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We investigate theoretically the eigenmodes and the stability of one and two arbitrary fractional vortices
pinned at one and tw& phase discontinuities in a long Josephson junction. In the particular case of a single
k discontinuity, a vortex is spontaneously created and pinned at the boundary between the r@ginds. In
this work we show that only two of four possible vortices are stable. A single vortex has an oscillatory
eigenmode with a frequency within the plasma gap. We calculate this eigenfrequency as a function of the
fractional flux carried by a vortex. For the case of two vortices, pinned aktdiscontinuities situated at some
distancea from each other, splitting of the eigenfrequencies occurs. We calculate this splitting numerically as
a function ofa for different possible ground states. We also discuss the presence of a critical distance below
which two antiferromagnetically ordered vortices form a strongly coupled “vortex molecule” that behaves as a
single object and has only one eigenmode.
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I. INTRODUCTION fined modulo 2, without losing generality, below we con-
) . ) . sider only Os k<2
Vortices in long Josephson junctiofisJJ9 usually carry Similar to the case of & discontinuity, the presence of an

a single magnetic flux quantudr, and therefore are often arbitrary « discontinuity results in the formation of a frac-
called fluxons. The study of dynamics of fluxons has beenjonal vortex pinned at #* In the following, thetopological
attracting a lot of attention during the last 40 years becausehargeof a single vortex is defined to be a conserved quan-
of their interesting nonlinear naturé as well as because of tity under the boundary condition imposed on the phase
potential application&> u(x), and it is equal to the difference between the phase at
Recently it was shown that one can fabricate so-callek=+% and x=-«. We use the wordk vortex to denote a
0-7 LJJs, i.e., LIJIs consisting of alternating regions withvortex with the topological charge equal ko Given a dis-
positive (0 par) and negativé pard critical currents. Such  continuity —«, the topological charge of the vortex should be
junctions can be fabricated using superconductors with aguch that its sum with the discontinuity is equal ter2(n is
anisotropic order parameter that changes sign depending @m integey, otherwise the energy of the system diveréeis
the direction ink space (e.g., d-wave order parameter fact one can construct not an infinite number but only four
symmetry®’ or with an oscillating order parametée.g., such vortices corresponding ta=-2,-1,0,1, namely,
with a ferromagnetic barrigf1° It was shown that at the a (k-4m) vortex, a (k—2m) vortex, a x vortex, and a
boundary betwae a 0 and am part a new type of vortex (x+2) vortex2®
carrying only half of the flux quantum may exi8t*3 Such It is shown below that only two of these vortices are
vortices (naturally called semifluxon® were observed ex- stable: a so-calledlirect +x vortex and acomplementary
perimentally in several types of 8-LJJs1>'8 They may [x-sgr(«)2x] vortex. By definition the complementary of a
appear spontaneously and correspond to the ground state @mplementary vortex gives againdirect +« vortex. The
the systent>2! only exception is the case= 27, for which there exist three
The dynamics of the Josephson phase in a LJJ is destable solutions: a +2 vortex (fluxon), the flat phase state
scribed by a perturbed sine-Gordon equation. For the case @iero phasg and a —2r vortex (antifluxor). The comple-
the 0-r LJJ this equation is Sllghtly mOdlﬂéﬁand includes mentary “vortices” for both +2Z vortices are a constant
the functiond(x) which is equal to zero all along the O parts phase state, and, vice versa, for the constant phase state the
and is equal tar all along thew parts. The functiord(x) as  complementary vortex is either a fluxon or an antifluxon. In
well as the Josephson phagéx, t), which is a solution of the  the majority of situations this can be distinguished due to the
sine-Gordon equation, is & discontinuous function ok at  conservation of the topological charge.
the 0-r boundaries. We sometimes call therOboundaries Since, fork # 27mn, « vortices are pinned, they might have
discontinuity points an eigenmodecorresponding to the oscillation of the flux
Recently, a LJJ geometry which allows us to cremtai-  around the discontinuity point. Imagine that we apply a small
trary discontinuities was suggested and successfully tédted.uniform bias current through a LJJ containing a fractional
In this LJJ a pair of closely situated current injectors createsortex. The current creates a drivirigorent2 force which
an arbitraryx discontinuity(not only = =) of the Joseph- bends the vortex. The driving force is compensated by the
son phase, withk being proportional to the current passing elastic(return force which arises due to vortex deformation.
through the injector$??2 Since the Josephson phase is de-If we now suddenly remove the bias current, the elastic force
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makes the vortex oscillate around the equilibrium shape with The zero-bias static solution of E(L) corresponding to a
the eigenfrequency,, provided the damping is low enough direct « vortex is given by
[as in artificial O« LJJs(Ref. 22].
- {Mf(X)=f(X), x<0,
ILL =

wi(¥)=k-f(-x), x>0,

We note that an integer fluxodoes not haveany non-
trivial eigenfrequencie® Once deformed or perturbed, a
fluxon recovers its shape exponentially without any internal .

(4)

oscillations. When the bias current is applied, the fluxon™ith

starts moving in a certain directiofwhich depends on the f(x) = 4 tarrle*™o)
polarity of the fluxon and the bias currg¢nthich formally

corresponds tay=0 (dc motion. The constank, still has to be determined.

In this paper we investigate the stability and the eigen- Imposing the boundary conditiori8) to x“(x), we end up
modes of the vortex states formed in a LJJ with one or iwo with the expression foxg,
discontinuities. The study of arbitrary fractional vortices
(rather than semifluxonss interesting because one may use X =1In tan’. (5)
k as a control parameter in qubisuch as a magnetic field in 8
flux qubit9 or one can even construct a fractional vortex
crystal in which energy bands can be controltading ex-
perimentsby changingx.?” The analysis of eigenmodes for
arbitrary « is not much more complicated than for fixeg
but it allows us to cover also possible future types of Josep
son junctions, e.g.4r/2 junctions, which have already been
discussed theoretically by some auth&d’

The paper is organized as follows. In Sec. Il we present an Ve~ [N%+ a\ + cofu“ + 0)]v=0. (6)
analytical derivation of the eigenfrequency of a singleor-
tex and compare the obtained results with the results of diNote thaty is assumed to be zero here.
rect numerical simulations of the sine-Gordon equation. If we define

Next we will calculate the eigenfrequency pf. The cal-
culation we present in this paper follows the one from Ref.
30. First we linearize Eq(1) about the solutionu”. We
write w(x,t)=w +u(x,t) and substitute the spectral ansatz
u=eMu(x) into Eq.(1). Retaining the terms linear in gives
the following eigenvalue problem:

Then we study numerically two coupled vortices in Sec. - %<0
lll. The eigenfrequency in some limiting cases is derived v= V+’ '
analytically. Section IV concludes this work. v, x>0,

Il. EIGENFREQUENCY OF A SINGLE VORTEX then atx=0 the boundary conditions are

For our study, it is more convenient to use the continuous v(0)=+(0), (78)
Josephson phage(x,t) defined asu(x,t)=¢(x,t) - 8(x).14 A
perturbed sine-Gordon equation which describes the dynam- av™(0) = 4,v%(0). (7b)

ics of the Josephfon phase in acQ-JJ can be written in From Eq.(6), we know thaty* satisfies the equation
terms of u(x,t) ag

Yo it~ ST+ 0001 = g — 1X), @) Vo™ N+ @k + cos[ () =0.

The eigenfrequency corresponds to a solutibthat tends to
0 asx— +. According to Refs. 31 and 32, the above eigen-
0, x<0, value problem, if considered on the whole real line, has two
0(x) ={ <> 0 (2)  independent solutions. We will use these known solutions to
' construct the eigenfunction and find the corresponding eigen-
for the case of a single discontinuity et 0. Without loss of  value for our problem, i.e., including the discontinuity. The
generality, we assume Dx<27. The Josephson phase solution that corresponds to the eigenfunction is given by
u(x,t) is a continuous function of the coordinateand time _
{ v (x) = e tanh(x + xo) — A],

with

t, which are normalized to the Josephson penetration depth
. -1 - + — (8)
A; and_to the inverse plasma frequenay”, respectively; vV'(X)=v (-Xx),
a=1/p. is the dimensionless damping paramefrijs the where
McCumber-Stewart parameter, antk)=j(x)/j. is the bias
current densityj (x) normalized to the critical current density A=\2+an+1. (9)
je- The subscriptx andt denote corresponding partial de- N )
rivatives with respect ta andt, accordingly. The condition that* —0 asx— x« requires that the real
It is natural to have the boundary conditionscat0 given ~ Ppart of lambda, Re\), is positive. The eigenvaluk is cal-
by culated fromA by determining thav has to satisfy Eq<7a)
. ) and (7b).
limy; om(x) = limy gue(X), From Eq.(7b) we obtain that
lim,goax(X) = limy opa(X). 3) vx(0) = 5(0) = 2e™[A(tanhy - A) + sech y],-0=0,
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10—e—eLlel g [ " T T do we have an eigenvalue attached to the edge of the con-
tinuous spectrum, and the corresponding eigenfunction is
bounded, but not exponentially decayifigit this value of

k, the solitary wave we consider is nothing else but an inte-

ger fluxon.

We have also checked our analytical results numerically
using sTkJJ software3® We simulated a rather lonig=20\;
Josephson junction with a discontinuity at its centex=0.
T To obtain the eigenfrequency, we applied a small bias current

0.0 0.5 1.0 1.5 2.0 which pulls thex vortex in a certain direction and waited to
K/ arrive to a stable stationary state. Then we abruptly de-

FIG. 1. Plot of the normalized eigenfrequeney of a singlex creased the bias current t.)aCk to Zero. and observed the
vortex versusc given by Eq.(11) (continuous ling¢ and its approxi- () = V(t) at)_<:_1, Wherey(t) 1S th_e n_ormallzed_voltage. The
mations for k—0: wo(k)~1-«*/512 (dashed ling and for x  Plot V(t) exhibits decaying oscillations. Making a Fourier
— 27 wo(k)=~1/2\27 -« (dotted ling. Symbols show the values transform, we find a single dominant frequency which is
of eigenfrequency obtained by the direct numerical simulation ofconsidered as an eigenfrequency of thevortex. We re-

Eqg. (1). peated this procedure for different positionsnd different
small initial bias currents, but the results did not change
within 1% of accuracy. Repeating this numerical experiment

o
3]
|

o
>
1

eigenfrequency, oy/o,
o o
N E-N
] ]

o
o

y=EX+ X, for severalx in the range from O to 2 we obtained the
from which we obtain values of eigenfrequencies which are shown as filled sym-
1 bols in Fig. 1, demonstrating perfect agreement between the
A ==(tanhxy * Vtant? Xo+ 4 sech Xp). analytics and the direct simulations. The eigenfrequency of
2 the complementaryx—27r) vortex can be obtained by using
When «=0, the eigenfrequencyy, is given by 2m-x instead ofx in Eq. (11).

Note that Eq(10) is also valid for(«x+27n) vortices with
the topological charge larger thanw2 However, when
|k+2mn| >4 the static solution cannot be constructed.

(10) Therefore we consider here only the casesl andn=-2.
The zero bias static solution of E¢L) corresponding to a
with X, given by Eq.(5). This can be further simplified to fractional (27n+ k) vortex is given by

give
o _ I =100, x<0,
wo(k) = \/%cosg<cos§ + \/4—3 co§§). (11 w0 = {Mf(x) =2m+ k- f(-x), x>0, (13

The plot of this eigenfrequency as a function efis with
shown in Fig. 1. For the particular case of a semifluxon the
eigenfrequency iswg(m)=(1/2)y1+y5~=0.899. Note that

wg(K) = wo(~ k) because the vortex and the = vortex have  \yherex is determined by matching the boundary conditions

. i 7
N=iwg= % 5\’/4 — (tanh X, + Vtanttx, + 4sechx;)?,

f(x) = 4 tanlex™n,

the same eigenfrequencies. (7) as described above. Thus,
The above result is the only eigenvalue of a direct frac-
tional vortex. For a rigorous proof, we refer to Ref. 31. Be- mMm Kk
low we will show that there is no eigenfunction with at least X, =1n tar(T + g) (14)

one zero at finite.

According to the Sturrr12-L|OUV|IIe2 theorem, if EG6) has  The eigenfrequency of this state is still given (1) with x,
several eigenvaluesE=\"+ah=A°-1 given by, €.9. peing substituted by, One can check by direct substitution
Ei.Ep ... By then we can arrange them such thatof (14) into (10) that RéN)>0 for n=+1 orn=-2, i.e., the
E,<Ep,<---<E, The eigenfunction corresponding ®,  (,+27) and(x-4) vortices are unstable and, therefore, not

will have (n-1) zeros. observable. A damping cannot stabilize these “heavy” vorti-
Next, based on the first line of E¢8), we construct an aq

antisymmetric solution with/*(x)=-v"(=x). With this prop- If one thinks about the dispersion relatiafk) =1 +k? of

erty of v, =0 atx=0 and Eq(7) can be fulfilled if and only LJJ, the dispersion relation has a gatasma gapfrom

if =0 to w=1. In the presence of a vortex, there is an addi-

P tional discrete level(eigenfrequency situated within the
»(0)=0 or A=tanh(xp)=- 005(2) <0. (12  plasma gap and correspondingke0 (localized statg This
level is somewhat similar to impurity levels in semiconduc-
We see that there is no solutigh with a positive real part, tors. The position of this “impurity” level can be tuned elec-
which is necessary to lef* —0 asx— +o. Only at k=27  tronically by changing.
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TABLE I. Notations for different types of vortices. Unfortunately this technique is very slow, requires a lot of
manual work, and is not very precise. Therefore, we imple-
Symbol  Discontinuity ~ Topological charge Name mented another technique for calculating the eigenvalues in
. sTkJ1%2 When the numerical solution decays to a stable sta-
W K T dfrect tionary one, we analyze its stability by introducing an arbi-
| tK K direct trary perturbations to the found solutionu,, i.e., we substi-
I +K 2m=k complementary  tute w=puq+4 into (1) and obtain a partial differential
| -K K=2m complementary  equation(PDE) for 8. Then we discretize the obtained PDE
1 +r +r semifluxon and arrive to a system dfl coupled second-order ordinary
! o - antisemifluxon  differential equationdODES. Typically for a LJJ of length
0 0 +2m fluxon L:_40)\J,_ we use the spatial dlsc_retlzatlon stApI;O.OZ\J
. which gives udN=L/Ax=2000. This system can, in turn, be
O 0 -2 antifluxon

reduced to a system oN2ODEs of the first order, which can
be written in a matrix form as

Ill. TWO COUPLED VORTICES

_ _ e _ 5=ASJ, (15)
Now consider twok discontinuities(0<x<27) in an . . .
infinite LJJ at a distancea from each other (at where § is a vector with A elements andA is a constant

x=%a/2). If both discontinuities have the same sign matrix constructed using,. The eigenvalues of this matrix

of « (e.g., +), there are two possible irreducible vortex con- ¢&n be found using standard routiiéémong all 2N com-
figurations: the symmetric ferromagneti¢FM) state _plex glgenvalues we chose two_e|genvalues Wlt_h the smallest
|1 =(k,—x) and the asymmetric antiferromagneti&FM) imaginary part;(agenfrequenue)s The other eigenvalues
state] | =(~«, 2m—).%5 If the discontinuities have different Nad[Im(\)|>1, i.e., belonged to the plasma band. The real
signs, e.g., « and —«, there are two other irreducible vortex parts of all eigenvalues were nEQat(\.amdm—aIZ), indicat-
states: the asymmetric FM state=(27—«, x) and the sym- N9 the stat_nhty of the so_lutlon. In t_hls way, we were able to
metric AFM state| | =(~«, +«).25 The details about ground calculate eigenfrequencies numerically and with high accu-

states are presented in Ref. 25. Below we consider eigerﬁggﬁlggr ?ggggggsboigaunisetwogg \?/:trzmc?)trlr? Ersef:jlo;. ;Eﬁm_
modes of these ground states. P y P

Note that in the notationg| | | the direction of the arrow ber of selected points and were essentially the same.
shows the polarity of the vortetup or down, while the A. Symmetric AFM state
harpoon on the left or on the right side indicates whether the

vortex is direct or complementary. The notations are summa- First, IeF us consider a LJJ W'th ek, + k) d|sco'nt|nU|-'
rized in Table I. ties and with(+«,—«) vortices]| pinned at them. Since this

In a system of two weakly interacting vortices the eigen_symmetric AFM state is the most natural state of the system,

frequencywy splits into two different frequenciess,, corre- in si_mulations_we were Simply sweeping from 0 to 2
sponding to the in-phase oscillations of both fractional vor-Starting fromu.=0 solution a=0, and the symmetric AFM
tices, andw_, corresponding to the antiphase oscillations. Bystate was formed automatically. The numerically obtained

definition adopted here the “in-phase” or “anti-phase” mean&§igenfrequencieso,(«) for different distancesa between
that themagnetic fieldgrather than Josephson phasefstwo ~ Vortices are shog/vn in Fig. 2. - _ _
vortices oscillate in-phase or antiphase. According to the It was shown® that there is a_crltlcal value of discontinu-
Sturm-Liouville theorem the eigenfunctions(x) (oscilla- 1y &t () (m<«'<2m) at which the ground state |
tions of the Josephson phasmrresponding to the first- and SWwitches to the statgf («-2m and 27—« vortices pinned at
the second-lowest eigenfrequencies have no zeros and on and +« discontinuities. The inverse function fokg'(a) is
zero, respectively. In turn, the oscillations of the magneticdenoted as'(x).25
field »,(x) have one or two zeros. If one draws sugltx) Whena>a((m)=a,=/2, see Fig. @), the splitting of
deviations qualitatively on the top of the magnetic field pro-the eigenfrequency is clearly visible with. < wy<w,. The
files u,(x), corresponding to various ground states, one caigenfrequencies, are calculated for & k< «'(a). At the
conclude which eigenfrequency corresponds to in-phase argfitical valuex'(a), the statel | becomes unstable. As a sign
which to antiphase oscillations. of this instability one can see that sharply approaches 0 as
In general, it is quite difficult to calculate the splitting of x— «c.
the eigenfrequency analyticafi§,so below we calculate the The eigenfrequency of the complementary stai&x) is
frequenciesw.(«) for different values ofa numerically. given by
To obtain the data presented below we used a technique
similar to the one mentioned in Sec. Il. To excite in-phase
oscillations we applied a small uniform bias current. To ex-Note, that in the interval o from 27— KLJ to Kll both1| and
cite antiphase oscillations the bias curre/x) was applied || states are stable, but have different enéfgylence, we
so thaty(x)>0 for x>0 and y(x) <0 for x<0. We used have a bistability phenomenon.
several differenty(x), e.g., ¥(x) <x or y(x) «sgnx), and the Whena< a;, see Fig. &), the transition from the statg
results were generally the same. to the state | is smooth and without hysteresis and happens

wD(K) = wl_rJ(ZTr— K), K>27T— K.
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Z 0.4 9’9 N FIG. 3. Eigenfrequencies_(«) (solid lineg and w,(«) (dashed
Qo . & N . . .
= 1/ 2 ] lines) for the symmetric FM statd| calculated numerically for
S 0.2/ £, Ay different distancea between the vortices. The dotted lines show the
o 0.0 T _symm. AFM 33 1 critical values ofx. for a givena at which the statg| ceases to
’ 00' o '0'5' i '10' i '1'5' o '20 exist. Dash-dotted lines show eigenfrequencies for a single direct or
(b) ' ' i ' ’ complementary vortex in a LJJ with one discontinuity.

i FIfG' %h Eigenfre?ger;c;ﬁ_(tx)t (solild "lnte) j‘nd @) (ﬁaihez_f semifluxon state$ 7 = | | at k= and were sweeping to-
ine) for the symmetric state cajculated numencally 1or dit- ,.ar4s 0 or towards 2. In a symmetric FM state the in-phase
ferent distancea between the vortices in the limit ¢f) weak (a . .

mode frequencyw, is smaller than the antiphase mode fre-

>a.) coupling and(b) strong (a<a.) coupling. For the casa
>a, only the state|| is shown. Fora<a, both states | (k<) guencyw._, namelyw, < wo andw-> w. Below we calculate
the frequencies, for k. (a) < x<2.

and|| (x> ) are shown. Dashed-dotted lines show eigenfrequen o i . .
cies for a single direct or complementary vortex in a LJJ with one  1N€ quantityx; (&) (0<«; <) is the critical value of
discontinuity. discontinuity at which the ground state¢ ceases to exist

(becomes unstableand the system switches to another

state, e.g.]|.?®> The values ofw, (k) calculated numerically

are shown in Fig. 3. Note that the lower eigenfrequency

(k)—0 whenk— KU.

In the limit of a— 0, one can get an analytic expression of

w_(m)— 0, corresponding to the instability of the flat-phase (N€ €igenvalue as a function ef This is caused by the fact
that in the limita—0, the two fractional vortices form a

solution in favor of the AFM staté?21:36 For a— 0, w_() _ ; : Co
— 1 that corresponds to the absence of the eigenmodes wh H1_g|e vortex with a double topolo_glca_ll charge. Hence, in this
discontinuities cancel each other and one ends up with mit the largest eigenfrequency is given by = wq(2«) or,

conventional LJJ. In particular, fok=7 and a< flat- ollowing the c_hoice O.f vortices presented in Fig. &,
P " % = wo(47—2k), with wy given by Eq.(11) . In the case ok

phase stajeone can calculate analytically the eigenvalue as & o ) i
function of the facet length. Note that the linearized equa- -7 @-=0 in agreement with the fact that the two semiflux-

tion describing the eigenvalue problem is nothing else buPns form an integer fluxon.

the Schrodinger equation with a potential w#llSome A”O‘hef property that is known in the limit cﬁ—>0_is
simple algebraic calculations give that there is no eigenvalue other than(see the calculations

presented in Sec.)ll The internal modev, enters the plas-
A sinfaVl —A?) +V1-A*codayl-A%=0. (16) mon band in this limit, leavingo,(m)=1.

at k= via the flat-phase stafé.Note that fora<a, the

frequency w,=1, i.e., belongs to the plasma band. This
means that strongly coupled vortices behave like a singl&+
object with a single eigenfrequency_. When a—a,,

Writing A=iw_, we will obtain w_(7) as the first root of Eq.
(16). One can show as well that for0a<a,, w_(m) is the C. Asymmetric AFM state
only eigenvalue of the system in accordance with the re-

ported numerical results above Now we consider two vortices with topological charges

-k and 2r-x>0 in the AFM state|[ admitted by(+x,

+ k) discontinuities. In simulations we were starting from the

state |1 =] | at k=7 and were sweeping towards 0 or
Now we consider a LJJ with twbt«, +x) discontinuities  towards 2r. The calculated frequencies, for 0< <2

with (27— «k,27—«k) vortices pinned at them, i.e., thg are shown in Fig. 4.

state. The same applies to the state by substitution Note that although this state is asymmetiadt least for

k— 2m—«k. In simulations we were starting from the two largea) in terms of magnetic flux carried by the vortices, its

B. Symmetric FM state
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o g q g p y
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0.0 0.5 1.0 1.5 20 '
(b) w/n length a gives a smallero_(7) until the eigenfrequency

reaches 0 ad=a., which corresponds to the transition to the

FIG. 4. Eigenfrequencies_(«) (solid line) and w,(x) (dashed flat-phase state. Aftea passesa., in the flat-phase state,

line) for the asymmetric AFM stat¢| calculated numerically for further decrease of the facet length increasesr)
different distances between vortices. Iifta) and (b) the coupling For arbitraryx anda— 0 the discontinuitie$+x, +x) be-
between the two vortices is weak and strong, respectively. The line ’

marked as 0.0 irfb) shows the behavior of the eigenfrequency in For_n'e a single dlscontanIty_-IKZ This case is similar to th_e
the limit a—0 calculated analytically using Eq17). Dashed- imiting case we presented in Sec. Ill B, but the topological

dotted lines show eigenfrequencies for a single direct or compleharge of the fractional vortex is nows2-2«. Hence, for
mentary vortex in a LJJ with one discontinuity. a— 0 the eigenfrequency of the collective state approaches

w_(k) = wo(27 - 2K), (17)

with w, defined by Eq.(11) [see the line marked as 0.0 in
Fig. 4(b)].

w.(k) dependence is symmetric with respect to tenr
axis, i.e.,w} (k)= wl!(k). This state is stable forQ k< 2.
When the vortices are weakly couplefa> aJCF(K)
=all(x), Fig. 4a)] we indeed have an asymmetric sta@nd
splitting of eigenfrequencies with_ < wy< w,. In the oppo-
site limit when the coupling is stror@<a'(«), Fig. 4b)],
a new collective stateis formed?® This state has only one Finally, we consider two vorticesktand 2r— x>0 in the
eigenfrequencyw_, while w,=1 and belongs to the plasma FM state|| admitted by two discontinuitiesx-and +«. In
band. simulations we were starting from the stat¢ =1 at «
The crossover distanca(«) which separates an asym- = and were sweeping towards 0 or towards 2 In this
metric state from a collective state is a weak functiokafs  state the in-phase mode frequenay< wy< w_. The calcu-
can be seen in Fig. 4. The crossover distaagéx) grows lated frequencies, are shown in Fig. 5. Again, the plot is
from a./(m)=m/2~1.57 to all(0)=al(2m=2In(1+y2)  symmetric with respect ta=, i.e., ol(k) =0l (k).
~1.76282%5 Thus, form/2<a<?2 In(1+\«“‘§) the asymmetric The asymmetric FM state has no crossovers and at
flux state exists not in the whole interval okO«< 27, but ~ a— 0 turns itself into a zr vortex.
only in some smaller subinterval which includes . In the One can also recognize that far<1, (-, +) disconti-
same time the collective state nucleates arowsd and huities in a Josephson junction behave like a microresistor to
k=2m. At a< /2 the island of the asymmetric state van- an integer 2r fluxon [see, e.g., Eq1.2) of Ref. 37. In the
ishes and the collective state exists in the whole interval ofimit a— 0, the microresistor strengthfrom Ref. 37 is equal
0< k<2m. Vice versa, ata=2 In(1+y2) the asymmetric 10 2a.
state exists for all & k<27
Since fork= the symmetric and asymmetric AFM states
are equivalent to the flat-phase state, the same limiting be-
havior which was discussed at the end of Sec. Ill A applies We have shown that an arbitrary fractional vortex has an
[see also Eq(16) and c.f. Fig. 2. eigenmode that corresponds to the oscillations of the vortex
It is interesting to follow the smallest eigenfrequency around the phase discontinuity point where it is pinned. We
w_(k) at k= in Fig. 4. In Fig. 4a), decreasing the facet have derived the eigenfrequency for a direct vortex and a

D. Asymmetric FM state

IV. CONCLUSIONS
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complementary vortex as a function of the topological charge f o \2| L

(magnetic flux carried by the vortex. The eigenfrequency max a, /1 ‘<—> - <1

corresponds to a discrete “impurity” energy level within the @p J

plasma gap. is satisfied, i.e., the microwave signal should not decay sub-

For the case of two coupled vortices we showed that thetantially while it propagates from the edge to the middle of
eigenfrequency splits into two modes that correspond to thée junction where the vortefmoleculg is created. Spectro-
in-phase and antiphase oscillations of the vortices. Both o$copic methods may help to distinguish between a dikect
these eigenfrequencies were calculated numerically for eactprtex and its complementai27— ) vortex by measuring
ground state. Fom<a,, two AFM ground states form a the eigenfrequenciexceptk= ).
strongly coupled “vortex molecule” which behaves as a Another possibility to detect an eigenmode is to create a
single object and has only one eigenmode. fractional vortex in an annular LJJ and let the integer fluxon,

The obtained results may be quite important for the studyhich can be injected if needé&3® run around the LJJ,
of vortex dynamics in novel Josephson systems, e.g., basgeriodically colliding with the fractional vortex. If the vor-
on SFS junctions od-wave superconductors. The knowl- tex’s eigenfrequency is a multiple of the collision frequency,
edge of eigenmodes is a key element in designing classicaine should see resonances on the current-voltage character-
or quantum devices based on fractional vortices. In the clagstic. A study of a fluxon-semifluxon interaction in an annular
sical domain this may help to avoid parasitic resonance phd-JJ was recently reported,but the resonances, which ap-
nomena. In the quantum domain, the eigenfrequency detepear due to the excitation of the eigenmodes, were not inves-
mines the characteristic frequency of attempts in, e.g., thégated in detail.
guantum tunneling and/or flipping processes. For future research, it would be interesting to study an

To detect eigenmodes experimentally one may use spednfinite array of fractional vorticefone-dimensional vortex
troscopic methods or resonant excitation. To use spectrostystal which has only optical branches in the dispersion
copy one should excite the eigenmode by applying an ac biaglation because of the vortex pinning. The energy bands of
current or sending an electromagnetic wave along the LJ3uch an array can be tuned by changingr the bias current
from the edge. Then one should measure, e.g., the critical during the experimertt’
current as a function of the external excitation frequeacy
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