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We consider the role of the Ward identity in dealing with the transport properties of an interacting system
forming ad-wave modulated charge-density wave or staggered flux phase. In particular, we address this issue
from the point of view of the restricted optical-conductivity sum rule. Our aim is to provide a controlled
approximation for the current-current correlation function which allows us also to determine analytically the
corresponding sum rule. By analyzing the role of the vertex functions in both the microscopic interacting
model and in the effective mean-field Hamiltonian, we propose a nonstandard low-energy sum-rule for this
system. We also discuss the possible applicability of these results for the description of cuprate superconduct-
ors in the pseudogap regime.
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I. INTRODUCTION

In the last years a quite important re-examination of the
optical conductivity of high-Tc superconductorssHTSCd has
been performed, due to the improved experimental resolu-
tion. Despite the variety of features observed in the different
families of cuprates, when the integral up to large frequen-
cies of the optical spectra is concerned a common behavior
can be found.1–6 This result is particularly interesting, be-
cause it would allow us to distinguish between different the-
oretical scenarios for HTSC, in particular for the pseudogap
phase observed in underdoped compounds. The optical spec-
tral weight is defined as the integral of the optical conduc-
tivity in a given directioni =x,y,z,

WisvM,Td =E
−vM

vM

Resiisv,Tddv, s1.1d

and can be analyzed as a function of both the temperatureT
and the cutoff frequencyvM. According to this definition, the
weight Wi includes also the condensate peak atv=0 which
develops in the superconductingsSCd state belowTc. De-
pending on the cutoffvM the sum rules1.1d acquires differ-
ent meanings. When all the optical transitions are taken into
account, Eq.s1.1d expresses simply the so-called full f-sum
rule,7–9 relating the optical spectral weight to the total carrier
densityn,

E
−`

`

Ressvddv =
pne2

m
, s1.2d

wherem is the bare electronic mass. However, it is usually
assumed that whenvM is of the order of the plasma fre-
quency only intraband optical transitions relative to the low-
est conduction band«k contribute toWsTd, so that one ob-
tains therestrictedor partial sum rule,10–12which relatesWi
to the average value of the diamagnetic termtii fsee Eq.
s2.10d belowg,

WisvP,Td ; WsTd =
pe2

V
ktiil =

pe2

VN
o
k,s

]2«k

]ki
2 nk,s, s1.3d

where nk,s is the momentum occupation number,V is the
unit-cell volume,N is the number of unit cells,e is the elec-
tron charge, and we set"=c=1. In the two-dimensionals2Dd
caseV=a2, and in the quasi-2D caseV=a2s, wherea is the
lattice spacing ands is the distance between the layers. In the
following we will consider mainly in-plane processes and
isotropic systems, whereWx=Wy=W.

The main difference between the restricted and full
sum rule is that whileWsvM→` ,Td is a constant,WsTd
given by Eq.s1.3d is in general a function of temperature,
which provides information about the interactions between
the electrons in the system. In particular, in a 2D lattice
model with a nearest-neighbors tight-binding dispersion«k
=−2tscoskxa+coskyad the spectral weight Eq.s1.3d is pro-
portional to the mean kinetic energy of the system,WsTd
=−spe2/VdskKl /2d. In the absence of interactionsnks

= fsjkd, where jk =«k −m, m is the chemical potential, and
fsxd is the Fermi function. In this case the main temperature
dependence of the spectral weights1.3d comes from the tem-
perature smearing of the Fermi function, and can be easily
evaluated using the Sommerfeld expansion:

WsTd
spe2a2/Vd

= −
1

N
o
k

«k fsjkd

= −E d«Ns«dfs« − md

=
Ws0d

spe2a2/Vd
−

p2

6
csmdT2, s1.4d

whereNs«d is the density of states for the tight-binding dis-
persion andcs«d=«N8s«d+Ns«d. By making a quadratic ap-
proximation for the two-dimensional tight-binding band dis-
persion one would findcsmd=1/4pt, which is also a good
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estimate of the exact value obtained using the true band dis-
persion and by doping the system away from half-fillingssee
also Appendix Ad. However, for an interacting systemnks

can acquire in general a different temperature dependence,
which influences alsoWsTd. An example is provided by the
case of a SC instability. Indeed, according to the BCS theory,
in the SC state the occupation number becomes

nks = f1 − jk/Ek
SCtanhsEk

SC/2Tdg, s1.5d

whereDk is the SC gap andEk
SC=Îjk

2+Dk
2 is the quasiparticle

dispersion in the SC state, so that the spectral weights1.3d
decreases belowTc. WhenWsTd corresponds to the kinetic
energy this result is understood as the increase ofkKl below
Tc due to the particle-hole mixing in the SC state.

These general expectations about the behavior of the re-
stricted optical sum rule were not confirmed, within several
respects, in the experiments on HTSC. Early measurements
of thec-axis spectral weight up to frequencies of the order of
the plasma edge,vP~104 cm−1, showed that in YB2Cu3O6+d

sYBCOd compoundsWzsTd exhibits a quite anomalous tem-
perature dependence, with a decrease below the pseudogap
temperature, followed by an increase belowTc.

13 Such a be-
havior was indeed attributed to the effect of pseudogap open-
ing, combined with the tunneling character of the transport
along thec-axis direction.

Recently more attention has been instead devoted to the
issue of the spectral-weight behavior for the in-plane optical
conductivity, which is a better probe of the degrees of free-
dom mostly responsible for the properties of HTSC. The
measurements were performed in Bi2Sr2CaCu2O8+d

sBSCCOd,1,2,4YBCO,3,5 and La2−xSrxCu2O4 sLSCOd sRef. 6d
compounds at various cutoff frequenciesvM between
1000 cm−1 s0.12 eVd and 20 000 cm−1 s2.5 eVd. A first issue
is the behavior ofWsTd belowTc. While early measurements
in BSCCO samples show that there is an even fasterincrease
of WsTd below Tc,

1,2 contrary to the prediction of the BCS
theory, more recent results in BSCCOsRef. 4d show that
there is a flattening ofWsTd in underdoped samples forvM

=8000 cm−1, while a BCS behavior belowTc is seen in the
overdoped BSCCO and in YBCO samples.3,5 Also from the
theoretical point of view many proposals arose relative to the
problem of the lowering of in-plane kinetic energy in the SC
state.14–17

Interestingly the behavior ofWsTd above the SC transition
also shows unexpected features, which deserve more inves-
tigation. Indeed, as observed in Ref. 2, the in-plane optical
sum rule does not show any decrease below the temperature
at which the pseudogap forms, contrary to what found for the
c-axis response. In addition, when the plasma edge is con-
sidered as a cutoff,WsTd shows a “standard”T2 temperature
dependence, even though these are clearly strongly interact-
ing non-Fermi-liquid systems. However, this result is mis-
leading, because despite thequalitativeanalogy with the free
tight-binding results1.4d, the measuredWsTd is in a strong
quantitativedisagreement with the estimates1.4d. Indeed, as
we show in Appendix A, the coefficientcsmd of Eq. s1.4d is
about one order of magnitude larger than expected by using a
t value estimated by other probessas photoemission mea-

surements of the Fermi surfaced, showing that the sum rule is
far from being conventional already in the normalsnon-SCd
state.6 Moreover, even faster increase ofWsvM ,Td is ob-
served at smaller values ofvM.4,6

For these reasons, the issue that we address in the present
paper is the behavior of the optical-conductivity spectra and
sum rule aboveTc, but within a model system for the
pseudogap state. Between the several proposals existing in
the literature about the origin of the pseudogap,18 we focus in
the present paper on the case where a competing order pa-
rameter is formed before the SC state is established. In par-
ticular, we refer to the so-called flux phase ord-density wave
statesDDWd.19–27 We would like to stress that while a flux
phase does not present modulated charge, the same phenom-
enological spectrum can be considered as emerging due to
the tendency of the system to form charge order near a quan-
tum critical point.28 This scenario was studied in Ref. 26, and
we will refer in the present paper also to this point of view,
which could be useful in relating the results presented here
not only to cuprates, where they can be only partly applied,
but also to other materials displaying a truek-space modu-
lated CDWsas, for example, dichalcogenide materials29,30d.

In a previous publication,31 we discussed briefly how a
mean-field description of the DDW state can be compatible
with an increase of the spectral weight below the temperature
at which the order parameter forms. However, this result was
not considered from a more general point of view, which
consists in relating the sum rule to the problem of providing
a gauge-invariant approximation for the response functions
in a given microscopic model. As we shall see, the basic
requirement of respecting the charge conservation imposes
simultaneously several constraints on the definition of the
current operator, the diamagnetic term and the corresponding
electromagnetic correlation functions. The sum rule then fol-
lows naturally when all these requirements are satisfied
within a given approximation for the microscopic interacting
model, and different approximations can lead to different
sum rules. As we shall see, while the anomalous sum rule
derived in Ref. 31 can be proposed to reproduce the experi-
mental data for cuprates, the agreement with the theoretically
obtained optical conductivity is more subtle, and more de-
tailed features specific of different materials should be con-
sidered. A more difficult task is to properly define the change
of behavior of the sum rule at different cutoffvM; this prob-
lem is quite general, and while it is clear that forvM→` the
full sum rules1.2d must be recovered, there is as yet no clear
understanding of a proper experimental and theoretical defi-
nition of the correct cutoff for the restricted sum rule in Eq.
s1.3d. In our case, we shall discuss how the various restricted
sum rules should be realized at different energy scales, even
though an exact result cannot be obtained in this respect.

The structure of the paper is the following. We begin by
presenting in Sec. II the general formalism which is needed
to analyze the optical-conductivity sum rule in an interacting
system. In Sec. III we explicitly study the case of a DDW
state, and we show that we can derive a good approximation
for the low-energy optical conductivity which is however no
more related to a known sum rule. In Sec. IV we solve this
problem by analyzing directly the reduced, low-energy DDW
model Hamiltonian, and we calculate explicitly the sum rule
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and the optical conductivity within the proposed mean-field
approach to the DDW transition. We then discuss in Sec. V
the results obtained and summarize the procedure described
in the paper. In Appendix A we report the evaluation of the
sum-rule behavior for the noninteracting tight-binding
model, to quantify the discrepancy with the experimental
data, and some details about the role of disorder are pre-
sented in Appendix B.

II. SUM RULE IN A MODEL WITH GAUGE
INVARIANT INTERACTION

Let us start by considering a general Hamiltonian describ-
ing interacting electrons in a two-dimensional lattice,

H = − to
ki j l

cis
† cjs − mo

i

cis
† cis + o

i j ,ss8

cis
† cisVsr i − r jdcjs8

† cjs8,

s2.1d

where the field operatorcis
† creates an electron of spins

at r i, t is the hopping parameter,ki j l is the sum over
nearest-neighbor sites,Vsr i −r jd is the translationally invari-
ant electron-electron interaction. When rewritten in recipro-
cal space, the band dispersion corresponds to«skd
=−2tscoskxa+coskyad. Throughout the paper units"=kB

=c=1 are chosen.
In the DDW state a particle-hole coupling is considered at

the characteristic wave vectorQ=sp /a,p /ad. The notation
is then simplified by halving the Brillouin zone and introduc-
ing two-component electron operatorssthe DDW equivalent
of Nambu spinors32d

xks = S cks

ck+Q,s
D, xks

† = scks
† ck+Q,s

† d , s2.2d

wherecks
† andcks are the Fourier transforms ofcis

† andcis.
The Hamiltonians2.1d written in terms ofx becomes

H = o
k,s

RBZ

xks
† F1

2
s«k + «k+Qd − m +

1

2
s«k − «k+Qds3Gxks

+
1

N
o
q

BZ

Vsqd o
k,s

RBZ

xk+q,s
† xks o

p,s8

RBZ

xp−q,s8
†

xps8, s2.3d

whereVsqd is the Fourier transform of the potential,s3 is the
Pauli matrix and the sums are over the reducedsRBZd and
full Brillouin zone sBZd.

After employing the nesting property«k+Q=−«k the ki-
netic term of the Hamiltonians2.3d takes a simple form

H0 = o
k,s

RBZ

xks
† f«ks3 − mgxks. s2.4d

Accordingly, the free electron Green’s function reads

G0
−1sk,ivnd = sivn + mds0 − «ks3, s2.5d

wherevn=s2n+1dpT is the fermionicsoddd Matsubara fre-
quency. The full Green’s function of the systemGspd, p
=sp , ivd is given by the Dyson equation

G−1spd = G0
−1spd − Sspd, s2.6d

where the self-energySspd is evaluated at Hartree-Fock level
as

Sspd = o
k

GskdVsp − kd, s2.7d

whereok is a short-hand notation forT/Noivn
ok

RBZ. Observe
that for a time-independent interaction, as the one considered
in Eq. s2.1d, the self-energys2.7d does not depend explicitly
on the frequency, but we will keep for convenience this more
general notation in the following. In the case of supercon-
ductivity, the Hartree-Fock approximation for the self-
energy, equivalent to the Eq.s2.7d rewritten in the particle-
particle channel, gives the usual BCS result for the Green’s
function.33 In the case of DDW order it corresponds instead
to the mean-field Green’s function usually considered in the
literature.31,34–41

A. The electrical conductivity and the conductivity sum rule

The optical conductivity can be calculated from the elec-
tromagnetic response kernel

Kmnsq,iVmd = − tmmdmns1 − dn0d + Pmnsq,iVmd, s2.8d

wherePmnsq , iVmd is the correlation function

Pmnsq,iVmd =
1

N
E

0

b

dteiVmtkTt jmsq,td jns− q,0dl.

s2.9d

Heretii is the diamagneticsor stressd tensor,t is imaginary
time, b=1/T, andVm=2pmT is the bosonic Matsubara fre-
quency. The indexm=si ,0d with i =1,2 indicates spatial and
time components, respectively, so that the particle current
operator jmsq ,td=s j isq ,td , j0sq ,tdd consists of the particle
current density,j isq ,td and the particle density,j0sq ,td. As
usual, the particle current and the diamagnetic tensor are
defined as the first and second order derivatives of the
HamiltonianHsAd in the presence of the vector potentialA
with respect toA itself,12

HsAid < Hs0d − o
j
FeAisr jd j isr jd −

e2

2
Ai

2sr jdtiisr jdG ,

s2.10d

so that the total current density is expressed asJisr d
=−dH /dAisr d=ejisr d−e2tiisr dAisr d, and by evaluating
kJisqdl within the linear response theory,12,33,42 one obtains
Jmsqd=e2KmnsqdAnsqd with the electromagnetic kernels2.8d.
Then using thatAsvd=Esvd / isv+ i0d, whereE is the elec-
tric field, one finally arrives at the Kubo formula

ssvd = − ie2Kiisq = 0,vd
Vsv + i0d

= ie2ktiil − Piisq = 0,vd
Vsv + i0d

,

s2.11d

where the standard analytic continuationiVm→v+ i0 was
made. To avoid confusion, along the paper we will indicate
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the imaginary bosonic frequencies withiVm, the imaginary
fermionic frequencies withivn and the real frequencies with
v. Since an isotropic system is considered we can omit the
index i as done in the left-hand sidesLHSd of Eq. s2.11d and
in what follows.

Taking the real part ofs2.11d, one obtains Ressvd
=spe2/Vddsvdfktl−RePs0,vdg+se2/VdIm Ps0,vd /v. In
the presence of disorder the coefficient of thedsvd vanishes,
so that RePsq=0,v→0d=ktl and only the regular part of
ssvd survives. As a consequence, one usually defines the
optical conductivity only through the imaginary part of
Psq=0,vd:

Ressvd =
e2

V

Im Psq = 0,vd
v

, s2.12d

so that using the Kramers-KronigsKK d relations for Psq
=0,vd one can derive the well-known sum rule,

WsTd =E
−`

`

Ressvddv

=
e2

V
E

−`

` Im Psq = 0,vd
v

dv

=
pe2

V
RePsq = 0,v = 0d =

pe2

V
ktl. s2.13d

The form of HsAd itself depends on the microscopic
model and thus on the way the vector potentialA enters the
Hamiltonian of the system. When a continuum model is con-
sidered instead of Eq.s2.1d, the kinetic term is expressed as
es−¹2d /2m and A is inserted using the minimal coupling
prescription −i ¹ →−i ¹−eA. For lattice systems the equiva-
lent of the minimal coupling prescription is the so-called
Peierls ansatz,7,8,12 which corresponds to insert the gauge
field A in Eq. s2.1d by means of the substitutionci
→cie

−ieeA·dr . In this case, it is clear that when the interaction
term of the Hamiltonian is a density-density interaction, as in
Eq. s2.1d, only the kinetic hopping term is modified, while
the interaction term is gauge invariantsGId. As a result, the
current/density operator and the diamagnetic tensor can be
expressedsfor small qd as

jmsq,td =
1

N
o
k,s

vmskdck−q/2s
† ck+q/2s

=
1

N
o
k,s

RBZ

xk−q/2
+ gmsk − q/2,k + q/2dxk+q/2, q → 0,

s2.14d

tii =
1

N
o
k,s

]2«k

]ki
2 nk,s, s2.15d

where

vmskd = svk
F,1d, gmsk − q/2,k + q/2d = svk

Fs3,s0d, q → 0,

s2.16d

andsvk
Fdi =]«k /]ki is the Fermi velocity.43 Note that if a qua-

dratic band dispersion«k =k2/2m is assumed, the tensortii
reduces ton/m, wheren is the total carrier density, so that
Eq. s2.13d reduces to the f-sum rules1.2d, which is tempera-
ture independent. Instead, for a tight-binding nearest-
neighbors lattice dispersion, according to the definition
s2.15d, tii is proportional to the kinetic energy, and the sum
rule s1.4d is recovered. Observe that formally the sum rule
s2.13d always requires the integration up to an infinite cut off
energy. Nevertheless, an intrinsic finite cutoff energy is pro-
vided by the energy scale below which a given model can be
considered as a good approximation for the real system. As a
consequence, while the full f-sum rule is always satisfied at
enough large energy scales, the restricted optical sum rule
relative to a given tight-binding interacting model is ex-
pected to hold only below some intrinsic energy scale, whose
definition is not universal. We would like to stress that the
definitions s2.14d and s2.15d follow from the Hamiltonian
s2.1d once that a gauge-invariant form is chosen for the in-
teraction term. However, this assumption is invalid when, for
example, “occupation modulated” hopping terms are
present,14 or when an “effective” interacting model is con-
sidered, in a sense that we will specify belowssee Sec. IVd.

B. Gauge invariance and the sum rule

The derivation of the sum rule presented above is rather
formal, and does not allow one to understand that the sum
rule is just a different way of stating the gauge invariance of
the theory. To gain a deeper insight into the relation between
these two aspects, it is useful to consider here the sum-rule
derivation presented in Ref. 42. The starting point is the ob-
servation that in a GI theory there is a gauge freedom to
choose whether the applied electric fieldE=−]tA − ¹w is
included in the Hamiltonians2.1d either via the vector poten-
tial Asw=0d or by considering a scalar potentialwsA =0d.
Obviously, the conductivity derived from two equivalent
HamiltoniansHsAd and Hswd must be the same, but this is
only guaranteed by the charge conservation

e]t j0sq,td + ieq · j sq,td = 0. s2.17d

The proof considered in Ref. 42 thatssvd derived from
HsAd andHswd are the same is based on the identity

E
−`

`

dv Ressvd =
pe2

VN
lim
qi→0

1

qi
kf j0sq,td, j is− q,tdgl,

s2.18d

which is obtained by using the charge conservation
s2.17d. For example, substituting in Eq.s2.18d j0sq ,td
=ok,sck−q/2,s

† ck+q/2,s and the free-electron expressionj sq ,td
=s1/mdok,skck−q/2,s

† ck+q/2,s, corresponding to«k =k2/2m,
returns the full f-sum rules1.2d.

Another way to state the relation between the sum rule
and the GI uses instead the generalized electromagnetic ker-
nel s2.8d. As discussed in Ref. 33 with reference to the SC
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case, the requirements of charge conservationfqmJmsqd=0g
and invariance of the theory under the gauge transformation
Amsqd→Amsqd+ iqmLsqd are fulfilled when the condition

qmKmnsqd = Kmnsqdqn = 0, q = sq,vd s2.19d

is satisfied. In particular, the following relation must hold:

Piisq → 0,v = 0d = ktiil. s2.20d

This equality states that the diamagnetic term is canceled out
by the static limit sv=0,q→0d of the sreald part of the
current-current bubble, while deriving the Eq.s2.13d we used
the relation between thedynamicsq=0,v→0d limit of the
bubble and the stress tensor. However, in deriving Eq.s2.13d
we assumed the presence of disorder, whose role is crucial in
restoring the equality between the static and dynamic limits
of the current-current correlatorPsqd. Indeed, while in a
clean system the dynamic limit of the bubble vanishes, in the
presence of disorder it coincides with the static limit, which
in turn is equal to the diamagnetic term: RePsv→0,q=0d
=RePsv=0,q→0d= ,t., and then Eq.s2.13d follows.

C. Ward identity and vertex function

The advantage of the derivationss2.18d and s2.20d of the
sum rule is that they show explicitly that it must be regarded
as a consequence of the charge conservation. Moreover, it
allows one to see that once a given approximation is used in
evaluating the current-current correlation function, it also
fixes the sum rule that will follow from such an approxima-
tion. However, a quite difficult task is to implement an ap-
proximation for both the Green’s function and the current-
current correlator which preserves the conditions2.19d,
necessary for maintaining the GI of the theory. In particular,
when the Hartree-Fock self-energys2.7d is used and the
bubblesPmn are evaluated in the lowest-order approxima-
tion,

Pmn
sgdsq,iVmd = − 2o

k

TrfGsk − q/2,ivn + iVmd

3gmsk − q/2,k + q/2dGsk + q/2,ivnd

3gnsk + q/2,k − q/2dg, s2.21d

the GI isnot in general preserved, as it is known for SC and
as we shall see explicitly in Sec. IV in the case of DDWsthe
factor 2 in the previous equation is due to the spin summa-
tiond. A general field theoretical approach that solves the dif-
ficulties with charge conservation and gauge invariance,
originally present in the mean-fieldsbare vertexd formulation
of the BCS theory, was developed by Nambu32 and discussed
in detail in Chap. 8 of Ref. 33, so that here we only introduce
the main definitions and stress the points necessary for the
consideration of the DDW state.

As shown in Ref. 33, the current-current correlator, de-
fined above in Eq.s2.9d, can be expressed in terms of the full
Green’s functionss2.6d, the bare vertexgm and the full vertex
function Gn as follows:

Pmnsq,iVmd = − 2o
k

TrfGsk−dgnsk−,k+dGsk+dGmsk+,k−dg,

s2.22d

where k+=sk+, ivn+ iVm,d, k−=sk−, ivn,d with k±=k ±q /2.
The important property of the current-current correlation
function s2.22d is that the conditions2.19d is preserved
whenever the vertex function satisfies thegeneralized Ward
identity sGWId:

qmGmsp+,p−d = G−1sp−d − G−1sp+d. s2.23d

The GWI is nothing but the charge conservation laws2.17d
rewritten using the Green’s and vertex functions. If the
Green’s function given by Dyson equations2.6d is evaluated
within the Hartree-Fock approximations2.7d, then the vertex
function satisfying the GWI is also the solution of the fol-
lowing integral equation:

Gmsp+,p−d = gmsp+,p−d + o
k

Gsk+dGmsk+,k−dGsk−dVsp − kd.

s2.24d

The analytical solution of Eq.s2.24d cannot be easily deter-
mined, except that in the static limit, whenGi is given by

Gisp,pd = gisp,pd +
]Sspd

]pi

= −
]G−1spd

]pi

= G−1spd
]Gspd

]pi
G−1spd. s2.25d

Indeed, if one setsq=0 in Eq.s2.24d swhich corresponds, as
usual, to the static limitv=0, q→0 when analytical continu-
ation iVm→v+ i0 is maded, by means of the previous rela-
tion one obtains

Gisp,pd = gisp,pd + o
k

GskdGisk,kdGskdVsp − kd

= gisp,pd + o
k

]Gskd
]k i

Vsp − kd

= gisp,pd − o
k

Gskd
]Vsp − kd

]k i

= gisp,pd +
]

]pi
o
k

GskdVsp − kd

= gisp,pd +
]Sspd

]pi
. s2.26d

Here we used the fact that the potentialV is nonseparable,
viz. it depends on the differencep−k, as it is expected for a
GI density-density interaction. Observe also that this result
can be obtained directly from the GWIs2.23d by taking the
limit v=0, q→0. For example, one can easily check that WI
s2.25d is satisfied for the free electron Green’s functions2.5d
taken together with the bare vertexs2.16d. It is worth noting
that in the case of SC the behavior of the vertex function at
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zero frequency and momentum is completely different, and
indeedGisp,pd is divergent as the inverse of the phase-mode
dispersion.32,33 Indeed, the equivalent of Eq.s2.23d contains
for the SC case a combination of Green’s functions and Pauli
matrices that cannot be reduced to the derivative ofG−1 as in
Eq. s2.25d. Here, however, the equivalent of the gapless
phase mode is not present, because there is no Goldstone
mode when a discrete symmetry is broken, andGisp,pd turns
out to be finite.

D. Symmetrized expression forT=0 dc conductivity

In practice, since the exact expressions forG and Gi are
unknown, the consistency of an approximated calculation of
the conductivity can be guaranteed if theapproximatedex-
pressions forG andGi satisfy the GWIs2.23d. Observe that
what we obtained ins2.26d is the limit v=0, q→0 of G, but
in the calculation of the optical conductivity it is the opposite
limit which is needed. However, at least in the presence of
impurities, or atT=0, the static and dynamic limits com-
mute. Unfortunately, a generalization of the results2.26d to
finite frequency cannot be obtained from the equations2.24d
for a generic potential, by means of, e.g., a perturbative
method. Since our final task is to find an approximation for
the optical conductivity which allows us also to estimate the
corresponding sum rule, let us analyze the utility of the result
s2.26d. First, we note that the knowledge of the vertex func-
tion at zero frequency allows one to find an exact result for
the dc conductivity atT=0. To show this it is convenient to
think of 232 matricesA andB as being represented by two
column vectors of 232 matrix elements and rewrite Tr of
the matrix product as the scalar product,

TrfABg ; o
ab

sAW dabsBW dba = AW ·BW . s2.27d

Accordingly, by introducing the vector

sGsk+,k−dGW sk+,k−ddab ; o
gd

Gagsk+dGdbsk−dGgdsk+,k−d,

s2.28d

we can rewrite correlation functions2.22d as follows:

Pi jsqd = − 2E d3k

s2pd3Gsk+,k−dGW isk+,k−d · gW jsk−,k+d,

s2.29d

where since we are considering theT=0 case we have an
integration over the real frequency instead of the Matsubara
sum and the argument of the polarization operator isq
=sq ,vd.

The dc conductivity is determined by the imaginary part
of the derivative of the correlation function, which in turn is
given by

U ]Pi jsq = 0,vd
]v

U
v=0

= − 2E U d3k

s2pd3fGv8 sk+,k−dGW isk+,k−d · gW jsk−,k+d

+ Gsk+,k−dGW vi8 sk+,k−d · gW jsk−,k+dgU
v=0,q=0

, s2.30d

whereGv8 , Gv8 indicate the derivative with respect tov. The
expressions2.30d can be further simplified by using the
equation for vertexs2.24d taken atT=0 and its derivative
with respect tov,

gW isk,kd = GW isk+,k−d −E d3p

s2pd3Gsp+,p−dGW isp+,p−dVsk − pd,

q = 0, s2.31ad

GW vi8 sk+,k−d =E d3p

s2pd3fGv8 sp+,p−dGW isp+,p−d

+ Gsp+,p−dGW vi8 sp+,p−dgVsk − pd.

s2.31bd

SubstitutinggW i from Eq. s2.31ad in Eq. s2.29d and using
s2.31bd we obtain

U ]Pi jsq = 0,vd
]v

U
v=0

= − 2E U d3k

s2pd3Gv8 sk+,k−;q = 0dGW isk,kd · GW jsk,kdU
v=0

.

s2.32d

Our derivation is similar to the derivation of the symmetrized
expressions for the derivatives of the polarization operator
considered in Ref. 44, where also the derivative of Bethe-
Salpeter kernel enters the analog of Eq.s2.31bd. The useful
property of the representations2.32d for Pv8 is that it contains
two full vertex functionsGi. The corresponding expression
for the dc conductivitysdc coincides with the result derived
by LangerfEq. s4.8d of Ref. 45g in the early 1960s using a
completely different approach, consisting in introducing a
symmetric bubble

Pi j
symsiVmd = − 2

T

N
o

k,ivn

RBZ

TrfGsk,ivn + iVmd

Gisk,kdGsk,ivndG jsk,kdg, s2.33d

obtained by usingtwo corrected vertices, evaluated at zero
external frequency, and whose derivative at zero frequency
and temperature coincides with the results2.32d. Then in the
limit T→0 the leading term of Langer’s expression for the
dc conductivity is obtained froms2.33d via
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sdc = lim
v→0

Ressvd =
e2

V
Im u]vfPii

symsiVm → vdguv=0.

s2.34d

In Eq. s2.26d the vertex function with coinciding fermion
momenta and energies,k+=k−=k is related to the self-energy
Sskd by the WI s2.25d.39,45 Thus one can immediately see
that wheneverSskd depends on the momentumk, the dc
conductivity s2.34d would be different from the value ob-
tained using the bare bubbles2.21d.

From the previous considerations one can argue that, in
the absence of a solution for the vertex functionG at finite
frequency, a better approximation for the conductivity in the
DDW state is provided by the bubbles2.33d, which gives at
least anexactresult for the dc conductivity atT=0 ssee also
Ref. 39d. In other words, by evaluating the symmetric
bubbless2.33d at finite frequency one can still capture the
behavior ofssvd at smallv. At the same time, we do also
expect that this assumption will lead to a new result for the
sum rules2.13d, because the symmetric bubbles2.33d is no
more connected to the diamagnetic terms2.15d by any rela-
tion. However, as we shall see in the next section, the sum
rule for the bubbless2.33d can be obtained analytically by
using the analogies between the results discussed up to now
and the properties of the reduced Gaussian model, where the
vertex equation admits the solution Eq.s2.26d at all frequen-
cies.

III. VIOLATION OF THE GI WITH THE BARE VERTEX
IN THE DDW STATE

A. The mean-field DDW Hamiltonian

The previous discussion was generically referred to any
system displaying a particle-hole instability at the wave vec-
tor Q. However, in the Hartree-Fock approach one usually
selects a particular form for the mean-field Green functionG
and then solves the self-consistency equation corresponding
to implement the Dyson equations2.7d. In the DDW case,
one approximates the general interacting Hamiltonians2.1d
with the model,

HI = −
V0

2N
o
k,k8
s,s8

wdskdwdsk8dcks
† ck+Qsck8+Qs8

† ck8s8,

s3.1d

where wdskd=scoskxa−coskyad /2. By defining iD0

=−sV0/Ndokswdskdkck+Qs
† cksl we obtain the following

mean-field DDW Hamiltonian,

H = o
k,s

fsek − mdcks
† cks + iDkcks

† ck+Qsg

= o
k,s

RBZ

xks
† f«ks3 − Dks2 − mgxks, s3.2d

whereDk =D0wdskd is the gap, known as the DDW gap,27

arising from the formation of the state with circulating cur-
rents below a characteristic temperatureTDDW.46 This Hamil-

tonian corresponds to an explicit solution of Eqs.s2.6d and
s2.7d with

Sskd = − Dks2, s3.3d

so that the full Green’s functions2.6d reads

G−1sk,ivnd = sivn + mds0 − «ks3 + Dks2. s3.4d

The corresponding self-consistency equations for the order
parameterD0 and for the chemical potentialm read

2V0

N
o
k

RBZ
wd

2skd
Ek

ffsj−,kd − fsj+,kdg = 1, s3.5d

2

N
o
k

RBZ

ffsj−,kd + fsj+,kdg = n, s3.6d

whereEk =Î«k
2+Dk

2, andj±,k =−m±Ek are the two excitation
branches associated with the formation of DDW order, which
breaks translation symmetry. Observe that to obtain the Eq.
s3.6d we used the fact that the occupation numbernks in the
DDW is given, according to the Green’s functions3.4d, by
nks=s1/2EkdfEksfsj+d+ fsj−dd+«ksfsj+d− fsj−ddg. This al-
lows us also to evaluate the diamagnetic terms2.15d and the
corresponding sum rule as

WsD,Td
spe2a2/Vd

= ktl = −
1

N
o
k

RBZ
«2

E
ffsj+d − fsj−dg, s3.7d

where we used the fact thats]2«k /]ki
2d= +2ta2 cosskiad and

we omitted the explicit dependence of«, E, j± on k. At this
level we have performed an approximation on both the self-
energy and the Green’s function of the original, interacting
system. To obtain now a GI approximation for the optical
conductivity, i.e. an approximation which gives Eq.s3.7d as
the integral ofssvd, we should also evaluate the vertex func-
tion s2.24d. Indeed, as we show with an explicit calculation
in the next section, the bubbles2.21d with a bare vertexg
violates this requirement. In general, if the optical conduc-
tivity cannot be calculated by means of the exact vertex
function s2.24d, but a different approximation is used, one
cannot expect any more to find Eq.s3.7d as the correspond-
ing sum rule, but this must be calculated explicitly, as we do
in Sec. IV.

Before showing the details of this calculation we would
like to comment on the relation between the microscopic
interactions2.1d and the approximated one given in Eq.s3.1d.
If one restrict in the interacting part of Eq.s2.1d the sum over
nearest-neighbors sites one can easily show thatHint can be
rewritten as

Hint = − V0 o
a,k,k8,q

ss8

waskdwask8dcks
† ck+qs8ck8+qs8

† ck8s,

s3.8d

where the factors1/4dode
isk−k8d coming from the sum over

nearest-neighboring sitesd has been decomposed in the two-
dimensional basis of wave functionswaskd, which includes
the sum of contributions from several channels displaying
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different symmetries with respect to the discrete rotation
group for the square lattice. One can see that even selecting
only the d-wave channel and the contribution atq=Q, Eq.
s3.8d does not contain only the coupling in the particle-hole
channel of Eq.s3.1d, because the spin structure in Eq.s3.8d
and Eq.s3.1d are different. This problem does not exist if the
original microscopic model is given by acurrent-currentin-
teraction, as the formation of a DDW state would naturally
require,

Hint =
V0

2 o
ki,jl
ss8

cis
† cis8cjs8

† cjs = −
V0

2 o
ki,jl
ss8

cis
† cjscjs8

† cis8.

s3.9d

Observe thatsid Eq. s3.9d is still gauge invariant, since the
Peierls transformation does not depend on the spin index;sii d
the self-energy for the interactions3.9d is still given by Eq.
s2.7d, with Vsqd=2V0. In the following we will never face
the problem of solving explicitly Eq.s3.5d for a given micro-
scopic interaction. However, it is worth noting that Eq.s3.1d
can be directly derived by selecting a specific channel of a
microscopic GI model. Other examples can be also found in
Refs. 20–25.

B. The current-current correlation function evaluated with the
bare vertex g

To evaluate the bubbless2.21d it is useful to introduce the
spectral representation for the Green’s functions3.4d,

Gsk,ivnd =E
−`

`

dz
Ask,zd
ivn − z

s3.10d

with the spectral function

Ask,zd =
Ek + «ks3 − Dks2

2Ek
dsz− m − Ekd

+
Ek − «ks3 + Dks2

2Ek
dsz− m + Ekd. s3.11d

The correlation functionss2.21d can then be written as

Pmn
sgdsq,iVmd = −

2

N
o
k

RBZ E dz1dz2 TrfAsk+,z1dgmsk+,k−d

3Ask−,z2dgnsk−,k+dg
fsz1d − fsz2d
z1 − z2 − iVm

s3.12d

which gives, according tos3.11d, the following current-
current correlation function:

Pii
sgdsq,iVmd = −

1

N
o
k

RBZ

svk i

F d2S fs− m + E+d − fs− m + E−d
E+ − E− − iVm

+
fs− m − E+d − fs− m − E−d

E+ − E− + iVm
DS1 +

«+«− − D+D−

E+E−
D

+ svk i

F d2S fs− m + E+d − fs− m − E−d
E+ + E− − iVm

−
fs− m − E+d − fs− m + E−d

E+ + E− + iVm
DS1 −

«+«− − D+D−

E+E−
D , s3.13d

whereD±=Dk±q/2, «±=«k±q/2, E±=Ek±q/2.
The issue then arises of the relation between the approxi-

mation s3.12d for the correlation function and the sum rule
s3.7d. Let us consider again the GI relations2.20d. When the
static limit of the current-current bubble is consideredfcor-
responding in Matsubara formalism to setq=0 in the expres-
sion s3.13dg, we find thatPsgds0,0d is real and given by

Pii
sgds0,0d = −

2

N
o
k

RBZ
svi

Fd2D2

E3 ffsj+d − fsj−dg

+
svi

Fd2«2

E2 ff8sj+d + f8sj−dg. s3.14d

The usual procedure used to demonstrate thatPs0,0d cancels
out ktl given by Eq.s3.7d consists in integrating by parts the
term in Ps0,0d which contains the derivative of the Fermi
distribution f8sj±d.12 In order to do that one would need a
term likedfsj±d /dk i = ± f8sj±ds«vk i

F −Dvk i

Dd /E, which in addi-
tion to the Fermi velocity,vk

F, contains also the DDW gap
velocity, vk i

D =−]Dk /]k i. However, as one can easily see, the

second term of Eq.s3.14d does not contain any contribution
proportional tovi

D, so that the gauge-invariant relationPsq
→0,v=0d=ktl cannot be satisfied with the bubblePsgd.

According to the discussion of the preceding section, the
GI can only be restored when the vertex corrections are in-
cluded in the correlation functions. Observe that the static-
limit result s2.26d reads in the case of DDW state:

Gisk,kd = gisk,kd + vk i

Ds2 = vk i

F s3 + vk i

Ds2 ; Viskd,

s3.15d

where Viskd is the generalized velocity representing theq
=0 limit of the vertex function. It is important to stress that
in deriving Eq.s2.26d for Gisk,kd it was crucial to keep the
translation invariant formVsp−kd of the potential until the
end. This point has been often overlooked in the literature, at
least while discussing the corresponding problem for the su-
perconducting case.33 If one used in Eq.s2.24d defining the
vertex function the approximated form Vsk −pd
<V0wdskdwdspd, which is appropriate for selecting only the
d-wave channel in the self-energys2.7d, the results3.15d
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could not be obtained. Indeed, a single-channel separable
potential makes the interaction term of the Hamiltoniannot
gauge invariant, and then it would contribute to both the
current operator and diamagnetic term, as we will discuss in
the next section within the context of the reduced model.
However, once that the results2.26d has been established,
and all the intermediate steps have been performed in re-
specting GI requirements, we can definitely select from the
self-energys2.7d only thed-wave channel. As a consequence,
if Sspd is approximated as in Eq.s3.3d, the results3.15d
follows.

The Eq.s3.15d can also be obtained from the generalized
WI s2.23d. Indeed, at smallq the differenceG−1spd−G−1sp
+qd, whereG is defined in Eq.s3.4d, is given by

qmGm = G−1skd − G−1sk + qd = − iVms0 + vk
F ·qs3 + vk

Ds2.

s3.16d

Since, according to the definitionss2.16d, the bare vertex
satisfies qmgm=−iVms0+vk

F ·qs3, for Vm=0 we can find
again that the static vertexs3.15d satisfies the WIs2.23d.
Note that from the WIs3.16d one can be tempted to gener-
alize the results3.15d for all Vm,q<0: however, one cannot
exclude that an additional term with zero space-time diver-
gence can be added to the solutions3.15d, still satisfying Eq.
s3.16d.

According to the discussion of Sec. II D one can try to use
the results3.15d by evaluating the optical conductivity with
the symmetric bubbles2.33d. In the specific case of the
DDW order, this would correspond to evaluating the follow-
ing current-current correlation functions:

Pi j
DDWsq,iVmd

= − 2
T

N
o

k,ivn

RBZ

TrfGsk−,ivn + iVmdViskdGsk+,ivndVjskdg.

s3.17d

As it was explained in Sec. II D the ansatzs3.17d guarantees
the correctness of the dc conductivity, and in general can be
used to study the low-frequency conductivity. Nevertheless,
one can check that the bubblePii

DDWs0d is not compatible
with the diamagnetic tensors3.7d, violating again the GI con-
dition s2.20d checked above forPii

sgd. The origin of this vio-
lation is obvious, viz. instead of the asymmetric bubble
s2.22d with one full and one bare vertex that would maintain
the GI conditions2.20d, we used the symmetric correlation
function s2.33d. Thus the issue arises whether the diamag-
netic tensorktl can also be modified to become compatible
with the bubbles3.17d. As we shall see in the next section,
the diamagnetic tensor and sum rule corresponding to the
approximate bubbles3.17d can be obtained without further
assumptions by analyzing the properties of the reduced
Hamiltonians3.2d.

IV. THE REDUCED MODEL

An approach often proposed in the literature to deal with
the DDW state is that to consider directly the mean-field

Hamiltonians3.2d as the starting point.31,34–40The idea is that
at low energy the reduced models3.2d captures the important
physics of the system, so that one can consider it as a starting
microscopic Hamiltonian, describing noninteracting quasi-
particles. In this case the Green’s functions3.4d does not
provide any more an approximation, but it is the correct one
for the solvable, quadratic models3.2d. Since this Hamil-
tonian describes noninteracting quasiparticles, it can be
solved exactly and the corresponding conductivity is given
by the bare bubble. This point of view was taken in Ref. 31
where an unusual form of the optical-conductivity sum rule
was obtained. One can notice that any distinction in the
Hamiltonians3.2d in the total energy between a kinetic and a
potential part, as can be done for the Hamiltonians2.1d, be-
comes somehow ambiguous, so that the result of Ref. 31 is
not surprising.

In what follows we compare this picture with the tradi-
tional one, and show that since the dc conductivity calculated
in both approaches appears to be the same, one can also
estimate the low-energy sum rule of the microscopic model
s2.1d by considering the one realized in the reduced model
s3.2d.

A. The diamagnetic tensor, current operator and the sum rule
for the reduced model

Let us now consider the Hamiltonians3.2d as the starting
microscopic model and analyze how all the considerations
made in Sec. II can be applied in this case. Since the Hamil-
tonian s3.2d describes noninteracting quasiparticles, it is
straightforward to calculate the current-current correlation
function and the electrical conductivity, because in the ab-
sence of an interaction term the Eq.s2.24d for the vertex has
a trivial solutionGmsp+,p−d= g̃msp+,p−d, whereg̃msp+,p−d is
the bare vertex for the model DDW Hamiltonians3.2d. Nev-
ertheless, one should be careful and take into account that
this vertex is different from the bare vertexs2.16d for the
Hamiltonian s2.1d. This can be understood by deriving the
particle current operator compatible with the conservation
law s2.17d and with the equations of motion for the operators
c andc†,36,37,39,40

j sq,td =
1

N
o
k,s

svk
Fck−q/2s

† ck+q/2s − ivk
Dck−q/2s

† ck+Q+q/2sd,

s4.1d

The first term of the previous expression relates as usual the
particle current to the band velocityvk

F. The second term,
which only appears for nonvanishingD0, takes into account
the contribution of the orbital currents to the electrical con-
ductivity, arising when the DDW order is established. Ob-
serve that in the reduced models3.2d the term proportional to
D0 appears as an additional, temperature dependent band,
which couplesk andk +Q electrons, and as a consequence a
corresponding term appears in the definition of the current.
By rewriting the electric current operators4.1d using the
spinorss2.2d, one has
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j is0,td =
1

N
o
ks

RBZ

xks
† Viskdxks s4.2d

and, accordingly, the bare vertex reads:39

g̃msk − q/2,k + q/2d = sViskd,s0d, q → 0, s4.3d

whereViskd is the generalized velocity defined in Eq.s3.15d.
Substituting the bare vertexs4.3d and the Green’s function
s3.4d in the Ward identitys2.25d one can easily see that it is
satisfied. Moreover, since for noninteracting quasiparticles
the full and bare vertex functions coincide, the correlation
function Psg̃d of Eq. s2.21d, evaluated with the bare vertexg̃
of Eq. s4.3d, has two properties,sid it is theexactone for the
quadratic models3.2d; sii d it coincides with Pi j

DDW in Eq.
s3.17d, which is anapproximationfor the full models2.1d. As
a consequence, the sum rule corresponding to the bubble
Pi j

DDW can be obtained by the knowledge of the stress tensor
for the reduced system. Observe that the current operator
s4.1d is also obtained when the Peierls substitution is per-
formed directly in the reduced models3.2d. As we discussed
in Sec. II A, after the Peierls substitution both the current
operator and the diamagnetic tensor can be derived from
HsAd, according to Eq.s2.10d. As a consequence, in the re-
duced model not only the current operator but also the dia-
magnetic tensortii is modified, containing an extra term for
D0Þ0,31

ktiil = −
1

2N
o
ks

s«kkcks
† cksl + iDkkcks

† ck+Qsld. s4.4d

When the operator averages are evaluated, or analogously
Eq. s2.18d is used, one finds that the sum rule for the reduced
model is

WDDWsD,Td
spe2a2/Vd

= −
1

N
o
k

RBZ

Ekffsj+,kd − fsj−,kdg, s4.5d

whereEk andj±,k were already defined after Eq.s3.6d. Equa-
tion. s4.5d was derived using the fact that]x,yvk

F

=2ta2 coskx,ya fand ]x,yvk
D= ± sD0/2da2 coskx,yag, and it re-

duces to Eq.s1.3d for D0=0.
Once more, the results4.4d is consistent with the GI for

the reduced model. Indeed, if the bubblesPDDWsq , iVmd
s3.17d are evaluated in the static limit, instead of the result
s3.14d for Psgd one has

Pii
DDWs0,0d = −

2

N
o
k

RBZ
svi

FD + vi
D«d2

E3 ffsj+d − fsj−dg

+
svi

F« − vi
DDd2

E2 ff8sj+d + f8sj−dg. s4.6d

If now one integrates by parts the second term of Eq.s4.6d
one finds that

−
2

N
o
k

RBZ
svi

F« − vi
DDd2

E2 ff8sj+d + f8sj−dg

=
2

N
o
k

RBZ

ffsj+d − fsj−dg
]

]k

svi
F« − vi

DDd
E

=
2

N
o
k

RBZ
svi

FD + vi
D«d2

E3 ffsj+d − fsj−dg

−
1

N
o
k

RBZ

Effsj+d − fsj−dg,

and as a consequence the GI relationPii
DDWs0,0d=ktiil with

ktiil given by Eq.s4.4d is satisfied, as expected when the
exact vertexG in included in the bubble.

A comment is in order now about a third possible
approach proposed in the literature38 for the analysis of
the reduced models3.2d. By rewriting the quadratic Hamil-

tonian s3.2d as H=ok,s
RBZxks

+ Ĥkxks the matrix Ĥk can be
diagonalized by means of an unitary transformation

Uk, Ĥ=UkLkUk
+ where Lk =diagsj+,j−d. According to

our definition s4.1d, the current is derived fromĤksAd, so

that it corresponds to jDDW=s1/Ndoks
RBZxks

+ s]kĤkdxks

=s1/Ndoks
RBZxks

+ ]ksUkLkUk
+dxks ssee also Ref. 40d. Let us

introduce the spinorscks=Uk
+xks which diagonalize the

Hamiltonian matrixĤ, H=oks
RBZcksLkcks. Then, by making

the assumption that the gauge field couples by Peierls ansatz
not to xks but to the new quasiparticle operatorscks, one
would calculate the current starting fromLksAd, so that the
current, the diamagnetic term and the static limit of the
current-current bubble would be defined as:38

jQP =
1

N
o
ks

RBZ

cks]kLkcks =
1

N
o
ks

RBZ

xks
+ Uks]kLdUk

+xks,

ktii ,QPl =
1

N
o
ks

RBZ S ]2j+

]ki
2 fsj+d +

]2j−

]ki
2 fsj−dD ,

Pii ,QPs0,0d = −
1

N
o
ks

RBZFS ]j+

]ki
D2

f8sj+d + S ]j−

]ki
D2

f8sj−dG .

Observe that this approximation is still GI in the sense that it
is easy to see thattii ,QP andPii ,QPs0d defined above satisfy
the conditions2.20d. However, this approximation has no
relation with the microscopic starting model, in the way we
explained in Sec. II. For this reason, we do not comment
further on this approach, and we analyze instead the result
obtained with the current operators4.1d and the bubbles
s3.17d, whose correspondence with the microscopic model
we established above.

B. Temperature dependence of the spectral weight

Once that we clarified the different approximations used
in deriving the two sum ruless3.7d and s4.5d, let us discuss
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the outcomes of these two approaches as far as the tempera-
ture dependence of the spectral weight is concerned. Two
observations should be kept in mind,sid the overall varia-
tions of the spectral weight in the DDW state are not ex-
pected in general to be large if quite small gap values
Ds0d / t!1 are considered;sii d in Eqs. s3.7d and s4.5d the
temperature variation of both the gap and the chemical po-
tential m contribute to the shape ofWsTd. In the case of free
electrons, the variation ofmsTd is almost negligible com-
pared to the temperature variation of the occupation number,
given by the Fermi function. Indeed, even considering the
temperature variation ofmsTd the results1.4d is only modi-
fied by terms of orderT4. In the case of Eqs.s3.7d ands4.5d
also the band structure is varying in temperature, and it is
important to keep track of this by solving at each tempera-
ture the self-consistent equation for the chemical potential.
Here, instead of solving explicitly Eq.s3.5d, we adopt a gen-
eral mean-field temperature dependence forD0sTd
=Ds0dgsT/TDDWd, with gsxd=s1−x4/3dÎ1−x4, as shown in
the left panel of Fig. 1. In the right panel of Fig. 1 we also
present the temperature dependence of the chemical potential
in the DDW state, as one can see, belowTDDW there is an
inversion of tendency ofmsTd due to the opening of the gap.
The temperature dependence of the spectral weight in the
DDW state according to Eq.s3.7d fWsD ,Tdg and s4.5d
fWDDWsD ,Tdg is reported in Fig. 2, where also the tight-
binding spectral weights1.4d fWsTdg is shown for compari-
son. Here we used a small gap value,Ds0d=2.5TDDW=0.3t,
and dopingd=0.1. The influence of the chemical-potential
variation are evident comparing the right panel of Fig. 2,
where WsD ,Td and WDDWsD ,Td are evaluated keepingm
constantsat the value it has in the normal stated, and the left
panel, where the density is constant. In addition, we see that
for this value ofDs0d the overall spectral-weight variations
are small in the DDW state. However, it is found that the
definition s3.7d leads to a smooth decrease of the spectral
weight belowTDDW, in analogy with the results for a SC

transition, while the definitions4.5d gives an increase. Such
variations are quantitativelysbut not qualitativelyd modified
if the temperature variations of the chemical potential are not
properly taken into account, see right panel of Fig. 2. Ob-
serve that the relative variations ofWsTd betweenT=0.16t
andT=0 are never larger than,1.2%, and cannot be appre-
ciated on the scale of the figure reported in Ref. 40.

Even though a detailed description of cuprates is not the
main aim of our paper, we find nevertheless useful to com-
pare our results for a choice of parameters appropriated for
HTSC. Since on this respect different attitudes are present in
the literature, we briefly recall here the phase diagram ana-
lyzed in Ref. 26 within the more general attitude of investi-
gating the consequences of describing the pseudogap state
with a k-space modulated charge density wave. In Ref. 26 it
was shown that one outcome of this description is the possi-
bility to interpret the leading-edge shift observed in photo-
emission experiments as due to a particle-hole gap. In par-
ticular, for a band dispersion with a next-nearest-neighbors
hopping termt8=0 the hole-pockets Fermi surface formed by
doping the DDW system with respect to half-filling is a sim-
plification intended to reproduce the arcs of Fermi surface
observed experimentally. A simple calculation shows that in
such a case the gap measured by ARPES at the M points
corresponds approximately toD0− umu. As a consequence,
D0s0d andTDDW do not correspond directly to the maximum
gap value and theT* temperature measured by ARPES, but
both are quite larger, as shown in Ref. 26 where the values of
the DDW gap and of the temperatureTDDW were chosen to
properly reproduce the phase diagram of Bi2212 compounds.

In agreement with Ref. 31 we keep here this attitude and
use a doping and temperature dependent DDW gap
D0sT,dd=cTDDWsddgsT/TDDWd, where TDDWsdd=0.16tf1
−sd /d0d4g vanishes at the critical dopingd0=0.2 for DDW
formation, andc=7 is a fitting parameter.26 Since the result-

FIG. 1. sColor onlined Left panel, Temperature dependence of
the DDW gap according to the functiongsxd defined in the text.
Right panel,msTd in the normal statesdashed lined and in the DDW
state ssolid lined, obtained solving the self-consistency equation
s3.6d for the particle numberswith D0=0 for the normal stated.

FIG. 2. sColor onlined Spectral weightWDDWsD ,Td, WsD ,Td,
andWsTd, according to Eqs.s4.5d, s3.7d, ands1.4d, respectively, in
units of e2pa2/V. We used hereDs0d=2.5TDDW=0.3t and d=0.1.
Left panel, results obtained using the chemical potential obtained
solving the self-consistency equations3.6d for the particle number
with D0Þ0 ffor WDDWsD ,Td andWsD ,Td andD0=0 sfor WsTddg,
respectively, see Fig. 1. Right panel, evaluation ofWDDWsD ,Td and
WsD ,Td using the chemical potential of the normal state.
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ing temperature dependence of the sum rules4.5d was al-
ready shown in Ref. 31, we just report here for comparison
the behavior of the two sum rulesWsD ,Td in Eq. s3.7d and
WDDWsD ,Td in Eq. s4.5d for this choice of parameters atd
=0.16. As it can be seen in Fig. 3, the relative variation of the
spectral weight belowTDDW is made now more pronounced,
enhancing the differences between the two possible ap-
proaches followed in deriving the sum rule. It is then clear
that the standard sum-rule derivation leading toWsD ,Td in
Eq. s3.7d cannot be consistent with the experiments, since no
decrease of the spectral weight has been observed in the
pseudogap phase of cuprates. The resultWDDWsD ,Td in Eq.
s4.5d is instead resembling more closely the experimental
findings, in particular if we consider that at this doping level
the room temperature below which the data in Refs. 1, 2, and
4 are reported corresponds toT/ t,0.1, so that the overall
measured temperature dependence ofWsTd would corre-
spond in our picture to the DDW results4.5d. Indeed, as we
show in the right panel of Fig. 3, theWDDWsD ,Td evaluated
according to Eq.s4.5d still displays aT2 temperature depen-
dence, but with a larger slope, as observed experimentally.
This approach would allow one to understand why the
spectral-weight increase looks like a “standard” free tight-
binding model, but with a much larger slope. However, as we
shall see in the next section, the comparison with the experi-
ments is made much more involved when the optical con-
ductivity corresponding to the sum rules4.5d is evaluated.
Finally, one can in principle extend this analysis to the case
where also SC is added, but since also the experimental situ-
ation is not clear on this respect we refer to Ref. 31 for a
discussion about the SC state.

C. The role of a next-nearest-neighbors hopping term

Up to now we did not consider the possibility of a next-
neighbors hopping termt8 in the bare band dispersion«k.

Indeed, from one side we wanted to simplify the notation
while discussing the issue of the relation between gauge in-
variance and sum rule, and from the other side we believe
that even when comparing with cuprates the caset8=0 is
enough to reproduce phenomenologically the arc of Fermi
surface observed in the pseudogap phasessee discussion
aboved. However, for the sake of completeness, we report
here briefly the modifications induced in the sum rule when a
t8 term is included in the band dispersion, so that

«k = sk + pk ,

sk = − 2tscoskxa + coskyad,

pk = 4t8 coskxa coskya. s4.7d

In the DDW state the perfect nesting condition is lost due to
the t8 term, so that«k +«k+Q=2pk ,«k −«k+Q=2sk and the two
quasiparticle branches in the DDW state becomej±,k =pk

−m±Ek, whereEk =Îsk
2+Dk

2. As a consequence, given the
relation s2.13d between the sum rule and the diamagnetic
tensor, and the definitionss2.15d ands4.4d of the diamagnetic
tensor for the original and the reduced model, respectively, it
is easy to see that Eqs.s1.4d, s3.7d, ands4.5d get modified as

WsTd
spe2a2/Vd

= −
1

N
o
k

s« + pdfsjd, s4.8d

WsD,Td
spe2a2/Vd

= −
1

N
o
k

RBZ Ss2

E
ffsj+d − fsj−dg + 2pffsj+d + fsj−dgD ,

s4.9d

WDDWsD,Td
spe2a2/Vd

= −
1

N
o
k

RBZ

hEffsj+d − fsj−dg + 2pffsj+d + fsj−dgj,

s4.10d

where the explicit dependence onk is omitted. In Fig. 4 we
compare again the temperature dependence of the spectral
weight in the different cases, fort8=0.3t, d=0.1, TDDW
=0.12t and Ds0d=4TDDW. Even though the introduction of
the t8 term modifies the temperature dependence of the
chemical potential in the normal and DDW statesdue to the
shift of the Van Hove singularity which is now below the
Fermi level atd=0.1d, the general trend of Figs. 2 and 3 is
confirmed. Indeed,WDDWsD ,Td is larger thanWsTd below
TDDW, while WsD ,Td is smaller. In particular, it is worth
noting that apart from possible quantitative differences with
respect to the caset8=0, the exact form of the band disper-
sion is irrelevant as far as the main issue discussed in the
preceding sections, i.e., the fact that different approximations
for the current-current correlation functions lead to different
results for the optical-conductivity sum rule. For this reason,
we do not discuss further in the following the role of at8
term, and remind the reader for example to Refs. 40 and 41,
where this issue is investigated in more details.

FIG. 3. sColor onlined Left panel, spectral weightWDDWsD ,Td,
WsTd, andWsD ,Td in units of e2pa2/V for a choice of parameter
values appropriate for cupratesssee the discussion in the textd. Here
we show the results ford=0.16, corresponding approximately to
optimal doping, and we calculate the chemical potential self-
consistently. Right panel, spectral weight plotted as a function of
sT/ td2: one can see that aT2 temperature dependence is still recov-
ered forWDDWsD ,Td in a wide range of temperatures.
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D. The optical conductivity of the reduced model

As we discussed in the preceding sections, one would
expect that our results4.5d for WDDWsD ,Td is only valid at
low energy scales, possibly below the plasma frequency,
which can be thought as a general cutoff for any tight-
binding based description of the system. In principle one
could also expect that the low-energy theorys3.2d is valid at
even lower energy scales, but since at the plasma energy one
still finds experimentally strong variation with respect to the
naive estimates1.4d, it is plausible that a quite larger cutoff
holds here for the tight-binding model itself. To analyze the
dependence of the results4.5d on the cutoff frequency we
need an explicit calculation of the optical conductivity ob-
tained with the bubbles3.17d.

By using the spectral representation of the Green’s func-
tions the current-current correlation functionPii

DDW s3.17d
can be evaluated in analogy withPii

sgd in Eq. s3.12d, with the
bare verticesgi substituted by the full oneGisk,kd of Eq.
s3.15d. To take into account the effect of disorder we make
the simplest ansatz of substituting the delta functions associ-
ated to a quasiparticle pole in the spectral representation
s3.11d with a Lorentzian of finite widthw fw=1/s2ttrd,
wherettr is the transport timeg,

dszd → Mszd =
1

p

w

z2 + w2 . s4.11d

As a consequence, after analytical continuation in Eq.s3.12d,
we obtain

sDDWsvd

= −
2pe2

V
o
k

RBZ E dz
fsz+ vd − fszd

v
S s«vF − DvDd2

E2

3fMsz+ v − j+dMsz− j+d + Msz+ v − j−dsz− j−dg

+
s«vD + DvFd2

E2 fMsz+ v − j+dMsz− j−d

+ Msz+ v − j−dMsz− j+dgD , s4.12d

wherevF and vD refers to the component in a givenx or y
direction.

As already observed in Ref. 37, and more recently in
Refs. 40 and 41, the optical conductivity is composed of two
contributions, due to the splitting of the original single band
«k in two new bandsj± after the gap opening. In Eq.s4.12d
the first line describes intraband excitationsscorresponding
to the product of twoM functions evaluated at the same
quasiparticle branchd, while the second line takes into ac-
count interband processes. It is easy to see that this second
contribution is only possible whenv.2umu sat low tempera-
turesd. Indeed, when the system is doped with respect to
half-filling sumuÞ0d the smallest energy difference between
occupied and unoccupied states in different branches is equal
to 2umu, and it is realized at the pointss±p /2 , ±p /2d where
the energyEk vanishes and the two bands merge. The first
contribution has instead a Drude-type shape, as it is shown in
Fig. 5, where we report the optical conductivity atT=0 for a

system with and without DDW gap. Here we used the set of
parameters discussed above for cuprates, atd=0.13. When
compared with the free-electron conductivity at the same
temperature, one can see that the Drude peak is smaller in the
DDW state, because part of the spectral weight has been
transferred to the interband processes. To quantify this trans-
fer of spectral weight we integrate numerically the optical
conductivity sDDWsvd s4.12d, and its analogousssvd at D0

=0, evaluating for a given cutoff frequencyv the quantity,

NsDDWdsvd = 2E
0

v

ssDDWdsv8ddv8, s4.13d

which verifies NDDWsv→`d=WDDWsD ,T=0d and Nsv
→`d→WsT=0d for the DDW and normal state, respec-
tively.

In the inset of Fig. 5 we showNDDWsvd and Nsvd at T
=0 corresponding to the calculated optical conductivities. As
we can see, at low energy the formation of a DDW state
leads to an overall decrease of spectral weight, since intra-
band processes are partly suppressed. However, at higher
energy interband excitations are allowed and the spectral
weight lost in the Drude peak is over-compensated, giving
rise to an overall increase ofWDDWsD ,T=0d in the DDW
state compared toWsT=0d in the normal state. For a value of
t,0.25 eV one sees that in the case of Fig. 5 the crossing of
NDDWsvd with respect toNsvd is already satisfied at cutoff
frequencies smaller than the plasma frequencys<4td, even
thoughNDDW saturates at higher frequencies. Of course it is
evident that the determination of the exact frequency at
which the sum ruleWsTd or WDDWsTd are exhausted depends
on the choice of parameters. For example, at smaller doping
or smallerD0 swhich both lead to a smaller value ofumu in

FIG. 4. sColor onlined Spectral weight in the presence of at8
term in the band dispersion. Here we showWDDWsD ,Td, WsD ,Td,
andWsTd, according to Eqs.s4.10d, s4.9d, ands4.8d, respectively, in
units of e2pa2/V. We used heret8=0.3t, TDDW=0.12t, Ds0d
=4TDDW, and d=0.1. The chemical potential is evaluated self-
consistently at each temperature by solving Eq.s3.6d in the presence
of a t8 term in the band dispersion. Observe that nearTDDW a small
decrease ofWDDW with respect toWsTd is observed, due to the
change of chemical potential nearTDDW.
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the DDW state, see Fig. 1d the intraband processes occur at
lower energy, so thatNDDWsvd.Nsvd will be satisfied at
lower cutoff energyv. In Fig. 5 we report one of the cases
when the cutoff frequency is larger, because the chemical
potential shifts fromm=−0.28t in the normal state tom
=−0.69t in the DDW state, due to the large value of the
DDW parametersD0=0.92td, pushing interband processes at
relatively high energies. It is interesting to observe that the
optical conductivity in the DDW state reported in Fig. 5,
which was evaluated with the ansatzs3.17d for the current-
current correlation function, has the samequalitativebehav-
ior of the optical conductivity reported in Ref. 41, where the
bare bubble approximations2.21d was considered for the cor-
relation function. Indeed, in the bare bubble approximation
the optical conductivity has the same structure of Eq.s4.12d
si.e., a Drude term plus interband processesd, but with vD
=0. However, the two approaches lead to twoquantitatively
different temperature dependences of the sum rule. Indeed in
the absence of thevD term in Eq.s4.12d, coming from the
vertex corrections, the spectral weight lost in the Drude term
when the DDW state is formed would not be compensated

any more by the interband processes, so that the total spectral
weight NDDWsv→`d in the DDW state would be always
lower than the spectral weightNsv→`d in the normal state,
as observed in Ref. 41.

In Fig. 6 we report the optical conductivity in the DDW
state at several temperature betweenT=0 andTDDW=0.13t at
the dopingd=0.13. As one can see, when the temperature
increases the interband processes shift to lower frequency,
due to the decrease of the absolute value of the chemical
potential ssee right panel of Fig. 1d. As a consequence, the
spectral weight is transferred again towards the Drude peak,
and the overall balance of spectral weight leads to a decrease
of WDDWsD ,Td. In the inset of Fig. 6 we show also the inte-
grated spectral weightNDDWsvMd and NsvMd at the same
temperatures of the main panel, with a cutoff frequency
vM =6t. Even though this estimate of the spectral weight is
much less accurate than the direct evaluation of Eq.s4.5d,
due to lower numerical accuracy of this procedure, we find
the same behavior discussed in the preceding sections while
computing directly Eq.s4.5d. Indeed, we can see that the
spectral weight increases in the DDW state with respect to

FIG. 5. sColor onlined Optical conductivity in
units of e2pa2/V at zero temperature for a free
tight-binding system and for the DDW state at
d=0.13 sm=−0.69t at T=0 in the DDW state,w
=0.1t were usedd. For convenience we also report
the frequencies in cm−1, as it is customary in the
experiments. Inset, frequency variation ofNsvd
according to Eq.s4.13d. Observe that at low cut-
off energy the spectral weight in the DDW state
is smaller than in the normal state.

FIG. 6. sColor onlined Optical conductivity in
units of e2pa2/V at various temperature for the
DDW state atd=0.13,TDDW=0.13t. In the upper
x-axis the frequencies are reported in cm−1. Inset,
comparison between the temperature dependence
of the integrated spectral weightNDDWsvMd and
NsvMd for the DDW and normal state, respec-
tively. The cutoff isvM =6t.
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the normal state, even though the relative contribution of the
Drude term is lower in the DDW state than in the normal
state.

A comment is in order now about the role of disorder. In
the preceding sections we reported the numerical results ob-
tained for clean systems, but to amplify the differences be-
tween the conductivity of a noninteracting system and of the
DDW state we used in Figs. 5 and 6 a quite large value of the
inverse scattering timew=0.1t, as appropriate, for example,
to reproduce qualitatively the large Drude peak observed in
BSCCO samples at about 100 K.2,4 As a consequence, also
the self-consistency equations3.6d for the particle number
and the sum rulesWDDWsD ,Td andWsTd should be evaluated
in the presence of disorder for a given doping. The main
difference is only in the absolute value of the spectral
weight, while the relative difference between the case with or
without DDW is the same. In the Appendix B we discuss the
modifications to the particle number and spectral weight
equations in the presence of disorder, that we used in com-
puting the optical conductivity in Figs. 5 and 6.

V. DISCUSSION

In the present paper we analyzed a possible approach to
determine a GI approximation for the optical conductivity in
a system which displays a transition to ad-wave modulated
CDW or flux phase. As we explained in detail in Sec. II the
requirement of GI of a theory fixes the relations2.20d be-
tween the current-current correlation function and the dia-
magnetic term. To understand better the expected domain of
applicability the sum ruleWDDWsD ,Td s4.5d let us summa-
rize the assumptions that led us to this rule. We have checked
in Sec. III B fEq. s3.13dg that the bubblePsgd of Eq. s2.21d,
evaluated with the mean-field DDW Green’s functions3.4d
and the bare vertexg, does not satisfy the GI condition
s2.20d when the standard diamagnetic terms3.7d is consid-
ered. As discussed in Sec. II C, this situation is quite stan-
dard, and considering the WIs2.26d this violation of the
gauge invariance can be attributed to thek-dependent char-
acter of the DDW gapDk, which makes necessary the use of
the full vertexGsk,kd instead of the bare onegsk ,kd.

In general the vertex function is determined by solving
the integral equations2.24d, but in the static limit it reduces
to the expressions2.26d. Since we do not know an analytical
solution at finite frequencies and momenta of the vertex
Gsk+,k−d, corresponding to the microscopic many-body
Hamiltonian s2.1d, we can try to use our knowledge of its
static limit to give a better approximation than Eq.s2.21d for
the current-current correlation function. More precisely, we
showed in Sec. II D that the dc conductivity derived from the
symmetric bubblePi j

sym s2.33d, where two full vertex func-
tions in the static limit appear, coincides with the exact result
at T=0.39,45 Even though this procedure allows us to cor-
rectly reproduce the optical conductivity in the low-
frequency limit, it does not solve the problem of knowinga
priori the sum rule corresponding to this approximated opti-
cal conductivity. Indeed, since this symmetric bubble is not
exact for the full models2.1d, and in contrast to the bubble
s2.22d contains two full vertices, one cannot expect that the

optical conductivity calculated using this bubble would sat-
isfy the usual sum rule corresponding to the diamagnetic
tensorss2.15d or s3.7d.

However, this last issue can be solved exactly by applying
the same GI arguments to the reduced quadratic models3.2d.
Indeed, the static limitGi ;gi +Viskd of the full vertex func-
tion, obtained from the original interacting model, can also
be considered as a bare vertexg̃ for the DDW Hamiltonian
s3.2d. Moreover, since this Hamiltonian describes noninter-
acting quasiparticles, the bare and the full vertex coincide, so
that the symmetric correlatorPDDW in Eq. s3.17d is theexact
one for this model. As a consequence, the diamagnetic term
s4.4d of the reduced model gives the sum ruleWDDWsD ,Td
s4.5d for the symmetric current operators3.17d, which is the
exact one within the quadratic theorys3.2d and at the same
time provides us with a good approximation for the optical
conductivity of the true interacting system, at least at low
energy.

The last issue we addressed in the present paper is to
analyze to which extent the sum rules4.5d can be related to
the behavior of the microscopic Hamiltonians2.1d. In gen-
eral, it is believed that in the presence of interactions the
restricted sum rules1.3d, derived for the electrons within the
lowest conducting tight-binding band, is still valid, provided
that the occupation numbernks takes into account the effect
of the interactions. In this case, we should rely on the esti-
mateWsD ,Td in Eq. s3.7d for the sum rule in the DDW state.
However, this approach has two disadvantages,sid we cannot
derive the optical-conductivity which would lead to this sum
rule; sii d no general argument holds to justify why this atti-
tude is the correct one to estimate, at mean-field level, the
sum rule for the interacting microscopic model. Motived by
these observations we argued that in the case of interactions
leading to a DDW formation a better mean-field approach to
the transport properties is provided by the calculation of the
optical conductivity by means of the bubblesPDDW. Thus, to
obtain the correct mean-field approximation for the spectral-
weight behavior is not sufficient to modify the occupation
numbernks below TDDW, but it is more likely that a proper
redefinition of the diamagnetic tensor is needed. As a conse-
quence, the sum rule should be estimated by means of Eq.
s4.5d instead of Eq.s3.7d, leading to anincreaseof spectral
weight below TDDW. However, this assumption would re-
quire also that the integrated spectral weightNDDWsvd in the
DDW state becomes larger than theNsvd for the noninter-
acting system at some “low” frequencyvM. As we discussed
in Sec. IV D, such cutoff frequencyvM turns out to be in
general lower than the plasma edge, but its precise value
depends crucially on the parameters of the DDW transition
sdoping, order parameter atT=0, etc.d. Moreover, it is not
clear yet if avM below the plasma frequency is a sufficiently
low-energy scale for the interacting tight-binding model,
since no universal definition exists of the frequency itself
below which the restricted sum rule should be applicable.

Finally, a comment is in order now about the comparison
between our results and the experimental optical data for
cuprates. A first issue is related to the fact that the most
recent experiments show that the temperature variation of the
spectral weight is larger than expected in a tight-binding es-
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timate also in optimally doped and overdoped compounds4,6

ssee also Appendix Ad, i.e., eventually at doping larger than
the critical dopingd0=0.2 for the charge ordering phenom-
enon. This could mean that a more general effect of the
strong correlations present in these materials can be respon-
sible for the large temperature variation ofWsTd. This pos-
sibility has been indeed investigated recently in Ref. 50,
whereWsTd has been evaluated by means of the DMFTsdy-
namical mean field theoryd approach to the Hubbard model,
which seems to reproduce the large temperature variations of
WsTd observed in the experiments. A second issue arises
about the lack, in the experiments, of a clear signature of an
interband conductivity as the one reported in Fig. 4. In par-
ticular, BSCCO compounds, that were used as a paradigm
for the choice of DDW parameter values in cuprates,26 ex-
hibit in general a quite featureless conductivity, with a slowly
decaying high-frequency tail. However, in different families
of cuprates, displaying a similar spectral-weight behavior,
clear signatures of charge ordering have been indeed ob-
served in the optical spectra, even though located at much
lower energy scales with respect to the one obtained here
using the parameter values for BSCCO compounds. This is
the case of LSCO and YBCO, where far-infrared features,
well separated from the Drude peak, have been measured
recently.47 In both Refs. 48 and 49 these features were actu-
ally interpreted as due to a charge-ordering phenomenon,
described by means of some different theoretical approaches
which did not allow one to discuss at the same time the issue
of the spectral-weight behavior. For these reasons, even
though the analysis presented here cannot be conclusive as
far as the optical spectra of HTSC are concerned, we believe
that a deeper investigation of the role of charge degrees of
freedom can eventually lead to a better understanding of the
conductivity of cuprates. At the same time, the analysis pre-
sented here could be extended to other systems like 2H-
TaSe2, where ak-space modulated CDW forms30 and where
clear signatures of a Drude response accompanied by a mid-
infrared peak have been observed in the optical spectra.29
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APPENDIX A: FAILURE OF THE
TIGHT-BINDING ESTIMATE

As we noticed in the Introduction, even though aT2 tem-
perature decrease ofWsTd is observed in the experiments, the
measured slope is quite larger than the one expected within
the simple noninteracting tight-binding estimates1.4d. To
quantify this discrepancy in the most accurate way, we evalu-
ate explicitly the spectral weight for the tight-binding model
by including also a next-nearest-neighbors term in the band

dispersion, see Eq.s4.7d. As a consequence,WsTd is given by
Eq. s4.8d.

To correctly reproduce the Fermi surface of BSCCO and
LSCO compounds we will assumet=0.3eVandt8=rt, where
r =0.3 for BSCCO andr =0.2 for LSCOswhere the Fermi
surface changes topology in the overdoped region, becoming
electronlike at aboutd=0.2 doping51d. The results of
WsTd /Ws0d as a function ofsT/ td2 from Eq. s4.8d are re-
ported in Fig. 7 for several dopingsby fixing as usual the
correct chemical potential at each doping and temperature
from the self-consistency equation for the particle numberd.
In the left panel we report the estimate for BSCCO, that
should be compared to the experimental datasfor under-
doped, optimally doped, and overdoped samplesd of Refs. 1,
2, and 4. Observe that in Refs. 2 and 4 the variation of
WsTd /Ws0d between room temperature andT=0 of the order
of 20%–5% when measured at various cutoff frequencies,
while the tight-binding estimate in Fig. 7 never exceed the
0.6% ffor t=0.3 eV, T=300 K corresponds tosT/ td2

=0.0074g. Analogous considerations hold for the comparison
between the measured spectral weight in LSCOsRef. 6d and
the estimates4.8d reported in the right panel of Fig. 7. A
comment is in order now about the role of the Van Hove
singularitysVHSd in the density of states. Indeed, according
to Eq. s1.4d, where thet8=0 case was considered, the coef-
ficient csmd=mN8smd+Nsmd could increase considerably by
approaching the VHS. This effect is indeed seen in the
curves atd=0.12 andd=0.16, where the initial slope of
WsTd is quite large. However, as soon as the temperature
increases the effect of the VHS is washed out very rapidly
and the overall variation in the range ofT between 0–0.1t
attains the same values found for the caset8=0.3t. Moreover,
for the overdoped cased=0.26 the slope ofWsTd /Ws0d
agrees very well with the approximationcsmd=1/4pt of the
parabolic band dispersionsPB in the figured, which would
give the valuep2csmd /6=0.13/t for the coefficient in Eq.
s1.4d. For these reasons one can conclude that thet8 term in

FIG. 7. sColor onlined Spectral weightWsTd /Ws0d according to
Eq. s4.8d for t8=0.3t fleft panel, appropriate for BSCCOsRefs. 2
and 4dg and t8=0.2t fright panel, appropriate for LSCOsRef. 6dg at
various doping. In the right panel we also report the result obtained
with the estimates1.4d and the parabolic bandsPBd approximation
for csmd=1/4pt, using the valueWs0d=0.682t at d=0.26.
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the band dispersions4.7d has a minor role in determining the
spectral-weight variations, and indeed it was only briefly dis-
cussed in Sec. IV C of the present work.

APPENDIX B: SUM RULE IN THE
PRESENCE OF DISORDER

As we did in Sec. IV D we will take into account the
effect of disorder by using the substitutions4.11d in the spec-
tral representations3.10d of the Green’s function. To see how
Eq. s3.6d is modified we rewrite it in terms of the spectral
function,

n =
2T

N
o

k,ivn

RBZ

TrfGsk,ivndgeivn0+

=
2

N
o
k

RBZ E dzfMsz− Ed + Msz+ Edgfsz− md. sB1d

Analogously, the definitions4.4d of the diamagnetic ten-
sor in the DDW state can be expressed as

ktiil = −
T

N
o

k,ivn

RBZ

h«kTrfGsk,ivnds3g

− DkTrfGsk,ivnds2gjeivn0+

= −
1

N
o
k

RBZ

Ek E dzfMsz− Ed − Msz+ Edgfsz− md.

sB2d

Observe that if one setsMszd=dszd the resultss3.6d ands4.5d
can be recovered, and forD0=0 one finds the corresponding
expressions for the normal state. AtT=0, which is the case
considered in Fig. 5, the previous equations simplify. Indeed,
since the Fermi functions reduce to a step function, one has

E
−`

`

dzMsz− Edfsz− md =E
−`

m

dz
1

p

w

z2 + w2

=
1

p
Sarctan

m − E

w
+

p

2
D sB3d

so that the self-consistency equation for the particle number
and the equation for the spectral weight can be written as

n − 1 =
2

pN
o
k

RBZ Sarctan
m − E

w
+ arctan

m + E

w
D , sB4d

WDDWsD,T = 0d
spe2a2/Vd

= −
1

pN
o
k

RBZ

EkSarctan
m − E

w
− arctan

m + E

w
D .

sB5d

Observe that here we did not consider the effect of the DDW
formation on the transport scattering time, which can be
present. For a detailed discussion of impurity scattering in
the DDW state see Ref. 35.
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