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Ward identity and optical conductivity sum rule in the d-density wave state
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We consider the role of the Ward identity in dealing with the transport properties of an interacting system
forming ad-wave modulated charge-density wave or staggered flux phase. In particular, we address this issue
from the point of view of the restricted optical-conductivity sum rule. Our aim is to provide a controlled
approximation for the current-current correlation function which allows us also to determine analytically the
corresponding sum rule. By analyzing the role of the vertex functions in both the microscopic interacting
model and in the effective mean-field Hamiltonian, we propose a nonstandard low-energy sum-rule for this
system. We also discuss the possible applicability of these results for the description of cuprate superconduct-
ors in the pseudogap regime.
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I. INTRODUCTION e 7o, Pey
o o Wi(wp, T) =W(T) = (7} = = 2 5 Nkor (1.3
In the last years a quite important re-examination of the \4 VN5 K

optical conductivity of hight. superconductorHTSCO) has . _ .
been performed, due to the improved experimental resolu’Nere Nk is the momentum occupation numbsf,is the
tion. Despite the variety of features observed in the different/Nit-Céll volume,N is the number of unit cells; is the elec-
families of cuprates, when the integral up to large frequenion charge, and we sgt=c=1. In the twoz—dlmensmn_a(IZD)
cies of the optical spectra is concerned a common behavidi@S€V=a", and in the quasi-2D casé=a‘s, wherea is the
can be found:® This result is particularly interesting, be- Iattme_spacmg a_md|s th_e dlstan_ce b_etween the layers. In the
cause it would allow us to distinguish between different the-following we will consider mainly in-plane processes and
oretical scenarios for HTSC, in particular for the pseudogapSOrOPIC systems, whené, =W, =W. _
phase observed in underdoped compounds. The optical spec- 1 "€ main difference between the restricted and full
tral weight is defined as the integral of the optical conduc-SUM rule is that whileW(wy —<=,T) is a constant\W(T)
tivity in a given directioni=x,y,z, given by E_q.(l.3) is in g_eneral a funct!on of temperature,
which provides information about the interactions between
N the electrons in the system. In particular, in a 2D lattice
Wi(wy, T) =J Reaji(w,T)do, (1.)  model with a nearest-neighbors tight-binding dispersign
“om =-2t(cosk.a+cosk,a) the spectral weight E¢1.3) is pro-

and can be analyzed as a function of both the temperature portional to the mean kinetic energy of t'he sys'.[eN(,T)

and the cutoff frequency,,. According to this definition, the ==(me/V)(K)/2). In the _absence OT mteractl(_)nek,,
weight W, includes also the condensate peakoatO which = (&), where§=e,—u, w is the chemical potential, and
develops in the superconductii§C) state belowT,. De- f(x) is the Fermi function. In this case the main temperature
pending on the cutoffsy the sum rulg(1.1) acquires differ-  dependence of the spectral weight3) comes from the tem-
ent meanings. When all the optical transitions are taken int@erature smearing of the Fermi function, and can be easily
account, Eq(1.1) expresses simply the so-called full f-sum evaluated using the Sommerfeld expansion:

rule,/~relating the optical spectral weight to the total carrier

. W(T) 1
densityn, — == f
Y ey iR
. m™ne?
J_x Reolw)dw=="" 2 -- f deN(2) (= ~ )
wherem is the bare electronic mass. However, it is usually W(0) ' 2
assumed that whem,, is of the order of the plasma fre- = (naN) EC(M)T , 1.9

quency only intraband optical transitions relative to the low-

est conduction band, contribute toW(T), so that one ob- whereN(e) is the density of states for the tight-binding dis-
tains therestrictedor partial sum rulg!®*?which relatesw; persion ancc(e)=eN’(e) +N(g). By making a quadratic ap-
to the average value of the diamagnetic terfn[see Eq. proximation for the two-dimensional tight-binding band dis-
(2.10 below], persion one would find(w)=1/4xt, which is also a good

1098-0121/2005/710)/10451118)/$23.00 104511-1 ©2005 The American Physical Society



BENFATTO et al. PHYSICAL REVIEW B 71, 104511(2005

estimate of the exact value obtained using the true band disurements of the Fermi surfacehowing that the sum rule is
persion and by doping the system away from half-fillisge  far from being conventional already in the nornjabn-SQ

also Appendix A. However, for an interacting system,  state? Moreover, even faster increase W(wy,T) is ob-

can acquire in general a different temperature dependenceerved at smaller values afy;.*®

which influences alstV(T). An example is provided by the For these reasons, the issue that we address in the present
case of a SC instability. Indeed, according to the BCS theorypaper is the behavior of the optical-conductivity spectra and

pseudogap state. Between the several proposals existing in
Neo=[1- §k/E§Ctan}“(EEC/2T)], (1.5 the literature about the origin of the pseudodéwe focus in

the present paper on the case where a competing order pa-
whereA, is the SC gap anB;°= & +A? is the quasiparticle rameter is formed before the SC state is established. In par-
dispersion in the SC state, so that the spectral weigl®  ticular, we refer to the so-called flux phasedsdensity wave
decreases belowW,. WhenW(T) corresponds to the kinetic State(DDW).1%-2"We would like to stress that while a flux
energy this result is understood as the increasgpbelow  Phase does not present modulated charge, the same phenom-
T, due to the particle-hole mixing in the SC state. enological spectrum can be considered as emerging due to
These general expectations about the behavior of the rdN€ tendency of the system to form charge order near a quan-

o g ; C
stricted optical sum rule were not confirmed, within severalU™ cfitical point=>This scenario was studied in Ref. 26, and
respects, in the experiments on HTSC. Early measuremen e will refer in the present paper also to this point of view,

of the c-axis spectral weight up to frequencies of the order ofV ich could be useful in relating the results presented here

the plasma edgeyp = 10° cmit, showed that in YBCUOg, s not only to cuprates, where they can be only partly applied,

> . but also to other materials displaying a trkkspace modu-
(YBCO) compounds,(T) exhibits a quite anomalous tem- ... 4 CDW(as, for example, dichalcogenide mater&Fs).
perature dependence, with a decrease below the pseudo

98Pn 4 i icatioft i i

. 3 i previous publication; we discussed briefly how a
Lemperaturg,éollc()jwi?_gytag ;nctLeas?f bilﬁ%”’l Sugh a be mean-field description of the DDW state can be compatible
navior was indeed attributed to the eflect of pseudogap opeiy, o increase of the spectral weight below the temperature
ing, combined with the tunneling character of the transpor

R Tat which the order parameter forms. However, this result was
along thec-axis direction.

. . not considered from a more general point of view, which
Recently more attention has been instead devoted to thE g P

. . i . . gonsists in relating the sum rule to the problem of providing
ISsue Of.the spe_ctra.l—we|ght behavior for the in-plane optica gauge-invariant approximation for the response functions
conductivity, which IS a better probe of the degrees of free~m a given microscopic model. As we shall see, the basic
dom mostly responsible for the properties .Of HTSC. Therequirement of respecting the charge conservation imposes
measurements were performed in ,®,CaCyOg,s

124 35 simultaneously several constraints on the definition of the
(Ciﬁ]%g?n ds \a(f?/g}iouasndct?c;ﬁsr;f;lazl%n(clz_iigv,@kgsti\tég)n current operator, the diamagnetic term and the corresponding
1000 cm™ (0.12 eV} and 20 000 ¢t (2.5 eV). A first issue electromagnetic correlation functions. The sum rule then fol-

: : . lows naturally when all these requirements are satisfied
is the behavior ofM(T) belowT,. While early measurements i 5 given approximation for the microscopic interacting
in BSCCO samples show that there is an even fasteease

> o model, and different approximations can lead to different
of W(T) below T, contrary to the prediction of the BCS g, ryles. As we shall see, while the anomalous sum rule

theory, more recent results in BSCO@ef. 4 show that  gerived in Ref. 31 can be proposed to reproduce the experi-
there is a flattening o0V(T) in underdoped samples fofy  mental data for cuprates, the agreement with the theoretically
=8000 cm*, while a BCS behavior below, is seen in the  gptained optical conductivity is more subtle, and more de-
overdoped BSCCO and in YBCO sampfesAlso from the  tajled features specific of different materials should be con-
theoretical point of view many proposals arose relative to thejgered. A more difficult task is to properly define the change
problem of the lowering of in-plane kinetic energy in the SC of hehavior of the sum rule at different cutadf,; this prob-
state**~1" _ _lemis quite general, and while it is clear that fay, — = the
Interestingly the behavior of(T) above the SC transition  fy| sum rule(1.2) must be recovered, there is as yet no clear
also shows unexpected features, which deserve more invegnderstanding of a proper experimental and theoretical defi-
tigation. Indeed, as observed in Ref. 2, the in-plane opticahition of the correct cutoff for the restricted sum rule in Eq.
sum rule does not show any decrease below the temperatufe.3). In our case, we shall discuss how the various restricted
at which the pseudogap forms, contrary to what found for thesum rules should be realized at different energy scales, even
c-axis response. In addition, when the plasma edge is corhough an exact result cannot be obtained in this respect.
sidered as a cutoffM(T) shows a “standardT? temperature The structure of the paper is the following. We begin by
dependence, even though these are clearly strongly interagiresenting in Sec. Il the general formalism which is needed
ing non-Fermi-liquid systems. However, this result is mis-to analyze the optical-conductivity sum rule in an interacting
leading, because despite thealitativeanalogy with the free  system. In Sec. Ill we explicitly study the case of a DDW
tight-binding result(1.4), the measured\(T) is in a strong  state, and we show that we can derive a good approximation
quantitativedisagreement with the estimate.4). Indeed, as  for the low-energy optical conductivity which is however no
we show in Appendix A, the coefficie(u) of Eq. (1.4 is  more related to a known sum rule. In Sec. IV we solve this
about one order of magnitude larger than expected by usinggroblem by analyzing directly the reduced, low-energy DDW
t value estimated by other probéas photoemission mea- model Hamiltonian, and we calculate explicitly the sum rule
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and the optical conductivity.v_vithin the propqsed m_ean-field G p) = G(—)l(p) -3(p), (2.6
approach to the DDW transition. We then discuss in Sec. V )

the results obtained and summarize the procedure describ¥dere the self-energy(p) is evaluated at Hartree-Fock level
in the paper. In Appendix A we report the evaluation of the@s
sum-rule behavior for the noninteracting tight-binding
model, to quantify the discrepancy with the experimental
data, and some details about the role of disorder are pre-

3(p) = % G(KV(p ~k), (2.7

sented in Appendix B.

II. SUM RULE IN A MODEL WITH GAUGE
INVARIANT INTERACTION

where, is a short-hand notation faF/NZ;,, g%, Observe
that for a time-independent interaction, as the one considered
in Eg. (2.1), the self-energy2.7) does not depend explicitly

on the frequency, but we will keep for convenience this more
general notation in the following. In the case of supercon-

Let us start by considering a general Hamiltonian describductivity, the Hartree-Fock approximation for the self-

ing interacting electrons in a two-dimensional lattice,

t t
> ¢l e,V ~1)C/yCior

L
ij,o00

H=-t> ¢l c,—n2 o, +
(ij) i
(2.1

where the field operatoa:;r(r creates an electron of spim
at r;, t is the hopping parametekjj) is the sum over

nearest-neighbor site¥/(r;—r;) is the translationally invari-
ant electron-electron interaction. When rewritten in recipro

cal space, the band dispersion corresponds eth)
=-2t(cosk.a+cosk,a). Throughout the paper units=kg
=c=1 are chosen.

In the DDW state a particle-hole coupling is considered at

the characteristic wave vect@=(w/a,/a). The notation

is then simplified by halving the Brillouin zone and introduc-

ing two-component electron operatdtee DDW equivalent
of Nambu spinor®)

_ Cko
Xko =

(2.2
Ck+Q,o

to—(af of
)l Xko = (Cka Ck+Q,o’)’
wherec] andc,, are the Fourier transforms ¢f,, andc;,,.
The Hamiltonian(2.1) written in terms ofy becomes
RBZ 1
H=> Xlg[a(sk + &) — pt é(sk ~ £+Q) 03 | Xko
k,o

1 BZ RBZ RBZ
t
+ NE V(q) 2 XI+q,a-Xk0’E Xp—q’g—’XpU“ (23)
q k,o p,o’

whereV(q) is the Fourier transform of the potential; is the
Pauli matrix and the sums are over the redu@@BZ2) and
full Brillouin zone (BZ).

After employing the nesting property.qo=-g the ki-
netic term of the Hamiltonia2.3) takes a simple form

RBZ

Ho= 2 xkolekos — wlxko-
k,o

(2.4)

Accordingly, the free electron Green’s function reads
(2.5

where w,=(2n+1)#T is the fermionic(odd) Matsubara fre-
quency. The full Green’s function of the systeG(p), p
=(p,iw) is given by the Dyson equation

Go'(K,iwy) = (i + p)op = £¢T3,

energy, equivalent to the EQ.7) rewritten in the particle-
particle channel, gives the usual BCS result for the Green'’s
function22 In the case of DDW order it corresponds instead
to the mean-field Green’s function usually considered in the
literature31:34-41

A. The electrical conductivity and the conductivity sum rule

The optical conductivity can be calculated from the elec-

_tromagnetic response kernel

Kl @1 Q) == 7,,8,,(1 = 8,0) + 11,,,(0,iQ), (2.8)
wherell ,,(q,i{)y) is the correlation function

1(?. .
Hﬂv(qiiﬂm) = NJ dTeIQmT<TTj M(Q1 T)jv(_ q!0)>
0

(2.9

Here 7; is the diamagneticor stres$ tensor, 7 is imaginary
time, B=1/T, andQ,,=27mT is the bosonic Matsubara fre-
quency. The index.=(i,0) with i=1, 2 indicates spatial and
time components, respectively, so that the particle current
operatorj,(q,7)=(ji(q,7),jo(q, 7)) consists of the particle
current densityj;(q,7) and the particle densityy(q, 7). As
usual, the particle current and the diamagnetic tensor are
defined as the first and second order derivatives of the
HamiltonianH(A) in the presence of the vector potentfal
with respect toA itself 12

&
H(A) =~ H(0) - 2 | eArji(r) - AT ) 7i(r) |,
J

(2.10

so that the total current density is expressed Jds)
=-6H/oA(r)=ej(r)-€*7;j(r)A(r), and by evaluating
(J(9)) within the linear response thed¥§342one obtains
JM(q):eZKW(q)AV(q) with the electromagnetic kern€2.8).
Then using thatA(w) =E(w)/i(w+i0), whereE is the elec-
tric field, one finally arrives at the Kubo formula
LKi(@=0,0) _. (%)~ II;i(q=0,w)

@)= T T Vie+io)
(2.11)

where the standard analytic continuatidn,,— »+i0 was
made. To avoid confusion, along the paper we will indicate
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the imaginary bosonic frequencies wit,,,, the imaginary v, (k)= (UE,]-); vk —al2k+q/2) = (Ulfgs,go), q—0,

fermionic frequencies witlhw,, and the real frequencies with (2.16

w. Since an isotropic system is considered we can omit the '

indexi as done in the left-hand sideHS) of Eq.(2.1) and  and(vf);=de,/ Jk; is the Fermi velocity® Note that if a qua-

in what follows. dratic band dispersion,=k?/2m is assumed, the tenses
Taking the real part of(2.11), one obtains Re(w)  reduces tan/m, wheren is the total carrier density, so that

=(me?IV) Sw)[(1)-Rell(0,w)]+(e#/V)IMI1(0,w)/w. In  Eq.(2.13 reduces to the f-sum ruld.2), which is tempera-

the presence of disorder the coefficient of thi@) vanishes, ture independent. Instead, for a tight-binding nearest-

so that RdI(q=0,w— 0)=(7) and only the regular part of neighbors lattice dispersion, according to the definition

o(w) survives. As a consequence, one usually defines th€.19, 7 is proportional to the kinetic energy, and the sum

optical conductivity only through the imaginary part of rule (1.4) is recovgred. Opserve t.hat formally_th_e sum rule
I1(q=0,w): (2.13 always requires the integration up to an infinite cut off

energy. Nevertheless, an intrinsic finite cutoff energy is pro-
ImTI(q=0,0) vided by the energy scale below which a given model can be
Reo(w)= ————, (2.12 considered as a good approximation for the real system. As a
\ w consequence, while the full f-sum rule is always satisfied at
enough large energy scales, the restricted optical sum rule
so that using the Kramers-Kroni@KK) relations forIl(q relative to a given tight-binding interacting model is ex-
=0,w) one can derive the well-known sum rule, pected to hold only below some intrinsic energy scale, whose
definition is not universal. We would like to stress that the
o definitions (2.14) and (2.15 follow from the Hamiltonian
W(T) :f Reo(w)dw (2.1) once that a gauge-invariant form is chosen for the in-
— teraction term. However, this assumption is invalid when, for
&2 (* | _ example, “occupation modulated” hopping terms are
B f mII(g=0,w) 3 b S : ;
== — dw present? or when an “effective” interacting model is con-
V). @ sidered, in a sense that we will specify bel@see Sec. IV.

e m
= V2 Rell(q=0,w=0) = 7(7-). (2.13 B. Gauge invariance and the sum rule
The derivation of the sum rule presented above is rather

The form of H(A) itself depends on the microscopic formal, and does not allow one to understand that the sum
model and thus on the way the vector potenfiaénters the  ryje is just a different way of stating the gauge invariance of
Hamiltonian of the system. When a continuum model is conthe theory. To gain a deeper insight into the relation between
sidered instead of Eq2.1), the kinetic term is expressed as these two aspects, it is useful to consider here the sum-rule
J(-V?/2m and A is inserted using the minimal coupling derivation presented in Ref. 42. The starting point is the ob-
prescription +V —-iV—€A. For lattice systems the equiva- servation that in a Gl theory there is a gauge freedom to
lent of the minimal coupling prescription is the so-called choose whether the applied electric fiid=—-3,A-V ¢ is
Peierls ansatZ®'2 which corresponds to insert the gauge included in the Hamiltoniat2.1) either via the vector poten-
field A in Eq. (21 by means of the substitutio; tial A(¢=0) or by considering a scalar potentialA=0).
—cie™®/A ", In this case, it is clear that when the interaction opyiously, the conductivity derived from two equivalent
term of the Hamiltonian is a density-density interaction, as inqamiltoniansH(A) and H(¢) must be the same, but this is

Eq. (2.2), only the kinetic hopping term is modified, while ony guaranteed by the charge conservation
the interaction term is gauge invariai@l). As a result, the

current/density operator and the diamagnetic tensor can be edjo(q,t) +ieq-j(q,t) =0. (2.17

expressedfor smallq) as The proof considered in Ref. 42 thaft(w) derived from
H(A) andH(¢p) are the same is based on the identity

1
Ju(@,) = = 2 v,(K)C_ga,Cirqrzo
SR Al im = ([jo(@.0.1(- 0D,

” €?
f do Reo(w) = =
—o0 VN g—o0 ¢

RBZ

= N > X;—qIZ'Y;L(k —a/2,k+d/2)Xksqs 9—0, (2.18

k,o i i i . .

which is obtained by using the charge conservation

(2.14 (2.17. For example, substituting in Eq2.18 jo(q,t)

:Zkvﬂcl_q,zﬂckm,zﬂ and the free-electron expressip(g,t)

1w Py =(1/m)Ek,gkCl_q,g,ngq/z,m corresponding tos,=k?/2m,

Ti =N e ke (2.15  returns the full f-sum rulg1.2).

ko 0K Another way to state the relation between the sum rule

and the Gl uses instead the generalized electromagnetic ker-
where nel (2.8). As discussed in Ref. 33 with reference to the SC
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case, the requirements of charge conservafipd,(q)=0] I1,,(0,iQ) = - 2 THG(K)y,(k_, k) G(k)T (ks k)1,
and invariance of the theory under the gauge transformation “ k .

A, (q)—A,(q)+iq,A(q) are fulfilled when the condition (2.22

0,K,..(@) =K, ()q,=0, gq=(q,w) (2.19  wherek,=(K,io,+iQp,), k=(k_,iw,,) with k.=k+q/2.
The important property of the current-current correlation
is satisfied. In particular, the following relation must hold: function (2.22 is that the condition(2.19 is preserved
whenever the vertex function satisfies theneralized Ward
I1;i(q — 0,0 =0) = (7). (2.20  identity (GWI):

— -1 -1
This equality states that the diamagnetic term is canceled out 9ul’u(P+,p) = G(p) = G (P (2.23
by the static limit (0=0,q—0) of the (rea) part of the = The GWI is nothing but the charge conservation Il 7)
current-current bubble, while deriving the Ef.13 we used  rewritten using the Green’s and vertex functions. If the
the relation between thdynamic(q=0,w— 0) limit of the ~ Green'’s function given by Dyson equati@26) is evaluated
bubble and the stress tensor. However, in deriving(Eq.3  within the Hartree-Fock approximatid@.7), then the vertex
we assumed the presence of disorder, whose role is crucial flanction satisfying the GWI is also the solution of the fol-
restoring the equality between the static and dynamic limitdowing integral equation:
of the current-current correlatdd(q). Indeed, while in a
clean system the dynamic limit of the bubble vanishes, in therﬂ(p+'p—) = YulP+.p-) + zk: Gk)T (ks k)G(K)V(p — k).
presence of disorder it coincides with the static limit, which

in turn is equal to the diamagnetic term: Réw—0,q=0) (2.29
=Rell(w=0,9—0)=<7>, and then Eq(2.13 follows. The analytical solution of Eq2.24) cannot be easily deter-
mined, except that in the static limit, whéh is given by
C. Ward identity and vertex function a3 (p)
R Li(p,p) = ¥i(p,p) + ——
The advantage of the derivatiof®.18 and(2.20 of the Ip;

sum rule is that they show explicitly that it must be regarded

-1
as a consequence of the charge conservation. Moreover, it :_(?G_(p)
allows one to see that once a given approximation is used in ;i
evaluating the current-current correlation function, it also . dG(p) __
fixes the sum rule that will follow from such an approxima- =G 1(D)TpG Y(p). (2.295
I

tion. However, a quite difficult task is to implement an ap-
proximation for both the Green’s function and the current-Indeed, if one setg=0 in Eq.(2.24 (which corresponds, as
current correlator which preserves the conditi¢19), usual, to the static limitv=0, g— 0 when analytical continu-
necessary for maintaining the Gl of the theory. In particularationi{),,,— w+i0 is madg, by means of the previous rela-
when the Hartree-Fock self-enerd®.7) is used and the tion one obtains

bubbleslIl,, are evaluated in the lowest-order approxima-

tion, Ti(p.p) = %(p.p) + 2 GKTi(k K G(K)V(p k)
k
(g i - _ i i dG(k)
L0 Q) = = 22, THG(k = /2 + ) =n(pp)+ 2 — =V(p-k)
k i
Xy, (k—-a/2,k +0q/2)G(k +0/2,iwp) - 6k N(p - k)
Xy,(k +ai2,k - q/2)], (2.20) BRI oK;
the Gl isnotin general preserved, as it is known for SC and 9
as we shall see explicitly in Sec. IV in the case of DOiive =%(p,p) + 3—2 G(k)V(p - k)
factor 2 in the previous equation is due to the spin summa- Pi K
tion). A general field theoretical approach that solves the dif- J3(p)
ficulties with charge conservation and gauge invariance, =%(p,p) + ﬁ_p-' (2.26
I

originally present in the mean-fielthare vertex formulation
of the BCS theory, was developed by Narband discussed Here we used the fact that the potentais nonseparable,
in detail in Chap. 8 of Ref. 33, so that here we only introduceviz. it depends on the differenge-k, as it is expected for a
the main definitions and stress the points necessary for th@l density-density interaction. Observe also that this result
consideration of the DDW state. can be obtained directly from the GW2.23 by taking the

As shown in Ref. 33, the current-current correlator, de-limit =0, q— 0. For example, one can easily check that WI
fined above in Eq(2.9), can be expressed in terms of the full (2.25 is satisfied for the free electron Green’s functi@b)
Green'’s functiong2.6), the bare vertey, and the full vertex taken together with the bare vertéx16). It is worth noting
functionT",, as follows: that in the case of SC the behavior of the vertex function at
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zero frequency and momentum is completely different, and Jl:(a=0.w

indeedl';(p, p) is divergent as the inverse of the phase-mode _JM

dispersior??23 Indeed, the equivalent of E¢2.23 contains d3k

for the SC case a combination of Green’s functions and Pauli

matrices that cannot be reduced to the derivativédfas in 2 )3[g (ke K)F (ki) - 7l(k"k+)

Eqg. (2.295. Here, however, the equivalent of the gapless

phase mode is not present, because there is no Goldstone +G(k, K)f’-(k+ k) - yi(ko k)] (2.30
mode when a discrete symmetry is broken, &i@, p) turns oo en e w=0G=0

out to be finite.
whereg., I, indicate the derivative with respect ta The
_ ) o expression(2.30 can be further simplified by using the
D. Symmetrized expression forT =0 dc conductivity equation for vertex2.24) taken atT=0 and its derivative

In practice, since the exact expressions ®andI’; are with respect tow,

unknown, the consistency of an approximated calculation of 5
the conductivity can be guaranteed if thpproximatedex- 5k, k) -T (koK) - f d*p
pressions foiG andI’; satisfy the GWI(2.23). Observe that ' (2m)3
what we obtained i1f2.26) is the limit w=0,q— 0 of I', but

in the calculation of the optical conductivity it is the opposite

limit which is needed. However, at least in the presence of q=0, (2.319
impurities, or atT=0, the static and dynamic limits com-

mute. Unfortunately, a generalization of the reg@l26) to e
finite frequency cannot be obtained from the equata4) T’ (ke k) :f p3
for a generic potential, by means of, e.g., a perturbative ¢ (2m)
method. Since our final task is to find an approximation for -,
the optical conductivity which allows us also to estimate the *+G(P+ )i (Ps,P) V(K = p).
corresponding sum rule, let us analyze the utility of the result (2.31b
(2.26). First, we note that the knowledge of the vertex func-

tion at zero frequency allows one to find an exact result forSubstituting 3, from Eq. (2.313 in Eq. (2.29 and using
the dc conductivity af=0. To show this it is convenient to (2.310 we obtain
think of 2X 2 matricesA andB as being represented by two

column vectors of X2 matrix elements and rewrite Tr of ;i (q=0,0)

. - 1
the matrix product as the scalar product, ——— P

G(ps,p)T(ps, P V(K - p),

[G.(P+.PIT (P4, P.)

=0

3
(g a0 = OF (kK TikK)| .
w=0

(2.32

THAB] = 2 (A)os(B) g =A-B. (2.27) =-2
af

Accordingly, by introducing the vector
Our derivation is similar to the derivation of the symmetrized
- expressions for the derivatives of the polarization operator
(K KT (K KO)) g = 2 Gy (k) Gsp(KT (ke k), considered in Ref. 44, where also the derivative of Bethe-
i Salpeter kernel enters the analog of E2,.31h. The useful
(2.28)  property of the representati®@.32) for I1/ is that it contains
two full vertex functionsI';. The corresponding expression
for the dc conductivityoy. coincides with the result derived
by Langer[Eqg. (4.8) of Ref. 45 in the early 1960s using a
completely different approach, consisting in introducing a
symmetric bubble

we can rewrite correlation functio(®2.22 as follows:

d3k - .
I;(q) = - ZJ (ZT)Q,Q(KL,K)E(K,K) ¥i(ko Ky,

RBZ

T
(229 M0y = - 20 3 TG(K, i +i0)
Kiwp
where since we are considering tlieO case we have an .

integration over the real frequency instead of the Matsubara

sum and the argument of the polarization operatorgis obtained by usingwo corrected vertices, evaluated at zero

=(q, w). external frequency, and whose derivative at zero frequency
The dc conductivity is determined by the imaginary partand temperature coincides with the re€@l32. Then in the

of the derivative of the correlation function, which in turn is limit T— 0 the leading term of Langer’s expression for the

given by dc conductivity is obtained fron2.33 via
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e2 tonian corresponds to an explicit solution of E¢®.6) and
v M a0 — ©)]l=o. P P ®

o= cluiLnO Reo(w) = (2.7 with
(2.34) 3 (k) = = Dyoy, (3.3
In Eq. (2.26 the vertex function with coinciding fermion SO that the full Green's functio(2.6) reads
momenta and energies, =k_=k is related to the self-energy G UK, iwy) = (iwn+ ) op — £ + Dy . (3.4)

3(k) by the WI (2.25.3%4° Thus one can immediately see
that wheneverX (k) depends on the momentuky the dc
conductivity (2.34 would be different from the value ob-

The corresponding self-consistency equations for the order
parameteiD, and for the chemical potential read

tained using the bare bubbig.21). oV RBZ wz(k)

From the previous considerations one can argue that, in 02 —Eof (6 ) - FE 0] = 1, (3.5
the absence of a solution for the vertex functiorat finite ’
frequency, a better approximation for the conductivity in the
DDW state is provided by the bubb{g.33, which gives at o RBZ
least arexactresult for the dc conductivity aE=0 (see also NE [f(é_p) +f(&p)]=n, (3.6
Ref. 39. k

In other words, by evaluating the symmetric
bubbles(2.33 at finite frequency one can still capture the
behavior ofo(w) at smallw. At the same time, we do also
expect that this assumption will lead to a new result for th

sum rule(2.13, because the symmetric bubli233 is no (3 g) e used the fact that the occupation numhgin the
more connected to the diamagnetic tef2nl5 by any rela- DDW is given, according to the Green’s functi¢®.4), by
tion. However, as we shall see in the next section, the SUM, = (1/2E )[E (F(£,) +(£) +e (f(€.)-F(£))]. This al-

rule for the bubbleg2.33 can be obtained analytically by lows us also to evaluate the diamagnetic t€@i5 and the
using the analogies between the results discussed up to n é’&rrespondmg sum rule as

and the properties of the reduced Gaussian model, where the
vertex equation admits the solution E@.26) at all frequen-
cies.

whereE, = el +DZ, andé,  =-u+E, are the two excitation
branches associated with the formation of DDW order, which
®reaks translation symmetry. Observe that to obtain the Eq.

1782 2

WoD_ _ oo 1 2 —[f(§+) - (&)1,

(me?a?lV)

where we used the fact thé#®e, / k?) = +2ta® cogk;a) and
we omitted the explicit dependence afE, &, on k. At this
_ o level we have performed an approximation on both the self-
A. The mean-field DDW Hamiltonian energy and the Green’s function of the original, interacting
The previous discussion was generically referred to angystem. To obtain now a Gl approximation for the optical
system displaying a particle-hole instability at the wave vec-conductivity, i.e. an approximation which gives H8.7) as
tor Q. However, in the Hartree-Fock approach one usuallythe integral ofo(w), we should also evaluate the vertex func-
selects a particular form for the mean-field Green func@on tion (2.24). Indeed, as we show with an explicit calculation
and then solves the self-consistency equation correspondirig the next section, the bubbl@.21) with a bare vertexy

(3.7

Ill. VIOLATION OF THE Gl WITH THE BARE VERTEX
IN THE DDW STATE

to implement the Dyson equatio2.7). In the DDW case,
one approximates the general interacting Hamiltor{iad)
with the model,
H=- — Wd(k)Wd(k’)CI Ck+Qa-CTf 1Ckrot
2N 5 7 K'+Qo

’
a0

(3.1

where wy(k)= (coskxa cosk,a)/2. By defining iDg
——(VO/N)Ek(,wd(k)<ck+Qgck,,> we obtain the following
mean-field DDW Hamiltonian,

H=2>[(&-
k,o

RBZ

= D Xbolekos = Dyoa = Xk
k,o

T P T
Iu)cko'cka' +iD kaoCk+Qo']

(3.2

where D, =Dgwy(K) is the gap, known as the DDW gap,

violates this requirement. In general, if the optical conduc-
tivity cannot be calculated by means of the exact vertex
function (2.24), but a different approximation is used, one
cannot expect any more to find EQ.7) as the correspond-
ing sum rule, but this must be calculated explicitly, as we do
in Sec. IV.

Before showing the details of this calculation we would
like to comment on the relation between the microscopic
interaction(2.1) and the approximated one given in E8.1).

If one restrict in the interacting part of E(.1) the sum over
nearest-neighbors sites one can easily showhkhatcan be
rewritten as

— T T
Hine==Vo 2 Wo(K)W,(K)Cl,CurqorCyragorCi'or
akk',q

!
oo

(3.9

where the factof1/4)= £**") coming from the sum over
nearest-neighboring siteshas been decomposed in the two-

arising from the formation of the state with circulating cur- dimensional basis of wave functiomg,(k), which includes

rents below a characteristic temperatiligg,y.*¢ This Hamil-

the sum of contributions from several channels displaying
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different symmetries with respect to the discrete rotationB. The current-current correlation function evaluated with the

group for the square lattice. One can see that even selecting

only the d-wave channel and the contribution @tQ, Eq.

(3.8) does not contain only the coupling in the particle-hole

channel of Eq(3.1), because the spin structure in £8§.9

and Eq.(3.1) are different. This problem does not exist if the

original microscopic model is given by@irrent-currentin-

teraction, as the formation of a DDW state would naturally

require,

O T
|nt_ 2 E Cla'clzr’CJg—’C]U _?E CIO'CJO'CJO-’CIO'
(i) (iLp

’ ’

oo oo

(3.9

Observe thati) Eq. (3.9 is still gauge invariant, since the
Peierls transformation does not depend on the spin in@dex;
the self-energy for the interactidi3.9) is still given by Eq.
(2.7), with V(q)=2V,. In the following we will never face
the problem of solving explicitly Eq.3.5) for a given micro-
scopic interaction. However, it is worth noting that £g.1)

can be directly derived by selecting a specific channel of a

bare vertex y

To evaluate the bubblgg.2]) it is useful to introduce the
spectral representation for the Green’s functi8r),

Alk,z
G(k,iwp,) = f Alk.2) (3.10
o Ia)n —-Z
with the spectral function
E, + -D
Ak,z)= < KI8T T2 55— E)
2E,
E, - +D
+ Mé‘(z— w+E). (3.11

2E,

The correlation function$2.21) can then be written as
RBZ

2(q,iQ) = ——2 f dzdz, TH{A(K+,29) 7, (K k)

XA(k_,Zz)YV(k_,kJ]% (3.12

microscopic GI model. Other examples can be also found invhich gives, according tq3.11), the following current-

Refs. 20-25.

current correlation function:

RBZ
f(~ u+E,) —f(- u+E) f(-u—E,) —f(-u—E. 6. —-D,D._
Mg, 'Qm)‘——z( )2 ( ( ,U«I;r _)E__(mlﬁ ), K ,uE —)E_+(iQM )><1+8 SE 0 )
(At EI I UnE) (pmE)ICArE))() s DD
+(Uki)< E.+E -iQ, E,+E +iQ,, == ) (3.13

WhereD+ Dk+q/2! &= Ekxq/2s E+ Ek+ /2

second term of Eq(3 14) does not contain any contribution

The issue then arises of the relat|on between the approxproportional tov?, so that the gauge-invariant relatiéHq

mation (3.12 for the correlation function and the sum rule
(3.7). Let us consider again the Gl relati¢2.20. When the
static limit of the current-current bubble is considefedr-
responding in Matsubara formalism to gset0 in the expres-
sion (3.13], we find thatII?(0,0) is real and given by

RBZ

F2 2
..7><00)-——E( )D

[f(&) - f(&)]

(vF)Z 2

[f'(&) + ' (&)]. (3.19
The usual procedure used to demonstrateltt@t 0) cancels
out(7) given by Eq.(3.7) consists in integrating by parts the
term in I1(0, 0) which contains the derivative of the Fermi
distribution f'(£,).12 In order to do that one would need a
term like df(&,)/dkj= £’ (§+)(suk )/E which in addi-

—0,w=0)=(7) cannot be satisfied with the bubHdIE?.

According to the discussion of the preceding section, the
Gl can only be restored when the vertex corrections are in-
cluded in the correlation functions. Observe that the static-
limit result (2.26) reads in the case of DDW state:

Ti(k K) = (K, K) + 0 0 = vjc 75 + v 02 = Vi(K),

(3.19

where V;(k) is the generalized velocity representing the
=0 limit of the vertex function. It is important to stress that
in deriving Eq.(2.26 for I';(k,k) it was crucial to keep the
translation invariant formV(p—k) of the potential until the
end. This point has been often overlooked in the literature, at
least while discussing the corresponding problem for the su-
perconducting cas€.If one used in Eq(2.24 defining the
vertex function the approximated formV(k-p)

tion to the Fermi velocnyyk, contalns also the DDW gap = Vowy(K)wg(p), which is appropriate for selecting only the
veIOC|ty,vk =-dD\/ dk;. However, as one can easily see, thed-wave channel in the self-enerd.7), the result(3.15
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could not be obtained. Indeed, a single-channel separabldamiltonian(3.2) as the starting poirtt4~4°The idea is that
potential makes the interaction term of the Hamiltonfemt  at low energy the reduced mod@&l.2) captures the important
gauge invariant, and then it would contribute to both thephysics of the system, so that one can consider it as a starting
current operator and diamagnetic term, as we will discuss imicroscopic Hamiltonian, describing noninteracting quasi-
the next section within the context of the reduced modelparticles. In this case the Green’s functi@®4) does not
However, once that the resul2.26) has been established, provide any more an approximation, but it is the correct one
and all the intermediate steps have been performed in rder the solvable, quadratic modé¢B.2). Since this Hamil-
specting Gl requirements, we can definitely select from the¢onian describes noninteracting quasiparticles, it can be
self-energy(2.7) only thed-wave channel. As a consequence, solved exactly and the corresponding conductivity is given
if (p) is approximated as in Eq3.3), the result(3.15 by the bare bubble. This point of view was taken in Ref. 31
follows. where an unusual form of the optical-conductivity sum rule
The Eq.(3.15 can also be obtained from the generalizedwas obtained. One can notice that any distinction in the
WI (2.23. Indeed, at smalyj the differenceG™Y(p)—-G(p  Hamiltonian(3.2) in the total energy between a kinetic and a

+q), whereG is defined in Eq(3.4), is given by potential part, as can be done for the Hamiltoniari), be-
comes somehow ambiguous, so that the result of Ref. 31 is
0.0, =G (k) ~ Gk +q) = = iQuop + vf - oz + v 0. not surprising.
(3.16) In what follows we compare this picture with the tradi-

) ) o tional one, and show that since the dc conductivity calculated
satisfies g, ,=-idnootvy -qos, for 0y=0 we can find  estimate the low-energy sum rule of the microscopic model

again that the static verte{8.15 satisfies the WI(2.23.  (2.1) by considering the one realized in the reduced model
Note that from the WI3.16 one can be tempted to gener- (3 9).

alize the result3.15 for all ),,,q=0: however, one cannot
exclude that an additional term with zero space-time diver-
gence can be added to the soluti@nl5), still satisfying Eq.  A. The diamagnetic tensor, current operator and the sum rule
(3.16. for the reduced model

According to the discussion of Sec. Il D one can try to use
the result(3.15 by evaluating the optical conductivity with
the symmetric bubblg2.33. In the specific case of the
DDW order, this would correspond to evaluating the follow-
ing current-current correlation functions:

Let us now consider the HamiltonidB.2) as the starting
microscopic model and analyze how all the considerations
made in Sec. Il can be applied in this case. Since the Hamil-
tonian (3.2) describes noninteracting quasiparticles, it is
straightforward to calculate the current-current correlation
11:°%(q1,i Q) function and the electrical conductivity, because in the ab-
RBZ sence of an interaction term the Eg.24 for the vertex has
__ ol ; ; : - : a trivial solutionI ,(p,,p-)=%,(p:+,p-), where¥y, (p;,p-) is
=-2— > TriG(k_,iw,+ 1mVi(K)GK..iwn)V(K)]. the bare vertex folF the modeT DDW Hamiltoni%&Z). Nev-
(3.17 ertheless, one should be careful and take into account that
: this vertex is different from the bare vertéR.16 for the
As it was explained in Sec. Il D the ansd®17) guarantees Hamiltonian(2.1). This can be understood by deriving the
the correctness of the dc conductivity, and in general can bparticle current operator compatible with the conservation
used to study the low-frequency conductivity. Neverthelesslaw (2.17) and with the equations of motion for the operators

one can check that the bubblg?®Y(0) is not compatible ¢ andc'36:37:3940

I
with the diamagnetic tens@8.7), violating again the Gl con-
dition (2.20 checked above foHi(i”. The origin of this vio- 1
lation is obvious, viz. instead of the asymmetric bubble j(q,t):NE (vllzcl—qlzock+q/20'_ivECl—qIZUCk+Q+q/20')y
(2.22 with one full and one bare vertex that would maintain ko
the GI condition(2.20, we used the symmetric correlation (4.1
function (2.33. Thus the issue arises whether the diamag-
netic tensok7) can also be modified to become compatible
with the bubble(3.17). As we shall see in the next section,
the diamagnetic tensor and sum rule corresponding to t
approximate bubbl€3.17 can be obtained without further ¢
assumptions by analyzing the properties of the reduceé1
Hamiltonian(3.2).

K.iwp

The first term of the previous expression relates as usual the
article current to the band velocity,. The second term,

hich only appears for nonvanishiry, takes into account

e contribution of the orbital currents to the electrical con-

uctivity, arising when the DDW order is established. Ob-

serve that in the reduced mod8l2) the term proportional to

D, appears as an additional, temperature dependent band,

which couplesk andk +Q electrons, and as a consequence a

corresponding term appears in the definition of the current.

An approach often proposed in the literature to deal withBy rewriting the electric current operatdq4.1) using the
the DDW state is that to consider directly the mean-fieldspinors(2.2), one has

IV. THE REDUCED MODEL
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RBZ RBZ , D

. 1 2 (vie —vPD)? , ,
10,0 = 52 XieoVi(k)xeo (4.2 N m @) E]
ko k
RBZ F._ D
and, accordingly, the bare vertex redfs: =23 [#(&) - f(é_)]i(vis—viD)
N ok E
?’ﬂ(k_q/21k+q/2):(vl(k)!0-0)l qg)oi (43) 2RBZ (U'FD+U'D8)2
=N @ HE) (@]
whereV,(k) is the generalized velocity defined in E§.15. k
Substituting the bare verte.3) and the Green’s function RBZ
(3.4) in the Ward identity(2.25 one can easily see that it is - = E[f(&) - f(E)],
satisfied. Moreover, since for noninteracting quasiparticles N

the full and bare vertex functions coincide, the correlation .
function I of Eq. (2.21), evaluated with the bare vertéx and as a consequence the GI relaigfP"'(0,0)=(r;) with

of Eq. (4.3), has two propertie) it is the exactone for the (7’ given by Eq.(4.4) is satisfied, as expected when the

quadratic model3.2); (i) it coincides withII?°W in Eq. ~ ©xact vertex” in included in the bubble. _ .
(3.17), which is anapproximatiorfor the full model(2.1). As A comment is in order now about a third possible
a consequence, the sum rule corresponding to the bubbfPProach proposed in the literatéftefor the analysis of
T1°°% can be obtained by the knowledge of the stress tensdf® reduced mode3.2). By rewriting the quadratic Hamil-
for the reduced system. Observe that the current operatéonian (3.2) as H=3F%xi Hyxi, the matrix H, can be
(4.1) is also obtained when the Peierls substitution is perdiagonalized by means of an unitary transformation
formed directly in the redL_Jced mod@.Z): As we discussed Uy, I:I:UkAkUE where A,=diagé,,£.). According to
in Sec. Il A, after the Pe|erls_ substitution both the_ current ) - definition (4.1), the current is derived frorﬁ-lk(A), o
operator and the diamagnetic tensor can be derived from i . RBZ 4 oA
H(A), according to Eq(2.10. As a consequence, in the re- that it R(B:grresponds 10 jpow=(1/N) 27 X o (kHi) Xk
duced model not only the current operator but also the dia=(1/N)Zg, Xicod (VAU xi, (see also Ref. 40 Let us
magnetic tensor; is modified, containing an extra term for introduce the spinorsj,=Uxk, which diagonalize the
Do#0.3! Hamiltonian matrixH, H=388%y A, ¢, Then, by making
the assumption that the gauge field couples by Peierls ansatz

1 . ) . not to yy, but to the new quasiparticle operatofg,, one
ﬁ? (ek{CioCho) +IDK(CroCisqa)- (4.4 would calculate the current starting frody(A), so that the

7 current, the diamagnetic term and the static limit of the

current-current bubble would be defined&s:
When the operator averages are evaluated, or analogously

(mi)=-

Eqg.(2.18 is used, one finds that the sum rule for the reduced RBZ RBZ . .
model is Jop= NE Vo Athico = NE Xico Yk (AU Xkors
ko ko
WPPW(D T) 1 RBz RBZ
oo == 2 Elf(&) - fE0], (4.5 1 PE, PE
(mealny) | Ng T T (mon =y 2 | Z5te)+ 25w ),
ko i i

whereE, andé¢,  were already defined after EG.6). Equa- RB7

tion. (4.5 was derived using the fact thaw, v 0 0.0 ‘—12 (ﬁ_ﬁ)zf, . (‘?_‘f—)sz
=2ta? cosk,a [and d, ,vR = +(Dy/ 2)a? cosk,,al, and it re- iiQp(0,0) = N\ ok (&) ok; &)1
duces to Eq(1.3) for Dy=0.

Once more, the resuld@.4) is consistent with the Gl for Observe that this approximation is still Gl in the sense that it
the reduced model. Indeed, if the bubblE®®WY(q,iQ),) IS easy to see that; op andll; op(0) defined above satisfy
(3.17) are evaluated in the static limit, instead of the resultthe condition(2.20. However, this approximation has no
(3.14 for 11 one has relation with the microscopic starting model, in the way we
explained in Sec. Il. For this reason, we do not comment
E D \2 further on this approach, and we analyze instead the result
M[f(§+)_f(§_)] obtained with the current operat¢4.l) and the bubbles

E (3.17, whose correspondence with the microscopic model
we established above.

2 RBZ
112°%(0,0) = - N >
k

. (vFe - vPD)?

[f'(&)+ 1 (&) (4.6

E2
B. Temperature dependence of the spectral weight
If now one integrates by parts the second term of @) Once that we clarified the different approximations used
one finds that in deriving the two sum rule$3.7) and (4.5), let us discuss
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Do(T) w(T) self-consistent W(T) self-consistent W(T) not self-consistent
0.3 -0.18 0.825 — : 0.825 — :
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FIG. 1. (Color online Left panel, Temperature dependence of  FIG. 2. (Color onling Spectral weight\*°V(D,T), W(D,T),
the DDW gap according to the functiag(x) defined in the text. andW(T), according to Eqs(4.5), (3.7), and(1.4), respectively, in
Right panel«(T) in the normal statédashed lingand in the DDW  units of e?wa?/V. We used her®(0)=2.5Tppy=0.3 and §=0.1.
state (solid line), obtained solving the self-consistency equation Left panel, results obtained using the chemical potential obtained
(3.6) for the particle numbetwith Dy=0 for the normal staje solving the self-consistency equati¢®.6) for the particle number
with Dy# 0 [for WPPW(D,T) andW(D,T) and Dy=0 (for W(T))],
spectively, see Fig. 1. Right panel, evaluatiom&PW(D,T) and

the outcomes of these two approaches as far as the tempe : . ;
PP P (D, T) using the chemical potential of the normal state.

ture dependence of the spectral weight is concerned. Tw

observations should be kept in mind) the overall varia- transition, while the definitiori4.5) gives an increase. Such

tions of the spectral weight in the DDW state are not ex-

pected in general to be large if quite small gap Valuesvariations are quantitativelgbut not qualitatively modified

: s f the temperature variations of the chemical potential are not
D(0)/t<1 are considered(ii) in Egs. (3.7) and (4.5 the ! . ) )
temperature variation of both the gap and the chemical poproperly taken mto.accour'\t,'see right panel of F_'g' 2. Ob-
: - serve that the relative variations ¥f(T) betweenT=0.16
tential u contribute to the shape &¥(T). In the case of free

= 0 -
electrons, the variation ofc(T) is almost negligible com- andT=0 are never larger thar1.2%, and cannot be appre

ared to the temperature variation of the occupation n mbel(;iated on the scale of the figure reported in Ref. 40.
p perature variall upal u ' Even though a detailed description of cuprates is not the

given by the Fe.”’?‘ function. Indeed, even considering themain aim of our paper, we find nevertheless useful to com-
t_emperature variation ?&(T) the result(1.4) is only modi- pare our results for a choice of parameters appropriated for
fied by terms of ordef™. I.n the c.ase'of Eqd3.7) and (4.5 .. .HTSC. Since on this respect different attitudes are present in
?"50 the band structure is varying in tgmperature, and it e literature, we briefly recall here the phase diagram ana-
Important to keep_track of th'? by solving at egch tempera1yzed in Ref. 26 within the more general attitude of investi-
ture th_e self-con5|ste_nt equz_m_on for the chemical potentlalgating the consequences of describing the pseudogap state
Here, mstead_of solving explicitly E¢3.5), we adopt a gen- with a k-space modulated charge density wave. In Ref. 26 it
eral mean-field temperature dependence f@(T) a5 shown that one outcome of this description is the possi-
=D(0)g(T/Tppw), with g(x):(l—'x4/3)\s‘1—x4, as shown in ity to interpret the leading-edge shift observed in photo-
the left panel of Fig. 1. In the right panel of Fig. 1 we also gmjssjon experiments as due to a particle-hole gap. In par-
present the temperature dependence of the chemical potentigly|ar, for a band dispersion with a next-nearest-neighbors
in the DDW state, as one can see, beldypy there is an  popping ternt’ =0 the hole-pockets Fermi surface formed by
inversion of tendency of(T) due to the opening of the gap. goping the DDW system with respect to half-filling is a sim-
The temperature dependence of the spectral weight in thgification intended to reproduce the arcs of Fermi surface
DDW state according to Eq(3.7) [W(D,T)] and (4.5  observed experimentally. A simple calculation shows that in
[WPPW(D,T)] is reported in Fig. 2, where also the tight- such a case the gap measured by ARPES at the M points
binding spectral weight1.4) [W(T)] is shown for compari- corresponds approximately tD,—|u|. As a consequence,
son. Here we used a small gap vall&0)=2.5Tppy=0.3, Dy(0) andTppyw do not correspond directly to the maximum
and dopings=0.1. The influence of the chemical-potential gap value and th@" temperature measured by ARPES, but
variation are evident comparing the right panel of Fig. 2,both are quite larger, as shown in Ref. 26 where the values of
where W(D, T) and WPPY(D,T) are evaluated keeping  the DDW gap and of the temperattifgp,, were chosen to
constantat the value it has in the normal statand the left  properly reproduce the phase diagram of Bi2212 compounds.
panel, where the density is constant. In addition, we see that In agreement with Ref. 31 we keep here this attitude and
for this value ofD(0) the overall spectral-weight variations use a doping and temperature dependent DDW gap
are small in the DDW state. However, it is found that theDy(T, ) =CcTppw(8)9(T/Tppw), Where Tppw(8)=0.16[1
definition (3.7) leads to a smooth decrease of the spectrat-(5/8,)*] vanishes at the critical doping,=0.2 for DDW
weight below Tppy, in analogy with the results for a SC formation, andc=7 is a fitting paramete# Since the result-
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0.825

TR 08 o T Indeed, from one side we wanted to simplify the notation
0.82 0.825 |- W(T) =-=- A while discussing the issue of the relation between gauge in-
0.815 0.62 variance and sum rule, and from the other side we believe
: ! that even when comparing with cuprates the ctse) is
08 0815 enough to reproduce phenomenologically the arc of Fermi
0.805 0.81 surface observed in the pseudogap phésse discussion
S os $ o805 above._However, fo.r_the. sak_e of cor_npleteness, we report
here briefly the modifications induced in the sum rule when a
0.795 0.8 , o : . .
t’ term is included in the band dispersion, so that
0.79 0.795
0.785 - i . 079 . ek =S¢+ Pk,
/
078 | & . 0.785 -
(R e — 078 - S« = — 2t(cosk,a + cosk,a),
0 0.04 0.08 0.12 0.16 0 0.01 0.02
Th (T3

Py = 4t’ cosk,a cosk,a. 4.7
FIG. 3. (Color onling Left panel, spectral weight°®W(D,T),

W(T), andW(D,T) in units of e?ma?/V for a choice of parameter In the DDW state the perfect nesting condition is lost due to
values appropriate for cupratésee the discussion in the textlere  thet’ term, so thaky +ey.q=2P, £k~ &k+q =25 and the two
we show the results fo6=0.16, corresponding approximately to quasiparticle branches in the DDW state becogng=py
optimal doping, and we calculate the chemical potential self-— ,+g where E.=Vss+DZ2. As a consequence, given the
consistently. Right panel, spectral weight plotted as a fl_mction ofelation (2.13 between the sum rule and the diamagnetic
(T/t)% one g\zz{n see t_hat'az_temperature dependence is still recov- tensor, and the definitior(®.15 and(4.4) of the diamagnetic
ered forWPPY(D, ) in a wide range of temperatures. tensor for the original and the reduced model, respectively, it

ready shown in Ref. 31, we just report here for comparison

the behavior of the two sum ruld§(D,T) in Eq. (3.7) and wm oo 12 (& + P 4.9
WPPW(D T) in Eq. (4.5 for this choice of parameters at (me?a®lV) N5 ’

=0.16. As it can be seen in Fig. 3, the relative variation of the

spectral weight belowWpp,y is made now more pronounced, WO.T) LRBZ

enhancing the differences between the two possible ap- ) o1 (_ _ )
proaches followed in deriving the sum rule. It is then clear (7e?a?/V) N zk: E[f(§+) f(e)]+ 2plf(6) + 1]

that the standard sum-rule derivation leading¥,T) in

Eq. (3.7) cannot be consistent with the experiments, since no

decrease of the spectral weight has been observed in the

pseudogap phase of cuprates. The red@®"(D,T) in Eq. WPPW(D T) 1 RB?
(4.5 is instead resembling more closely the experimentalm:—ﬁz {E[f(&) = F(E)]+ 2p[f(&) + (&)
findings, in particular if we consider that at this doping level & k
the room temperature below which the data in Refs. 1, 2, and (4.10

4 are reported corresponds 1@t~ 0.1, so that the overall

measured temperature dependenceWdl) would corre- where the explicit dependence &ris omitted. In Fig. 4 we
spond in our picture to the DDW resu#t.5). Indeed, as we compare again the temperature dependence of the spectral
show in the right panel of Fig. 3, th&°W(D,T) evaluated Weight in the different cases, for'=0.3, 6=0.1, Tppw
according to Eq(4.5) still displays aT? temperature depen- =0.12 and D(0)=4Tppy. Even though the introduction of
dence, but with a larger slope, as observed experimentallyhe t' term modifies the temperature dependence of the
This approach would allow one to understand why thechemical potential in the normal and DDW statie to the
spectral-weight increase looks like a “standard” free tight-shift of the Van Hove singularity which is now below the
binding model, but with a much larger slope. However, as wé-ermi level at6=0.1), the general trend of Figs. 2 and 3 is
shall see in the next section, the comparison with the expericonfirmed. IndeedWP°(D,T) is larger thanW(T) below
ments is made much more involved when the optical conTppw, While W(D,T) is smaller. In particular, it is worth
ductivity corresponding to the sum ruld.5) is evaluated. noting that apart from possible quantitative differences with
Finally, one can in principle extend this analysis to the cas#espect to the casg=0, the exact form of the band disper-
where also SC is added, but since also the experimental sitgion is irrelevant as far as the main issue discussed in the
ation is not clear on this respect we refer to Ref. 31 for gpreceding sections, i.e., the fact that different approximations

(4.9

discussion about the SC state. for the current-current correlation functions lead to different
) . results for the optical-conductivity sum rule. For this reason,
C. The role of a next-nearest-neighbors hopping term we do not discuss further in the following the role ot’a

Up to now we did not consider the possibility of a next- term, and remind the reader for example to Refs. 40 and 41,
neighbors hopping terntY in the bare band dispersiasy.  where this issue is investigated in more details.
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D. The optical conductivity of the reduced model t=1, £=0.3t, 8=0.1, Tppw=0.12t
0.81 . . . T

As we discussed in the preceding sections, one would woP¥p, 1) —

expect that our result4.5) for WPPWY(D, T) is only valid at OB il sl

low energy scales, possibly below the plasma frequency, OB frmm——smn

which can be thought as a general cutoff for any tight- e

binding based description of the system. In principle one

could also expect that the low-energy the@8y2) is valid at s o ;

even lower energy scales, but since at the plasma energy or ~ 0785 A

still finds experimentally strong variation with respect to the 078 |

naive estimatdl1.4), it is plausible that a quite larger cutoff o775 |

holds here for the tight-binding model itself. To analyze the ' e

dependence of the resuld.5 on the cutoff frequency we L e .

need an explicit calculation of the optical conductivity ob- o7es L — : : : ! : :

tained with the bUbb|é3l7) 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
By using the spectral representation of the Green'’s func- ™

tions the current-current correlation functidd°" (3.17) FIG. 4. (Color onling Spectral weight in the presence oft'a

can be evaluated in analogy wif[fi” in Eq.(3.12, with the  term in the band dispersion. Here we sh@#®V(D,T), W(D,T),
bare verticesy, substituted by the full ond’;(k,k) of Eq.  andW(T), according to Eqs4.10), (4.9), and(4.8), respectively, in
(3.15. To take into account the effect of disorder we makeunits of €ma’/V. We used heret'=0.3, Tppw=0.12, D(0)
the simplest ansatz of substituting the delta functions assoc4Toow, and 6=0.1. The chemical potential is evaluated self-
ated to a quasiparticle pole in the spectral representatiofPnsistently at each temperature by solving B¢) in the presence

(3.1) with a Lorentzian of finite widthw [w=1/(27,), of at’ term in the band dispersion. Observe that rksy,y a small
wherer, is the transport timk decrease ofAPPW with respect toW(T) is observed, due to the
tr

change of chemical potential neggpy.
1 w

—. (4.1 , )

T2+ W system with and without DDW gap. Here we used the set of
parameters discussed above for cupratesi=0.13. When
compared with the free-electron conductivity at the same

82) — M(2) =

As a consequence, after analytical continuation in(Bd.2,

we obtain temperature, one can see that the Drude peak is smaller in the
a"Y(w) DDW state, because part of the spectral weight has been
RBZ . - transferred to the interband processes. To quantify this trans-
-_ ZLeZE Jde(” ) — f(Z)((sv ) fer of spectral weight we integrate numerically the optical
vV % ® E? conductivity c®"W(w) (4.12, and its analogous(w) at D,

=0, evaluating for a given cutoff frequeneythe quantity,
X[M(z+w=-§)M(z- &) +M(z+w-E)(z-§)]

P - M- £) N2, @49
0
M+ o EME- 1), (412 which verifies N°P(o—)=WPPW(D T=0) and N(w

— ) —W(T=0) for the DDW and normal state, respec-

wherev” andvP refers to the component in a givenory  tively.
direction. In the inset of Fig. 5 we show®"Y(w) andN(w) at T

As already observed in Ref. 37, and more recently in=0 corresponding to the calculated optical conductivities. As
Refs. 40 and 41, the optical conductivity is composed of twove can see, at low energy the formation of a DDW state
contributions, due to the splitting of the original single bandleads to an overall decrease of spectral weight, since intra-
g, in two new bands, after the gap opening. In E¢4.12  band processes are partly suppressed. However, at higher
the first line describes intraband excitatiof®rresponding energy interband excitations are allowed and the spectral
to the product of twoM functions evaluated at the same Weight lost in the Drude peak is over-compensated, giving
quasiparticle branoh while the second line takes into ac- fise to an overall increase &4°°"(D,T=0) in the DDW
count interband processes. It is easy to see that this secosthte compared td/(T=0) in the normal state. For a value of
contribution is only possible whea>2|u/| (at low tempera- t~0.25 eV one sees that in the case of Fig. 5 the crossing of
tures. Indeed, when the system is doped with respect tdNPP"(w) with respect toN(w) is already satisfied at cutoff
half-filling (|u|# 0) the smallest energy difference betweenfrequencies smaller than the plasma frequeteyt), even
occupied and unoccupied states in different branches is equidoughNPPW saturates at higher frequencies. Of course it is
to 2lu|, and it is realized at the pointa7/2, +7/2) where evident that the determination of the exact frequency at
the energyE, vanishes and the two bands merge. The firswhich the sum rul&\(T) or WPPW(T) are exhausted depends
contribution has instead a Drude-type shape, as it is shown ion the choice of parameters. For example, at smaller doping
Fig. 5, where we report the optical conductivityTat0 fora  or smallerD, (which both lead to a smaller value | in
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t=0.25 eV, 6=0.13, T=0

® (cm'1)

0 800 1600 2400 3200 4000 4800 5600 6400 7200 8000
14 ——r— T . . T T . .
normal —---- 0.8 ] ) S
124 g g FIG. 5. (Color onling Optical conductivity in
\ 0.6 units of wa?/V at zero temperature for a free
1Ry S o5 g tight-binding system and for the DDW state at
\ L 6=0.13(x=-0.62 at T=0 in the DDW statew
e 08F \‘ zs' 0.3 . =0.1t were used For convenience we also report
) \ 0.2 the frequencies in cm, as it is customary in the
° o8t ‘\ 0.1 g experiments. Inset, frequency variation Nfw)
‘\\ 0 according to Eq(4.13). Observe that at low cut-
04 \\ g off energy the spectral weight in the DDW state
\ is smaller than in the normal state.
02t -
o I B et
0 0.5 1 15 2 25 3 35 4
ot

the DDW state, see Fig.) The intraband processes occur atany more by the interband processes, so that the total spectral
lower energy, so thaN®PV(w)>N(w) will be satisfied at weight N°®¥(w— o) in the DDW state would be always
lower cutoff energyw. In Fig. 5 we report one of the cases lower than the spectral weight(w — ) in the normal state,
when the cutoff frequency is larger, because the chemicais observed in Ref. 41.

potential shifts fromu=-0.28 in the normal state tqu In Fig. 6 we report the optical conductivity in the DDW
=-0.69 in the DDW state, due to the large value of the state at several temperature betw&er andTpp,=0.13 at
DDW parametefD,=0.92), pushing interband processes atthe dopingé=0.13. As one can see, when the temperature
relatively high energies. It is interesting to observe that théncreases the interband processes shift to lower frequency,
optical conductivity in the DDW state reported in Fig. 5, due to the decrease of the absolute value of the chemical
which was evaluated with the ansd®17) for the current-  potential (see right panel of Fig.)1As a consequence, the
current correlation function, has the samealitativebehav- ~ spectral weight is transferred again towards the Drude peak,
ior of the optical conductivity reported in Ref. 41, where theand the overall balance of spectral weight leads to a decrease
bare bubble approximatioi2.21) was considered for the cor- of WPP¥(D,T). In the inset of Fig. 6 we show also the inte-

relation function. Indeed, in the bare bubble approximatiorgrated spectral weigh®®V(wy,) and N(wy) at the same
the optical conductivity has the same structure of @ql2

temperatures of the main panel, with a cutoff frequency
(i.e., a Drude term plus interband procegsdsit with vy

wy=6t. Even though this estimate of the spectral weight is
=0. However, the two approaches lead to tg@ntitatively

much less accurate than the direct evaluation of Edp),
different temperature dependences of the sum rule. Indeed tlue to lower numerical accuracy of this procedure, we find

the absence of they term in Eq.(4.12, coming from the the same behavior discussed in the preceding sections while
vertex corrections, the spectral weight lost in the Drude terncomputing directly Eq.4.5). Indeed, we can see that the
when the DDW state is formed would not be compensategpectral weight increases in the DDW state with respect to

t=0.25 eV, 6=0.13

m(cm'1)
0o 0 800 1600 2400 3200 4000 4800 5600 6400 7200 8000
08l 0.8 ]
\ : 079 | 1
07 | T=0.04 —— 0'78 - | 4 FIG. 6. (Color onling Optical conductivity in
| THE = E o7y [ Nomal —x— | units of e?a?/V at various temperature for the

06 \: 1=0.12 | ] 1 DDW state at5=0.13, Tppyw=0.13. In the upper
e 05F \ z 0'75 i | i x-axis the frequencies are reported inéminset,
g : 0'74 e e - ) comparison between the temperature dependence
e o4r v . ——— of the integrated spectral weight’®"(w),) and

03l N(wy) for the DDW and normal state, respec-

tively. The cutoff iswy, =6t.

02t

01 f

0

0
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the normal state, even though the relative contribution of the@ptical conductivity calculated using this bubble would sat-
Drude term is lower in the DDW state than in the normalisfy the usual sum rule corresponding to the diamagnetic
state. tensors(2.15 or (3.7).

A comment is in order now about the role of disorder. In  However, this last issue can be solved exactly by applying
the preceding sections we reported the numerical results olthe same Gl arguments to the reduced quadratic mG&da|
tained for clean systems, but to amplify the differences beindeed, the static limif’;= v, +V;(k) of the full vertex func-
tween the conductivity of a noninteracting system and of theion, obtained from the original interacting model, can also
DDW state we used in Figs. 5 @6 a quite large value of the be considered as a bare verfgxor the DDW Hamiltonian
inverse scattering time=0.1t, as appropriate, for example, (3.2). Moreover, since this Hamiltonian describes noninter-
to reproduce qualitatively the large Drude peak observed imcting quasiparticles, the bare and the full vertex coincide, so
BSCCO samples at about 100K As a consequence, also that the symmetric correlatdi®®V in Eq. (3.17) is theexact
the self-consistency equatid8.6) for the particle number one for this model. As a consequence, the diamagnetic term
and the sum rule®P°"(D, T) andW(T) should be evaluated (4.4) of the reduced model gives the sum riW®°W(D,T)
in the presence of disorder for a given doping. The main4.5) for the symmetric current operat€®.17), which is the
difference is only in the absolute value of the spectralexact one within the quadratic theof$.2) and at the same
weight, while the relative difference between the case with otime provides us with a good approximation for the optical
without DDW is the same. In the Appendix B we discuss theconductivity of the true interacting system, at least at low
modifications to the particle number and spectral weighienergy.
equations in the presence of disorder, that we used in com- The last issue we addressed in the present paper is to

puting the optical conductivity in Figs. 5 and 6. analyze to which extent the sum rui.5) can be related to
the behavior of the microscopic Hamiltoni@®.1). In gen-
V. DISCUSSION eral, it is believed that in the presence of interactions the

restricted sum rulé€l.3), derived for the electrons within the

In the present paper we analyzed a possible approach towest conducting tight-binding band, is still valid, provided
determine a Gl approximation for the optical conductivity in that the occupation number,, takes into account the effect
a system which displays a transition talavave modulated of the interactions. In this case, we should rely on the esti-
CDW or flux phase. As we explained in detail in Sec. Il themateW(D,T) in Eq. (3.7) for the sum rule in the DDW state.
requirement of Gl of a theory fixes the relatio2.20 be-  However, this approach has two disadvantagesye cannot
tween the current-current correlation function and the diaderive the optical-conductivity which would lead to this sum
magnetic term. To understand better the expected domain ofile; (i) no general argument holds to justify why this atti-
applicability the sum ruleV®®W(D,T) (4.5 let us summa- tude is the correct one to estimate, at mean-field level, the
rize the assumptions that led us to this rule. We have checkesum rule for the interacting microscopic model. Motived by
in Sec. Il B[Eq. (3.13] that the bubbld1” of Eq. (2.21), these observations we argued that in the case of interactions
evaluated with the mean-field DDW Green’s functi$14) leading to a DDW formation a better mean-field approach to
and the bare vertex, does not satisfy the Gl condition the transport properties is provided by the calculation of the
(2.20 when the standard diamagnetic te(B7) is consid-  optical conductivity by means of the bubbESPY. Thus, to
ered. As discussed in Sec. Il C, this situation is quite stanebtain the correct mean-field approximation for the spectral-
dard, and considering the WPR.26 this violation of the weight behavior is not sufficient to modify the occupation
gauge invariance can be attributed to #idependent char- numbern,, below Tppy, but it is more likely that a proper
acter of the DDW gafD,, which makes necessary the use of redefinition of the diamagnetic tensor is needed. As a conse-
the full vertexI'(k,k) instead of the bare ongk k). quence, the sum rule should be estimated by means of Eq.

In general the vertex function is determined by solving(4.5 instead of Eq(3.7), leading to anincreaseof spectral
the integral equatioi2.24), but in the static limit it reduces weight below Tppy. However, this assumption would re-
to the expressiof2.26). Since we do not know an analytical quire also that the integrated spectral weiiP"(w) in the
solution at finite frequencies and momenta of the verteXDDW state becomes larger than th€w) for the noninter-
I'tks, ko), corresponding to the microscopic many-body acting system at some “low” frequenay,. As we discussed
Hamiltonian (2.1), we can try to use our knowledge of its in Sec. IV D, such cutoff frequency,, turns out to be in
static limit to give a better approximation than £8.21) for  general lower than the plasma edge, but its precise value
the current-current correlation function. More precisely, wedepends crucially on the parameters of the DDW transition
showed in Sec. Il D that the dc conductivity derived from the(doping, order parameter &=0, etc). Moreover, it is not
symmetric bubbleﬂfjym (2.33, where two full vertex func- clear yet if awy, below the plasma frequency is a sufficiently
tions in the static limit appear, coincides with the exact resulfow-energy scale for the interacting tight-binding model,
at T=0.324% Even though this procedure allows us to cor-since no universal definition exists of the frequency itself
rectly reproduce the optical conductivity in the low- below which the restricted sum rule should be applicable.
frequency limit, it does not solve the problem of knowiag Finally, a comment is in order now about the comparison
priori the sum rule corresponding to this approximated opti-between our results and the experimental optical data for
cal conductivity. Indeed, since this symmetric bubble is notcuprates. A first issue is related to the fact that the most
exact for the full model2.1), and in contrast to the bubble recent experiments show that the temperature variation of the
(2.22 contains two full vertices, one cannot expect that thespectral weight is larger than expected in a tight-binding es-
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timate also in optimally doped and overdoped compotifids =1, ¥A=0.3 (BSCCO) 11, ¥40.2(LSCO)
(see also Appendix A i.e., eventually at doping larger than MO T e —— [ I
the critical dopingd,=0.2 for the charge ordering phenom- 1 1

enon. This could mean that a more general effect of the 0999 ¥
strong correlations present in these materials can be respor  gggs | “\\
sible for the large temperature variation \W{(T). This pos-

0.999

0.997 0.998

sibility has been indeed investigated recently in Ref. 50,§ — § 0ss7 |

whereW(T) has been evaluated by means of the DMEY- E e

namical mean field theohapproach to the Hubbard model, > ©°%%T % oees |

which seems to reproduce the large temperature variations ¢~ 0994 1 0995

W(T) observed in the experiments. A second issue arises 0993 |

about the lack, in the experiments, of a clear signature of ar g9z | 0.994 |

interband conductivity as the one reported in Fig. 4. In par- 0.991 . ) ) 0.993 ) ) )
ticular, BSCCO compounds, that were used as a paradign 0 0.00250.0050.0075 0.01 0 0.00250.0050.0075 0.01
for the choice of DDW parameter values in cuprafesx- n? an?

hibit in general a quite featureless conductivity, with a slowly

decaying high-_frequgncy tail_. However, in diffe_rent famili_es Eq. (4.8 for t'=0.2 [left panel, appropriate for BSCC(Refs. 2
of cuprates, displaying a S|m|Iar_spectral-welght_behawor,and 4] andt’ =0.2 [right panel, appropriate for LSCQRef. 6] at
clear signatures of charge ordering have been indeed Ol%rious doping. In the right panel we also report the result obtained

served in the optical spectra, even though located at mucliih the estimate1.4) and the parabolic bangPB) approximation
lower energy scales with respect to the one obtained herg, c(w)=1/4nt, using the valudV(0)=0.682 at 5=0.26.

using the parameter values for BSCCO compounds. This is
the case of LSCO and YBCO, where far-infrared featuresgdispersion, see E@4.7). As a consequenc®/(T) is given by
well separated from the Drude peak, have been measurdd. (4.8).
recently’” In both Refs. 48 and 49 these features were actu- To correctly reproduce the Fermi surface of BSCCO and
ally interpreted as due to a charge-ordering phenomenoh,SCO compounds we will assunte0.3eVandt’=rt, where
described by means of some different theoretical approachés 0.3 for BSCCO and =0.2 for LSCO(where the Fermi
which did not allow one to discuss at the same time the issugUrface changes topology in the overdoped region, becoming
of the spectral-weight behavior. For these reasons, eveflectronlike at about§=0.2 doping'). The results of
though the analysis presented here cannot be conclusive ¥4T)/W(0) as a function of(T/t)? from Eq. (4.8) are re-
far as the optical spectra of HTSC are concerned, we believieorted in Fig. 7 for several dopin@y fixing as usual the
that a deeper investigation of the role of charge degrees dforrect chemical potential at each doping and temperature
freedom can eventually lead to a better understanding of thom the self-consistency equation for the particle number
conductivity of cuprates. At the same time, the analysis preln the left panel we report the estimate for BSCCO, that
sented here could be extended to other systems le 2 should be compared to the experimental deta under-
TaSe, where ak-space modulated CDW foriffsand where ~ doped, optimally doped, and overdoped samptésRefs. 1,
clear signatures of a Drude response accompanied by a mig- and 4. Observe that in Refs. 2 and 4 the variation of
infrared peak have been observed in the optical spéttra. W(T)/W(0) between room temperature afi¢t0 of the order
of 20%-5% when measured at various cutoff frequencies,
while the tight-binding estimate in Fig. 7 never exceed the
0.6% [for t=0.3 eV, T=300 K corresponds to(T/t)?
The authors are grateful to V. P. Gusynin for bringing to=0.0074. Analogous considerations hold for the comparison
our attention the derivation of symmetrized expression folbetween the measured spectral weight in LS@®ef. 6 and
the derivatives of the polarization operator. The authors acthe estimate(4.8) reported in the right panel of Fig. 7. A
knowledge stimulating discussions with A. Toschi, M. Orto- comment is in order now about the role of the Van Hove
lani, and P. Calvani. This work was supported by the resingularity(VHS) in the density of states. Indeed, according
search projects 2000-067853.02/1, 620-62868.00, ant EQ.(1.4), where thet’=0 case was considered, the coef-
MaNEP(9,10,18 of the Swiss National Science Foundation. ficient c(u)=uN’(u)+N(u) could increase considerably by
approaching the VHS. This effect is indeed seen in the
curves at6=0.12 and$=0.16, where the initial slope of
W(T) is quite large. However, as soon as the temperature
increases the effect of the VHS is washed out very rapidly
As we noticed in the Introduction, even thougifatem-  and the overall variation in the range ®fbetween 0—-011
perature decrease W(T) is observed in the experiments, the attains the same values found for the céise.3. Moreover,
measured slope is quite larger than the one expected withfior the overdoped casé=0.26 the slope ofW(T)/W(0)
the simple noninteracting tight-binding estimate.4). To  agrees very well with the approximatiaiu)=1/4mxt of the
quantify this discrepancy in the most accurate way, we evaluparabolic band dispersio(PB in the figure, which would
ate explicitly the spectral weight for the tight-binding model give the valuem?c(u)/6=0.134 for the coefficient in Eq.
by including also a next-nearest-neighbors term in the bangl.4). For these reasons one can conclude that'therm in

FIG. 7. (Color onling Spectral weight\(T)/W(0) according to
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the band dispersiof#.7) has a minor role in determining the

PHYSICAL REVIEW B 71, 104511(2005

Observe that if one set(z)=8(z) the result43.6) and(4.5)

spectral-weight variations, and indeed it was only briefly dis-can be recovered, and f&,=0 one finds the corresponding

cussed in Sec. IV C of the present work.

APPENDIX B: SUM RULE IN THE
PRESENCE OF DISORDER

As we did in Sec. IV D we will take into account the
effect of disorder by using the substituti¢h11) in the spec-
tral representatiofB.10 of the Green’s function. To see how
Eqg. (3.6) is modified we rewrite it in terms of the spectral
function,

T RBZ
n="—>> TiG(K,iw,)]e*""
N K.,iown

2RBZ
NE dZM(z-E) + M(z+E)]f(z- n). (B1)
k

Analogously, the definitior{4.4) of the diamagnetic ten-
sor in the DDW state can be expressed as

T RBZ
(mi)=- N > {e TGk, iwy) a5
K,iwg
- D TI[G(K,iw,) oy "
1 RBZ
- N% E, J d4M(z-E) - M(z+E)]f(z- w).

(B2)

expressions for the normal state. A£0, which is the case
considered in Fig. 5, the previous equations simplify. Indeed,
since the Fermi functions reduce to a step function, one has

f”dlL
2w

n—E

fo dzM(z-E)f(z— u) =

+ g) (B3)

1 (
= —| arctan
a

so that the self-consistency equation for the particle number
and the equation for the spectral weight can be written as

RBZ

2 -E +E
n-1=—>> (arctan” + arctanM—> ., (B4
7TN K w
WPPW(D, T=0)
(me2a2IV)
RBZ
1 -E +E
=== Ek(arctan'u - arctan’u—) .
7TN Kk w

(BS)

Observe that here we did not consider the effect of the DDW
formation on the transport scattering time, which can be
present. For a detailed discussion of impurity scattering in
the DDW state see Ref. 35.
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