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Superconductivity in the quasi-two-dimensional Hubbard model
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On the basis of spin-pairing-fluctuation-exchange approximation, we study the superconductivity in the
guasi-two-dimensional Hubbard model. The integral equations for the Green’s function are self-consistently
solved by numerical calculation. Solutions for the order parameter, London penetration depth, density of states,
and transition temperature are obtained. Some of the results are compared with the experiments for the cuprate
high-temperature superconductors. Numerical techniques are presented in detail. With these techniques, the
amount of numerical computations can be greatly reduced.
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I. INTRODUCTION perconductivity in the Q2D Hubbard model. By self-

The Hubbard model has been considered as the basfonsistently solving the integral equations for the Green’'s
model to study the mechanism of high-temperature supefnction, we calculate the order parameter, London penetra-
conductivity in the cuprates.By this model, the spin- tion depth, density of state®OS), and transition tempera-
fluctuation-exchange between electrons is considered as réire. Some of the results are compared with experiments for
sponsible for the mechanism of high-temperaturethe cuprate high-temperature superconductors. In the mean-
superconductivity. A number of calculations, taking into ac-while, we also present some numerical techniques in detail in
count the spin-fluctuation effects, have been devoted to inthe appendixes, which is necessary for carrying out the nu-
vestigating the superconducting properties of the two-merical solution for the Green’s function.
dimensional Hubbard modets!®

It has been proven that the spin-fluctuation theory can
successfully describe a number of properties, including the
temperature dependences of the antiferromagnetic correla- The Q2D Hubbard model defined on a layered cubic lat-
tion lengtt and the electric resistivity, of the cuprates at tice is of the following form3°
high temperatures. However, in most of the calculations on
the Hubbard model, the superconducting pairing is treated by~ H=—- X tycl ¢, +UX myn; — > (N +1 ), (1)
the mean-field-like approximation. Such an approximation is Gi)a [ [
not appropriate because the pairing fluctuation is significa
in low-dimensional superconducting systetiigIn fact, the 5 |attice sites andj, ¢,

h

pa_iring f_Iuctuation can re;glt In new physipal CONSequencesy;i,, (annihilation operator of spinx at sitei, n;,=¢;,Ci,, U
Its':uzghsz Lhearfotr:eéﬁ%%"gg_gzsfgg;g?\tlgg 'i\r?fgagg:%;reis the on-site Coulomb interaction, and is the chemical
P 6279 PP . . potential. The(ij) sum runs over the nearest-neighijiiN)
staté®2” as well as in the superconducting stitef the cu- . . .
sites. In the following, we shall assuntg=t for the intra-

prates. éayer NN hopping and; =t, for the interlayer NN hopping. A

One of the approaches to treating the pairing fluctuation i . ! . . . .
the ladder-diagram approximation, which has been devel(_qua5|-two—d|menS|onaI system is characterized by the condi-
y tion t,/t<<1. Throughout this paper, we use units in which

oped on the quasi-two-dimensionig2D) phenomenological hm ko1

modef®1® and also on the two-dimensional Hubbard ™™ ™8™~

model?%-21 By the ladder-diagram approximation, the long-

wavelength fluctuation is taken as the predominant contribu- A. Normal state
tion. It has been shown that the pairing fluctuations can result

Z]ng:]dsi:’?g]el;?)bltﬁisregss:gerl]cl’?l'f t\r/]aengﬁgi't:gnthtzrzgzreaﬂéeof function, we present here the approximation scheme for the

. ;

interlayer coupling. The reason is that the pairing fluctuationlr;g:nrg?jli;tsr;' J&Zi:‘eelsdultbs)r ;23iﬁ;p?ggogi%ﬂg%iatgf;nnge

foggztrgr?tn tla/Vits;rotr;]ge 'nh;r;?r;x?\}s;msgiﬁgﬁgﬁﬁzt&mwm's Stunction contributions, and it will be presented in the

theoren?® 9 Sec. Il B. The normal Green’s function for the electrons is
In this work, we intend to study the superconductivity in given by

the Q2D Hubbard model. In addition to the spin-fluctuation- 1

exchange(S-FLEX), we take into account the contribution G(k,z,) = -t -Skz)' 2

from the pairing fluctuation in the self-energy of the one- k '

particle Green’s function. With this spin-pairing-fluctuation- wherez,=i(2n—-1)#T (with T being the temperature of the

exchangegSP-FLEX approximation, we investigate the su- system is the imaginary fermionic Matsubara frequency,

Il. FORMALISM

r\'ivheretij denotes the hopping energy of electrons between
T (c;,) represents the electron cre-

For simplifying the Feynman diagrams for the Green'’s
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) —--—- = @ + @@@ +: eoe FIG. 2. Ladder diagram representing the propagating of a pair of

total momentung. k" andq-k’ are the initial momentum of the-

and B-spin electrons, respectively. After propagating, their momen-
B i @ g i - tum changes t& andq-k.
o o o

named as spin-fluctuation-exchange approximation. The Har-
tree term has been neglected since it is a constant that can be

B B B B B o B
(@ :-: — fl:l: 4o - + | - absorbed in the chemical potential. The third diagram in Fig.
. p < ) s & 5 p 1(a) represents the contribution from the pairing fluctuation.

Apart from two interaction sides, the shaded part essentially

B B B a B a represents the processes of the electron pair’s propagating.
N e TN B (I Figure 1d) gives the ladder-diagram approximation for it
(e) :D: = Ldtl N M with the second-order term given by Figiel The pairing
¢ “ p ¢ p interaction between two electrons of opposite spins contains
two parts, one due to the transverse spin fluctuafi®P as
® ——= = —— + @@ + oo given by Fig. 1c), and another one being the screened Cou-

lomb potential(SCP given by Fig. 1f). In the right-hand
FIG. 1. Approximation scheme for the self-energg) Self-  side of the diagrammatic equation of Figell the first dia-
energy for then-spin electrons. The first term comes from the cou- gram represents the propagating of a pair without changing
pling of the a-spin electrons with the density fluctuation of opposite their spins in the intermediate state, since they interact
B-spin electrons. The second term is due to the coupling betweethrough SCP during the process. In the second diagram, the
transverse spins through their fluctuation. The last term represenigtermediate spin configuration is changed because the two
the contribution from the pairing fluctuatiorib) Interaction be-  electrons interact through the TSF. The third diagram de-
tweena-spin electrons due to the density fluctuatiorge¢pin elec-  scribes the process as the two electrons firstly interact
trons. (c) Interaction between transverse spins stemming from theithrough SCP and then through the mediation of TSF, with a
fluctuation. (d) Ladder-diagram approximation to the pairing fluc- minus factor stemming from the one appearance of TSF. The
tuation. () Second order ladder diagram$) Screened Coulomb |ast diagram is similar to the third one but with an inverse
interaction between electrons of opposite spins. interaction sequence. For brevity, we have dropped all the
momentum on these diagrams. The momentum and spins
&=—2t(cosk,+cosk,) - 2t,cosk,—u, and 2(k,z,) stands attached to the ladder diagram are illustrated in Fig. 2. For
for the electron self-energy. For brevity, occasionally, we uséhe sake of discussion, we here introduce a notation
the generalized momentuk®(k,z,) in this paper. Lapp o (K,0-k;gq—k’,K") for the ladder diagram. In follow-
Figure 1 shows the approximation scheme for the selfing, we will show that ail < T, the value of the ladder dia-
energy. The first two diagrams in Fig(al are of the well gram diverges at the long-wavelength limif—0. There-
known S-FLEX approximation. These two diagrams can bdore, the pairing fluctuation represented by the ladder
combined into a single diagram by redefining an effectivediagram gives significant contribution to the self-energy.
interaction Vo that is the summation of two interactions  To see how the pairing fluctuation takes effect, we con-
given by Figs. 1b) and Xc). The expression foV is> "8 sider Fig. 1d) for the case of a singlet pair of electrons with
3 U2 1w opposite spins and opposite momentum that is the case of the
Ver(q) = = Ux(@) += Ux(@) ~Ux(), (3 ladder diagram at the long-wavelength limit. Because of
21+Ux(g) 21-Uyx(q) Lag,prar (K, =K; =K' K') ==L g, prar (=K, k; =K’ k'), we thereby
can combine the last two terms in Figdl with an effective
pairing interactionVp defined by Fig. &) and obtain an
T equation such as Fig.(® but with = replaced by = under
x(q) = NE Glk+q)G(K). (4) the ladder-diagram approximation. To solve this equation, we
k expand the effective pairing interaction in terms of a com-
The generalized momentuny stands for (q,Z,), with plete set of basis functiong,,
Z.,=i2m«T being the bosonic Matsubara frequency. The first
and second terms in the right-hand side of E8). come, Vp(k, k') => Undn(K) dn(K'). (5)
respectively, from the spin and charge fluctuations. The last n
term eliminates a double counting in the second-order dia-
grams. Owing to the predominant spin fluctuation, it isThe function¢, satisfies the eigenequatipsee Fig. &)],

with
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B B B the phenomenological mod¥l Applying the previous result
(a)‘ i ¥ « n to the present casesee Appendix A the ladder-diagram
- T U summation is obtained as
o o o
Lagpa(kd—k;q=K' K') =P(a) (k) p(k'), 8
k %k —% ith
(b)==z==== — ;___; - ;__.; wit
(k,k") N -k a1
P@) = 2y, ©
B p B p B 1 +vll(q)
(C) :-: = 1l =1l -
T 2
« o« a « o« (o) = - 2 #*(KGKG(-K). (10)
k

FIG. 3. Approximation to the ladder diagrari®) Approximate
second-order ladder diagram obtained from Fig) by neglecting  In Eg. (9), the last term eliminates all the second-order dia-
the dependence of the interactions on the total momentum of thgrams since the contribution to the self-energy from the first
pair. (b) Effective pairing interaction(c) Renormalized diagram- two diagrams in the right-hand side of the diagrammatic
matic equation for the ladder diagram. equation of Fig. le) has been taken into account in the
S-FLEX approximation, while the other two diagrams are
T negligible as compared to the infinitive ladder-diagram sum-
NE Vp(k,k")G(K)G(=K') (k") = Nyn(K), (6) mation. For the self-energy, the final expression is
k!
T T#*(K)
where N is the total number of lattice sites, ang is the 2(k) = NEq G(k=q)Ver(q) + N EqG(q K)P(q).

eigenvalue. By so doing, we gé¢! 1)

Ly ok—ki—K K) == )\nvnd’n(k)(bn(kl). (7). As we have noted above, the last term in EIf) is corre-
aBfral T T R ; 1-\, sponding to the previous approximatidrfor the phenom-
enological modet®19In that model, however, the interaction
At the transition temperaturd,, the largest eigenvalue is simply a constant-wave pairing potential, and the hop-
equals unity, by which the eigenequatit) then reduces to Ping energy is proportional to the hole concentration, taking
the gap equation. At the superconducting state, thénto account the constraint excluding the double occupation.
eigenequation(6) is modified by adding the term of the The prohibition of double occupation stems from the
anomalous Green’s function with the largest eigenvaluénodel that is the larg® limit of the Hubbard model. It is a
being unity unchanged. Therefore, atT<T,, consequence of strong short-range antiferromagnetic cou-
Lagprar(K,—k;=K’,k') is infinitive. It implies that the long- Pling. Under the SP-FLEX approximation scheme for the
wavelength pairing fluctuation gives significant contribution Hubbard model, however, the antiferromagnetic coupling is
to the self-energy. On the other hand, Bs- T, from the  taken into account by the first term in E@.1) . Moreover,
normal state, with the largest eigenvalue of Bj.approach- for not too largeU, thed-wave pairing potential given above
ing unity, Logsa(k,~k;-K',k') diverges at this limit. varies with the temperature, hole concentration, &ind
Therefore, for the normal state &tclose toT,, the long- A slightly different treatment of the ladder-diagram sum-
wavelength pairing fluctuation is important as well. mation atq#0 has been given in Ref. 21. Similarly, the
From the right-hand side of Eq7), we see that, except contribution frqm only the pairing of the_largest eigenvalue
for the term corresponding to the largest eigenvalue, all othek(d) Was considered. In principle, the eigenvahie) and
terms are finite. We therefore keep only the most diverginghe eigenfunction should be determined by the corresponding
term to simplify the solution of the equation given by Fig. €igenequation aq+0. However, it has been found that the
1(d). That is, we can consider only the pairing of largesteigenfunction depends insensitively gqnwhen q is small.
eigenvalue®2:25For the present case, the largest one is the his allows one to determine(q) using the eigenfunction of
d-wave pairing. Hereafter, we denote the largest eigenvaluéi=02! By applying the approximation of thitwave channel
and the corresponding eigenfunction simplyAgsand ¢(k), ~ Pairing toVp in the expression fok(q) in Ref. 21, one ob-
respectively, and the coupling constant simplydy tains A(q)=-vll(g) and the same result for the ladder-
On observing the above-mentioned fact, we make the apdiagram summation &+ 0 as given by Eq(9) except the
proximation in Fig. 1d) using the pairing interactions of last unnecessary term.
zero total momentum, because ngarO the pairing fluctua- By the way, we give an expression for the pairing poten-
tion is most significant. We then obtain equations as given byial. As seen from Figs. (&), 1(f), and 3b), Vp(k,k’) equals
Fig. 3 for determiningL,z g, (k,q-k;q-k’,k’). Further- Vy(g(k+k') = Vs (k—K"). Since the pairing functiogh(k) can
more, by considering only thd-wave pairing that has the be taken as an even function of Kk,
largest eigenvalue, the ladder diagram given by Fig) 3 the pairing potential in Eq(6) can be thereby written as
reduces to the same one that we previously encountered fofs(k—k’). We then have
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_3 U2x(q) 1 U%x(q) U 12 (holes, while the final state is a pair of holggarticles.

T21+ Ux(@ 21-Ux(g) : (12) Therefore, the pair propagators satisfy a matrix equation. The
ladder-diagram approximation withagwave channel inter-

Therefore, the left-hand side of E@) is a convolution oVp  action is given in Appendix A. The functioB(q) appearing

Ve(Q)

and the rest of it. in 1, represents the pair propagating. It can be divided into
In addition, the chemical potentigk should be deter- two parts,P(q)=Py(q)+P5(q). Their expressions are given
mined to yield the hole concentration, by

Po(q) =v[D(a) - 1 —vIlg(q))/D(q) — v?Ig(@),  (19)

, P3(a) = vIT5(g)[1 ~ D(a)}/D(q), (20)
All of the above equations form the closed system that self-
consistently determines the Green’s function. D(q) =[1 +ovIl(q)][1 +vII_(q)] - v’IT5(q), (21)

with I1.(q) =Iq(q) +I1;(q), and

S=- %Ek [G(K) + G(= K)]. (13)

B. Superconducting state

For the superconducting state, the above results should be 17 () = LANDF K GA(KGA(K = Q) = Ga(K) Gk —
extended to including the contributions from the anomalous o(@ Nzk # [N Go(k~ ) sGsk=al,

Gree_n’s funqtion. In the Nambu representation, the Green'’s 22)
function is given by

Gk =[20~ o5 = 2K, (14 (o) = %E #A(KG1(KG (k- ), (23
wherez, is understood ag,0,, and o is the Pauli matrix. k
Occasionally, we will use the Pauli componentsé)ﬂefined T
by G=Gy+ G, +Gs03. Correspondingly, the self-energy is  11a(Q) = NE (K[ G3(K)Go(k = 0) = Go(K)G3(k = )].
expressed a§=20+2101+2303 as well. The diagonal ele- “
ment 4,(k) =2q(k) +25(k) is given by the same diagram (24
[Fig. 1(a)] except where the effective interaction and the lad-The eigenequation for determining the functi¢tk) now is
der diagram should include the contribution from the anomagytended to
lous Green’s function. The elemeft,,(k) is obtained by
222(k):_211(_k)' The off—diagonal parEl is given by the IE Vp(k— k')[Gg(k’) + Gi(k,) _ Gé(k,)]d)(k,) — ¢)(k)a
gap equation, N“C

(25

with the largest eigenvalue being unity. This equation is
equivalent to Eq(15) since ¢(k) differs from 2,(k) by a
normalization constant. It also leads to dl+.(0)=0, and
therebyP(q) diverges afy=0, which means the existence of

5,0 == 13 Gyk-QVela). (15)
q

The expressions fov; and Vp can be obtained as

3 Ux(@ 1 U(g)

- = —112
Ver(a) = 21+Ux(q)  21-Ux.(q) Ux(@. (18)  the Goldstone mode.
In terms of the above functions, the diagonal parts of the
3 U%_(q) 1 U2y.(q) self-energy can be expressed as
Vel@) = 21+ L)J(X C;q) 21— L)J(X (zq) +Un(@ -V, T T¢*(k)
- ! oK) == =2 Go(k = ) Ver()~ — 2 [Go(k ~ G)Pg(0)
(17) N"q N
with x.(a)=x(a)+ x1(q), and = Ga(k—a)P3(a)], (26)
T T Tk
@ == 1 Z Gulk+ AG(K. 18 3400=- 13 Golk-AVer(@~ oy 03 [Golk - AP(@
q q
The expression foi(q) is the same as Ed4) where the - G3(k—q)Po()]. 27

Green’s functiorG(k) is understood a&,(k). A simple deri-

vation of these results is presented in Appendix A.
Following the similar analysis as in Sec. Il A one can take

a corresponding approximation for the pairing fluctuation. In 2T

the superconducting case, however, besides the diagonal pair 6=- WZ Ga(K). (28)

propagatingpairing of particles or holgsattention must be k

paid to the off diagonal pair propagating as well. The latter isSo far, we have all the equations for the superconducting

the process in which the initial state is a pair of particlescase.

By using the Pauli component of the Green’s function, the
expression for Eq(13) can be simplified as
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C. Q2D approximation
The Green’s functioré(k) and the susceptibilitieg(q)

PHYSICAL REVIEW B 71, 104520(2005

J
a_ngO(k) ~ 2Go(K)G3(k),

andII(q) are defined in three-dimensional space. Actually, in

case of t,/t<1, they very weakly depend on the
z-component variables. However, the dependencey,o0of
function P(q) is delicate. Consider the denominator function
D(q) at smallq andZ,,=0. Sincell(qg) are even functions of
g, we have

D(q,0) = c(af + qy) +c .05, (29

wherec andc, are constants. Thq,f term in Eq.(29) comes
from the interlayer electron hopping. The ratigc is much
less than unity. If they, dependence iD(q) is ignored, the
second summations in EqR6) and (27) will be divergent,
which implies there will be no superconductivity in the sys-

tem at finite temperature. This conclusion is consistent with PS(q,00==

the MWH theorent?® We therefore need to keep tlog de-

pendence in the denominatorsRifg) at least to the ordeqﬁ.
For illustrating our approximation scheme, we firstly con-

sider the case ofZ,=0. Since II5(q,0)=0, we have

P5(q,0)=0, and
st

where the argument&y,0) have been dropped for brevity.

02

2

I N I1,
1+oll.  1+vll,

Po (30)

As has been mentioned in Sec. Il B, the first denominator

1+vll_ vanishes afj=0. Even though the second denomina-
tor 1+vll, is finite atT<T,, it is small. Especially, it van-
ishes too af =T,. Therefore, we expand both of the denomi-
nators to the ordeq?,

1 +0T1,(q) = 1 +vll4(q) + ¢, (31)
with
I1.(q) = I.(0)g -0, (32)
2
v d 33

c;= EEHJQ)qzo,

and usdi(q) for I1,(qg) in the numerator in Eq(30) . Note

6,k = 26,(K)G4(K), (35)
&

64k ~ G3K) - GE(K) + G(K).

2"
With such an approximateBy(q,0), the integral oveq, in
Egs. (26) and (27) at Z,,=0 can be taken immediately by
neglecting they, dependence in the Green’s function. There-
fore, instead oPy(q,0) in Egs.(26) and(27), we insert in a
function defined by

2 i —_ J—
dquo(q,0)=%[H_f_ +I1,£,] = 21,

1]”
TJo

(36)
with
fo= Yt—(cl)arctarﬁfr}/t(Q)], (37
+ 1/2
y(a)= [C—_] , (38
1+vll(q)

where again, in the last line of E(36), we have dropped the
argumentdq, 0) for brevity.

We now consider the situation &f,# 0. D(q) is finite in
this case. However, to be consistent with the approximation
for Po(q,0), we still keep a smahﬁ term in the denominator
D(qg). Though thisg, dependence is negligible at high tem-
perature, it is reasonable in the case of low temperature. Ac-
cording to the expansion by E(31), we expandD(q) as

D(q) =D(q) + e(Q), (39)

with

e(q) =[1+vll,(q)]c; +[1 +ull(g)lc;.  (40)

thatc; is defined as the derivation in the right-hand side ofTo the orderg?, this expansion reduces to the result for the

Eqg. (33) at g=0 since this is where thg, dependence is
important. To evaluate the constawfs we need to take the
derivative of the Green'’s functiord(q—k) with respect ta,

as indicated by Egs(22) and (23). By neglecting theq,
dependence of the self-enerdy(q—k) thereby depends on
g, only via &, It is expected that such an approximation

does not change the physical result so much. To the second

order oft,/t, we obtairt®

R =L D NP I RPN L IR
N Ek¢(k){[agke3(")] +[a§kel<k>]
a 2
—L—gkeak)} : (34)

with

case ofZ,,=0. Correspondingly, we can define the functions
P™(g) and PE(q) by taking the integral oveu,. This proce-
dure is equivalent to replacing D(q) in Egs.(22)—(24) with

a functionf(q) defined by

ft@)= 2% arctamy (@) @1
1/2
Yo = [%} . @2
q

With the functionsP(q) in Egs.(26) and(27) replaced with
Pefi(qg), the problem of numerically solving the integral equa-
tions is then reduced to a two-dimensional one. All of the
above are discussed for the case of the supesrconducting
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state. The results for the normal state can be obtained by 1.05 ' L
setting G, (k) =0. s
1.00

[ll. NUMERICAL RESULTS

Since the function&(k), Vei(q), and P(q) are defined
in multidimensional space, they require huge memory stor-

age in the numerical computation process. Especially, the =

function Pgﬁ(q) is singular atq=0. Therefore, to carry out 0.90 SEEX |
the numerical solution, we need to develop a numerical

scheme to reduce the amount of computation without losing 0.85 |

the accuracy. In Appendix B, we present our scheme for the
Matsubara frequency summation. The summation is taken Unt=5,6=0125
over 57 points, a subset of the frequencies, in a sufficiently 0-3800 0'01 062 003 004 005 006
large range. The cutoff frequencies arg=(2N.—1)7T ’ ’ ' 'T/[ ) ' )

for the fermions andZ.=2(N.-1)#T for the bosons,

respectively, withN,=1017. For the typical temperature  FIG. 4. Eigenvaluery as a function of T at U/t=5 and
T/t~0.01 under consideration, this meanhl 2T/t~ 64. 6=0.125. SP-FLEX is the present approximation. The result of
For calculating the functiony(q), beyond this range, the S-FLEXis also depicted for comparison. The solid circles represent
summation over the terms af>N, is analytically carried the numerical solution to Eq6) solved with 49 lattice sites in a

out by using the asymptotic formula of the Green’s function,reduced regiolisee Appendix D The open circles are the results of
25 sites. The squares are the transition points obtained by Eq.

G(k,z,) — 1/z,. (43 (25) . The inset shows§l —\g)Y2 of the SP-FLEX approximation as
a function of T.

The error of the summation over the termsof N, is of the
orderO(z.3). - i '

The convolutions in the momentum space are carried oﬁented for comparison. Due to the pairing flu_ctua_lt|on, the
with fast Fourier transforméFFT9 on a 128< 128 lattice. eigenvalue by the present SP-FLEX approx'”.‘"’!“"“ IS consid-
For the inverse transform o¥.(q,0) and Pgﬁ(q,o), ie. erably reduced from that of the S-FLEX, giving rise to a

from momentum space to real space, we have to pay speci!a(ﬂwer transition temperature. Mc_)reover,_there is a distin-
care. At low temperaturey.¢(q,0) has strong peaks near guishable difference between their behaviors at temperatures
. eff\4»

. close to T,. By the S-FLEX approximation, we have
g=(m,m).” We therefore use a 256256 mesh in momen- DT /dT ¢ _ .
) #0 atT=T,. It that aT <T,, by k
tum space for the inverse transform. The value¥g{q,0) oD a c It Means ha: a o DY Keeping

for thi h btained by local drati | : Ino superconducting pairing, the S-FLEX approximation al-
for this mesh are obtained Dy focal quadratic polynomialg, s 5 solution ofAg>1. In contrast to this feature of the
interpolation of the smooth functiong(q) given on a

i S-FLEX approximation, the solution fary by the SP-FLEX
128x 128 mesh. On the other hand, the funchgff(q,o_) approximation can never get across the ling=1. At
has divergently sharp peaksg0 andT<T.. In Appendix 1, T_ the pairing fluctuation effect is more pronouncedly
C, we deal with the inverse transform of this function. with Ny— 1, which, conversely, suppresskg As a result,

The difficulty in solving the eigenvalue problem given by the curveny(T) is smoothly connected to the straight line
Eqg. (6) is that the memory requirement for the coefficient Ng=1. That is

matrix is huge. It is impossible to solve this equation in
momentum space. In Appendix C, we rewrite the eigenequa- i)\ ™| =o (44)
tion in real space. At high temperature not too clos€l o daT ¢ T o
Eqg. (6) can be solved in real space with a small number of o
lattice sites in a reduced region. This reduces greatly thdhe inset of Fig. 4 shows thatl -4 varies nearly linearly
amount of numerical calculation work. asT— T,, which means 1 x4 (T-T,)>2
The integral equations determining the Green'’s functions A problem then comes in the determination ©f by
are numerically solved by the iteration method. Once a soluA(T.)=1 from the side of the normal state. Because
tion at temperatur@ is obtained, it is then used as an initial dT/d\y= at T=T,, a small numerical error iRy may result
input for the next calculation at temperature 6T. A more  in considerable error if.. Therefore, T, cannot be accu-
efficient way is to use an extrapolation from the known so-rately determined by the functiong(T). In our numerical
lutions at temperatured; and T, as the initial input for the calculations, we solved E¢6) using two sets of numbers, 25
next solution afl,+ ST. and 49, respectively, of the lattice sites in the reduced region
In the present calculation, we set/'t=5 andt,/t=0.01.  (see Appendix I The solid circles in Fig. 4 represent the
All the results presented in the figures are for these paramiumerical results of 49 lattice sites, while the open circles
eters. are the ones of 25 lattice sites. CloseTg the difference
between the two results are visible. Even with 49 lattice
sites, the transition temperature so determined is not reliable.
In Fig. 4, we show the result for the eigenvalng as The problem can be resolved from the superconducting
function of T at §=0.125. The S-FLEX result is also pre- side. Instead of Eq6), we solve Eq(25) . Since the eigen-

A. Eigenvalue Ay
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FIG. 5. Order parameteX as function of temperatur€ at vari-
ous hole concentrationd The symbols represent numerical data.

The lines are extrapolations. The hole concentrations are indicated . o . .
by the numbers. to strong coupling. While increasing the doping concentra-

tion, the coupling becomes weak.

FIG. 6. Ratio 2,/kgT, at various hole concentratiorss

value \q=1 is known atT<T,, Eqg. (25 can be solved via
iteration on the whole lattice. The squares in Fig. 4 defigte
obtained from the superconducting side for SP-FLEX and
S-FLEX, respectively. The numerical solutions for the tran- As mentioned in Sec. Ill B, the transition temperatiite
sition temperatures so determined should be reliable. is determined byA(T¢)=0, which gives an accurate solution
for T.. The present SP-FLEX result &t/t=5 (solid circles
for the boundary of superconducting phase inThe d phase
diagram is depicted in Fig. 7. All the solid circles are ob-
At low temperature, we have obtained self-consistent sotained by numerical solutions. The S-FLEX res(itpen
lutions in whichX,(k) is finite. The symmetry of pairing i  circles is also shown for comparison. Clearly, due to the
wave,> (K, Ky,z,)=-2%1(ky, Ky, Z,). Here, we define the or- pairing fluctuation,T; is considerably reduced from that of
der parameter, the S-FLEX approximation. The reduction is more signifi-
cant at lower hole doping whefE, decreases with decreas-

C. Phase diagram

B. Order parameter

A=3%4(X,29)/Z(X,20) (45 ing 5. On the other hand, at larg® the pairing fluctuation is
with less pronounced. This is consistent with the previous
Z(k,z,) =1 -34(k,z)/z, (46) .
andX =(ar,0). The quantityA is a measure of the supercon- 0.03L

ducting gap at the Fermi surface near the pirit® Figure 5
shows the order parameter as functionadt various doping
concentrations. The symbols represent the numerical data,
while the lines are the extrapolations. As seen from Fig. 5, . 002 Unt=5
close toT,, A decreases dramaticallgin the numerical cal- c
culation, because of this rapid decreasing, to get an iteration SP-FLEX
converged at temperatuffer ST with an initial input extrapo-
. 0.01-

lated from some other solutions at and close to temperature .
T, the changeST must be very small. At low doping concen- /
trations, close tdl,, a change ofsT/T~ 10 at most was /
allowable in the present calculatignAt T=T,, we have 0.00 /
dA(T)/dT=c. Because of this divergenc&, can be accu- 0.0
rately determined byA=0.

On the other hand_' at low temperaturs(T) ShOUId_ be FIG. 7. Transition temperatufg; as function of hole concentra-
flat. We then can obtain the valug=A(0) by extrapolation.  {jsn 5 The solid circles and open circles are obtainet &=5 by
In Fig. 6, we show the ratio £/kgT, at various doping the SP-FLEX and S-FLEX calculations, respectively. The dashed
concentrations. At the underdoping regime, the ratio is aboUtne is an extrapolation of the numerical result. In the inset, the
an order of 10. It decreases with the doping concentrationsymbols denote the experimental results for the cuprate high-
This ratio is considered as a characterization of the couplingemperature superconductaiRef. 31) while the solid line is the
strength of the system. The low-doping regime correspondgrevious resul{Ref.19 for the phenomenological model.

T./
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conclusiont® The results of the previous calculation on the The form of the Green’s function given by E(8) im-
phenomenological modéWwith coupling constand/t=0.21°  plies that there exists a pseudogap in the energy spectrum of
and the experiments for the cuprate high-temperature su- the electron$®3? Consider the spectral function,
perconductors are exhibited in the inset of Fig. 7 for com-

parison. The behavior of the previous result at small hole A(k,E) :—EImG(k,E+iO+)

doping clearly differs from the experiment and the present ™

calculation. It may stem from the crude treatment of the

short-range antiferromagnetic coupling by the phenomeno- E+§k\/m

logical model. In contrast to the previous result, the present = > > 2

calculation gives a reasonable description of the experiment 2l S

at small hole doping. which is nonzero only folE2-4I'2< ¢2<E2. The noninter-

The dashed line in Fig. 7 is an extrapolation of the nu-action delta-function peak becomes a square root singularity.
merical result. Unlike the previous case for the phenomenoBecause of the constraint, the area of tkespace of
Iogical mOdEH9 the extrapolation gives a nonzero minimum A(k'E) # 0 decreases & — 0, resu|ting in a Suppression of
hole concentrationdy, very close to 0.05, of the phase the density of states. Especially, the density of states van-
boundary. Again, this seems to reasonably reflect the featuighes atE=0 (for ©=0) since the area becomes zero and the
of the experimental result. The largest transition temperaturgingularity disappears there.

Te max Obtained by SP-FLEX is about 0.01t3at 6=0.175. On observing the functiohZ, we note that the pseudogap
Usingt~0.6 eV{®we haveT;ny~95 K. ~ stems from the spin and pairing fluctuations. EverTaD,

To see why the pairing fluctuation results in the reductionthe pseudogap remains in the superconducting state because
of T, we analyze the self-energy given by Efl) [whichis  the spin fluctuationfowing to which the superconductivity
the same as that given by Eqg6) and(27) at T=T] with  takes place and the pairing fluctuatioicoming from the
P(q) replaced byP*"(q). At Z,,=0, sinceVer(a) andP*(a)  Goldstone mod€ ) exist. This may explain the recent
have strong negative peaks, respectivelygatQ=(m,w) experiment?
andg=0, we here make a crude approximatiéor the sake
of illustration) for the self-energy, D. Density of states

T The density of states is defined by
2K~ =Gk~ Qz)| 2 Ver(@) | +G(k,~2) .
e p(E) == — ImGyy(k,E +i0%). (49)
7TN Kk

Tk
x ["’—“2 Peﬁ(q)} . (47

N 5% The Green'’s function needs to be analytically continued from
The summations in the square brackets give rise to tW(ghe imaginary Matsubara frequency to the real frequency. In

negative quantities. At smal, =0, we haveG(k-Q,z,) terms of an effective self-ener@(k) defined by

~-G(k,-z,). Taking this fact into account, we get 5 S2(K)
3 (k) =-G(k,-z)TZ, with T2=a,+a,¢?(k), wherea, anda, S.(K) = So(K) + S5(k) + 1 ., (50)
are two positive constants. Substituting the result into Eq. Zy~ &~ 2o(k) + 23(k)
(2), one obtains the Green’s functiorG,,(k) is written as
2
G(k,zn)zifk(l— 1+ 24Fk ) (48 Gll(k):;,,. (51
2ry &-z Zo— &~ 3(K)

Applying these results to Eq6), we see that the factor yUsing the Padé approximatidhwe have obtained the ana-

G(k)G(_.k) is reduced and SO 8. lytical continuation for the effective self—ener§§(k).
Physically, the quantity The results for the density of states&t0.125 at various
T temperatures are depicted in Fig. 8. At low temperature, the
a,=-—>, Pfi(q) width of the gap is nearly constant. Beloly, a peak-dip-
No~o hump (PDH) structure is clearly seen above the Fermi en-
is a measure of the density of pairs at their excited state$' - The positions of the peak and dip are abiund 3, .

: PN _ — respectively. Such a phenomenon has been observed in the
Since the functiorP*(q) is given in terms ofll(q), we ana- ¢ nrates experiments and has been explained by model
lyze T1(q) =TI(q)|q 0, €specially ag=0. From Eq.(10), we  calculations’*3® The PDH stems from a coupling between
see that the quantityI(0) comes predominately from the the electrons and a collective mode of energy abdutBe-
summation over the points close to the Fermi surface in molow T, the superconducting gap opens with the maximum of
mentum space. At smallet, the Fermi surface of the Hub- 2A appearing in the region near the points,0) and
bard model is larger and so is the number of the pairs at thei{O, £) in the Brillouin zone. The collective spin-fluctuation
fluctuating states. Therefore, the reductionTaris larger at  mode of energy & and momentun® can then exist in the
smalleré. system. An electron of energyA3can transit to a state of
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T,
000 by e FIG. 9. Quantity)\f(O)/)\f(T) as a function of temperatugat
1.0 0.5 0.0 05 1.0 various doping concentration& The solid circles denote the ex-
Elt perimental results foa-axis penetration depth of YB&UsOg g5
FIG. 8. Density of statep(E) at §=0.125 at various tempera- N
tures. For clarity, they axes for the results of 0T¢ and 0.4; have Jg)=- 92 kakck—q/zackm/za-
been offset upwards by 0.05 and 0.1, respectively. ForTL.aad 2 ka
T., the offsets are downwards 0.05 and 0.1, respectively. In Eq.(52) , n andm’ are the number density and the effec-

tive mass of electrons, respectively. By using the Ward iden-
energy A (at which the DOS has a peaky exciting the ity for the current vertex, the quanti§,=C(g)|q-o can be
collective mode and losing energy\2Effectively, the life-  written as
time of the electrons of energyA3is short, and thereby the T
dip appears in the DOS. In the fluctuation-exchaffeleEX) Co= —, [G24(K) + G25(K) V& - Vi, (54)
scheme, such a collective mode is described by the effective N 7%
g]rfsrgﬁil?:gl\éﬂai?:r:. 's self-consistently determined by the with v, =V, [&+211(k)]. By noting the following equations:

On the other hand, abové@,. there still remains a 2 3 _

pseudogap in the DOS. While increasing the temperature, the Gk Vilé + 2(K)] = Vi Gpa(k),
minimum moves to high energy. As stated in Sec. Il C, the T n
pseudogap comes from both of the spin and pairing fluctua- > Viée - ViGp(k) = — —,
tions. At higher temperature, the pairing fluctuation is less Ny m
important. The electron statésandk +Q couple with each . 5
other mainly through the spin fluctuations. Especially, theV® get the expression fov ",
degeneracy of those states at the magnetic zone surface is ) Ame?T
lifted and the weights shift away, resulting in a reduction in A= 2N
the DOS at the corresponding energy.

2 [GL(Kv — GL(Ku] - Vié,  (55)
k

with
E. London penetration depth v Ei(k)
Uk = Vi .
In this section, we study the magnetic penetration depth. Z,— &~ 2o(K) + 23(k)
The London penetration depi in x direction is given via By Eq. (55) , )\[2 vanishes identically at and abote.
Shown in Fig. 9 are the results for the quanﬁ[)?(T) as
, 4mé&  A4r : . : :
AM2=——+ —CQ| (52)  afunction of temperatur€ at various doping concentrations.
m’c? c? g=0 The experimental result for tha-axis penetration depth of
_ _ YBa,Cu;Og g5 is also presented for comparis#hit is well
with C(q) the y-component current-current correlation func- known that\;%T) under d-wave pairing symmetry varies

tion defined by linearly with T at low T. Using this property, we infer the
value )\[2(0) from the extrapolation of the known results at
Caq, 7= 7)) ==(TJ,(q,7)3y(=q,7))/N, (53)  finite temperatures. We then get the zero-temperature super-

fluid densityns. Figure 10 shows the relationship betwégn
where(---) means a statistical averade is the imaginary and ny at a number of doping concentrations. This result
time 7 ordering operator, and, is they-component current resembles the experimental observation by Uenatral 3’
operator, They have found a universal linear relation betwderand
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= APPENDIX A
B~
0.010 L ® 5=0.1 _ Considering the convenience for readers, we here present

simple derivations of the effective interactidfyy, the pair-
ing potentialVp, and the ladder-diagram approximation for
the pair propagators for the superconducting state.

Firstly, we consider the extension of Figbl The inter-

Il Il 1 1 1 H 1
0,090 0045 0,050 0,055 0.060 0,065 actionV,(q) betweena-spin electrons can be written as

k Vi(9) = UZPA(q), (A1)

FIG. 10. T vs ns at various doping concentratiods where YP8(q) is the density-density response function be-
tween the oppositg-spin electrons. Generally, the function
ng/m" at underdoping regime. This behavior cannot be ex52e’ in the imaginary timer space is defined as
plained by the BCS theory, nor by the S-FLEX scheme in
which T, andng do not decrease witid decreasing. }““'(q, 7=7)==(Tn,(q,7n,(=q,7))N, (A2)
In the mean-field theory, the electron pairs are all consid- ) ) )
ered as being in the Bose-Einstein condensate belgw wheren,(q, 7) is the density operator af-spin electrons. In

Since the pairing interactioristemming from the spin- the’ Mutsubara-frequency space, the Dyson equation for
fluctuation exchangeis stronger at smaller doping concen- x** (q) reads

trations, more electron pairs are produced in the condensate. o, , .,

This leads to highefl, and a larger superfluid density. In X (@) = x* (@) + 2 X (@QUY ™ (@), (A3)
contrast to the mean-field theory, in the SP-FLEX scheme, Y

the electron pairs are allowed to occupy their excited statesyhere the-y summation runs over the up and down Spins, and
At low temperature, those collective modes are the mos}, are the irreducible response functions. Under the ring ap-
available excited states. Even at the ground state, there rgroximation, from Eq(A2), xy**(q) is obtained as the same
mains the zero-point motion for the collective modes. Sogs given by Eq(4) where the Green’s functio(k) is un-
only a part of the pairs stay in the condensate. As stategerstood ass,,(k). y#4(q) is equal tox**(q) because of the
earlier, the pairing fluctuation is stronger at smalieresult- equality of the up and down spin electrons. For 3, we

0008 [ = §5=0.08

ing in lower T, and lowern,. have x*4(q) =x**(q) = x,(q) as given by Eq(18). Solving
Eqg. (A3) and substituting the result into EGAL), we have
IV. SUMMARY
. . U 1 1
In summary, we have investigated tHevave supercon- V() == - , (A4)
2[1-Uxia) 1+Ux(q)

ductivity in the quasi-two-dimensional repulsive Hubbard

model. Both of the spin and pairing fluctuations are takenyith y.(q)=x(q)+ x1(q).

into account in the self-energy. We have self-consistently - gecondly, for the interaction between transverse spins cor-

solved the integral equations for the Green's function. Thgesponding to Fig. (t), we write

present calculations reflect a humber of features of the ex-

perimental results for the cuprate high-temperature supercon- V.(q) =U%"(q), (A5)

ductors. The calculated boundary of the superconductin

phase shows a paraboliclike shape, reasonably describing t

experiments. The peak-dip-hump structure in the density of

states is naturally reproduced. In addition, the present calcu- ¥ (q,7- ) =-(T,S"(q,7S(q, 7 ))N, (AB)

lations give reasonable explanations for the temperature de-

pendence of the penetration depth and the relationship b@nd S*(q, )=3,Cl(7)Cyq (7). From Eq.(A6), the irreduc-

tweenT, and the superfluid density. ible function can be obtained 35™(q)=x-(g). Sincex* (q)
The pairing fluctuation implies that an amount of pairssatisfies the Dyson equatioR; ~(q) = x-(q) - x-(@Ux (q),

occupy their excited states. This fluctuation effect leads tave have

the reduction of the condensation of the pairs and, thereby, 2

the transition temperature. V(q) = UX—-(Q) (A7)

1+Ux-(9)

ACKNOWLEDGMENTS With the above results, for the effective interaction
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ﬁ/é’th X' (q) being the response function between transverse
pins defined by
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Analogously, the interaction corresponding to Fidf)1 C, = (fo— 2f, + f,)/2h2.
can be written as o )
Substituting Eq(B2) into Eq. (B1), we get
Vi(q) = U + U%x*(q). (A8) h H
From Eq.(A3), we have Sng,np) = 6(2 +3y+y?)(fo+ fo) + 5(4 -y9)f., (B3
Tob(q) = 11 x@  x(9 (Ag)  With y=1/h. Therefore, the summation over the entire range
X 2| 1-Ux.(q) 1+Ux_(q) | [ng,n,] can be obtained approximately with only three val-

ues,fq, fi, andf,, given. Aty—0, Eq. (B3) reduces to the
Simpson rule. With the approximatiofB2), we even can
carry out a summation over a part of the raigg,n,]. For
more general uses, fop<m=n,, we have

The result for the pairing potentiaV/s(q)=V(q)—V;i(q)
+U?y,(q) is then obtained as given by E(.7) . Again, the
term U%y,(q) eliminates a second-order double counting.
Finally, the functionP(q) appearing in the elemei;;(k)
of the self-energy can be expressed as S(ng,m) = Afy+ Bf, + Cf, (B4)

P(q) = v2[T11(0) - TT1(q)], (A10)  With

whereﬁll(q) is the pair-pair response function, ahd(q)
is the irreducible partor the pair susceptibility, which elimi-
nates the second-order double counkinghe function

M,,(q,7 ) is defined as C=—h(y+2741 - (y+22/3)4,

M,,(q, 7= 7) = =(T,p,(a,Dp(a, ”))YN,  (A11)  andz=(m-ng)/h.
. Now, we consider the summatid{1,). Whenf(n) de-
with M, V= 1 y 2! pl(q) :Ek ¢(k)cq—lekT! and pz(Q) .o i i
=3, (ﬁ(k)clz—qTCiki' Strictly speaking p, and p, are not the creases fast at— o, §(1,°) can be obtained approximately

o : over a finite range with the cutoff number sufficiently large.
Schrodinger operators singitk) depends on the Matsubara We may divide this range into several blocks within each of

freqlkjlency. Here, We'iorr;]lally rggard them gs r?nly de?endi.ngvhich f(x) can be regarded as a smooth function and thereby
on the momentum. At the end, we extend the result 10 INy,q o5 e algorithm can be applied. At most ca$@y, may

clude the frequenc_y dependeno(e!\lternth_ely, one can vary fast at smalh. Therefore, the stridh should be shorter
draw the Feyman diagram from the beginning. The final re-

sult is the same.From Eq.(A11), the expressions for the at smallern. Here, we introduce a point-selection scheme.

. . o . Consider L successively connected blocks. The selected
irreducible susceptibilities can be obtained as E28)—(24). points divide each block intdd-1(>2) equal-spaced seg-

A=h(y+2)[1-34 +z(y + 22)/12],

B=h(y+22Z1-(y+22/6],

The Dyson equation fofl,,, in matrix form is ments; each block contaid points. The stridéthe length

2 R ~ 2 of the segmentin the Ith block ish,=h'"* with h a constant

11(q) = I1(q) - vI1(g)11(q). (A12)  integer number. By such a scheme, the number correspond-
The diagonal parts of the Pauli components of the matrix"9 1 thejth point in thelth block is
- . M-1\ . M-h
P(g)=v4II(g)-1II(g)] can be expressed as Eq49 and n[j,l]:<l 1+ )hl 1. 270 (B5)
(20). h-1 h-1

APPENDIX B for j:1,2, ...Mandl=1,2,...L. The cutoff number is

N.=npv ). By repeatedly using the above summation algo-
In this appendix, we intend to develop an algorithm forrithm  one can get approximately
the approximate summation of a series. It is analogous to
Simpson’s integral method. Firstly, we consider the follow- S(1,00) = Ewpf(np), (B6)
ing summation: p

n wherep runs over theL(M-1)+1 selected points, andg,
S(ng,ny) = >, f(n), (B1) is the weight at pointp=[j,I]. Note that because of
n=ng Nim1=Np1+1). Such points should be counted once in the

wheren,=ny+2h with h an integer. Supposiéx) is a smooth ~ Summation. The point-selection scheme uniquely determines

function over the range,<x<n,. We then expand(n) as the weights. IfM =5 is an odd number, applying the above
summation algorithm, we get

f(n) = f(ng) + ¢1(N = ng) + co(N = np)?, (B2)
W[l,l] = 1,
where ¢; and c, are constants. With the given values
fj=f(no+jh), for j=0, 1, and 2, the constants can be ex- W= (4hTt=htT/3 for j=2,4,...M-1,
pressed as
cy = (— 3o+ 4fy — f)/2h, wy = (2h T+ T)/3 for j=3,5,... M -2,
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Wip = (2h+3 + h™b/e, TABLE. I. Ratio of &, given by Eq:(All) and §,=2n/(2n
+1) at variousn. RE represents the relative error.
Wiy = Wiz = (L +h /3 + (1 +h)h™'/6 N SudS, RE
forl=2,...L-1, 5 1.000000 0.0
10 1.000047 0.000047
Wi =h-"Y3 +1/2 +ht /6, 50 1.000012 0.000012
100 1.000013 0.000013

To justify the above summation algorithm, we here give50

- . 0 1.000013 0.000013
an example. Consider the summation,

o2
S=> ——=1. (B7) 2w)
1471 Sum= 2 770 (B11)
p p

Applying the above algorithm with=2,L=7, andM =9, we o
have where we use superscriptindicating then dependence of

the weights. The results f&,,/s, are given in Table I. The
relative error,(Syum— S/ S, is less than 1.
Finally, we give the expression for the susceptibility

Since it is even foi,,,, we only consider the case of=0. In
The relative error i§S,,,=S)/S=-4.8x107% Note that the real space, it is given by

term under the summation in E(B7) decreases by 1]2at o
largej. If one uses the known result, WZ) =TS G(r,2)G(r 2, + Z,)

2w
Sum= 2 T =0.999 52. (B8)
p 4ng-1

] n=—x
> 2=, -
=1 =T 22 G(r,2)G(r,z, + Zy,)
the accuracy of the summation can be improved much better. n=t
Instead of Eq(B8), we calculate the following summation: (2]
, +22 G(r,2)G(r,2, - Zy,)
Sum= 2 Wp(z— - —2> + 7212, (B9) n=1
b anp-1 2np
With such an arrangement, the value of the brackets ipthe + G 20)G(r, = Zo)lfemeaz it m s oda

summation decreases b}(n‘;“) at largen,,. This summation

ives a very accurate res =1.000 000 15, with a small _
9elative err())/r of only 1.X ?(;Tu;n _T{ 22 WpG(r’Z“p)G(r’Z“p + Zn)
In some cases, with the given pointg; selected in ad- P
vance, we need to calculate the summatid®(d,,n), with +2 VVEJM]G(f,an)G(f,an-ZnD
Nl S N<Nj and I.<L. In these cases, because the P

summation over a range needs three points at least, the ter- 4 G(r,z)G(r, = Z9) s 12t m is oda + X Zum),
minate numbenc=ny; ; ; is then determined as follows:

' > Tlo=1 where[m/2] is the integer part om/2, and the last term is
Je” jo+1, otherwise. given by
Since the summatiors(1,n) can be expressed &1,n) Sty = 2T St
=S(1,np1, =D +Sny .N), the weights at the points X(1,Zp) n:%cﬂ (1,2 G(r 2+ Zyy)

n, <np1 as tabulated above are unchanged, while at th%ecause of3(r,2,) —

: . . 60!z, atn— o0, we have
points nfj 3, for j=1,... jc,w, should be reevaluated ac- o’ Zn -

Ngtm

cording to the algorithm as given by E@4). S0 1 .
For testing the accuracy of the algorithm for summations - mﬂzTn_%HZn -1 it m>0
of finite terms, we consider the following example: 81, Zy) = e N
280| ™ < 1 .
n 2 2n —772 |:——E—2:| if m=0.
$=2 (B10) T 8 7i@n-1)

T14i2-1 n+1 .
Note thatG(r,z,-Z,)=G (r,Z,~z,). Therefore, the Green’s

With the [h,L,M]=[2,7,9 scheme, the summation is ap- function at negative Matsubara frequency can be determined

proximated as from its complex counterpart at the positive frequency. For a
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FIG. 11. Function PE"(@) in unit of 2t at Z,=0,

6=0.125,U/t=5, andT/t=0.0124. . . .
FIG. 12. Sketch of the lattice sites used for solving HO9).

. . . . Solid circles show the reduced region.
given point-selection schemé3(r,z,) is known. Those

values atZ,tz, can be evaluated by interpolation, or

G(r,z,+Zy) = 60/ (24 + Zyy) if n+m>N,. f3(q) = o (InVa?+ g2 - 1) +a arctar(%) )
APPENDIX C By this way, allf are regular functions.

However, because the large fact¢§sandjx at long dis-
. : ; nces, we need to carry out the inverse Fourier transforms in
rier transform ofPO”(q,O?, A typical result forPgﬁ(qﬁ, 0) IS Eq.(C2) with high accuracy. The numerical method of the
shovy% Fig. 112- 1’2h|52funct|on behaves &7'(0,0)  fast Fourier transforms amounts to applying the trapezoidal
«1/Va'+g* (with g°=q+q) atq—0. The constana van-  ryle to the integral in Eq(C2). One may use a very dense
ishes atT<T.. Even atT>T, but close toT,, a is very  mesh in the Brillouin zone for the transforms. But, this is
small. Physically, it means that the pairing fluctuation is deyneconomical in the present numerical process since such
fined in a long range in real space. EspeciallyI'atT., the  transforms need to be repeatedly performed. In fact, errors in
range is infinite. Therefore, its primary form is not suitable the numerical integration stem mainly from the rapid oscil-
for a numerical inverse Fourier transform on a finite lattice.|ation behavior in the integrand. Here, we present our
: ff Y H [P ” . . i v

The functionPg"(q,0) can be divided into the "singular”  scheme for these integrals in E§2). Essentially, we need
partc/ va®+g? (with c a constantand the regular one. There to deal with the following integrals:
is no problem in the inverse Fourier transform for the latter

In this appendix, we discuss the problem of inverse Fou;,
e

one. For the singular part, the task is to calculate the integral, . ’T .
gularp I Fe(j) = J dgf(g)codqj), (C3
(" (" . codgy,)co8ayj,) °
F(jwjy) = d J d , (C1
(Jxy) fo Ok . Oy N (Cy i}
F(j) = dagf(qg)sin(aj), C4
wherej, andj, are the coordinates of a lattice site. Repeat- ) fo afl@sin(aj) 4

edly integrating by part, we get . )
wheref(q) is a regular and smooth function ov, ).

o o7 T _ , Firstly, we consider the simple case,
Flixiy) ==y | da| daqfi(gcos(a,j)cos(ayjy)
0 0

a3
o (01, 0s) = f daf(ag)codqyj), (CH)
+(= Db f daoyf (0 COS (T ) o
0 where (g;,0;) is a small range. The middle point 3.
(" ) ) _ Within this range,f(q) can be expressed as
=~ x| dafa(adsin (xjx) = (= )fs(m), (C2)
0 f(a) = & + ay(q - ay) +ag(q - ay)’. (C6)
with The constants are determined by the valués=f(q;),
fi(@) =qyIn(qy + Va*+q?) - va*+ ¢, ay = f1,
fo(0) = In(mr + Va2 + 72+ ), ay = (= 3fy + 4f, — f5)/2h,

104520-13
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ag = (fl - 2f2 + f3)/2h2,

where h=0g,-q;. Now, repeatedly integrating EqC5) by
part and using Eq.C6), we obtain

1(0,03) = C1c09qyj) + C3c09qg)) + SSin(qyj) + Ssin(s)),
(C7)
with

Cl = (3fl - 4f2 + f3)h/2X2,

C3 = (fl - 4f2 + 3f3)h/2X2,

Sy =[fz - 2f;— (- Df I,

83 = [(X2 - l)fg + 2f2 - fl]h/X3,

andx=jh. It is expected that the result given by EG.7) is
more accurate than the trapezoidal rule.

Now, dividing the rangeg0,7) into 2M equally spaced
pieces, we have

F(j) = kE | (Olk-1, Olak+1) » (C8)
=1

with gq,=(k—-21)h andqyy.1=7. Using the result as given by
Eq. (C7), we get

k=2
M

+ 4W2(X)E fCOLOj) s
k=1

M
Fe(j) = 2W1(X)[22 fo1CoOpyq)) + f1 + (- 1)jf2|v|+1]

(C9)

where the functionsv; andw, are given by

Wy (X) = L[3 - —2 si)r((Zx)

v + COS{ZX):| ,

Woy(X) = %(ﬂ( - cosx).
X\ X
Define a new discrete function,
gc= (- DX for
With this definition, Eq.(C9) can be rewritten as
Fe(i) =wi(00{Cj[f] - Cjlal} + wo(x){C;[f] + C;[g]}, (C10

where Cj[f] is the cosine Fourier transform of functidn
defined by

k=1,..., MM+ 1.

N-1
Cl[f]=22 ficodqy) + f1+ (- Dify
k-2

with N=2M +1. Therefore, the functiof(j) can be evalu-
ated by the FFT via EqC10).
Similarly, one can get

PHYSICAL REVIEW B 71, 104520(2005
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FIG. 13. Functionsf(ry,1) and ¢(ry,z;) at ry=0, §=0.125,
U/t=5, andT/t=0.0124. The dashed lines are for the eyes.

Fs(i) =wi({S[f] - Slal} + wo(x){S[f] + S[al}
N h 1+ sin(2x) 1- co$2x)
X 2X

(= D],

(C1))

where §[f] is the sine Fourier transform of functidnde-
fined by

[f1-

N-1

S[f]= 2kE fisin(cd) -
-2

APPENDIX D

In this appendix, we rewrite the eigenequati@ in a
form more convenient for the numerical calculation. We in-
tend to solve the equation in real space in order to get rid of
the prohibitive storage requirement for the coefficient matrix
in momentum space.

We can apply the frequency-summation algorithm just de-
veloped in Appendix B to the present case, so reducing the
memory size. However, to solve the eigenequation in mo-
mentum space still requires tremendous memory size. In
some cases, fortunately, the pairing function is short ranged
in real space. We therefore solve the equation in real space.
To transform Eq/(6) into real space, one needs to maintain
the matrix of the coefficients to be symmetrical. In the fol-
lowing, we present the transformation procedure.

(a) Define functionsf(k,np) andy(k,n,) as

f(k,ny) = V/TWpG(k,znp)G(— ki=2,),

(D1)

glk,ng) = f(k,np)p(k,z, ),

where w,, is the weight at frequencyn as introduced in
Appendix B. In real space, E@6) is transformed to

> ANy ) Y(r ' ng) = Ng(r,ny),

rrp/

(D2)

(D3)

with

104520-14
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Ar,ng;r',ng) = 2 F(r = R,np)W(R,n,ny ) F(R—r',ny), M(r,ny;r’,ny) = 2 F(r, RNy W(R, ng,np )F(r',R, Ny ),
R [R]
(D4) (D8)
where againfR] summation runs over those lattice sites of
and 0=R,<R,. By so doing, the eigenequation reads,
> M(r,ny;r’,ny)y(r',ny) =\y(r,ny). (DY)
W(R,np,Ny) = Ve(R, 2y =2 ) + Ve(R, 2y +2y ). (D5) [r']p’

(b) Furthermore, because of the lattice symmetry, we need A Sketch of the lattice sites is shown in Fig. 12. The
only to consider the lattice sitds] of 0<r,<r,. Those lat- reduced regiorir] is taken as the solid circles, which are

tice sites ofr =r, are excluded since the-wave pairing is suitable for.the description a-wave p'airing..ln our numeri-
under considxera){ion Define cal calculation, the total number of sites[of is N,=49. The

normalization condition fok/(r ,n,) is

2 D YA,y =1. (D10)
y(r,n) = 2\/di¢(r,n) (D6) [rlp

By this condition, the coupling constant is given as
v=N\/2. Shown in Fig. 13 are the typical results fiir,, 1)
and ¢(ry,z;). Clearly, they are short-ranged functions.

F(r,R,n) = ! > s,f(gr —R,n) (D7)  In passing, we compare the sizes of the matrices of the co-
Vdidg g efficients required for solving the eigenequation, respec-

tively, in real and momentum spaces. The dimension of ma-
, , trix M in Eq. (D8) is (N;Mg) X (N;Mg)=2793% 2793, where
whered,=1+4, o, the g summation runs over the operations \; =57 s the number of the selected Matsubara frequency.
of groupCy,, s;==*1 is the sign factor of the-wave func-  However, in momentum space with a 12828 mesh, even
tion ¢(r,z,) under the operationy, and gr denotes a site making use of the lattice symmetry, the dimension is
coming fromr, operated byg. Accordingly, define the new (NMg) X (N\Mg)=118 560 118 560, whereN,=32X 65 is

matrix, the number of momenturk with 0<k <k, <.
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