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We investigate theoretically the eigenmodes and the stability of one and two arbitrary fractional vortices
pinned at one and twok phase discontinuities in a long Josephson junction. In the particular case of a single
k discontinuity, a vortex is spontaneously created and pinned at the boundary between the 0 andk regions. In
this work we show that only two of four possible vortices are stable. A single vortex has an oscillatory
eigenmode with a frequency within the plasma gap. We calculate this eigenfrequency as a function of the
fractional flux carried by a vortex. For the case of two vortices, pinned at twok discontinuities situated at some
distancea from each other, splitting of the eigenfrequencies occurs. We calculate this splitting numerically as
a function ofa for different possible ground states. We also discuss the presence of a critical distance below
which two antiferromagnetically ordered vortices form a strongly coupled “vortex molecule” that behaves as a
single object and has only one eigenmode.
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I. INTRODUCTION

Vortices in long Josephson junctionssLJJsd usually carry
a single magnetic flux quantumF0 and therefore are often
called fluxons. The study of dynamics of fluxons has been
attracting a lot of attention during the last 40 years because
of their interesting nonlinear nature1–3 as well as because of
potential applications.4,5

Recently it was shown that one can fabricate so-called
0-p LJJs, i.e., LJJs consisting of alternating regions with
positives0 partd and negativesp partd critical currents. Such
junctions can be fabricated using superconductors with an
anisotropic order parameter that changes sign depending on
the direction in k space se.g., d-wave order parameter
symmetryd6,7 or with an oscillating order parameterse.g.,
with a ferromagnetic barrierd.8–10 It was shown that at the
boundary between a 0 and ap part a new type of vortex
carrying only half of the flux quantum may exist.11–13 Such
vortices snaturally called semifluxons14d were observed ex-
perimentally in several types of 0-p LJJs.15–18 They may
appear spontaneously and correspond to the ground state of
the system.19–21

The dynamics of the Josephson phase in a LJJ is de-
scribed by a perturbed sine-Gordon equation. For the case of
the 0-p LJJ this equation is slightly modified14 and includes
the functionusxd which is equal to zero all along the 0 parts
and is equal top all along thep parts. The functionusxd as
well as the Josephson phasefsx,td, which is a solution of the
sine-Gordon equation, is ap discontinuous function ofx at
the 0-p boundaries. We sometimes call the 0-p boundaries
discontinuity points.

Recently, a LJJ geometry which allows us to createarbi-
trary discontinuities was suggested and successfully tested.22

In this LJJ a pair of closely situated current injectors creates
an arbitraryk discontinuitysnot only k= ±pd of the Joseph-
son phase, withk being proportional to the current passing
through the injectors.22,23 Since the Josephson phase is de-

fined modulo 2p, without losing generality, below we con-
sider only 0økø2p.

Similar to the case of ap discontinuity, the presence of an
arbitrary k discontinuity results in the formation of a frac-
tional vortex pinned at it.24 In the following, thetopological
chargeof a single vortex is defined to be a conserved quan-
tity under the boundary condition imposed on the phase
msxd, and it is equal to the difference between the phase at
x= +` and x=−`. We use the wordk vortex to denote a
vortex with the topological charge equal tok. Given a dis-
continuity −k, the topological charge of the vortex should be
such that its sum with the discontinuity is equal to 2pn sn is
an integerd, otherwise the energy of the system diverges.25 In
fact one can construct not an infinite number but only four
such vortices corresponding ton=−2,−1,0,1, namely,
a sk−4pd vortex, a sk−2pd vortex, a k vortex, and a
sk+2pd vortex.25

It is shown below that only two of these vortices are
stable: a so-calleddirect +k vortex and acomplementary
fk−sgnskd2pg vortex. By definition the complementary of a
complementary vortex gives again adirect +k vortex. The
only exception is the casek=2pn, for which there exist three
stable solutions: a +2p vortex sfluxond, the flat phase state
szero phased, and a −2p vortex santifluxond. The comple-
mentary “vortices” for both ±2p vortices are a constant
phase state, and, vice versa, for the constant phase state the
complementary vortex is either a fluxon or an antifluxon. In
the majority of situations this can be distinguished due to the
conservation of the topological charge.

Since, forkÞ2pn, k vortices are pinned, they might have
an eigenmodecorresponding to the oscillation of the flux
around the discontinuity point. Imagine that we apply a small
uniform bias current through a LJJ containing a fractional
vortex. The current creates a drivingsLorentzd force which
bends the vortex. The driving force is compensated by the
elasticsreturnd force which arises due to vortex deformation.
If we now suddenly remove the bias current, the elastic force
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makes the vortex oscillate around the equilibrium shape with
the eigenfrequencyv0, provided the damping is low enough
fas in artificial 0-k LJJssRef. 22dg.

We note that an integer fluxondoes not haveany non-
trivial eigenfrequencies.26 Once deformed or perturbed, a
fluxon recovers its shape exponentially without any internal
oscillations. When the bias current is applied, the fluxon
starts moving in a certain directionswhich depends on the
polarity of the fluxon and the bias currentd which formally
corresponds tov0=0 sdc motiond.

In this paper we investigate the stability and the eigen-
modes of the vortex states formed in a LJJ with one or twok
discontinuities. The study of arbitrary fractional vortices
srather than semifluxonsd is interesting because one may use
k as a control parameter in qubitsssuch as a magnetic field in
flux qubitsd or one can even construct a fractional vortex
crystal in which energy bands can be controlledduring ex-
perimentsby changingk.27 The analysis of eigenmodes for
arbitrary k is not much more complicated than for fixedk,
but it allows us to cover also possible future types of Joseph-
son junctions, e.g.,p /2 junctions, which have already been
discussed theoretically by some authors.28,29

The paper is organized as follows. In Sec. II we present an
analytical derivation of the eigenfrequency of a singlek vor-
tex and compare the obtained results with the results of di-
rect numerical simulations of the sine-Gordon equation.
Then we study numerically two coupledk vortices in Sec.
III. The eigenfrequency in some limiting cases is derived
analytically. Section IV concludes this work.

II. EIGENFREQUENCY OF A SINGLE VORTEX

For our study, it is more convenient to use the continuous
Josephson phasemsx,td defined asmsx,td=fsx,td−usxd.14 A
perturbed sine-Gordon equation which describes the dynam-
ics of the Josephson phase in a 0-k LJJ can be written in
terms ofmsx,td as14

mxx − mtt − sinfm + usxdg = amt − gsxd, s1d

with

usxd = H0, x , 0,

− k, x . 0
s2d

for the case of a single discontinuity atx=0. Without loss of
generality, we assume 0økø2p. The Josephson phase
msx,td is a continuous function of the coordinatex and time
t, which are normalized to the Josephson penetration depth
lJ and to the inverse plasma frequencyvp

−1, respectively;
a=1/Îbc is the dimensionless damping parameter,bc is the
McCumber-Stewart parameter, andgsxd= jsxd / jc is the bias
current densityjsxd normalized to the critical current density
jc. The subscriptsx and t denote corresponding partial de-
rivatives with respect tox and t, accordingly.

It is natural to have the boundary conditions atx=0 given
by

limx↑0msxd = limx↓0msxd,

limx↑0mxsxd = limx↓0mxsxd. s3d

The zero-bias static solution of Eq.s1d corresponding to a
direct k vortex is given by

mksxd = Hm−
ksxd = fsxd, x , 0,

m+
ksxd = k − fs− xd, x . 0,

s4d

with

fsxd = 4 tan−1esx+x0d.

The constantx0 still has to be determined.
Imposing the boundary conditionss3d to mksxd, we end up

with the expression forx0,

x0 = ln tan
k

8
. s5d

Next we will calculate the eigenfrequency ofmk. The cal-
culation we present in this paper follows the one from Ref.
30. First we linearize Eq.s1d about the solutionmk. We
write msx,td=mk+usx,td and substitute the spectral ansatz
u=eltnsxd into Eq. s1d. Retaining the terms linear inu gives
the following eigenvalue problem:

nxx − fl2 + al + cossmk + udgn = 0. s6d

Note thatg is assumed to be zero here.
If we define

n = Hn−, x , 0,

n+, x . 0,

then atx=0 the boundary conditions are

n−s0d = n+s0d, s7ad

]xn
−s0d = ]xn

+s0d. s7bd

From Eq.s6d, we know thatn± satisfies the equation

nxx
± − sl2 + al + cosffs7xdgdn± = 0.

The eigenfrequency corresponds to a solutionn± that tends to
0 asx→ ±`. According to Refs. 31 and 32, the above eigen-
value problem, if considered on the whole real line, has two
independent solutions. We will use these known solutions to
construct the eigenfunction and find the corresponding eigen-
value for our problem, i.e., including the discontinuity. The
solution that corresponds to the eigenfunction is given by

n = Hn−sxd = eLsx+x0dftanhsx + x0d − Lg,

n+sxd = n−s− xd,
s8d

where

L = Îl2 + al + 1. s9d

The condition thatn±→0 asx→ ±` requires that the real
part of lambda, ResLd, is positive. The eigenvaluel is cal-
culated fromL by determining thatn has to satisfy Eqs.s7ad
and s7bd.

From Eq.s7bd we obtain that

nx
+s0d − nx

−s0d = 2eLyfLstanhy − Ld + sech2 ygx=0 = 0,
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y = ± x + x0,

from which we obtain

L =
1

2
stanhx0 ± Îtanh2 x0 + 4 sech2 x0d.

Whena=0, the eigenfrequencyv0 is given by

l = iv0 = ±
i

2
Î4 − stanhx0 + Îtanh2x0 + 4sech2x0d2,

s10d

with x0 given by Eq.s5d. This can be further simplified to
give

v0skd =Î1

2
cos

k

4
Scos

k

4
+Î4 – 3 cos2

k

4
D . s11d

The plot of this eigenfrequency as a function ofk is
shown in Fig. 1. For the particular case of a semifluxon the
eigenfrequency isv0spd=s1/2dÎ1+Î5<0.899. Note that
v0skd=v0s−kd because thek vortex and the −k vortex have
the same eigenfrequencies.

The above result is the only eigenvalue of a direct frac-
tional vortex. For a rigorous proof, we refer to Ref. 31. Be-
low we will show that there is no eigenfunction with at least
one zero at finitex.

According to the Sturm-Liouville theorem, if Eq.s6d has
several eigenvaluesE=l2+al=L2−1 given by, e.g.,
E1,E2, . . . ,En, then we can arrange them such that
E1,E2, ¯ ,En. The eigenfunction corresponding toEn
will have sn−1d zeros.

Next, based on the first line of Eq.s8d, we construct an
antisymmetric solution withn+sxd=−n−s−xd. With this prop-
erty of n, n=0 atx=0 and Eq.s7d can be fulfilled if and only
if

ns0d = 0 or L = tanhsx0d = − cosSk

4
D ø 0. s12d

We see that there is no solutionL with a positive real part,
which is necessary to letn±→0 asx→ ±`. Only at k=2p

do we have an eigenvalue attached to the edge of the con-
tinuous spectrum, and the corresponding eigenfunction is
bounded, but not exponentially decaying.31 At this value of
k, the solitary wave we consider is nothing else but an inte-
ger fluxon.

We have also checked our analytical results numerically
using STKJJ software.33 We simulated a rather longL=20lJ
Josephson junction with ak discontinuity at its centerx=0.
To obtain the eigenfrequency, we applied a small bias current
which pulls thek vortex in a certain direction and waited to
arrive to a stable stationary state. Then we abruptly de-
creased the bias current back to zero and observed the
mtstd~Vstd at x=1, whereVstd is the normalized voltage. The
plot Vstd exhibits decaying oscillations. Making a Fourier
transform, we find a single dominant frequency which is
considered as an eigenfrequency of thek vortex. We re-
peated this procedure for different positionsx and different
small initial bias currents, but the results did not change
within 1% of accuracy. Repeating this numerical experiment
for severalk in the range from 0 to 2p we obtained the
values of eigenfrequencies which are shown as filled sym-
bols in Fig. 1, demonstrating perfect agreement between the
analytics and the direct simulations. The eigenfrequency of
the complementarysk−2pd vortex can be obtained by using
2p−k instead ofk in Eq. s11d.

Note that Eq.s10d is also valid forsk+2pnd vortices with
the topological charge larger than 2p. However, when
uk+2pnu .4p the static solution cannot be constructed.25

Therefore we consider here only the casesn=1 andn=−2.
The zero bias static solution of Eq.s1d corresponding to a
fractional s2pn+kd vortex is given by

mksxd = Hm−
ksxd = fsxd, x , 0,

m+
ksxd = 2pn + k − fs− xd, x . 0,

s13d

with

fsxd = 4 tan−1esx+xnd,

wherexn is determined by matching the boundary conditions
s7d as described above. Thus,

xn = ln tanSpn

4
+

k

8
D . s14d

The eigenfrequency of this state is still given bys10d with x0
being substituted byxn. One can check by direct substitution
of s14d into s10d that Resld.0 for n= +1 or n=−2, i.e., the
sk+2pd andsk−4pd vortices are unstable and, therefore, not
observable. A damping cannot stabilize these “heavy” vorti-
ces.

If one thinks about the dispersion relationvskd=Î1+k2 of
a LJJ, the dispersion relation has a gapsplasma gapd from
v=0 to v=1. In the presence of a vortex, there is an addi-
tional discrete levelseigenfrequencyd situated within the
plasma gap and corresponding tok=0 slocalized stated. This
level is somewhat similar to impurity levels in semiconduc-
tors. The position of this “impurity” level can be tuned elec-
tronically by changingk.

FIG. 1. Plot of the normalized eigenfrequencyv0 of a singlek
vortex versusk given by Eq.s11d scontinuous lined and its approxi-
mations for k→0: v0skd<1−k4/512 sdashed lined; and for k
→2p: v0skd<1/2Î2p−k sdotted lined. Symbols show the values
of eigenfrequency obtained by the direct numerical simulation of
Eq. s1d.
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III. TWO COUPLED VORTICES

Now consider twok discontinuitiess0,k,2pd in an
infinite LJJ at a distancea from each other sat
x= ±a/2d. If both discontinuities have the same sign
of k se.g., +kd, there are two possible irreducible vortex con-
figurations: the symmetric ferromagneticsFMd state
�� =s−k ,−kd and the asymmetric antiferromagneticsAFMd
state�� =s−k ,2p−kd.25 If the discontinuities have different
signs, e.g., +k and −k, there are two other irreducible vortex
states: the asymmetric FM state�� =s2p−k ,kd and the sym-
metric AFM state�� =s−k , +kd.25 The details about ground
states are presented in Ref. 25. Below we consider eigen-
modes of these ground states.

Note that in the notations�� �� the direction of the arrow
shows the polarity of the vortexsup or downd, while the
harpoon on the left or on the right side indicates whether the
vortex is direct or complementary. The notations are summa-
rized in Table I.

In a system of two weakly interacting vortices the eigen-
frequencyv0 splits into two different frequencies:v+, corre-
sponding to the in-phase oscillations of both fractional vor-
tices, andv−, corresponding to the antiphase oscillations. By
definition adopted here the “in-phase” or “anti-phase” means
that themagnetic fieldssrather than Josephson phasesd of two
vortices oscillate in-phase or antiphase. According to the
Sturm-Liouville theorem the eigenfunctionsnsxd soscilla-
tions of the Josephson phased corresponding to the first- and
the second-lowest eigenfrequencies have no zeros and one
zero, respectively. In turn, the oscillations of the magnetic
field nxsxd have one or two zeros. If one draws suchnxsxd
deviations qualitatively on the top of the magnetic field pro-
files mxsxd, corresponding to various ground states, one can
conclude which eigenfrequency corresponds to in-phase and
which to antiphase oscillations.

In general, it is quite difficult to calculate the splitting of
the eigenfrequency analytically,34 so below we calculate the
frequenciesv±skd for different values ofa numerically.

To obtain the data presented below we used a technique
similar to the one mentioned in Sec. II. To excite in-phase
oscillations we applied a small uniform bias current. To ex-
cite antiphase oscillations the bias currentgsxd was applied
so thatgsxd.0 for x.0 and gsxd,0 for x,0. We used
several differentgsxd, e.g.,gsxd~x or gsxd~sgnsxd, and the
results were generally the same.

Unfortunately this technique is very slow, requires a lot of
manual work, and is not very precise. Therefore, we imple-
mented another technique for calculating the eigenvalues in
STKJJ.33 When the numerical solution decays to a stable sta-
tionary one, we analyze its stability by introducing an arbi-
trary perturbationd to the found solutionm0, i.e., we substi-
tute m=m0+d into s1d and obtain a partial differential
equationsPDEd for d. Then we discretize the obtained PDE
and arrive to a system ofN coupled second-order ordinary
differential equationssODEsd. Typically for a LJJ of length
L=40lJ, we use the spatial discretization stepDx=0.02lJ
which gives usN=L /Dx=2000. This system can, in turn, be
reduced to a system of 2N ODEs of the first order, which can
be written in a matrix form as

ḋ = Ad, s15d

where d is a vector with 2N elements andA is a constant
matrix constructed usingm0. The eigenvalues of this matrix
can be found using standard routines.35 Among all 2N com-
plex eigenvalues we chose two eigenvalues with the smallest
imaginary partsseigenfrequenciesd. The other eigenvalues
had uImsldu.1, i.e., belonged to the plasma band. The real
parts of all eigenvalues were negativesand<−a /2d, indicat-
ing the stability of the solution. In this way, we were able to
calculate eigenfrequencies numerically and with high accu-
racy for hundreds ofk values in an automatic fashion. The
results produced by both methods were compared at a num-
ber of selected points and were essentially the same.

A. Symmetric AFM state

First, let us consider a LJJ with twos−k , +kd discontinui-
ties and withs+k ,−kd vortices�� pinned at them. Since this
symmetric AFM state is the most natural state of the system,
in simulations we were simply sweepingk from 0 to 2p
starting fromm=0 solution atk=0, and the symmetric AFM
state was formed automatically. The numerically obtained
eigenfrequenciesv±skd for different distancesa between
vortices are shown in Fig. 2.

It was shown25 that there is a critical value of discontinu-
ity kc

��sad sp,kc
��,2pd at which the ground state��

switches to the state�� sk−2p and 2p−k vortices pinned at
−k and +k discontinuitiesd. The inverse function forkc

��sad is
denoted asac

��skd.25

When a.ac
��spd=ac=p /2, see Fig. 2sad, the splitting of

the eigenfrequency is clearly visible withv−,v0,v+. The
eigenfrequenciesv± are calculated for 0,k,kc

��sad. At the
critical valuekc

��sad, the state�� becomes unstable. As a sign
of this instability one can see thatv− sharply approaches 0 as
k→kc.

The eigenfrequency of the complementary statev±
��skd is

given by

v±
��skd = v±

��s2p − kd, k . 2p − kc.

Note, that in the interval ofk from 2p−kc
�� to kc

�� both�� and
�� states are stable, but have different energy.25 Hence, we
have a bistability phenomenon.

Whena,ac, see Fig. 2sbd, the transition from the state��
to the state�� is smooth and without hysteresis and happens

TABLE I. Notations for different types of vortices.

Symbol Discontinuity Topological charge Name

� −k +k direct

� +k −k direct

� +k 2p−k complementary

� −k k−2p complementary

↑ ±p +p semifluxon

↓ ±p −p antisemifluxon

⇑ 0 +2p fluxon

⇓ 0 −2p antifluxon

GOLDOBIN et al. PHYSICAL REVIEW B 71, 104518s2005d

104518-4



at k=p via the flat-phase state.25 Note that fora,ac the
frequency v+=1, i.e., belongs to the plasma band. This
means that strongly coupled vortices behave like a single
object with a single eigenfrequencyv−. When a→ac,
v−spd→0, corresponding to the instability of the flat-phase
solution in favor of the AFM state.20,21,36For a→0, v−spd
→1 that corresponds to the absence of the eigenmodes when
discontinuities cancel each other and one ends up with a
conventional LJJ. In particular, fork=p and a,ac sflat-
phase stated one can calculate analytically the eigenvalue as a
function of the facet lengtha. Note that the linearized equa-
tion describing the eigenvalue problem is nothing else but
the Schrödinger equation with a potential well.36 Some
simple algebraic calculations give

l2 sinsaÎ1 − l2d + Î1 − l4 cossaÎ1 − l2d = 0. s16d

Writing l= iv−, we will obtainv−spd as the first root of Eq.
s16d. One can show as well that for 0,a,ac, v−spd is the
only eigenvalue of the system in accordance with the re-
ported numerical results above.

B. Symmetric FM state

Now we consider a LJJ with twos+k , +kd discontinuities
with s2p−k ,2p−kd vortices pinned at them, i.e., the��
state. The same applies to the�� state by substitution
k→2p−k. In simulations we were starting from the two

semifluxon states↑↑ ; �� at k=p and were sweepingk to-
wards 0 or towards 2p. In a symmetric FM state the in-phase
mode frequencyv+ is smaller than the antiphase mode fre-
quencyv−, namelyv+,v0 andv−.v0. Below we calculate
the frequenciesv± for kcsad,k,2p.

The quantitykc
��sad s0,kc

��,pd is the critical value of
discontinuity at which the ground state�� ceases to exist
sbecomes unstabled and the system switches to another
state, e.g.,��.25 The values ofv±skd calculated numerically
are shown in Fig. 3. Note that the lower eigenfrequency
v+skd→0 whenk→kc

��.
In the limit of a→0, one can get an analytic expression of

the eigenvalue as a function ofk. This is caused by the fact
that in the limit a→0, the two fractional vortices form a
single vortex with a double topological charge. Hence, in this
limit the largest eigenfrequency is given byv−=v0s2kd or,
following the choice of vortices presented in Fig. 3,v−
=v0s4p−2kd, with v0 given by Eq.s11d . In the case ofk
=p, v−=0 in agreement with the fact that the two semiflux-
ons form an integer fluxon.

Another property that is known in the limit ofa→0 is
that there is no eigenvalue other thanv− ssee the calculations
presented in Sec. IId. The internal modev+ enters the plas-
mon band in this limit, leavingv+spd=1.

C. Asymmetric AFM state

Now we consider two vortices with topological charges
−k and 2p−k.0 in the AFM state�� admitted bys+k ,
+kd discontinuities. In simulations we were starting from the
state↓↑ ; �� at k=p and were sweepingk towards 0 or
towards 2p. The calculated frequenciesv± for 0,k,2p
are shown in Fig. 4.

Note that although this state is asymmetricsat least for
largead in terms of magnetic flux carried by the vortices, its

FIG. 2. Eigenfrequenciesv−skd ssolid lined and v+skd sdashed
lined for the symmetric AFM state calculated numerically for dif-
ferent distancesa between the vortices in the limit ofsad weak sa
.acd coupling andsbd strong sa,acd coupling. For the casea
.ac only the state�� is shown. Fora,ac both states�� sk,pd
and�� sk.pd are shown. Dashed-dotted lines show eigenfrequen-
cies for a single direct or complementary vortex in a LJJ with one
discontinuity.

FIG. 3. Eigenfrequenciesv−skd ssolid linesd andv+skd sdashed
linesd for the symmetric FM state�� calculated numerically for
different distancesa between the vortices. The dotted lines show the
critical values ofkc for a givena at which the state�� ceases to
exist. Dash-dotted lines show eigenfrequencies for a single direct or
complementary vortex in a LJJ with one discontinuity.
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v±skd dependence is symmetric with respect to thek=p
axis, i.e.,v±

��skd=v±
��skd. This state is stable for 0,k,2p.

When the vortices are weakly coupledfa.ac
��skd

=ac
��skd, Fig. 4sadg we indeed have an asymmetric state25 and

splitting of eigenfrequencies withv−,v0,v+. In the oppo-
site limit when the coupling is strongfa,ac

��skd, Fig. 4sbdg,
a newcollective stateis formed.25 This state has only one
eigenfrequencyv−, while v+=1 and belongs to the plasma
band.

The crossover distanceac
��skd which separates an asym-

metric state from a collective state is a weak function ofk as
can be seen in Fig. 4. The crossover distanceac

��skd grows
from ac

��spd=p /2<1.57 to ac
��s0d=ac

��s2pd=2 lns1+Î2d
<1.7628.25 Thus, forp /2,a,2 lns1+Î2d the asymmetric
flux state exists not in the whole interval of 0,k,2p, but
only in some smaller subinterval which includesk=p. In the
same time the collective state nucleates aroundk=0 and
k=2p. At aøp /2 the island of the asymmetric state van-
ishes and the collective state exists in the whole interval of
0,k,2p. Vice versa, ataù2 lns1+Î2d the asymmetric
state exists for all 0,k,2p.

Since fork=p the symmetric and asymmetric AFM states
are equivalent to the flat-phase state, the same limiting be-
havior which was discussed at the end of Sec. III A applies
fsee also Eq.s16d and c.f. Fig. 2g.

It is interesting to follow the smallest eigenfrequency
v−skd at k=p in Fig. 4. In Fig. 4sad, decreasing the facet

length a gives a smallerv−spd until the eigenfrequency
reaches 0 ata=ac, which corresponds to the transition to the
flat-phase state. Aftera passesac, in the flat-phase state,
further decrease of the facet length increasesv−spd.

For arbitraryk anda→0 the discontinuitiess+k , +kd be-
come a single discontinuity +2k. This case is similar to the
limiting case we presented in Sec. III B, but the topological
charge of the fractional vortex is now 2p−2k. Hence, for
a→0 the eigenfrequency of the collective state approaches

v−skd = v0s2p − 2kd, s17d

with v0 defined by Eq.s11d fsee the line marked as 0.0 in
Fig. 4sbdg.

D. Asymmetric FM state

Finally, we consider two vortices +k and 2p−k.0 in the
FM state�� admitted by two discontinuities −k and +k. In
simulations we were starting from the state↑↑ ; �� at k
=p and were sweepingk towards 0 or towards 2p. In this
state the in-phase mode frequencyv+,v0,v−. The calcu-
lated frequenciesv± are shown in Fig. 5. Again, the plot is
symmetric with respect tok=p, i.e., v±

��skd=v±
��skd.

The asymmetric FM state has no crossovers and at
a→0 turns itself into a 2p vortex.

One can also recognize that fora!1, s−p , +pd disconti-
nuities in a Josephson junction behave like a microresistor to
an integer 2p fluxon fsee, e.g., Eq.s1.2d of Ref. 37g. In the
limit a→0, the microresistor strength« from Ref. 37 is equal
to 2a.

IV. CONCLUSIONS

We have shown that an arbitrary fractional vortex has an
eigenmode that corresponds to the oscillations of the vortex
around the phase discontinuity point where it is pinned. We
have derived the eigenfrequency for a direct vortex and a

FIG. 4. Eigenfrequenciesv−skd ssolid lined and v+skd sdashed
lined for the asymmetric AFM state�� calculated numerically for
different distancesa between vortices. Insad and sbd the coupling
between the two vortices is weak and strong, respectively. The line
marked as 0.0 insbd shows the behavior of the eigenfrequency in
the limit a→0 calculated analytically using Eq.s17d. Dashed-
dotted lines show eigenfrequencies for a single direct or comple-
mentary vortex in a LJJ with one discontinuity.

FIG. 5. Eigenfrequenciesv−skd ssolid lined and v+skd sdashed
lined for the asymmetric FM state�� calculated numerically for
different distancesa between vortices. Dashed-dotted lines show
eigenfrequencies for a single direct or complementary vortex in a
LJJ with one discontinuity.
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complementary vortex as a function of the topological charge
smagnetic fluxd carried by the vortex. The eigenfrequency
corresponds to a discrete “impurity” energy level within the
plasma gap.

For the case of two coupled vortices we showed that the
eigenfrequency splits into two modes that correspond to the
in-phase and antiphase oscillations of the vortices. Both of
these eigenfrequencies were calculated numerically for each
ground state. Fora,ac, two AFM ground states form a
strongly coupled “vortex molecule” which behaves as a
single object and has only one eigenmode.

The obtained results may be quite important for the study
of vortex dynamics in novel Josephson systems, e.g., based
on SFS junctions ord-wave superconductors. The knowl-
edge of eigenmodes is a key element in designing classical
or quantum devices based on fractional vortices. In the clas-
sical domain this may help to avoid parasitic resonance phe-
nomena. In the quantum domain, the eigenfrequency deter-
mines the characteristic frequency of attempts in, e.g., the
quantum tunneling and/or flipping processes.

To detect eigenmodes experimentally one may use spec-
troscopic methods or resonant excitation. To use spectros-
copy one should excite the eigenmode by applying an ac bias
current or sending an electromagnetic wave along the LJJ
from the edge. Then one should measure, e.g., the critical
current as a function of the external excitation frequencyv.
The ac bias current can be applied by coupling the junction
bias leads to a microwave antennasand avoiding the induc-
tion of the microwave signal in all other parts, e.g., injectorsd
or by embedding the junction into a resonator. If we choose
to send the microwaves from the edge, the length of the
junction should not be very large and the frequency should
not be very low, so that the condition

maxFa,Î1 −S v

vp
D2G L

lJ
, 1

is satisfied, i.e., the microwave signal should not decay sub-
stantially while it propagates from the edge to the middle of
the junction where the vortexsmoleculed is created. Spectro-
scopic methods may help to distinguish between a directk
vortex and its complementarys2p−kd vortex by measuring
the eigenfrequencysexceptk<pd.

Another possibility to detect an eigenmode is to create a
fractional vortex in an annular LJJ and let the integer fluxon,
which can be injected if needed,23,38 run around the LJJ,
periodically colliding with the fractional vortex. If the vor-
tex’s eigenfrequency is a multiple of the collision frequency,
one should see resonances on the current-voltage character-
istic. A study of a fluxon-semifluxon interaction in an annular
LJJ was recently reported,39 but the resonances, which ap-
pear due to the excitation of the eigenmodes, were not inves-
tigated in detail.

For future research, it would be interesting to study an
infinite array of fractional vorticesfone-dimensional vortex
crystalg which has only optical branches in the dispersion
relation because of the vortex pinning. The energy bands of
such an array can be tuned by changingk or the bias current
g during the experiment.27

ACKNOWLEDGMENTS

We thank B. Malomed, A. Ustinov, A. Doelman, and G.
Derks for fruitful discussions and suggestions. This work
was supported by the Deutsche Forschungsgemeinschaft
sProject No. GO-1106/1d, by the ESF programs “Vortex” and
“Pi-shift” and by the Royal Netherlands Academy of Arts
and SciencessKNAW d.

*Electronic address: gold@uni-tuebingen.de
†Electronic address: h.susanto@math.utwente.nl
1A. Barone and G. Paterno,Physics and Application of the Joseph-

son EffectsJohn Wiley and Sons, New York, 1982d.
2K. K. Likharev, Dynamics of Josephson Junctions and Circuits

sGordon and Breach, Philadelphia, 1986d.
3A. V. Ustinov, Physica D123, 315 s1998d.
4V. P. Koshelets, S. V. Shitov, L. V. Filippenko, V. L. Vaks, J.

Mygind, A. M. Baryshev, W. Luinge, and N. Whyborn, Rev. Sci.
Instrum. 71, 289 s2000d.

5A. Kemp, A. Wallraff, and A. V. Ustinov, Phys. Status Solidi B
233, 472 s2002d.

6C. C. Tsuei and J. R. Kirtley, Rev. Mod. Phys.72, 969 s2000d.
7H.-J. H. Smilde, Ariando, D. H. A. Blank, G. J. Gerritsma, H.

Hilgenkamp, and H. Rogalla, Phys. Rev. Lett.88, 057004
s2002d.

8L. N. Bulaevski�, V. V. Kuzi�, and A. A. Sobyanin, Pis’ma Zh.
Eksp. Teor. Fiz.25, 314 s1977d fJETP Lett. 25, 290 s1977dg .

9V. V. Ryazanov, V. A. Oboznov, A. Y. Rusanov, A. V. Veretenni-
kov, A. A. Golubov, and J. Aarts, Phys. Rev. Lett.86, 2427
s2001d.

10T. Kontos, M. Aprili, J. Lesueur, F. Genêt, B. Stephanidis, and R.

Boursier, Phys. Rev. Lett.89, 137007s2002d.
11L. N. Bulaevskii, V. V. Kuzii, and A. A. Sobyanin, Solid State

Commun. 25, 1053s1978d.
12J. H. Xu, J. H. Miller, and C. S. Ting, Phys. Rev. B51, 11958

s1995d.
13A. B. Kuklov, V. S. Boyko, and J. Malinsky, Phys. Rev. B51,

11965s1995d; 55, 11878sEd s1997d.
14E. Goldobin, D. Koelle, and R. Kleiner, Phys. Rev. B66,

100508sRd s2002d.
15J. R. Kirtley, C. C. Tsuei, M. Rupp, J. Z. Sun, L. S. Yu-Jahnes, A.

Gupta, M. B. Ketchen, K. A. Moler, and M. Bhushan, Phys.
Rev. Lett. 76, 1336s1996d.

16J. R. Kirtley, C. C. Tsuei, and K. A. Moler, Science285, 1373
s1999d.

17A. Sugimoto, T. Yamaguchi, and I. Iguchi, Physica C367, 28
s2002d.

18H. Hilgenkamp, Ariando, H.-J. H. Smilde, D. H. A. Blank, G.
Rijnders, H. Rogalla, J. R. Kirtley, and C. C. Tsuei, Nature
sLondond 422, 50 s2003d.

19V. G. Kogan, J. R. Clem, and J. R. Kirtley, Phys. Rev. B61, 9122
s2000d.

20E. Goldobin, D. Koelle, and R. Kleiner, Phys. Rev. B67, 224515

OSCILLATORY EIGENMODES AND STABILITY OF ONE… PHYSICAL REVIEW B 71, 104518s2005d

104518-7



s2003d.
21A. Zenchuk and E. Goldobin, Phys. Rev. B69, 024515s2004d.
22E. Goldobin, A. Sterck, T. Gaber, D. Koelle, and R. Kleiner,

Phys. Rev. Lett.92, 057005s2004d.
23B. A. Malomed and A. V. Ustinov, Phys. Rev. B69, 064502

s2004d.
24Here we consider fractional vortices which appear as a result of

the phase discontinuitysRefs. 14 and 25d. Other types of arbi-
trary fractional vortices may appear in a LJJ with a strong sec-
ond harmonic in the current-phase relation, which can be present
either intrinsically or due to a faceted grain boundarysfrequently
alternating regions of size!lJ of negative and positive critical
currentd. In contrast to such “splintered” vorticessRefs. 40–42d
which are not pinned, the fractional vortices discussed here are
pinned at ak discontinuity. The mixture of both possibilities,
i.e., a fractional vortex at the boundary between aw region with
the second harmonic and a 0 region without the second har-
monic is also possiblesRef. 42d.

25E. Goldobin, D. Koelle, and R. Kleiner, Phys. Rev. B70, 174519
s2004d.

26A fluxon has two trivial eigenvalues, i.e., at zero frequencyswith
multiplicity twod and at the edges of the plasma bandsRef. 31d.
The zero eigenvalue is due to the translational invariance. The
eigenvalue at the edges of the plasma band bifurcates and be-
comes an internal mode in the presence of a perturbative term in
the sine-Gordon equation.

27H. Susanto, E. Goldobin, D. Koelle, R. Kleiner, and S. A. V. Gils,
cond-mat/0412295sunpublishedd.

28A. Y. Zyuzin, B. Spivak, and M. Hruška, Europhys. Lett.62, 97
s2003d.

29N. Stefanakis, cond-mat/0208473sunpublishedd.
30G. Derks, A. Doelman, S. A. van Gils, and H. Susanto, SIAM J.

Appl. Dyn. Syst.sto be publishedd.
31G. Derks, A. Doelman, S. A. van Gils, and T. P. P. Visser, Physica

D 180, 40 s2003d.
32E. Mann, J. Phys. A30, 1227s1997d.
33E. Goldobin, URL: http://www.geocities.com/SiliconValley/

Heights/7318/StkJJ.htm
34The splitting of an eigenvalue out of the edges of the phonon

band cannot be calculated using the formal expansion method.
This is an indication of an exponentially small splitting of the
eigenvalue.

35W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery, Numerical Recipes in C++, 2nd ed.sCambridge Univer-
sity Press, 2002d.

36T. Kato and M. Imada, J. Phys. Soc. Jpn.66, 1445s1997d.
37T. Kato and M. Imada, J. Phys. Soc. Jpn.65, 2963s1996d.
38A. V. Ustinov, Appl. Phys. Lett.80, 3153s2002d.
39E. Goldobin, N. Stefanakis, D. Koelle, and R. Kleiner, Phys. Rev.

B 70, 094520s2004d.
40R. G. Mints, I. Papiashvili, J. R. Kirtley, H. Hilgenkamp, G.

Hammerl, and J. Mannhart, Phys. Rev. Lett.89, 067004s2002d.
41R. G. Mints and I. Papiashvili, Supercond. Sci. Technol.15, 307

s2002d.
42A. Buzdin and A. E. Koshelev, Phys. Rev. B67, 220504s2003d.

GOLDOBIN et al. PHYSICAL REVIEW B 71, 104518s2005d

104518-8


