can find an effective description of conduc-
tion bands in solids that is similar to the lowest band dis-
cussed above. In pseudopotential theory the conduction band
energy is to second order

ek = ek
0 + kkuWukl + o

K

kkuWuk − Klkk − KuWukl
ek

0 − ek−K
0 , s13d

where the pseudopotentialW is an operator rather than a
local function of position. The pseudopotential is chosen to
give a smooth pseudo-wave-function to optimize the conver-
gence, and it is found that its matrix elements are small and
the second order expression Eq.s13d is adequate except near
Bragg planes, as in the simple case discussed above.10 Equa-
tion s13d yields an additional contribution to the effective
mass from the first order perturbation term that is absent in
Eq. s8d, however that term is generally found to be small.10

Consequently the considerations made above for the lowest
band still apply. The pseudo-wave-functionsslinear combi-
nation of orthogonalized plane wavesd give a smooth charge
distribution in the interstitial regions near the bottom of the
band,10 as free electrons do. Finally, quite generally it is true
that the effective mass is positive, hence closer to the free
electron value, near the bottom of a band, and negative,
hence more different from the free electron value, near the
top of a band.

V. PHYSICAL DIFFERENCES BETWEEN ELECTRONS
AND HOLES DUE TO THE ELECTRON-ION

INTERACTION

In the preceding sections we have discussed the difference
in wave function, resulting charge density, and energy-wave-
vector relation between states at the bottom of a bandselec-
tronsd and states at the top of a bandsholesd, and argued that
states near the bottom of the band are free-electron-like and
those near the top of the band are not. A tight binding model
of the form Eq.s2d does not reflect the physical difference
between bonding and antibonding electrons. Yet these differ-
ences have concrete observable consequences, as discussed
in what follows.

A. Momentum transfer to the lattice

When a force is applied to an electron inside a metal, both
the electron and the lattice change their momentum,

FW =
DpW

Dt
=

DpWel + DpW latt

Dt
. s14d

Semiclassical transport theory relates the change in total mo-
mentum to the change in the electroniccrystal momentum

DpW = "DkW s15d

while the change in electronic momentum is given by

DpWel = meDvWel = me
1

"2

]2ek

]k2 "DkW =
me

m* DpW s16d

sassuming isotropic effective mass for simplicityd so that the
momentum transferred to the lattice is

DpW latt = S1 −
me

m* DDpW . s17d

For electrons near the bottom of the band,m* is close tome
and practically all the momentum is transferred to the elec-
tron and none to the lattice. Instead, for electrons near the top
of the band the change in the electron momentum is opposite
to the transferred momentum sincem* is negative, and the
lattice needs to pick up both the externally transferred mo-
mentum and the negative of the momentum change of the
electron. We may quantify the dressing of the free electron
by the momentum transferred to the lattice when an external
force attempts to change the electronic momentum; it is clear
then that the electron-ion interaction increasingly dresses the
bare electron at the Fermi level as the Fermi level rises in the
band.

B. Conduction of electricity

When an electric potential difference is applied to a metal,
electric current flows from the higher to the lower potential
side of the metal. However, the behavior is very different for
electrons near the bottom and near the top of the band. The
change in velocity of an electron upon application of an elec-

tric field EW is
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DvW =
1

m* eEW t s18d

with t the collision time. Electrons in the lower half of the
band havem* .0 and hence change their velocity in the
direction that contributes to the flow of electricitysi.e., op-

posite toEW sincee,0d; instead, electrons in the upper half of
the band change their velocity in direction that opposes the
flow of electric current, and as the band becomes filled the
two contributions exactly cancel and zero current results.
Hence the dressing of the antibonding electron by the
electron-ion potential causes it to oppose, rather than contrib-
ute, to the conduction of electricity as a free electron would.

C. Optical conductivity

The integrated optical conductivity fromintrabandtransi-
tions, when the Fermi level is close to the bottom of the
band, is given by

2

pe2E
intraband

dvs1svd =
ne

m* s19d

with ne the number of electrons in the band. Hence electrons
near the bottom of the band each contribute a positive
amount to the low frequency optical conductivity, which is
close to the contribution of a free electron ifm* is close to
me. Instead, when the Fermi level is close to the top of the
band the integrated intraband optical conductivity is

2

pe2E
intraband

dvs1svd =
nh

um* u
=

2 − ne

um* u
s20d

and each antibonding electron added to the nearly full band
decreasesrather than increases the intraband optical conduc-
tivity. The difference between the Drude weight Eq.s19d and
the Drude weight that would arise from free electrons,ne/me,
also quantifies the amount of dressing, and this difference
increases as the Fermi level rises from the bottom to the top
of the band. The global conductivity sum rule

2

pe2E
0

`

dvs1svd =
ne

me
s21d

implies that this missing spectral weight is transferred from
low intraband frequencies to high interband frequencies due
to the electron-ion interaction.

D. Hall effect

As a final physical manifestation of the difference be-
tween electrons at the bottom and at the top of electronic
energy bands we mention the Hall effect.11 Electrons near the
bottom of the band respond to crossed electric and magnetic
fields as free electrons would, namely they traverse cyclotron
orbits in the direction consistent with the negative charge of
the free electron. Instead, the strong dressing of the free elec-
tron by the electron-ion potential for electrons near the top of
the band causes them to respond as if they had a charge of
opposite sign, reflecting the positive charge of the ionic lat-
tice that dresses them.

E. Summary

In summary, we have discussed in this section various
observable manifestations of the physical difference between
electrons at the bottom and at the top of electronic energy
bands, which arise due to the electron-ion interaction. Elec-
trons near the bottom of the band resemble free electrons
with a nearly uniform charge density, and are largely unaf-
fected by the presence of the discrete ionic lattice potential.
When perturbed by external probes they respond very much
like free electrons. Instead, electrons near the top of energy
bands santibonding electronsd have a wave function that
changes rapidly over interatomic distances as shown in Fig.
2, are tightly coupled to the discrete ionic lattice, and their
charge density is very nonuniform and hence different from
the free electron case. The antibonding electrons are strongly
dressed by the electron-ion interaction. When perturbed by
external probes, this tight coupling between antibonding
electrons and positive ionic charge causes them to respond
very differently from free electrons.

VI. DRESSING FROM ELECTRON-ELECTRON
INTERACTIONS

In previous work we have discussed the different effect of
the electron-electron interaction for electrons at the bottom
and the top of bands.1–3 Just as the electron-ion interaction
discussed in the preceding sections, we showed that the
electron-electron interaction increasingly dresses the quasi-
particle as the Fermi level goes up in the band. Dressing due
to the electron-electron interaction does not change the sign
of the effective mass but increases its magnitude. It also
causes another effect that goes beyond single-particle phys-
ics, it reduces the quasiparticle weight in the single particle
spectral function and gives rise to incoherent spectral weight
at higher energies. For the optical conductivity,both the
dressing from electron-ion and from electron-electron inter-
action cause spectral weight to be pushed up from the low-
frequency intraband range to higher frequencies.

In summary, both the electron-ion and the electron-
electron interaction cause electrons in a metal to become
dressed, i.e., different from free electrons. The dressing from
both of these sources becomes increasingly important as the
Fermi level goes up in the band, and is largest when the
Fermi level is close to the top of the band. We adopt then as
a basic principle:higher concentration of electrons in a band
leads to higher dressing of the quasiparticles at the Fermi
energy.

VII. SUPERCONDUCTIVITY FROM UNDRESSING

When the Fermi level is close to the top of the band, the
carriers at the Fermi energy, antibonding electrons, are most
highly dressed. Furthermore, the kinetic energy of electrons
at the Fermi energy is highest, and they do not benefit from
the crystal ionic potential because their charge density in the
region between ions is small. If these electrons were able to
occupy states that are lower in the band their energy would
be lowered. However, those lower states are occupied by
other electronssbonding electronsd and the Pauli principle
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prevents other fermions from occupying those states. In the
absence of electron-electron interactions, the antibonding
electrons have no choice but to remain in the unfavorable
antibonding states, and to pay the high price in both kinetic
and potential energy in doing so.

However, electrons do interact with each other, and states
at the Fermi energy can be modified by electronic correla-
tions. When the Fermi level is close to the top of the band,
pairing of holes leads locally to a higher hole concentration,
hence to a lower electron concentration. According to the
basic principle enunciated above, this should lead to undress-
ing of carriers at the Fermi energy. Since both the dressing
by electron-electron and by electron-ion interactions increase
with band filling, a local decrease in band filling should lead
to undressing from both the electron-electron and the
electron-ion interactions, as shown schematically in Fig. 3. A
Cooper pair behaves as a boson rather than a fermion, and
these arguments indicate that the members of a Cooper pair
will bear a closer resemblance to free undressed electrons
than the unpaired antibonding electrons.

The phenomenology of undressing from the electron-
electron interaction is described mathematically by dynamic
Hubbard models3 and by their low energy effective counter-
part, the Hubbard model with correlated hopping.7 The qua-
siparticle weight is given by5

zsned = S1 − s1 − Sd
ne

2
D2

s22d

with 0øneø2 and S,1 a parameter that depends on the
nature of the ion.1 The effective mass is given bym*

=me/zsned. As the band fillingne decreases,zsned increases
andm* decreases.

Experimentally, undressing from electron-electron inter-
action is seen as an increase in the coherent response in
photoemission experiments,12 reflecting increase in the qua-
siparticle weight, and transfer of optical spectral weight from
high to low frequencies, reflecting decrease in the quasipar-
ticle mass and decrease in the kinetic energy.13 In the follow-
ing we discuss experimental evidence for undressing from
the electron-ion interaction upon onset of superconductivity.

VIII. UNDRESSING FROM THE ELECTRON-ION
INTERACTION

There are several experiments that indicate that in the
transition to superconductivity undressing from the electron-
ion interaction also takes place.

(1) Hall effect: As discussed earlier, the Hall coefficient
is negative for electrons near the bottom of the band that are
undressed from the electron-ion interaction and is positive
for electrons near the top of the band that are dressed by the
electron-ion interaction. Hence undressing from the electron-
ion interaction should be signaled by a change in sign of the
Hall coefficient from positive to negative. Indeed, empirical
evidence shows that superconductivity is associated with a
positive Hall coefficient in the normal state in the vast ma-
jority of cases,14,15 indicating that the carriers at the Fermi
energy are dressed antibonding electrons. Furthermore, it is
found in both highTc sRef. 16d and low Tc materialssRef.
17d that the Hall coefficient changes its sign from positive to
negative at temperatures slightly belowTc, which indicates
that carriers change from holelike to electronlike.

(2) Bernoulli potential: Because the superfluid carriers
in superconductors carry kinetic energy one expects that an
electric field should exist in regions where there is a spatial
variation of the superfluid velocity, according to the relation

EW =
1

e
¹W

1

2
mevs

2. s23d

This was first discussed by London for a free electron
model,18 and the resulting potential is termed Bernoulli po-
tential. As discussed by Adkins and Waldram,19 within BCS
theory the sign of the effect should correspond to the sign of
the charge carriers in the normal state. Experiments to mea-
sure this effect have been performed with samples of Pb, Nb,
PbIn, and Ta, and in all cases the sign of the effect measured
corresponds to the superfluid carriers havingnegative
charge.20–22Note that the Hall coefficient in the normal state
is positivefor all these cases. Furthermore the magnitude of
the effect measured is consistent with the mass in Eq.s23d
being thefree-electron-mass.22

(3) Rotating superconductor:A superconducting body
rotating with angular velocityvW develops a uniform mag-
netic field in its interior.23 This can be understood as follows:
as the ions start rotating, a time-dependent magnetic field is
generated which in turn induces an azimuthal electric field
according to Faraday’s law

R EW ·dlW = −
1

c

d

dt
E BW ·dsW s24d

so that if the magnetic field is uniform the electric field at
position rW from the axis of rotation is

EW =
1

2c
rW 3

dBW

dt
. s25d

Now semiclassical transport theory relates the electric field
to the time derivative of the wave vector of the carrier

"
dkW

dt
= eEW s26d

while the time derivative of the velocity of the carrier is
given by sfor an isotropic cased

FIG. 3. As the Fermi level rises in a band, electrons at the Fermi
energy become dressed due to electron-electron interactions which
modify the free particle spectral functionsas shown schematically
on the right-hand side of the figured, and due to electron-ion inter-
actions which modify the free-electron wave functionsas shown on
the left-hand side of the figured. Pairing effectively lowers the po-
sition of the Fermi level and causes the carriers at the Fermi energy
to undress and become free-electron-like.
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dvW

dt
=

d

dtS1

"

]e

]kW
D =

1

m* "
dkW

dt
, s27d

so that

dvW

dt
=

e

m* EW =
e

2m*c
rW 3

dBW

dt
. s28d

In steady state the superfluid in the interior rotates together
with the lattice23 so thatvW =vW 3 rW and from integration of Eq.
s28d,

vW = −
e

2m*c
BW . s29d

If the superfluid carriers were dressed by the electron-ion
interaction the effective mass in Eq.s29d would be dependent

on the particular material and in particularBW would point
antiparallel tovW if the carriers are holelike. Instead, it is
found experimentally that for all superconductors where it
has been measuredsincluding high Tc cuprates and heavy
fermion materialsd24

BW = −
2mec

e
vW s30d

with me the free-electron mass. The fact that the magnetic
field always points parallel and never antiparallel to the an-
gular velocity indicates that the superfluid carriers have
negativecharge. The fact that the magnitude of the magnetic
field is given by Eq.s30d for all materials, withme the bare
electron mass, indicates that the carriers in the superconduct-
ing state are undressed free electrons. This means that the
dressed carriers at the top of the Fermi distribution in the
band depicted in Fig. 3, with antibonding wave function that
knows about the discrete ionic potential, condense to the
bottom of the Fermi distribution with a smooth long wave-
length wave function that is insensitive to the short wave-
length ionic potential. Physically the magnetic field Eq.s30d
arises because the negative electrons near the surface of the
superconductor lag behind and rotate at slightly smaller an-
gular velocity than the body, as shown schematically in Fig.
4.

(4) Gyromagnetic effect: A related effect occurs if a
magnetic field is suddenly applied to a superconductor at
rest. The supercurrent that develops to nullify the magnetic
field in the interiorsMeissner effectd carries angular momen-
tum, and for the total angular momentum of the supercon-
ducting body to be unchanged the body must start rotating
with angular momentum in the opposite direction. If the su-
perfluid carriers have negative charge, the body will start
rotating with angular velocity antiparallel to the applied field,
which is indeed what is observed.25

IX. KINETIC ENERGY LOWERING, WAVELENGTH
EXPANSION, AND PHASE COHERENCE

An effect associated with having an increasing number of
electrons in a band is of course an increase in the kinetic
energy of the electrons at the Fermi energy. This is true both

for band electrons as well as for free electrons. The kinetic
energy associated with a spatial variation of the wave func-
tion in a region of linear dimensionl is

T ,
"2

2mel
2 . s31d

l can be thought of as the wavelength of the electronic wave
function in a k-space picture, or equivalently as the linear
dimension of the region occupied by each electron, i.e., the
mean distance between electrons, in a real space picture. In a
free-electron model,l,kF

−1. For a single electron in an
empty bandl in Eq. s31d is the linear dimension of the
sample. As more electrons are added to a band the wave-
length of the electronic wave function decreases, or equiva-
lently the size of the region occupied by each electron de-
creases and the wave function becomes more spatially
confined, which leads to an increase of kinetic energy. To the
extent that superconductivity is associated with kinetic en-
ergy lowering13,26 it is natural to expect that this will occur
when the electrons at the Fermi level have highest kinetic
energy in the normal state, which corresponds to the case of
an almost full band, which also corresponds to the smallest
spatial extent of the electronic wave function, withl of order
the interatomic spacinga. If the kinetic energy Eq.s31d de-
creases as the system goes superconducting it implies that
the wavelength of the electronic wave function increases so
that it no longer sees the short wavelength ionic potential and
becomes free-electron-like, andl in Eq. s31d becomes again
the linear macroscopic dimension of the sample, as for the
empty band.

We can also understand the origin of diamagnetism in
superconductors from this point of view. The diamagnetic
response of a normal metalsLandau diamagnetismd can be
understood as arising from induced Ampere circular currents
of radius given byr ,l,kF

−1, the interelectronic spacing or
equivalently the wavelength of the electronic wave function.
In a free-electron model

FIG. 4. Experimental proof that electrons undress from the
electron-ion interaction when they become superconducting. The
magnitudeof the magnetic field generated in a rotating supercon-
ductor Eq.s30d reflects relative motion of superfluid electrons with
bare massme. The sign of the magnetic field generated reflects
slowing down of superfluidnegativecharge.
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xLandau= − 1
3xPauli= − 1

3mB
2gseFd s32d

with mB=e" /2mec the Bohr magneton andgseFd=3n/2eF

the density of states, withn the number of electrons per unit
volume. The Larmor diamagnetic response fromn atoms per
unit volume is

xLarmor= −
e2n

6mec
2kr2l s33d

with kr2l the spatial extent of the electronic wave function.
Equationss32d ands33d are the same forkr2l=3/s2kF

2d,l2.
When the metal goes superconducting the Meissner currents
extend over the entire sample, and the wavelengthl be-
comesR, the macroscopic dimension of the sample. Using
Eq. s33d for the atomic susceptibility yields perfect diamag-
netism whenkr2l becomes macroscopic.27 Hence we can in-
terpret the change from Landau diamagnetic response to
London diamagnetic response as a wavelength expansion
from l,kF

−1,a sa=lattice spacingd for the electrons at the
top of the Fermi distribution in Fig. 3 tol,R,k−1, i.e., the
bottom of the band in Fig. 3 where the free-electron states
are.

Furthermore the concept of wavelength expansion pro-
vides a qualitative understanding of the phase coherence in
superconductors. The carriers near the top of the band, hav-
ing wavelength of order of a lattice spacing, undergo of order
108 changes in the sign of their phase from one end to the
other of a macroscopic sample of size 1 cm. It is intuitively
clear that maintaining phase coherence of such a rapidly os-
cillating wave is impossible. As the antibonding electrons at
the top of the band condense into thek,0 state at the bot-
tom of the band their wavelength becomes the size of the
sample and their phase maintains the same sign across the
macroscopic sample dimension, thus allowing for the exis-
tence of phase coherence over macroscopic length scales
which is the hallmark of superconductivity.

Finally if we interpretl,kF
−1 as the size of the electronic

wave function, the fact that it expands and reaches the
boundaries of the macroscopic sample in the transition to
superconductivity suggests that negative charge will flow
from the interior towards the boundaries of the sample as the
normal metal becomes superconducting.28

X. HISTORICAL PRECEDENTS

There were many attempts to understand superconductiv-
ity before BCS theory. Some of these early attempts focused
on physics closely related to what we discuss in this paper.

s1d The idea that superconductivity would occur only
when the normal state carriers are holes, i.e., when the band
is almost full, was discussed in early theoretical work by
Papapetrou.29 He argued that electrons at the top of the Fermi
distribution would become metastable if the Fermi level was
close to a zone boundary. That the band should be almost full
was also deemed to be essential in the theory of Born and
Cheng.30

s2d The idea that the superconducting electrons are not
sensitive to the discrete ionic potential was discussed by

Kronig.31 He proposed that electron-electron interaction ef-
fects would dominate over electron-ion effects, and that the
ionic lattice should be replaced by a continuum positive
background for the description of superconductivity. In the
review by Smith and Wilhelm32 it is also stated that the su-
perconducting electrons, in order to move freely, may expe-
rience some binding with the lattice as a whole rather than
with particular atoms. Note how different this is to BCS
theory, where coupling of electrons not only to the discrete
ions but even to their deviation from equilibrium position is
deemed essential.

s3d Brillouin33 postulated that the energy versusk relation
in superconductors may show secondary minimanear the
Brillouin zone boundarysin a band where the minimum is at
the zone centerd, and that electrons in those states would not
be sensitive to scattering.

s4d Schafroth34 proposed that electrons at the top of the
Fermi distribution would pair into a resonant state ofnega-
tive binding energy, however such that their combined en-
ergy would be less than twice the Fermi energy of single
particles, so they would not be able to break up into single
particles due to the Pauli principle. This idea obviously re-
quires that the Fermi level be high in the band, or at the very
least not near the bottom of the band. It also foreshadows the
concept of kinetic energy driven pairing.

s5d Bardeen in early work35 suggested that superconduct-
ing electrons would have a much smaller effective mass than
normal electrons. However he abandoned this concept in
BCS theory.

s6d Meissner wondered whether superconductivity is car-
ried by the same electrons that carry the normal state current
or by different ones.36 He favored the latter alternative, based
on the observation that atoms with only one valence electron
outside a closed shell do not form superconductors. This is in
agreement with the ideas discussed here, since the antibond-
ing electrons do not carry electric current in the normal state,
in fact they do precisely the opposite.

s7d London37 pointed out that diamagnetism could be un-
derstood if electrons in superconductors behave as electrons
in giant atoms. A natural extension of London’s idea is that
the charge distribution in superconductors will also be inho-
meogeneous as in real atoms, with more positive charge near
the center and more negative charge near the boundaries.6,28

XI. THE CUPRATES, CONVENTIONAL
SUPERCONDUCTORS, AND THE PAIRING MECHANISM

It is generally agreed that conventional superconductors
are described by BCS-electron-phonon theory, and that an
unconventional mechanism applies to the cuprates. There is
no general agreement on which is the right mechanism for
the cuprates, with proposals ranging from purely electronic
to magnetic to electron-phonon interactions of unconven-
tional type.38,39 However the considerations in this paper
should apply to all superconductors, conventional or other-
wise, because they relate to fundamental aspects of the band
theory of solids.

The predominance of hole carriers in the normal state of
conventional and unconventional superconductors has been
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pointed out repeatedly elsewhere.14,15,29,30,40For the cuprates,
we have proposed that the hole carriers of interest are those
at the top of the band formed by overlap of planar oxygen
pp orbitals pointing in direction perpendicular to the Cu-O
bond.41 For MgB2, the holes in the nearly full bands formed
by overlap of planar boronps orbitals are generally believed
to be the dominant carriers driving superconductivity, and
there are also electronlike carriers at the Fermi level from
other bands.42 Calculations for a two-band model, one with
holelike and one with electronlike carriers at the Fermi
energy,41 yield results for tunneling characteristics that re-
semble experimental observations in MgB2, with hole selec-
trond carriers giving rise to a largessmalld gap.43 For
electron-doped cuprates, the existence of hole carriers in the
regime where they become superconducting has been estab-
lished experimentally.44

We do not address here the question whether specific
mechanisms unrelated to the physics discussed here play or
do not play a role in different classes of materials. However
the following two points necessitate discussion: first, is it
possiblethat undressing is the driving force for superconduc-
tivity in any or in all materials? We have shown elsewhere
that within a class of modelssdynamic Hubbard modelsd
pairing leads to lowering of kinetic energy and that as a
consequence the low temperature phase is superconducting,
in the absence of electron-phonon interactions.3,4At the same
time in these models pairing gives rise to increased quasipar-
ticle weight and transfer of optical spectral weight from high
to low frequencies.5 Hence at least in these models pairing
and superconductivity may be said to be driven by quasipar-
ticle undressing. Instead, in other models with different pair-
ing mechanisms undressing may be aconsequenceof the
transition to superconductivity. The physics that is reflected
in dynamic Hubbard models is not specific to one class of
materials but is generic to electrons and ions in solids as
discussed in Ref. 1.

Second, the electron-phonon interaction is known to lead
to an isotope effect inTc in most conventional materials45

and to an isotope effect on the London penetration depth in
the cuprates.46 How can this be related to the physics dis-
cussed here? First it is clear that the electron-phonon inter-
action generally will modify electronic-related properties,
e.g., band gaps, due to ionic zero-point motion.47 For dy-
namic Hubbard models we have shown that the ionic zero-
point motion leads to enhancement of the correlated hopping
term in the Hamiltonian and as a consequence to a positive
isotope shift inTc.

48 Now the London penetration depth can
be written as

1

lL
2 =

4pnse
2

m*c2 . s34d

Note that only the combinationns/m
* enters this expression,

with ns the density of superfluid carriers andm* the super-
fluid carrier’s effective mass. Within the dynamic Hubbard
model Hamiltonian, a reduction inlL would be expected due
to lowering of the pair effective mass caused by ionic zero-
point motion.48,49 This may appear to be incompatible with
the argument in this paper that the superfluid carriers com-

pletely undress from the electron-ion interaction and respond
to perturbations as if they had the free electron mass. How-
ever the two points of view can be reconciled if one inter-
prets the superfluid weightns/m

* asns
eff /me and adscribes its

enhancement by larger ionic zero-point motion to an en-
hancement of the effective superfluid densityns

eff.
Table I summarizes the different properties of electrons at

the Fermi energy when the Fermi level is near the bottom
and near the top of the band and some resulting properties of
the solid. Within conventional BCS-electron-phonon theory,
these properties do not play an important role in supercon-
ductivity, and superconductivity can occur with either bond-
ing or antibonding electrons at the Fermi energy. Instead,
independent of what role the electron-phonon interaction
may play in superconductivity we propose that only when a
solid has at least some carriers with the characteristics listed
in the right-hand column can superconductivity occur, and
that when it does the normal state carriers of the right-hand
column adopt characteristics of the carriers in the left-hand
column. In simple and noble metals and any other metal
where only carriers of the type described by the left-hand
column exist at the Fermi energy superconductivity would
not occur according to our theory, no matter how strong the
electron-phonon interaction.

XII. DISCUSSION

In this paper we have continued our analysis of the dif-
ferences between electrons and holes in energy bands and its
implications for the understanding of superconductivity. Our

TABLE I. Different properties of the carriers at the Fermi en-
ergy when the Fermi level is near the bottomsbonding electrond and
near the top of the bandsantibonding electrond.

Bonding electron
at the Fermi energy

Antibonding electron
at the Fermi energy

Undressed Dressed

Low kinetic energy High kinetic energy

Long wavelength Short wavelength

Small effective mass Large effective mass

Uniform charge density Nonuniform charge density

Moves in direction of force Moves opposite to force

Conducts electricity Anticonducts electricity

Contributes to Drude weight Anticontributes to Drude weight

Detached from lattice Transfers momentum to lattice

Large quasiparticle weight Small quasiparticle weight

Coherent conduction Incoherent conduction

Large Drude weight Small Drude weight

Negative Hall coefficient Positive Hall coefficient

Good metals Bad metals

Stable lattices Unstable lattices

Ions attract each other Ions repel each other

Carriers repel each other Carriers attract each other

Normal metals Superconductors
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earlier work1–5 centered on the differences between electrons
and holes arising from the electron-electron interaction. Here
we have focused on the even more basic aspects of electron-
hole asymmetry that arise from the electron-ion interaction.

It is interesting that the effects of electron-electron inter-
action and electron-ion interaction related to electron-hole
asymmetry are qualitatively similar. Both effects lead to
spectral weight transfer from low frequencies to high fre-
quencies as the carriers evolve from electronlike to holelike
as the Fermi level rises in the band. Both effects lead to a
decrease in the electrical conductivity per carrier as the
Fermi level rises, electron-electron interactions because the
carriers become heavier, and electron-ion interaction because
Bragg scattering causes the antibonding electrons to move in
direction opposite to the applied force. Fundamentally, both
effects lead to dressing of the quasiparticle as the Fermi level
rises in the band, where we define dressing loosely as what
makes the quasiparticle different from the bare particle, the
free electron.

If dressing impairs the electrical conductivity, and if su-
perconductors are perfect conductors of electricity, it is natu-
ral to conclude that superconductivity must be associated
with undressing. The fact that pairing of hole carriers effec-
tively shifts the Fermi level to a region lower in the band
where the carriers are less dressed supports this point of
view. Furthermore it is natural to conclude in view of these
considerations that undressing will affect both the dressing
originating in the electron-electron interaction and that origi-
nating in the electron-ion interaction. Experiments support
this interpretation.

What is however not obvious is that carriers will undress
completelywhen the transition to superconductivity takes
place, and respond as if they had the bare mass and the bare
charge of the free electron, as the experimental evidence in-
dicates. The dynamic Hubbard models3 as well as the Hub-
bard model with correlated hopping7 predict that the hopping
amplitude increases upon pairing, hence the effective mass
decreases, but theydo not predict that the effective mass
becomes the free-electron mass. Furthermore the magnitude
of effective mass decrease predicted by the models depends
on parameters in the models and on band filling.

The superfluid electrons in the superconducting state have
a wave function that extends coherently over the macro-
scopic dimensions of the sample. As a consequence they no
longer see the discrete nature of the electron-ion potential
that varies over microscopic scales, instead they see an av-
erage smooth background of positive charge. In other words,
the wave function is smooth over interatomic distance scales:
the carriers have undressed from the electron-ion potential
and they can no longer transfer momentum to the ionic lat-
tice. For this scenario to be possible, electrons at the Fermi
energy must pair, as it is the pairing that gives rise to super-
conductivity and to undressing and allows the electrons to
circumvent the Pauli principle. Beyond the pairing correla-
tions, superfluid electrons will resemble free electrons in a
smooth positive background, a “Thomson atom .”6

The point of view discussed here also highlights the im-
portant role of the electronic confinement of electrons near

the top of the band in the normal state, which raises their
kinetic energy, and of their deconfinement upon the transi-
tion to the superconducting state, which lowers their kinetic
energy. This is especially clear when one considers the low-
est band in a solid within the weak electron-ion approxima-
tion, but should also apply more generally. The wavelength
of electrons at the bottom of the band is macroscopic and
becomes gradually smaller as the Fermi level rises, finally
being of the order of the lattice spacing for the Fermi level
near the top of the band. The wave function deconfines and
the wavelength goes from microscopic to macroscopic as the
antibonding electrons at the Fermi energy condense into the
k,0 superconducting state. In metals where the wavelength
of electrons at the Fermi energy is large in the normal state
sbonding electronsd, no tendency to superconductivity will
exist.

In the conventional BCS-Fermi liquid theory quasiparti-
cles are fixed objects that develop special correlations when
the transition to superconductivity occurs but do not change
their intrinsic nature. Our previous work on undressing from
the electron-electron interaction instead had proposed that
quasiparticles do change intrinsic properties, their quasipar-
ticle weight and the magnitude of their effective mass, when
the transition to superconductivity occurs.5 Here we have
argued that this change in intrinsic properties is even more
radical: quasiparticles also change thesign of their effective
mass from negative to positive and their wavelength from
microscopic to macroscopic, when they condense into the
superconducting state.

Note that in ordinary Bose condensation for pointlike
bosons the phase transition as function of increasing density
occurs when the interparticle distance becomes comparable
to the boson de Broglie wavelength. Analogously here, the
onset of superconductivity as function of increasing band
occupation occurs when the Fermi level is high enough in
the band such that the de Broglie wavelength of electrons at
the Fermi level becomes comparable to theinteratomicdis-
tance. As in ordinary Bose condensation, the transition is to a
state with macroscopic de Broglie wavelength.50

In ordinary metals, charge inhomogeneity occurs at the
level of a single unit cell. If the superfluid electrons do not
see the discrete ionic lattice, the unit cell becomes the entire
sample and consequently charge inhomogeneity can occur at
a macroscopic level in superconductors. Just as in the metal-
lic unit cell bonding electrons lower their kinetic energy by
expanding their wave function from one atom to its neighbor,
in the superconductor to lower the kinetic energy the elec-
tronic wave function will expand towards the outer bound-
aries of the sample. Indeed, as discussed in other work6,28,51

we expect superfluid electrons to have a tendency to go near
the surface of the sample, giving rise to an excess of negative
charge in that region and to experimentally observable
consequences.52,53 Furthermore we suggest that this expan-
sion of the electronic wave function to the boundary of the
macroscopic unit cell and beyond is likely to be relevant to
the understanding of the superconducting proximity effect.
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