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On the basis of spin-pairing-fluctuation-exchange approximation, we study the superconductivity in the
quasi-two-dimensional Hubbard model. The integral equations for the Green’s function are self-consistently
solved by numerical calculation. Solutions for the order parameter, London penetration depth, density of states,
and transition temperature are obtained. Some of the results are compared with the experiments for the cuprate
high-temperature superconductors. Numerical techniques are presented in detail. With these techniques, the
amount of numerical computations can be greatly reduced.
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I. INTRODUCTION

The Hubbard model has been considered as the basic
model to study the mechanism of high-temperature super-
conductivity in the cuprates.1 By this model, the spin-
fluctuation-exchange between electrons is considered as re-
sponsible for the mechanism of high-temperature
superconductivity. A number of calculations, taking into ac-
count the spin-fluctuation effects, have been devoted to in-
vestigating the superconducting properties of the two-
dimensional Hubbard models.2–13

It has been proven that the spin-fluctuation theory can
successfully describe a number of properties, including the
temperature dependences of the antiferromagnetic correla-
tion length9 and the electric resistivity,14 of the cuprates at
high temperatures. However, in most of the calculations on
the Hubbard model, the superconducting pairing is treated by
the mean-field-like approximation. Such an approximation is
not appropriate because the pairing fluctuation is significant
in low-dimensional superconducting systems.15–21In fact, the
pairing fluctuation can result in new physical consequences.
It is believed that the pairing fluctuation is relevant to the
pseudogap phenomena18,19,22–25 observed in the normal
state26,27 as well as in the superconducting state28 of the cu-
prates.

One of the approaches to treating the pairing fluctuation is
the ladder-diagram approximation, which has been devel-
oped on the quasi-two-dimensionalsQ2Dd phenomenological
model18,19 and also on the two-dimensional Hubbard
model.20,21 By the ladder-diagram approximation, the long-
wavelength fluctuation is taken as the predominant contribu-
tion. It has been shown that the pairing fluctuations can result
in considerable reduction of the transition temperatureTc.
According to this approach,Tc vanishes in the absence of
interlayer coupling. The reason is that the pairing fluctuation
is divergently strong in the two-dimensional system. This is
consistent with the Mermin-Wagner-HohenbergsMWHd
theorem.29

In this work, we intend to study the superconductivity in
the Q2D Hubbard model. In addition to the spin-fluctuation-
exchangesS-FLEXd, we take into account the contribution
from the pairing fluctuation in the self-energy of the one-
particle Green’s function. With this spin-pairing-fluctuation-
exchangesSP-FLEXd approximation, we investigate the su-

perconductivity in the Q2D Hubbard model. By self-
consistently solving the integral equations for the Green’s
function, we calculate the order parameter, London penetra-
tion depth, density of statessDOSd, and transition tempera-
ture. Some of the results are compared with experiments for
the cuprate high-temperature superconductors. In the mean-
while, we also present some numerical techniques in detail in
the appendixes, which is necessary for carrying out the nu-
merical solution for the Green’s function.

II. FORMALISM

The Q2D Hubbard model defined on a layered cubic lat-
tice is of the following form:30

H = − o
kij l,a

tijcia
† cja + Uo

i
ni↑ni↓ − mo

i

sni↑ + nj↓d, s1d

where tij denotes the hopping energy of electrons between
the lattice sitesi and j , cia

† sciad represents the electron cre-
ation sannihilationd operator of spina at sitei, nia=cia

† cia, U
is the on-site Coulomb interaction, andm is the chemical
potential. Thekij l sum runs over the nearest-neighborsNNd
sites. In the following, we shall assumetij = t for the intra-
layer NN hopping andtij = tz for the interlayer NN hopping. A
quasi-two-dimensional system is characterized by the condi-
tion tz/ t!1. Throughout this paper, we use units in which
"=kB=1.

A. Normal state

For simplifying the Feynman diagrams for the Green’s
function, we present here the approximation scheme for the
normal state. The result for the superconducting state can be
immediately obtained by adding the anomalous Green’s
function contributions, and it will be presented in the
Sec. II B. The normal Green’s function for the electrons is
given by

Gsk,znd =
1

zn − jk − Ssk,znd
, s2d

wherezn= is2n−1dpT swith T being the temperature of the
systemd is the imaginary fermionic Matsubara frequency,
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jk =−2tscoskx+coskyd−2tzcoskz−m, and Ssk ,znd stands
for the electron self-energy. For brevity, occasionally, we use
the generalized momentumk=sk ,znd in this paper.

Figure 1 shows the approximation scheme for the self-
energy. The first two diagrams in Fig. 1sad are of the well
known S-FLEX approximation. These two diagrams can be
combined into a single diagram by redefining an effective
interaction Veff that is the summation of two interactions
given by Figs. 1sbd and 1scd. The expression forVeff is5,7,8

Veffsqd =
3

2

U2xsqd
1 + Uxsqd

+
1

2

U2xsqd
1 − Uxsqd

− U2xsqd, s3d

with

xsqd =
T

No
k

Gsk + qdGskd. s4d

The generalized momentumq stands for sq ,Zmd, with
Zm= i2mpT being the bosonic Matsubara frequency. The first
and second terms in the right-hand side of Eq.s3d come,
respectively, from the spin and charge fluctuations. The last
term eliminates a double counting in the second-order dia-
grams. Owing to the predominant spin fluctuation, it is

named as spin-fluctuation-exchange approximation. The Har-
tree term has been neglected since it is a constant that can be
absorbed in the chemical potential. The third diagram in Fig.
1sad represents the contribution from the pairing fluctuation.
Apart from two interaction sides, the shaded part essentially
represents the processes of the electron pair’s propagating.
Figure 1sdd gives the ladder-diagram approximation for it
with the second-order term given by Fig. 1sed. The pairing
interaction between two electrons of opposite spins contains
two parts, one due to the transverse spin fluctuationsTSFd as
given by Fig. 1scd, and another one being the screened Cou-
lomb potentialsSCPd given by Fig. 1sfd. In the right-hand
side of the diagrammatic equation of Fig. 1sed, the first dia-
gram represents the propagating of a pair without changing
their spins in the intermediate state, since they interact
through SCP during the process. In the second diagram, the
intermediate spin configuration is changed because the two
electrons interact through the TSF. The third diagram de-
scribes the process as the two electrons firstly interact
through SCP and then through the mediation of TSF, with a
minus factor stemming from the one appearance of TSF. The
last diagram is similar to the third one but with an inverse
interaction sequence. For brevity, we have dropped all the
momentum on these diagrams. The momentum and spins
attached to the ladder diagram are illustrated in Fig. 2. For
the sake of discussion, we here introduce a notation
Lab,b8a8sk,q−k;q−k8 ,k8d for the ladder diagram. In follow-
ing, we will show that atTøTc the value of the ladder dia-
gram diverges at the long-wavelength limit,q→0. There-
fore, the pairing fluctuation represented by the ladder
diagram gives significant contribution to the self-energy.

To see how the pairing fluctuation takes effect, we con-
sider Fig. 1sdd for the case of a singlet pair of electrons with
opposite spins and opposite momentum that is the case of the
ladder diagram at the long-wavelength limit. Because of
Lab,b8a8sk,−k;−k8 ,k8d=−Lba,b8a8s−k,k;−k8 ,k8d, we thereby
can combine the last two terms in Fig. 1sdd with an effective
pairing interactionVP defined by Fig. 3sbd and obtain an
equation such as Fig. 3scd but with < replaced by = under
the ladder-diagram approximation. To solve this equation, we
expand the effective pairing interaction in terms of a com-
plete set of basis functionsfn,

VPsk,k8d = o
n

vnfnskdfnsk8d. s5d

The functionfn satisfies the eigenequationfsee Fig. 3scdg,

FIG. 1. Approximation scheme for the self-energy.sad Self-
energy for thea-spin electrons. The first term comes from the cou-
pling of thea-spin electrons with the density fluctuation of opposite
b-spin electrons. The second term is due to the coupling between
transverse spins through their fluctuation. The last term represents
the contribution from the pairing fluctuation.sbd Interaction be-
tweena-spin electrons due to the density fluctuation ofb-spin elec-
trons.scd Interaction between transverse spins stemming from their
fluctuation.sdd Ladder-diagram approximation to the pairing fluc-
tuation. sed Second order ladder diagrams.sfd Screened Coulomb
interaction between electrons of opposite spins.

FIG. 2. Ladder diagram representing the propagating of a pair of
total momentumq. k8 andq−k8 are the initial momentum of thea-
andb-spin electrons, respectively. After propagating, their momen-
tum changes tok andq−k.
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T

No
k8

VPsk,k8dGsk8dGs− k8dfnsk8d = lnfnskd, s6d

where N is the total number of lattice sites, andln is the
eigenvalue. By so doing, we get20,21

Lab,b8a8sk,− k;− k8,k8d = − o
n

lnvnfnskdfnsk8d
1 − ln

. s7d

At the transition temperatureTc, the largest eigenvalue
equals unity, by which the eigenequations6d then reduces to
the gap equation. At the superconducting state, the
eigenequations6d is modified by adding the term of the
anomalous Green’s function with the largest eigenvalue
being unity unchanged. Therefore, at TøTc,
Lab,b8a8sk,−k;−k8 ,k8d is infinitive. It implies that the long-
wavelength pairing fluctuation gives significant contribution
to the self-energy. On the other hand, asT→Tc from the
normal state, with the largest eigenvalue of Eq.s6d approach-
ing unity, Lab,b8a8sk,−k;−k8 ,k8d diverges at this limit.
Therefore, for the normal state atT close toTc, the long-
wavelength pairing fluctuation is important as well.

From the right-hand side of Eq.s7d, we see that, except
for the term corresponding to the largest eigenvalue, all other
terms are finite. We therefore keep only the most diverging
term to simplify the solution of the equation given by Fig.
1sdd. That is, we can consider only the pairing of largest
eigenvalue.20,21,25For the present case, the largest one is the
d-wave pairing. Hereafter, we denote the largest eigenvalue
and the corresponding eigenfunction simply asld andfskd,
respectively, and the coupling constant simply byv.

On observing the above-mentioned fact, we make the ap-
proximation in Fig. 1sdd using the pairing interactions of
zero total momentum, because nearq=0 the pairing fluctua-
tion is most significant. We then obtain equations as given by
Fig. 3 for determiningLab,b8a8sk,q−k;q−k8 ,k8d. Further-
more, by considering only thed-wave pairing that has the
largest eigenvalue, the ladder diagram given by Fig. 3scd
reduces to the same one that we previously encountered for

the phenomenological model.19 Applying the previous result
to the present casessee Appendix Ad, the ladder-diagram
summation is obtained as

Lab,bask,q − k;q − k8,k8d = Psqdfskdfsk8d, s8d

with

Psqd =
v2Psqd

1 + vPsqd
− v2Psqd, s9d

Psqd = −
T

No
k

f2skdGskdGsq − kd. s10d

In Eq. s9d, the last term eliminates all the second-order dia-
grams since the contribution to the self-energy from the first
two diagrams in the right-hand side of the diagrammatic
equation of Fig. 1sed has been taken into account in the
S-FLEX approximation, while the other two diagrams are
negligible as compared to the infinitive ladder-diagram sum-
mation. For the self-energy, the final expression is

Sskd = −
T

No
q

Gsk − qdVeffsqd +
Tf2skd

N o
q

Gsq − kdPsqd.

s11d

As we have noted above, the last term in Eq.s11d is corre-
sponding to the previous approximation19 for the phenom-
enological model.18,19In that model, however, the interaction
is simply a constantd-wave pairing potential, and the hop-
ping energy is proportional to the hole concentration, taking
into account the constraint excluding the double occupation.
The prohibition of double occupation stems from thet -J
model that is the largeU limit of the Hubbard model. It is a
consequence of strong short-range antiferromagnetic cou-
pling. Under the SP-FLEX approximation scheme for the
Hubbard model, however, the antiferromagnetic coupling is
taken into account by the first term in Eq.s11d . Moreover,
for not too largeU, thed-wave pairing potential given above
varies with the temperature, hole concentration, andU.

A slightly different treatment of the ladder-diagram sum-
mation atqÞ0 has been given in Ref. 21. Similarly, the
contribution from only the pairing of the largest eigenvalue
lsqd was considered. In principle, the eigenvaluelsqd and
the eigenfunction should be determined by the corresponding
eigenequation atqÞ0. However, it has been found that the
eigenfunction depends insensitively onq when q is small.
This allows one to determinelsqd using the eigenfunction of
q=0.21 By applying the approximation of thed-wave channel
pairing toVP in the expression forlsqd in Ref. 21, one ob-
tains lsqd=−vPsqd and the same result for the ladder-
diagram summation atqÞ0 as given by Eq.s9d except the
last unnecessary term.

By the way, we give an expression for the pairing poten-
tial. As seen from Figs. 1scd, 1sfd, and 3sbd, VPsk,k8d equals
V1scdsk+k8d−V1sfdsk−k8d. Since the pairing functionfskd can
be taken as an even function of k,
the pairing potential in Eq.s6d can be thereby written as
VPsk−k8d. We then have

FIG. 3. Approximation to the ladder diagram.sad Approximate
second-order ladder diagram obtained from Fig. 1sed by neglecting
the dependence of the interactions on the total momentum of the
pair. sbd Effective pairing interaction.scd Renormalized diagram-
matic equation for the ladder diagram.
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VPsqd =
3

2

U2xsqd
1 + Uxsqd

−
1

2

U2xsqd
1 − Uxsqd

− U. s12d

Therefore, the left-hand side of Eq.s6d is a convolution ofVP
and the rest of it.

In addition, the chemical potentialm should be deter-
mined to yield the hole concentration,

d = −
T

No
k

fGskd + Gs− kdg. s13d

All of the above equations form the closed system that self-
consistently determines the Green’s function.

B. Superconducting state

For the superconducting state, the above results should be
extended to including the contributions from the anomalous
Green’s function. In the Nambu representation, the Green’s
function is given by

Ĝskd = fzn − jks3 − Ŝskdg−1, s14d

wherezn is understood aszns0, and s is the Pauli matrix.

Occasionally, we will use the Pauli components ofĜ defined

by Ĝ=G0+G1s1+G3s3. Correspondingly, the self-energy is

expressed asŜ=S0+S1s1+S3s3 as well. The diagonal ele-
ment S11skd=S0skd+S3skd is given by the same diagram
fFig. 1sadg except where the effective interaction and the lad-
der diagram should include the contribution from the anoma-
lous Green’s function. The elementS22skd is obtained by
S22skd=−S11s−kd. The off-diagonal partS1 is given by the
gap equation,

S1skd = −
T

No
q

G1sk − qdVPsqd. s15d

The expressions forVeff andVP can be obtained as

Veffsqd =
3

2

U2x−sqd
1 + Ux−sqd

+
1

2

U2x+sqd
1 − Ux+sqd

− U2xsqd, s16d

VPsqd =
3

2

U2x−sqd
1 + Ux−sqd

−
1

2

U2x+sqd
1 − Ux+sqd

+ U2x1sqd − U,

s17d

with x±sqd=xsqd±x1sqd, and

x1sqd = −
T

No
k

G1sk + qdG1skd. s18d

The expression forxsqd is the same as Eq.s4d where the
Green’s functionGskd is understood asG11skd. A simple deri-
vation of these results is presented in Appendix A.

Following the similar analysis as in Sec. II A one can take
a corresponding approximation for the pairing fluctuation. In
the superconducting case, however, besides the diagonal pair
propagatingspairing of particles or holesd, attention must be
paid to the off diagonal pair propagating as well. The latter is
the process in which the initial state is a pair of particles

sholesd, while the final state is a pair of holessparticlesd.
Therefore, the pair propagators satisfy a matrix equation. The
ladder-diagram approximation with ad-wave channel inter-
action is given in Appendix A. The functionPsqd appearing
in S11 represents the pair propagating. It can be divided into
two parts,Psqd=P0sqd+P3sqd. Their expressions are given
by

P0sqd = vfDsqd − 1 −vP0sqdg/Dsqd − v2P0sqd, s19d

P3sqd = v2P3sqdf1 − Dsqdg/Dsqd, s20d

Dsqd = f1 + vP+sqdgf1 + vP−sqdg − v2P3
2sqd, s21d

with P±sqd=P0sqd±P1sqd, and

P0sqd =
T

No
k

f2skdfG0skdG0sk − qd − G3skdG3sk − qdg,

s22d

P1sqd =
T

No
k

f2skdG1skdG1sk − qd, s23d

P3sqd =
T

No
k

f2skdfG3skdG0sk − qd − G0skdG3sk − qdg.

s24d

The eigenequation for determining the functionfskd now is
extended to

T

No
k8

VPsk − k8dfG3
2sk8d + G1

2sk8d − G0
2sk8dgfsk8d = fskd,

s25d

with the largest eigenvalue being unity. This equation is
equivalent to Eq.s15d since fskd differs from S1skd by a
normalization constant. It also leads to 1+vP-s0d=0, and
therebyPsqd diverges atq=0, which means the existence of
the Goldstone mode.

In terms of the above functions, the diagonal parts of the
self-energy can be expressed as

S0skd = −
T

No
q

G0sk − qdVeffsqd−
Tf2skd

N o
q

fG0sk − qdP0sqd

− G3sk − qdP3sqdg, s26d

S3skd = −
T

No
q

G3sk − qdVeffsqd−
Tf2skd

N o
q

fG0sk − qdP3sqd

− G3sk − qdP0sqdg. s27d

By using the Pauli component of the Green’s function, the
expression for Eq.s13d can be simplified as

d = −
2T

N o
k

G3skd. s28d

So far, we have all the equations for the superconducting
case.
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C. Q2D approximation

The Green’s functionĜskd and the susceptibilitiesxsqd
andPsqd are defined in three-dimensional space. Actually, in
case of tz/ t!1, they very weakly depend on the
z-component variables. However, the dependence onqz of
function Psqd is delicate. Consider the denominator function
Dsqd at smallq andZm=0. SincePsqd are even functions of
q, we have

Dsq,0d < csqx
2 + qy

2d + czqz
2, s29d

wherec andcz are constants. Theqz
2 term in Eq.s29d comes

from the interlayer electron hopping. The ratiocz/c is much
less than unity. If theqz dependence inDsqd is ignored, the
second summations in Eqs.s26d and s27d will be divergent,
which implies there will be no superconductivity in the sys-
tem at finite temperature. This conclusion is consistent with
the MWH theorem.29 We therefore need to keep theqz de-
pendence in the denominators ofPsqd at least to the orderqz

2.
For illustrating our approximation scheme, we firstly con-

sider the case ofZm=0. Since P3sq ,0d=0, we have
P3sq ,0d=0, and

P0 =
v2

2
F P−

1 + vP−
+

P+

1 + vP+
G − v2P0, s30d

where the argumentssq ,0d have been dropped for brevity.
As has been mentioned in Sec. II B, the first denominator
1+vP− vanishes atq=0. Even though the second denomina-
tor 1+vP+ is finite atT,Tc, it is small. Especially, it van-
ishes too atT=Tc. Therefore, we expand both of the denomi-
nators to the orderqz

2,

1 + vP±sqd < 1 + vP̄±sqd + cz
±qz

2, s31d

with

P̄±sqd = P±sqdqz=0, s32d

cz
± =

v
2

d2

dqz
2P±sqdq=0, s33d

and useP̄±sqd for P±sqd in the numerator in Eq.s30d . Note
that cz

± is defined as the derivation in the right-hand side of
Eq. s33d at q=0 since this is where theqz dependence is
important. To evaluate the constantscz

±, we need to take the
derivative of the Green’s functionsGsq−kd with respect toqz

as indicated by Eqs.s22d and s23d. By neglecting theqz
dependence of the self-energy,Gsq−kd thereby depends on
qz only via jq−k. It is expected that such an approximation
does not change the physical result so much. To the second
order of tz/ t, we obtain19

cz
± =

tz
2vT

N o
k

f2skdHF ]

]jk
G3skdG2

7 F ]

]jk
G1skdG2

− F ]

]jk
G0skdG2J , s34d

with

]

]jk
G0skd < 2G0skdG3skd,

]

]jk
G1skd < 2G1skdG3skd, s35d

]

]jk
G3skd < G0

2skd − G1
2skd + G3

2skd.

With such an approximatedP0sq ,0d, the integral overqz in
Eqs. s26d and s27d at Zm=0 can be taken immediately by
neglecting theqz dependence in the Green’s function. There-
fore, instead ofP0sq ,0d in Eqs.s26d ands27d, we insert in a
function defined by

P0
effsq,0d =

1

p
E

0

p

dqzP0sq,0d=
v2

2
fP̄−f− + P̄+f+g − v2P̄0,

s36d

with

f± =
g±sqd
pcz

± arctanfpg±sqdg, s37d

g±sqd = F cz
±

1 + vP̄±sqd
G1/2

, s38d

where again, in the last line of Eq.s36d, we have dropped the
argumentssq ,0d for brevity.

We now consider the situation ofZmÞ0. Dsqd is finite in
this case. However, to be consistent with the approximation
for P0sq ,0d, we still keep a smallqz

2 term in the denominator
Dsqd. Though thisqz dependence is negligible at high tem-
perature, it is reasonable in the case of low temperature. Ac-
cording to the expansion by Eq.s31d, we expandDsqd as

Dsqd = D̄sqd + esqdqz
2, s39d

with

esqd = f1 + vP̄+sqdgcz
− + f1 + vP̄−sqdgcz

+. s40d

To the orderqz
2, this expansion reduces to the result for the

case ofZm=0. Correspondingly, we can define the functions
P0

effsqd andP3
effsqd by taking the integral overqz. This proce-

dure is equivalent to replacing 1/Dsqd in Eqs.s22d–s24d with
a function fsqd defined by

fsqd =
gsqd

pesqd
arctanfpgsqdg, s41d

gsqd = F esqd

D̄sqd
G1/2

. s42d

With the functionsPsqd in Eqs.s26d and s27d replaced with
Peffsqd, the problem of numerically solving the integral equa-
tions is then reduced to a two-dimensional one. All of the
above are discussed for the case of the supesrconducting
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state. The results for the normal state can be obtained by
settingG1skd=0.

III. NUMERICAL RESULTS

Since the functionsGskd, Veffsqd, andPeffsqd are defined
in multidimensional space, they require huge memory stor-
age in the numerical computation process. Especially, the
function P0

effsqd is singular atq=0. Therefore, to carry out
the numerical solution, we need to develop a numerical
scheme to reduce the amount of computation without losing
the accuracy. In Appendix B, we present our scheme for the
Matsubara frequency summation. The summation is taken
over 57 points, a subset of the frequencies, in a sufficiently
large range. The cutoff frequencies arezc=s2Nc−1dpT
for the fermions andZc=2sNc−1dpT for the bosons,
respectively, withNc=1017. For the typical temperature
T/ t,0.01 under consideration, this means 2NcpT/ t,64.
For calculating the functionxsqd, beyond this range, the
summation over the terms ofn.Nc is analytically carried
out by using the asymptotic formula of the Green’s function,

Gsk,znd → 1/zn. s43d

The error of the summation over the terms ofn.Nc is of the
orderOszc

−3d.
The convolutions in the momentum space are carried out

with fast Fourier transformssFFTsd on a 1283128 lattice.
For the inverse transform ofVeffsq ,0d and P0

effsq ,0d, i.e.,
from momentum space to real space, we have to pay special
care. At low temperature,Veffsq ,0d has strong peaks near
q=sp ,pd.7 We therefore use a 2563256 mesh in momen-
tum space for the inverse transform. The values ofVeffsq ,0d
for this mesh are obtained by local quadratic polynomial
interpolation of the smooth functionsxsqd given on a
1283128 mesh. On the other hand, the functionP0

effsq ,0d
has divergently sharp peaks atq=0 andTøTc. In Appendix
C, we deal with the inverse transform of this function.

The difficulty in solving the eigenvalue problem given by
Eq. s6d is that the memory requirement for the coefficient
matrix is huge. It is impossible to solve this equation in
momentum space. In Appendix C, we rewrite the eigenequa-
tion in real space. At high temperature not too close toTc,
Eq. s6d can be solved in real space with a small number of
lattice sites in a reduced region. This reduces greatly the
amount of numerical calculation work.

The integral equations determining the Green’s functions
are numerically solved by the iteration method. Once a solu-
tion at temperatureT is obtained, it is then used as an initial
input for the next calculation at temperatureT+dT. A more
efficient way is to use an extrapolation from the known so-
lutions at temperaturesT1 andT2 as the initial input for the
next solution atT2+dT.

In the present calculation, we setU / t=5 and tz/ t=0.01.
All the results presented in the figures are for these param-
eters.

A. Eigenvalue ld

In Fig. 4, we show the result for the eigenvalueld as
function of T at d=0.125. The S-FLEX result is also pre-

sented for comparison. Due to the pairing fluctuation, the
eigenvalue by the present SP-FLEX approximation is consid-
erably reduced from that of the S-FLEX, giving rise to a
lower transition temperature. Moreover, there is a distin-
guishable difference between their behaviors at temperatures
close to Tc. By the S-FLEX approximation, we have
dldsTd /dTÞ0 at T=Tc. It means that atT,Tc, by keeping
no superconducting pairing, the S-FLEX approximation al-
lows a solution ofld.1. In contrast to this feature of the
S-FLEX approximation, the solution forld by the SP-FLEX
approximation can never get across the lineld=1. At
T→Tc, the pairing fluctuation effect is more pronouncedly
with ld→1, which, conversely, suppressesld. As a result,
the curveldsTd is smoothly connected to the straight line
ld=1. That is

U d

dT
ldsTdU

Tc

= 0. s44d

The inset of Fig. 4 shows thatÎ1−ld varies nearly linearly
asT→Tc, which means 1−ld~ sT−Tcd2.

A problem then comes in the determination ofTc by
lsTcd=1 from the side of the normal state. Because
dT/dld=` at T=Tc, a small numerical error inld may result
in considerable error inTc. Therefore,Tc cannot be accu-
rately determined by the functionldsTd. In our numerical
calculations, we solved Eq.s6d using two sets of numbers, 25
and 49, respectively, of the lattice sites in the reduced region
ssee Appendix Dd. The solid circles in Fig. 4 represent the
numerical results of 49 lattice sites, while the open circles
are the ones of 25 lattice sites. Close toTc, the difference
between the two results are visible. Even with 49 lattice
sites, the transition temperature so determined is not reliable.

The problem can be resolved from the superconducting
side. Instead of Eq.s6d, we solve Eq.s25d . Since the eigen-

FIG. 4. Eigenvalueld as a function ofT at U / t=5 and
d=0.125. SP-FLEX is the present approximation. The result of
S-FLEX is also depicted for comparison. The solid circles represent
the numerical solution to Eq.s6d solved with 49 lattice sites in a
reduced regionssee Appendix Dd. The open circles are the results of
25 sites. The squares are the transition points obtained by Eq.
s25d . The inset showss1−ldd1/2 of the SP-FLEX approximation as
a function ofT.
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value ld=1 is known atTøTc, Eq. s25d can be solved via
iteration on the whole lattice. The squares in Fig. 4 denoteTc
obtained from the superconducting side for SP-FLEX and
S-FLEX, respectively. The numerical solutions for the tran-
sition temperatures so determined should be reliable.

B. Order parameter

At low temperature, we have obtained self-consistent so-
lutions in whichS1skd is finite. The symmetry of pairing isd
wave,S1skx ,ky ,znd=−S1sky ,kx ,znd. Here, we define the or-
der parameter,

D = S1sX,z1d/ZsX,z1d s45d

with

Zsk,znd = 1 −S0sk,znd/zn s46d

andX =sp ,0d. The quantityD is a measure of the supercon-
ducting gap at the Fermi surface near the pointX.7,8 Figure 5
shows the order parameter as function ofT at various doping
concentrations. The symbols represent the numerical data,
while the lines are the extrapolations. As seen from Fig. 5,
close toTc, D decreases dramatically.sIn the numerical cal-
culation, because of this rapid decreasing, to get an iteration
converged at temperatureT+dT with an initial input extrapo-
lated from some other solutions at and close to temperature
T, the changedT must be very small. At low doping concen-
trations, close toTc, a change ofdT/T,10−4 at most was
allowable in the present calculation.d At T=Tc, we have
dDsTd /dT=`. Because of this divergence,Tc can be accu-
rately determined byD=0.

On the other hand, at low temperature,DsTd should be
flat. We then can obtain the valueD0;Ds0d by extrapolation.
In Fig. 6, we show the ratio 2D0/kBTc at various doping
concentrations. At the underdoping regime, the ratio is about
an order of 10. It decreases with the doping concentration.
This ratio is considered as a characterization of the coupling
strength of the system. The low-doping regime corresponds

to strong coupling. While increasing the doping concentra-
tion, the coupling becomes weak.

C. Phase diagram

As mentioned in Sec. III B, the transition temperatureTc
is determined byDsTcd=0, which gives an accurate solution
for Tc. The present SP-FLEX result atU / t=5 ssolid circlesd
for the boundary of superconducting phase in theTc−d phase
diagram is depicted in Fig. 7. All the solid circles are ob-
tained by numerical solutions. The S-FLEX resultsopen
circlesd is also shown for comparison. Clearly, due to the
pairing fluctuation,Tc is considerably reduced from that of
the S-FLEX approximation. The reduction is more signifi-
cant at lower hole doping whereTc decreases with decreas-
ing d. On the other hand, at larged, the pairing fluctuation is
less pronounced. This is consistent with the previous

FIG. 5. Order parameterD as function of temperatureT at vari-
ous hole concentrationsd. The symbols represent numerical data.
The lines are extrapolations. The hole concentrations are indicated
by the numbers.

FIG. 6. Ratio 2D0/kBTc at various hole concentrationsd.

FIG. 7. Transition temperatureTc as function of hole concentra-
tion d. The solid circles and open circles are obtained atU / t=5 by
the SP-FLEX and S-FLEX calculations, respectively. The dashed
line is an extrapolation of the numerical result. In the inset, the
symbols denote the experimental results for the cuprate high-
temperature superconductorssRef. 31d while the solid line is the
previous resultsRef.19d for the phenomenological model.
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conclusion.19 The results of the previous calculation on the
phenomenological modelswith coupling constantJ/ t=0.2d19

and the experiments31 for the cuprate high-temperature su-
perconductors are exhibited in the inset of Fig. 7 for com-
parison. The behavior of the previous result at small hole
doping clearly differs from the experiment and the present
calculation. It may stem from the crude treatment of the
short-range antiferromagnetic coupling by the phenomeno-
logical model. In contrast to the previous result, the present
calculation gives a reasonable description of the experiment
at small hole doping.

The dashed line in Fig. 7 is an extrapolation of the nu-
merical result. Unlike the previous case for the phenomeno-
logical model,19 the extrapolation gives a nonzero minimum
hole concentrationdm, very close to 0.05, of the phase
boundary. Again, this seems to reasonably reflect the feature
of the experimental result. The largest transition temperature
Tc,max obtained by SP-FLEX is about 0.0137t at d=0.175.
Using t<0.6 eV,18,19 we haveTc,max<95 K.

To see why the pairing fluctuation results in the reduction
of Tc, we analyze the self-energy given by Eq.s11d fwhich is
the same as that given by Eqs.s26d and s27d at T=Tcg with
Psqd replaced byPeffsqd. At Zm.0, sinceVeffsqd andPeffsqd
have strong negative peaks, respectively, atq<Q;sp ,pd
andq=0, we here make a crude approximationsfor the sake
of illustrationd for the self-energy,

Sskd < − Gsk − Q,zndF T

No
q,Q

VeffsqdG + Gsk,− znd

3FTf2skd
N o

q,0
PeffsqdG . s47d

The summations in the square brackets give rise to two
negative quantities. At smalld, m<0, we haveGsk −Q ,znd
<−Gsk ,−znd. Taking this fact into account, we get
Sskd<−Gsk ,−zndGk

2, with Gk
2=a1+a2f2skd, wherea1 anda2

are two positive constants. Substituting the result into Eq.
s2d, one obtains

Gsk,znd <
zn + jk

2Gk
2 S1 −Î1 +

4Gk
2

jk
2 − zn

2D . s48d

Applying these results to Eq.s6d, we see that the factor
GskdGs−kd is reduced and so isTc.

Physically, the quantity

a2 = −
T

No
q,0

Peffsqd

is a measure of the density of pairs at their excited states.

Since the functionPeffsqd is given in terms ofP̄sqd, we ana-

lyze P̄sqd=Psqduqz=0, especially atq=0. From Eq.s10d , we
see that the quantityPs0d comes predominately from the
summation over the points close to the Fermi surface in mo-
mentum space. At smallerd, the Fermi surface of the Hub-
bard model is larger and so is the number of the pairs at their
fluctuating states. Therefore, the reduction onTc is larger at
smallerd.

The form of the Green’s function given by Eq.s48d im-
plies that there exists a pseudogap in the energy spectrum of
the electrons.19,32 Consider the spectral function,

Ask,Ed = −
1

p
ImGsk,E + i0+d

=
E + jk

2pGk
2Îjk

2 + 4Gk
2 − E2

E2 − jk
2 ,

which is nonzero only forE2−4Gk
2,jk

2,E2. The noninter-
action delta-function peak becomes a square root singularity.
Because of the constraint, the area of thek space of
Ask ,EdÞ0 decreases atE→0, resulting in a suppression of
the density of states. Especially, the density of states van-
ishes atE=0 sfor m=0d since the area becomes zero and the
singularity disappears there.

On observing the functionGk
2, we note that the pseudogap

stems from the spin and pairing fluctuations. Even atT=0,
the pseudogap remains in the superconducting state because
the spin fluctuationsowing to which the superconductivity
takes placed and the pairing fluctuationscoming from the
Goldstone mode19 d exist. This may explain the recent
experiment.28

D. Density of states

The density of states is defined by

rsEd = −
1

pNo
k

ImG11sk,E + i0+d. s49d

The Green’s function needs to be analytically continued from
the imaginary Matsubara frequency to the real frequency. In

terms of an effective self-energyS̃skd defined by

S̃skd = S0skd + S3skd +
S1

2skd
zn − jk − S0skd + S3skd

, s50d

the Green’s functionG11skd is written as

G11skd =
1

zn − jk − S̃skd
. s51d

Using the Padè approximation,33 we have obtained the ana-

lytical continuation for the effective self-energyS̃skd.
The results for the density of states atd=0.125 at various

temperatures are depicted in Fig. 8. At low temperature, the
width of the gap is nearly constant. BelowTc, a peak-dip-
hump sPDHd structure is clearly seen above the Fermi en-
ergy. The positions of the peak and dip are aboutD and 3D,
respectively. Such a phenomenon has been observed in the
cuprates experiments and has been explained by model
calculations.34,35 The PDH stems from a coupling between
the electrons and a collective mode of energy about 2D. Be-
low Tc, the superconducting gap opens with the maximum of
2D appearing in the region near the pointss±p ,0d and
s0, ±pd in the Brillouin zone. The collective spin-fluctuation
mode of energy 2D and momentumQ can then exist in the
system. An electron of energy 3D can transit to a state of
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energyD sat which the DOS has a peakd by exciting the
collective mode and losing energy 2D. Effectively, the life-
time of the electrons of energy 3D is short, and thereby the
dip appears in the DOS. In the fluctuation-exchangesFLEXd
scheme, such a collective mode is described by the effective
interaction Veff that is self-consistently determined by the
present calculation.

On the other hand, aboveTc, there still remains a
pseudogap in the DOS. While increasing the temperature, the
minimum moves to high energy. As stated in Sec. III C, the
pseudogap comes from both of the spin and pairing fluctua-
tions. At higher temperature, the pairing fluctuation is less
important. The electron statesk andk +Q couple with each
other mainly through the spin fluctuations. Especially, the
degeneracy of those states at the magnetic zone surface is
lifted and the weights shift away, resulting in a reduction in
the DOS at the corresponding energy.

E. London penetration depth

In this section, we study the magnetic penetration depth.
The London penetration depthlL in x direction is given via

lL
−2 =

4pne2

m*c2 + U4p

c2 CsqdU
q=0

, s52d

with Csqd the y-component current-current correlation func-
tion defined by

Csq,t − t8d = − kTtJysq,tdJys− q,t8dl/N, s53d

where k¯l means a statistical averageTt is the imaginary
time t ordering operator, andJy is the y-component current
operator,

Jsqd = − eo
ka

¹kjkck−q/2a
† ck+q/2a.

In Eq. s52d , n andm* are the number density and the effec-
tive mass of electrons, respectively. By using the Ward iden-
tity for the current vertex, the quantityC0=Csqduq=0 can be
written as

C0 =
e2T

N o
k

fG11
2 skd + G12

2 skdg¹kjk ·vk, s54d

with vk=¹kfjk +S11skdg. By noting the following equations:

G11
2 skd¹kfjk + S̃skdg = ¹kG11skd,

T

No
k

¹kjk ·¹kG11skd = −
n

m* ,

we get the expression forlL
−2,

lL
−2 =

4pe2T

c2N o
k

fG12
2 skdvk − G11

2 skdukg ·¹kjk , s55d

with

uk = ¹k
S1

2skd
zn − jk − S0skd + S3skd

.

By Eq. s55d , lL
−2 vanishes identically at and aboveTc.

Shown in Fig. 9 are the results for the quantitylL
−2sTd as

a function of temperatureT at various doping concentrations.
The experimental result for thea-axis penetration depth of
YBa2Cu3O6.95 is also presented for comparison.36 It is well
known that lL

−2sTd under d-wave pairing symmetry varies
linearly with T at low T. Using this property, we infer the
value lL

−2s0d from the extrapolation of the known results at
finite temperatures. We then get the zero-temperature super-
fluid densityns. Figure 10 shows the relationship betweenTc
and ns at a number of doping concentrations. This result
resembles the experimental observation by Uemuraet al.37

They have found a universal linear relation betweenTc and

FIG. 8. Density of statesrsEd at d=0.125 at various tempera-
tures. For clarity, they axes for the results of 0.7Tc and 0.4Tc have
been offset upwards by 0.05 and 0.1, respectively. For 1.01Tc and 2
Tc, the offsets are downwards 0.05 and 0.1, respectively.

FIG. 9. QuantitylL
2s0d /lL

2sTd as a function of temperatureT at
various doping concentrationsd. The solid circles denote the ex-
perimental results fora-axis penetration depth of YBa2Cu3O6.95.
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ns/m
* at underdoping regime. This behavior cannot be ex-

plained by the BCS theory, nor by the S-FLEX scheme in
which Tc andns do not decrease withd decreasing.

In the mean-field theory, the electron pairs are all consid-
ered as being in the Bose-Einstein condensate belowTc.
Since the pairing interactionsstemming from the spin-
fluctuation exchanged is stronger at smaller doping concen-
trations, more electron pairs are produced in the condensate.
This leads to higherTc and a larger superfluid density. In
contrast to the mean-field theory, in the SP-FLEX scheme,
the electron pairs are allowed to occupy their excited states.
At low temperature, those collective modes are the most
available excited states. Even at the ground state, there re-
mains the zero-point motion for the collective modes. So,
only a part of the pairs stay in the condensate. As stated
earlier, the pairing fluctuation is stronger at smallerd, result-
ing in lower Tc and lowerns.

IV. SUMMARY

In summary, we have investigated thed-wave supercon-
ductivity in the quasi-two-dimensional repulsive Hubbard
model. Both of the spin and pairing fluctuations are taken
into account in the self-energy. We have self-consistently
solved the integral equations for the Green’s function. The
present calculations reflect a number of features of the ex-
perimental results for the cuprate high-temperature supercon-
ductors. The calculated boundary of the superconducting
phase shows a paraboliclike shape, reasonably describing the
experiments. The peak-dip-hump structure in the density of
states is naturally reproduced. In addition, the present calcu-
lations give reasonable explanations for the temperature de-
pendence of the penetration depth and the relationship be-
tweenTc and the superfluid density.

The pairing fluctuation implies that an amount of pairs
occupy their excited states. This fluctuation effect leads to
the reduction of the condensation of the pairs and, thereby,
the transition temperature.
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APPENDIX A

Considering the convenience for readers, we here present
simple derivations of the effective interactionVeff, the pair-
ing potentialVP, and the ladder-diagram approximation for
the pair propagators for the superconducting state.

Firstly, we consider the extension of Fig. 1sbd. The inter-
actionVbsqd betweena-spin electrons can be written as

Vbsqd = U2x̃bbsqd, sA1d

where x̃bbsqd is the density-density response function be-
tween the oppositeb-spin electrons. Generally, the function
x̃aa8 in the imaginary timet space is defined as

x̃aa8sq,t − t8d = − kTtnasq,tdna8s− q,t8dl/N, sA2d

wherenasq ,td is the density operator ofa-spin electrons. In
the Mutsubara-frequency space, the Dyson equation for
x̃aa8sqd reads

x̃aa8sqd = xaa8sqd + o
g

xagsqdUx̃−ga8sqd, sA3d

where theg summation runs over the up and down spins, and
x are the irreducible response functions. Under the ring ap-
proximation, from Eq.sA2d, xaasqd is obtained as the same
as given by Eq.s4d where the Green’s functionGskd is un-
derstood asG11skd. xbbsqd is equal toxaasqd because of the
equality of the up and down spin electrons. ForaÞb, we
have xabsqd=xbasqd;x1sqd as given by Eq.s18d. Solving
Eq. sA3d and substituting the result into Eq.sA1d, we have

Vbsqd =
U

2
F 1

1 − Ux+sqd
−

1

1 + Ux−sqdG , sA4d

with x±sqd=xsqd±x1sqd.
Secondly, for the interaction between transverse spins cor-

responding to Fig. 1scd, we write

Vcsqd = U2x̃+−sqd, sA5d

with x̃+−sqd being the response function between transverse
spins defined by

x̃+−sq,t − t8d = − kTtS
+sq,tdSsq,t8dl/N, sA6d

and S+sq ,td=okck↑
† stdck+q↓std. From Eq.sA6d, the irreduc-

ible function can be obtained asx+−sqd=x−sqd. Sincex̃+−sqd
satisfies the Dyson equation,x̃+−sqd=x−sqd−x−sqdUx̃+−sqd,
we have

Vcsqd =
U2x−sqd

1 + Ux−sqd
. sA7d

With the above results, for the effective interaction
Veffsqd=Vbsqd+Vcsqd−U2xsqd, we get the expression as
given by Eq.s16d.

FIG. 10. Tc vs ns at various doping concentrationsd.
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Analogously, the interaction corresponding to Fig. 1sfd
can be written as

Vfsqd = U + U2x̃absqd. sA8d

From Eq.sA3d, we have

x̃absqd =
1

2
F x+sqd

1 − Ux+sqd
−

x−sqd
1 + Ux−sqdG . sA9d

The result for the pairing potentialVPsqd=Vcsqd−Vfsqd
+U2x1sqd is then obtained as given by Eq.s17d . Again, the
term U2x1sqd eliminates a second-order double counting.

Finally, the functionPsqd appearing in the elementS11skd
of the self-energy can be expressed as

Psqd = v2fP̃11sqd − P11sqdg, sA10d

whereP̃11sqd is the pair-pair response function, andP11sqd
is the irreducible partsor the pair susceptibility, which elimi-
nates the second-order double countingd. The function

P̃mnsq ,t−t8d is defined as

P̃mnsq,t − t8d = − kTtpmsq,tdpn
†sq,t8dl/N, sA11d

with m ,n=1,2, p1sqd=okfskdcq−k↓ck↑, and p2sqd
=okfskdck−q↑

† c−k↓
† . Strictly speaking,p1 and p2 are not the

Schrödinger operators sincefskd depends on the Matsubara
frequency. Here, we formally regard them as only depending
on the momentum. At the end, we extend the result to in-
clude the frequency dependence.sAlternatively, one can
draw the Feyman diagram from the beginning. The final re-
sult is the same.d From Eq. sA11d, the expressions for the
irreducible susceptibilities can be obtained as Eqs.s22d–s24d.
The Dyson equation forP̃mn in matrix form is

P̃
ˆ sqd = P̂sqd − vP̂sqdP̃ˆ sqd. sA12d

The diagonal parts of the Pauli components of the matrix

P̂sqd=v2fP̃ˆ sqd−P̂sqdg can be expressed as Eqs.s19d and
s20d.

APPENDIX B

In this appendix, we intend to develop an algorithm for
the approximate summation of a series. It is analogous to
Simpson’s integral method. Firstly, we consider the follow-
ing summation:

Ssn0,n2d = o
n=n0

n2

fsnd, sB1d

wheren2=n0+2h with h an integer. Supposefsxd is a smooth
function over the rangen0,x,n2. We then expandfsnd as

fsnd < fsn0d + c1sn − n0d + c2sn − n0d2, sB2d

where c1 and c2 are constants. With the given values
f j ; fsn0+ jhd, for j =0, 1, and 2, the constants can be ex-
pressed as

c1 = s− 3f0 + 4f1 − f2d/2h,

c2 = sf0 − 2f1 + f2d/2h2.

Substituting Eq.sB2d into Eq. sB1d, we get

Ssn0,n2d <
h

6
s2 + 3y + y2dsf0 + f2d +

h

3
s4 − y2df1, sB3d

with y=1/h. Therefore, the summation over the entire range
fn0,n2g can be obtained approximately with only three val-
ues, f0, f1, and f2, given. At y→0, Eq. sB3d reduces to the
Simpson rule. With the approximationsB2d, we even can
carry out a summation over a part of the rangefn0,n2g. For
more general uses, forn0ømøn2, we have

Ssn0,md < Af0 + Bf1 + Cf2, sB4d

with

A = hsy + zdf1 – 3z/4 + zsy + 2zd/12g,

B = hsy + zdzf1 − sy + 2zd/6g,

C = − hsy + zdzf1 − sy + 2zd/3g/4,

andz=sm−n0d /h.
Now, we consider the summationSs1,`d. When fsnd de-

creases fast atn→`, Ss1,`d can be obtained approximately
over a finite range with the cutoff number sufficiently large.
We may divide this range into several blocks within each of
which fsxd can be regarded as a smooth function and thereby
the above algorithm can be applied. At most cases,fsnd may
vary fast at smalln. Therefore, the strideh should be shorter
at smallern. Here, we introduce a point-selection scheme.
Consider L successively connected blocks. The selected
points divide each block intoM −1sù2d equal-spaced seg-
ments; each block containsM points. The stridesthe length
of the segmentd in the lth block ishl =hl−1 with h a constant
integer number. By such a scheme, the number correspond-
ing to the j th point in thelth block is

nf j ,lg = S j − 1 +
M − 1

h − 1
Dhl−1 −

M − h

h − 1
, sB5d

for j =1,2, . . . ,M and l =1,2, . . . ,L. The cutoff number is
Nc=nfM,Lg. By repeatedly using the above summation algo-
rithm, one can get approximately

Ss1,`d < o
p

wpfsnpd, sB6d

where p runs over theLsM −1d+1 selected points, andwp

is the weight at pointp;f j , lg. Note that because of
nfM,lg=nf1,l+1g, such points should be counted once in the
summation. The point-selection scheme uniquely determines
the weights. IfM ù5 is an odd number, applying the above
summation algorithm, we get

wf1,1g = 1,

wf j ,lg = s4hl−1 − h1−ld/3 for j = 2,4, . . . ,M − 1,

wf j ,lg = s2hl−1 + h1−ld/3 for j = 3,5, . . . ,M − 2,
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wfM,1g = s2h + 3 +h−1d/6,

wfM,lg = wf1,l+1g = hls1 + h−1d/3 + s1 + hdh−l/6

for l = 2, . . . ,L − 1,

wfM,Lg = hL−1/3 + 1/2 +h1−L/6.

To justify the above summation algorithm, we here give
an example. Consider the summation,

S= o
j=1

`
2

4j2 − 1
= 1. sB7d

Applying the above algorithm withh=2, L=7, andM =9, we
have

Ssum= o
p

2wp

4np
2 − 1

= 0.999 52. sB8d

The relative error issSsum−Sd /S=−4.8310−4. Note that the
term under the summation in Eq.sB7d decreases by 1/2j2 at
large j . If one uses the known result,

o
j=1

`

j−2 = p2/6,

the accuracy of the summation can be improved much better.
Instead of Eq.sB8d, we calculate the following summation:

Ssum= o
p

wpS 2

4np
2 − 1

−
1

2np
2D + p2/12. sB9d

With such an arrangement, the value of the brackets in thep
summation decreases byOsnp

−4d at largenp. This summation
gives a very accurate resultSsum=1.000 000 15, with a small
relative error of only 1.5310−7.

In some cases, with the given pointsnf j ,lg selected in ad-
vance, we need to calculate the summations,Ss1,nd, with
nf j0,lcgøn,nf j0+1,lcg and lcøL. In these cases, because the
summation over a range needs three points at least, the ter-
minate numbernc;nf jc,lcg is then determined as follows:

jc = H3, if j0 = 1

j0 + 1, otherwise.

Since the summationSs1,nd can be expressed asSs1,nd
=Ss1,nf1,lcg−1d+Ssnf1,lcg ,nd, the weights at the points
np ,nf1,lcg as tabulated above are unchanged, while at the
points nf j ,lcg, for j =1, . . . ,jc,wp should be reevaluated ac-
cording to the algorithm as given by Eq.sB4d.

For testing the accuracy of the algorithm for summations
of finite terms, we consider the following example:

Sn = o
j=1

n
2

4j2 − 1
=

2n

2n + 1
. sB10d

With the fh,L ,Mg=f2,7,9g scheme, the summation is ap-
proximated as

Ssum= o
p

2wp
n

4np
2 − 1

, sB11d

where we use superscriptn indicating then dependence of
the weights. The results forSsum/sn are given in Table I. The
relative error,sSsum−Snd /Sn, is less than 10−4.

Finally, we give the expression for the susceptibilityx.
Since it is even forZm, we only consider the case ofmù0. In
real space, it is given by

xsr,Zmd = To
n=−`

`

Gsr,zndGsr,zn + Zmd

= TH2o
n=1

`

Gsr,zndGsr,zn + Zmd

+ 2o
n=1

fm/2g

Gsr,zndGsr,zn − Zmd

+ uGsr,zn̄dGsr,− zn̄dun̄=sm+1d/2 if m is oddJ ,

=TH2o
p

wpGsr,znp
dGsr,znp

+ Zmd

+ 2o
p

wp
fm/2gGsr,znp

dGsr,znp
− Zmdu

+ Gsr,zn̄dGsr,− zn̄dun̄=sm+1d/2if m is oddJ + dxsr,Zmd,

wherefm/2g is the integer part ofm/2, and the last term is
given by

dxsr,Zmd = 2T o
n=Nc+1

`

Gsr,zndGsr,zn + Zmd.

Because ofGsr ,znd→dr0/zn at n→`, we have

dxsr,Zmd =5−
dr0

mp2T o
n=Nc+1

Nc+m
1

2n − 1
if m. 0

−
2dr0

p2TFp2

8
− o

n=1

Nc 1

s2n − 1d2G if m= 0.

Note thatGsr ,zn−Zmd=G*sr ,Zm−znd. Therefore, the Green’s
function at negative Matsubara frequency can be determined
from its complex counterpart at the positive frequency. For a

TABLE I. Ratio of Ssum given by Eq.sA11d and Sn=2n/ s2n
+1d at variousn. RE represents the relative error.

n Ssum/Sn RE

5 1.000000 0.0

10 1.000047 0.000047

50 1.000012 0.000012

100 1.000013 0.000013

500 1.000013 0.000013
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given point-selection scheme,Gsr ,znp
d is known. Those

values at Zm±zn can be evaluated by interpolation, or
Gsr ,zn+Zmd<dr0/ szn+Zmd if n+m.Nc.

APPENDIX C

In this appendix, we discuss the problem of inverse Fou-
rier transform ofP0

effsq ,0d. A typical result forP0
effsq ,0d is

shown in Fig. 11. This function behaves asP0
effsq ,0d

~1/Îa2+q2 swith q2=qx
2+qy

2d at q→0. The constanta van-
ishes atTøTc. Even atT.Tc but close toTc, a is very
small. Physically, it means that the pairing fluctuation is de-
fined in a long range in real space. Especially, atTøTc, the
range is infinite. Therefore, its primary form is not suitable
for a numerical inverse Fourier transform on a finite lattice.

The functionP0
effsq ,0d can be divided into the “singular”

partc/Îa2+q2 swith c a constantd and the regular one. There
is no problem in the inverse Fourier transform for the latter
one. For the singular part, the task is to calculate the integral,

Fs jx, j yd =E
0

p

dqxE
0

p

dqy
cossqxjxdcossqyjyd

Îa2 + q2
, sC1d

where jx and j y are the coordinates of a lattice site. Repeat-
edly integrating by part, we get

Fs jx, j yd = − j y
2E

0

p

dqxE
0

p

dqyf1sqdcossqxjxdcossqyjyd

+ s− 1d jyE
0

p

dqxf2sqxdcossqxjxd

− jxE
0

p

dqxf3sqxdsin sqxjxd − s− 1d jxf3spd, sC2d

with

f1sqd = qylnsqy + Îa2 + q2d − Îa2 + q2,

f2sqxd = lnsp + Îa2 + p2 + qx
2d,

f3sqxd = qxslnÎa2 + qx
2 − 1d + a arctanSqx

a
D .

By this way, all f are regular functions.
However, because the large factorsj y

2 and jx at long dis-
tances, we need to carry out the inverse Fourier transforms in
Eq. sC2d with high accuracy. The numerical method of the
fast Fourier transforms amounts to applying the trapezoidal
rule to the integral in Eq.sC2d. One may use a very dense
mesh in the Brillouin zone for the transforms. But, this is
uneconomical in the present numerical process since such
transforms need to be repeatedly performed. In fact, errors in
the numerical integration stem mainly from the rapid oscil-
lation behavior in the integrand. Here, we present our
scheme for these integrals in Eq.sC2d. Essentially, we need
to deal with the following integrals:

Fcs jd =E
0

p

dqfsqdcossqjd, sC3d

Fss jd =E
0

p

dqfsqdsinsqjd, sC4d

where fsqd is a regular and smooth function overs0,pd.
Firstly, we consider the simple case,

Isq1,q3d ; E
q1

q3

dqfsqdcossqjd, sC5d

where sq1,q3d is a small range. The middle point isq2.
Within this range,fsqd can be expressed as

fsqd < a1 + a2sq − q1d + a3sq − q1d2. sC6d

The constantsa are determined by the valuesf j ; fsqjd,

a1 = f1,

a2 = s− 3f1 + 4f2 − f3d/2h,

FIG. 12. Sketch of the lattice sites used for solving Eq.sD9d.
Solid circles show the reduced region.

FIG. 11. Function P0
effsqd in unit of 2t at Zm=0,

d=0.125,U / t=5, andT/ t=0.0124.
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a3 = sf1 − 2f2 + f3d/2h2,

where h=q2−q1. Now, repeatedly integrating Eq.sC5d by
part and using Eq.sC6d, we obtain

Isq1,q3d = C1cossq1jd + C3cossq3jd + S1sinsq1jd + S3sinsq3jd,

sC7d

with

C1 = s3f1 − 4f2 + f3dh/2x2,

C3 = sf1 − 4f2 + 3f3dh/2x2,

S1 = ff3 − 2f2 − sx2 − 1df1gh/x3,

S3 = fsx2 − 1df3 + 2f2 − f1gh/x3,

andx= jh. It is expected that the result given by Eq.sC7d is
more accurate than the trapezoidal rule.

Now, dividing the ranges0,pd into 2M equally spaced
pieces, we have

Fcs jd = o
k=1

M

Isq2k−1,q2k+1d, sC8d

with qk=sk−1dh andq2M+1=p. Using the result as given by
Eq. sC7d, we get

Fcs jd = 2w1sxdF2o
k=2

M

f2k−1cossq2k−1jd + f1 + s− 1d j f2M+1G
+ 4w2sxdo

k=1

M

f2kcossq2kjd, sC9d

where the functionsw1 andw2 are given by

w1sxd =
h

4x2F3 −
2 sins2xd

x
+ coss2xdG ,

w2sxd =
h

x2Ssin x

x
− cosxD .

Define a new discrete function,

gk = s− 1dkfk for k = 1, . . . ,2M + 1.

With this definition, Eq.sC9d can be rewritten as

Fcs jd = w1sxdhCjffg − Cjfggj + w2sxdhCjffg + Cjfggj, sC10d

where Cjffg is the cosine Fourier transform of functionf
defined by

Cjffg = 2o
k-2

N−1

fkcossqkjd + f1 + s− 1d j fN

with N=2M +1. Therefore, the functionFcs jd can be evalu-
ated by the FFT via Eq.sC10d.

Similarly, one can get

Fss jd = w1sxdhSjffg − Sjfggj + w2sxdhSjffg + Sjfggj

+
h

x
F1 +

sins2xd
2x

−
1 − coss2xd

x2 Gff1 − s− 1d j fNg,

sC11d

whereSjffg is the sine Fourier transform of functionf de-
fined by

Sjffg = 2o
k-2

N−1

fksinsqkjd.

APPENDIX D

In this appendix, we rewrite the eigenequations6d in a
form more convenient for the numerical calculation. We in-
tend to solve the equation in real space in order to get rid of
the prohibitive storage requirement for the coefficient matrix
in momentum space.

We can apply the frequency-summation algorithm just de-
veloped in Appendix B to the present case, so reducing the
memory size. However, to solve the eigenequation in mo-
mentum space still requires tremendous memory size. In
some cases, fortunately, the pairing function is short ranged
in real space. We therefore solve the equation in real space.
To transform Eq.s6d into real space, one needs to maintain
the matrix of the coefficients to be symmetrical. In the fol-
lowing, we present the transformation procedure.

sad Define functionsfsk ,npd andcsk ,npd as

fsk,npd ; ÎTwpGsk,znp
dGs− k,− znp

d, sD1d

csk,npd ; fsk,npdfsk,znp
d, sD2d

where wp is the weight at frequencyznp
as introduced in

Appendix B. In real space, Eq.s6d is transformed to

o
r8p8

Asr ,np;r 8,np8dcsr 8,np8d = lcsr ,npd, sD3d

with

FIG. 13. Functionsfsrx,1d and fsrx,z1d at ry=0, d=0.125,
U / t=5, andT/ t=0.0124. The dashed lines are for the eyes.
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Asr ,np;r 8,np8d = o
R

fsr − R,npdWsR,np,np8dfsR − r 8,np8d,

sD4d

and

WsR,np,np8d = VPsR,znp
− znp8

d + VPsR,znp
+ znp8

d. sD5d

sbd Furthermore, because of the lattice symmetry, we need
only to consider the lattice sitesfrg of 0ø ry, rx. Those lat-
tice sites ofrx=ry are excluded since thed-wave pairing is
under consideration. Define

ysr ,nd = 2Î 2

dr
csr ,nd sD6d

Fsr ,R,nd =
1

ÎdrdR
o

g

sgfsgr − R,nd sD7d

wheredr =1+dry0, theg summation runs over the operations
of groupC4v, sg= ±1 is the sign factor of thed-wave func-
tion fsr ,znd under the operationg, and gr denotes a site
coming fromr , operated byg. Accordingly, define the new
matrix,

Msr ,np;r 8,np8d = o
fRg

Fsr ,R,npdWsR,np,np8dFsr 8,R,np8d,

sD8d

where againfRg summation runs over those lattice sites of
0øRy,Rx. By so doing, the eigenequation reads,

o
fr8gp8

Msr ,np;r 8,np8dysr 8,np8d = lysr ,npd. sD9d

A sketch of the lattice sites is shown in Fig. 12. The
reduced regionfrg is taken as the solid circles, which are
suitable for the description ofd-wave pairing. In our numeri-
cal calculation, the total number of sites offrg is Nr =49. The
normalization condition forysr ,npd is

o
fr gp

y2sr ,npd = 1. sD10d

By this condition, the coupling constantv is given as
v=l /2. Shown in Fig. 13 are the typical results forfsrx,1d
and fsrx,z1d. Clearly, they are short-ranged functions.
In passing, we compare the sizes of the matrices of the co-
efficients required for solving the eigenequation, respec-
tively, in real and momentum spaces. The dimension of ma-
trix M in Eq. sD8d is sNrM0d3 sNrM0d=279332793, where
M0=57 is the number of the selected Matsubara frequency.
However, in momentum space with a 1283128 mesh, even
making use of the lattice symmetry, the dimension is
sNkM0d3 sNkM0d=118 5603118 560, whereNk=32365 is
the number of momentumk with 0øky,kxøp.
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