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Searching for characteristic signatures of a higher order phase trarispiecifically of the order of three or
four), we have calculated the spatial profiles and the energies of a spatially varying order parameter in one
dimension. In the case offh order phase transition to a superconducting ground state, the free energy density
depends on temperature a& wherea=ay(1-T/T,) is the reduced temperature. The energy of a domain
wall between two degenerate ground stateq)'sap‘l’z. We have also investigated the effects of a supercur-
rent in a narrow wire. These effects are limited by a critical current which has a temperature dependence
J.(T)=a®P=D2 The phase slip center profiles and their energies are also calculated. Given the suggestion that
the superconducting transition (Ba; _,K,)BiOs, for x=0.4, may be of the order of four, these predictions have
relevance for future experiments.
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|. INTRODUCTION Ehrenfest definition of an order as one where the lower de-

A large part of statistical mechanics. having to do with therivatives of the free energy are continuous at the transition
arge p . - 9 o but the higher derivatives are singular. Thus in a fourth order
physics of phase transitions and nonlinear properties is base

on a rather fundamental aeneralization. due to Larkdaaf phase transition, all third order derivatives are continuous

) 9 T _—~'and all fifth order derivatives are singular at the transition.
the well-known Gibbs free energy. There is a functioRal The fourth order derivatives are either discontinuous or are
depending on ar(in general complex “order parameter” weakly singular.

M(r), given by The generalization of the Landau free energy to a higher
order phase transition is achieved via a weight function. For

|~:[M (r] :f dv[-aM>+bM|*+c|VM[Z-M -H], third and fourth order phase transitions, we neggagspec-
tively, within mean field in the sense discussed above,

(1) G=a*andG=a" This can be obtainédrom “Landau-like”

. free energies defined with a weight function
whereax(1-T/T.) andb andc are non-negative, tempera-

ture independerior weakly s9 constants. Herkl represents
an external field which couples directly to the order param-
eter.

This free energy is the backbone of a vast literatune
second order phase transitions, critical phenomena as well as F|v=f dv|M|*[- ay M2+ by M[*+ ¢, VM[Z].  (3)
nonlinear properties. Regardless of the microscopic fabric of
the system under consideration, near a second order phage general the weight function is given by|[2P=2 for
transition where universal features appear which are indep>2. Herea,'s change sign aT, and are often used below
pendent of the details of interaction, this free energy containgyr the reduced temperatu@zag(l—T/Tc). The other con-
all of the necessary information. Thus a superconductor or 8tantsb, andc,, p=3, 4 are non-negative and can be taken
magnet or a nematic liquid crystal, all have the sameyenerally temperature independent in the vicinityTgfin a
Ginzburg-LandauGL) free energy as long as the appropriate charged fluidsuch as a superconductéf), the coupling to a
order parameteM is identified. It IS, however, limited to magnetic field takes the form of a gauge transformation
describe only the vicinity of a second order phase transitiony _, v -27iA/ ¢,. Here po=h/2e is the superconducting flux
When the fluctuations are ignored, the corresponding Gibbguantum andh is the magnitude of the vector potential. The
free energyG, identified as the minimum of the functiond) ~ corresponding Gibbs free energy is to be identified with the
has the temperature dependenceSoet a2. minimum of the functionaF above with respect to the order

According to the classification of phase transitions as proparameter. It has the expected temperature and field depen-
posed by Ehrenfeétthe transitions in general can be of any dence.
order. In a second order phase transition, the specific heat The relevance of these free energies is highlighted by the
and the compressibility, which are the second order derivarecent discove*! of anomalies in the superconducting
tives of the free energywith respect to temperature and transition in(Bi;_K,)BiO3(x=0.4) or BKBO. These anoma-
pressure, respectivelyare discontinuous at the transition. In lies, a missing discontinuity in specific h&at3as well as in
general though, the discontinuity is often replaced by a weaksusceptibility?'!! indicate a phase transition of order higher
often logarithmic singularity. One could then view the than second. The actual order in BKBO has been

Fu= [ QolMPL- a? b+ M7, (2
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determined to be fourth. In another example, the specific this exponent for a third and a fourth order phase transition,
heat* in Bi2212 (Bi,Sr,CaCyOg) has been noted to be where, respectivelyq=5/2 and 7/2. For apth order
kinklike, representing a third order phase transition. Thephase transition, the exponent can be estimated as follows.
telltale signature of a third order phase transition, namely &onsider the free energy of a narrow wire in the presence
penetration depth\™?=a’ remains to be investigated. of a currentJ; it must beF =aP=J%/2p,. It follows readily
There are other examples in Ref. 6 where some of théhat given the temperature dependences described above,
anomalies have been seen but a detailed study still needs ¢a-(2p-1)/2. The energy of a phase slip center, and there-
be carried out. Regardiess of the detailed microscopigyre the temperature dependence of resistivity near a su-

reasons, the free energies in E@3.and(3) characterize the  ,onqucting phase transition was calculated by Langer and
phase transition in its entirety. For BKBO, the functibhis = s heqaokad®20 A thermal distribution of these localized

the superconducting order parameter. In the absence of \f’bltage points leads to an activated/exponential rise in resis-

microscopic theory we do not know whether it is also ; N . .
e energy gapat the Fomi surface.afhough he unneiff7C® "5 1 St sneay beng e rrey of 2 S
measurement3 seem to be consistent with this identifica- P :

energy of a defect, of the order ofEy¢.

tion. The earlier analysis’ has been based on a uniform . . . . .
The outline of this paper is as follows. Section Il contains

order parameter, except for some straightforward effects ) - h
of a magnetic field such as a derivation of the Londonthe mathematical formalism we have used. In particular

equation and the temperature dependence of the penetratifiS Section contains the Euler-Lagrange equation for a
length. one dimensional nonlinear field theory derived from E@s.

This paper is aimed at studying the properties of a suband(3). In Sec. lll, we describe the solutions of the nonlinear
stantially inhomogeneous order parameter such as f6ufid  partial differential equations. The current induced effects
in defects and textures in the condensed state. Their analys¥€ discussed in Sec. IV. These include temperature depen-
is sometimes carried out within homotopy theBnwhere the ~ dence of the critical current in a narrow wire and the
geometrical/topological aspects can be studied in detaitemperature dependence of the resistance near the phase tran-
These(geometrical/topologicalproperties, characteristic of Sition. Finally, the last section contains a summary of our
a mapping between the real space and the order parameg@nclusions.
space, will be unaffected by the order of the transition. All
quantitative propertié8 for example the energies of defects,
how do two defects interact or the effects of the defects and
textures on the thermodynamic properties; they will all be  The gradient terms in Eq$2) and (3), contain informa-
different. In this papéf we are interested in the solutions of tion about the stiffness of the order parameter. The
the relevant nonlinear differential equation. To begin with,precise degree of this stiffness, represented by the
let us limit ourselves to one space dimension. The defectgoefficients and which can be measured in a superconductor
discussed here are domain walls in three dimens@@B$or  in either the upper critical fieldthe resistance of the
topological point defects that occur in narrow wires. Inorder parameter to spatial variatjoror in the London
physical terms, these are the energies and the profiles of thgenetration deptiand the lower critical field, measuring
order parameter between two degenerate superconductimige resistance to magnetic figlddepends on the material
states. A special case in Sec. IV below refers to phase sliparameters. The limitation to the lowest order gradient
centers. Voltage drops appear across these objects in a n@rms is initially motivated by an esthetic curiosity about
row wire in the presence of a current. the long wavelength phenomena. Eventually though, the

To recall the results of an earlier analysisfor a pth ability of this formalism to describe defects and textures is
order phase transitiortl) The thermodynamic free energy at an a posteriori rationalization.
the order parameter minimum follows,,«a®. (2) The su- An Euler-Lagrange equation for the free enertfpr
perfluid density satisfigs;>aP™*. This leads to the result that a scalar order parametdl) described in Eq(2) is given
N"2=Hg*aP™!, where\ is the London penetration depth. by
(3) Since the coherence lengéh which measures the stiff- 3 5 ) 22
ness of the order parameter, has the temperature dependence 0= -2a3M" + 3bsM” — ci[M(VM)“ + MA(V°M)].  (4)

&2 g, the Landau parameter=\/¢ is temperature depen- In one dimensior(1D), V=4, andV2=4,, The letter sub-

dent (in contrast to a superconductor undergoing a secondcripts denote differentiation. The dimensional variables can
order phase transition whereis a temperature independent pe scaled out with the transformations

constank and follows, kcal P2,
The principal results in this paper are: When a defect is 2a
M= 3 v=2&; &=cd2as. (5)
3

II. MATHEMATICAL INFRASTRUCTURE

created, the order parameter is suppressed in a small region

of order of the coherence length, If the bulk condensation

energy densityenergy per unit lengths E,, the energy of a  Equation(4) then becomes
defect is «Eyé. This has the temperature dependence of
aP~¥2. The numerical factor in front of this expression is
calculated below in detail for some specific cases. The critiThe functionf=n? satisfies

cal current in a narrow wire is known to kig(T)cca® with 1 5

g=3/2 for asecond order phase transition. Below we derive —afy~f+7=0. (7)

n(n,)?+n’n,y+n®-n>=0. (6)
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The corresponding energies are then calculated to be ground states in bulk, becomes a profile whérel every-
where, except in a narrow region of ordgrwhere it van-

3
Fiy =Eses; Es= §3(2L3)2, (8) !shes. Lgt us f_irst consider the solution for E(ﬁ{)._ A first
(3by) integral is obtained by multiplying Eq7) by f, and integrat-
and ing overy. This leads to the first invariant, a constant of
motion
1 3( af \? 2 3
_= _ 22 3,220 1 fo f
63—6f dy|:1 3f<+ 2f +2((9y> :| (9) Z(fy)2+E_E:K' (13)

Since the defects are localized over a spatial region of order Reacall that the traditional analysis from here onwards,
&3, we noticesthat the energy scale follows the tempgratur@,otices' that ify were time,K would be the energy of a
dependenceazés. The function n(y) approaches*1 in  paricle with positiorf, moving in a potential well ¥, where
the bulk. The dimensionless energy expression has beep js the gradient-free part of the free enerfpr f=0).
adjusted to define the defect energy with respect to thegor smallK, the solutions are periodic, similar to a periodic
state with a uniform order parameter. The constant 1 is addegrrangement of holes in the condensate. Equati@ may
in Eq. (9) which makes the free energy vanish f6*1  pe integrated in terms of elliptic functions. A6 increases,
everywhere.' o the sinusoidal functions sharpen into square wavelike
The functionalF,[f(y)] has to be limited tdf(y)=0. If  stryctures, their wavelength increases until eventually for
it were not so, then Eq(9) as a functional off would K K,=1/6, oneobtains a solitary wave solutiofin gen-
be unbounded from below and the mean field theoryeral, K,=1/2p.) The center of the solitary wave if(y) is
(where the sum over possible configurations is believed to bgnear. Since at the center the order parameter is small it
dominated by the minimum energy configuratids then  foliows that f(y) = 2VKy.
undefined. Sincef=n?, the condition is also a natural  EFor smallk, the potential for the motion of the fictitious
requirement. . particle is simplyf?. The motion in a quadratic well is de-
The physics derived from E@3) for a fourth order tran-  ¢iped byf:\s’2K|sin(y\s’§)|. Sincef=0, the analytic solu-

sition is similar, although analytically less tractable. Theon needs to be understood in light of this positivity con-
Euler-Lagrange equation, in this case, becomes straint

CIM*M,,+ 2M3(M,)?] + 3a,M5 - 4o,M"=0.  (10) The energy of the small amplitude periodic struct(up
to order linear inK) is zero, as can be evaluated by direct
Following very similar transformationgremoval of di-  calculation. AsK increases and the periodic structure begins
mensional variablgs but with an important difference, to resemble a soliton antisoliton lattice with wide separation
namely thatfoM?3, the equation corresponding to E()  petween the kinks, the energy reduces to the sum of the rest
becomes masses of the individual kinks, reduced by the attractive in-

L oo (11) teraction between them. For large distandelsetween two

3y o domain walls, the asymptotic interaction between a soliton
where fY3=n=M/\3a,/4b, and y=z/¢, with &=c,/3a,.  and an antisolitoft is given by
Also, the energy of these textures is givenfy=E,e, with = — 36/2e2d 14
E,=£&4(3a,)%/ (4b,)3. The quantitye,, as an integral, is given U(d) = - 362¢™ (14)
by Integrating Eq.(13) for K=1/6 we get

_1 2, e, A 9F)° le{stam?<ﬂ)—1} (15)
€@=15 dy[l 4f% + 3% + 3lay) | (12 2 V2

Again a constant 1 has been added to the equation abovéere X is the second integration constant, it represents
to ensure thaé,=0 for f=1 everywhere. That i, measures the translational freedom in locating the center of the
the excess energy above a uniform ground state. solitary wave anywhere. Sincé=0, it follows that

X=X,=2 tani}(1/y3)=0.93. The solution foy <0 is ob-
tained by folding the result around the vertical axis. Figure 1
IIl. SPATIAL CONFIGURATIONS shows the solution fof(y). This is different from a solution

In this section we calculate the spatial profiles. This isone obtains for a conventional solitary wave as in @g. for
accomplished separately for the third and fourth order freé@ second order transition. There is a discontinuity of slope at

energies. The solutions are for a scalar order parameter =0 Which is remnant of the similar discontinuity in the
one dimension. small amplitude solutions. It arises from the constraint

f>0.
) The solution of the original Eq(6) is obtained from
A. Third Order Free Energy n=\f with the positive root fory>0 and the negative root
In case of Eqs(2) and(6) the transformatiori=n? elimi- ~ for y<<0. The functionn(y) is shown in Fig. 2. Near the
nates a sign degeneracy. It also restrfcts0. A domain wall  center the functiom(y) = \y.
between regions witm=1 andn=-1, the two degenerate The energy of the solitary wave structure is given by
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FIG. 1. The functiorf(y) as a function ofy for a third order free
energy.

B. Fourth Order Free Energy

2
1-—=
33

&= ) =0.522. (16)

For a fourth order transition free energy, E@®), the
Euler-Lagrange equation, E@L1), can be readily integrated
once. The resulting expression is

g(f)2+ 52 - SF8R=K. (17)

Again for smallK, one has the periodic solutions which start

out as sinusoidal solutions but sharpen into square wavelike

functions (resembling a soliton antisoliton latticas K in-
creases. FOK=1/8, thesolution for a single defect is given
implicitly by the integral

1.0 n3

0.5

A

-1.04

FIG. 2.
transition.

Domain wall profilen(y) for a third order phase
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FIG. 3. The approximate solution, E1) (solid line), and
numerically exact solutioricrossey of the functionf(y)=nq for a
fourth order phase transition, obtained from ELp).

y. (18)

ff df B V3
(o 147+ 2
The solutionf(y) with f(0)=0, is sketched in Fig. 3 as the
set of crosses. A numerical integration of H42) leads

to the value of the integral as=0.241. The defect energies
get smaller for the higher order free energies. The ratio
€3/ €,=2.17. In comparison, the domain wall energy for Eq.
(1), €=2v2/3=0.943 ande,/ e5=1.81.

An approximate solution for Eq€10) and (11) can be
worked out by starting with the free energy in dimensionless
variables, as described in E@.2). This free energy can be
broken into two partsg;=A+B where

1 4( of\?
A=— 1- f2+2f3+—(—) } 1
12 dy[ 3 3\ gy (19
and
1 8/3 2
B=-— [ dy[3f 83— (1 + 2f)]. (20)

12

The separation here is guided by the solvability. Its validity
is justified a posteriori The unperturbed part of the free
energy, represented by is similar to Eqg.(9). There is an
overall factor of 2(¢, is smallej and the size of the structure
is slightly smaller by a factor/8/9. The perturbatio is
nonzero only wherf # 1.

The solution to Eq(19) is readily obtained

f Oy) = 3{3 tanH[3(y + X)/4] - 1}. (21)

The energy of this structure is given by=0.246, rather
close to the exact value for the ener@241 cited follow-
ing Eq.(18). The integral foB can be evaluated usirfd(y).
It is equal to—0.001. Shown in Fig. 3 as the solid line, is the
solution described in Eq21). The difference between the
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exact numerically integrated solution and the approximate The solution corresponding to a phase slip center for

one is negligible. Eg. (1) was originally obtainetf??>22 by Langer and
Ambegaokar. In dimensionless variables, Ep) transforms
into
IV. CURRENT FLOW EFFECTS
= 1,15, 1, g’
Consider a narrow wirélateral dimensions smaller than Fi=Ez| dy| - Ef + gf + ny— > |- (24

the coherence lengthmade of a material described by the
generalized free energies. If the wire carries curignthe  The notation is similar to that following Eq$5) and (8)
superfluid density is reduced, first quadratically but as thevith the addition for the current. Thusgy?=(J?/2c;)

current reaches the critical current, more precipitously. The><[(3b)4/(2a3)5]_ In terms of the dimensionless variables,
superfluid density vanishes at a critical currgl). How-  gq. (23) becomes

ever even fod<J.(T), voltage drops appear in small regions

called phase slip centers. A comprehensive and lucid discus- g?=f41-f). (25)
sion of both the mathematical as well as physical effects has _ _
been provided by Langer and AmbegaoKar. A consequence here is that for smalif = 1-g The maxi-

The physical effects remain qualitatively the same formum current for which a minimum exists in the free energy
a higher order phase transition. The mathematical detail€d- (24) is g:=0.286 corresponding tb=4/5.

however, are different for the free energies in E@.and The Euler-Lagrange equation is given by
(3). In the presence of a constant curreht the free 1 9
energy corresponding to E) for a third order transition “fyy+f-f2- 9—3 =0. (26)
becomes 2 f
,Ej —F-J.A For a given currend [less than](T)], there are two solu-

tions to Eq.(25). The largef corresponds to the order pa-
rameter reduced in the presence of the current. The snfaller
4cM® | solution corresponds to the local maximum in the free en-
(22) €19y Equation(26) can be integrated once to lead to

2

- [ o] - aghae+ by o ¥ -

2 f3

i i i 1 f
HereA is a vector potential, conjugate to the supercurdent Zf§+ U =K: U(f)= >3 + 9 27

Because of the use here of the Legendre’s transformation to

entiely i trms of the ampliude of the order parameter. s, HEre 100 the solutions are those corresponding to the
minimum yields the equilibrium order parameter includi.ng motion of a particle with positionf, time y, moving in

S ' a potentialU(f). The allowed values oK are bounded by
the effects of a finite supercurredt K;<K<K,. HereK; corresponds to the value &f at the

The physics described in E¢22) begins with the usual Iolcal minirzﬁum In 1the freg energy this is the maximum

free energy in Eq(2) for J=0. With increasing], the order di .t th llefr Igi/' f Eq.(25). F
parameteiM corresponding to the minimum of the free en- co;respohn lngl o the srTla solu |0hn of £g. ' '%r
ergy moves to smaller values. The free energy also has Ié"Kl’ the solutions oscillate about the extremi, wit

local maximum which separates the minimum from the nor-& wavelength determined by other parameters of the prob-

mal state forM =0. Both the minimum as well as the maxi- for?r'eléz (r)?]fdesrstéot:]r;e f\r/:éuznog at :gen iﬁ?ﬁ# rg?é”?huem(')r-{jg'f a
mum disappear fod = J,(T) and there is no order parameter P 9y P

solution. The minimum free energy order parameter solutio rameter as reduced by the current. Kz, the order pa-
o : ergy P "Yameterf is constant everywhere except in a small region,
M(J) is a solution of the equation

where it drops down to a valug,;, such thatU(f i) =Ko.
J? = ;M 4aM® - 6bM°]. (23) Equation(27) needs to be finally integrated. The solution

] can be expressed as an integral
For eachJ<J, there are two solutions. The smallgr

corresponds to the local maximum of the free energy. The f fdf 2
larger solution closer to the zero current equilibrium value is J 5 7 > oo \V3Y
the global minimum and ceases to exist fbr J (T). The fin V27— 3F 74+ BKT — 3g s

corresponding problem for Ed1) leads to a temperature  The profile is shown in Fig. 4. Qualitatively the profile is
dependence o (T)=a*2 For Eq.(2), the result isJ(T)  similar? to the one found for Eq1). The details, however,
~a3% For Eq.(3), the critical current has an even weaker are all quite different. Figure 5 shows the energy of the phase
temperature dependenck(T)=aj’. It is straightforward to slip centers as a function of the dimensionless supercugrent
extend this calculation to an arbitrary order phase transitionfor the third order free energy. When properly scaled, the
For apth order transition the exponent for the temperatureresults for a fourth order free energy look identical.
dependence i2p-1)/2. We thus have another characteris- A similar analysis can also be carried out for Eg),

tic signature of the order of a transition in the temperaturegeneralized to include the effect of a supercurrent. In the

dependence of the critical current in a wire. dimensionless units the free energy becomes

(28)
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Eqg. (2) remain useful in offering insight into the solutions

here. We expect the profile of a phase slip center to follow
0.9+ the basic features of the solution described in €§). The
0.84 phase slip center will again appear as a spatially localized

suppression of the order parameter, over a length scale which

= 0.74 will vary with current. Overall the energy of this structure
=56l will be Ezé,.
0.54 L & V. SUMMARY AND CONCLUSIONS
» g=0.035 N ) . _
044 |, g=0.134 * * In view of the success of a Landau free energy in describ-
03d |+ g=0.250 = ing issues connected with a second order phase transition, we

have been stimulated to explore the properties of defects and
textures in the presence of a higher order phase transition
using generalized Landau free energy functionals. We expect
FIG. 4. Order parameter profiléy(y) for a third order phase that, regardless of the so far unknown microscopic details,

transition in the presence of a current wig0.035, 0.134, and Properties near a higher order transition can be described by

5 % % © 3 & &

0.250. a generalized free energy in essentially the same way that the
usual Landau free energy captures the essential properties
B 1 1 1 5 near a second order phase transition. .
Fv= E‘J [_ Zf24 834 Z§2 - 9_2 . (29) For a third order free energy, the transformation
3 4 97 3f f(y)=n?(y) changes Eq2) into Eq.(9). In the latter version,

the order parameter must be positive also because otherwise
the free energy is unbounded below. That would eliminate
the notion of exp-f) as a configuration probability. The con-
straint, however, leads to a very different mathematical struc-
g2 =f41-123). (30) ture for the defect profile. In particular, the profile has a
) ) ) discontinuity in the slopé, at the origin. It is not altogether
One straightforward consequence of this equal@nEd.  surprising that the positivity constraint leads to the disconti-
(25)] is that the suppression of the order parameter due to Auity.
supercurrent is given here f§/*=1-g2 This and the result For Eq.(3), the transformed free energy for BKBO is seen
corresponding to Eq25) f=1-g” look different only be- in Eq. (12). The termf &2 could be defined so that one is
causef depends differently on the order parameter. Here theyways taking the positive root. There are, it seems, no sym-
maximum ing® occurs(when the two solutions merge and metry considerations which will restriétand in this case the
there is no solution for largen @t f,=(6/7)¥2=0.78, corre-  microscopic theories will have more to say about whether the
sponding tog.=0.24. powers of the terms in the free energy are justifiable and the
We have not integrated the Euler-Lagrange equation for @rotocol for the proper approach fe&0. For instance, one
phase slip center in this case. In earlier calculations related tgossibility for the fractional powers of, which has been
Eq. (3), the final calculation seems to be possible only nu-explored earlietis that there are auxiliary degrees of free-
merically. Qualitatively the main features of the solutions fordom which, when integrated out, lead to the fractional pow-
ers. The constrairit> 0 has consequences for stability of the
spatial textures which will be report&dseparately.

Here the notation is identical to that following E4.1). The
dimensionless current)®=(3J?/4c,)[(4b)%/(3a)’] is given
by

0.6 There are defect and current related characteristic signa-
tures of a higher order phase transition. The current induced
0.5 suppression of the order parameter is quadif@icupercur-
renf) for small currents. The critical current, at which the
0.4 order parameter vanishes and superconductivity disappears,
- has a temperature dependede€) = a?*~Y2, We have also
Y 03 calculated the energy and spatial profiles of structures such
- as an interface between degenerate superconducting states
0.2 and a phase slip center which appears when the supercurrent
approaches the critical current. We expect these theoretical
0.1 predictions will stimulate measurements of critical currents
and their temperature dependence.
0.0
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4p, Ehrenfest, Proc. Amsterdam Acagb, 153 (1933. Also avail- the superfluid densityas measured by the London penetration

able in,P. Ehrenfest: Collected Scientific Papeeslited by M. J. length would have a chargcteristic te_mperature dependence. Re-
Klein (North Holland, Amsterdam, 1959p. 628. gardle_ss of whether the mterpr_etatlons of Ref. 5 or tho_se _of
5P, Kumar, D. Hall, and R. G. Goodrich, Phys. Rev. L&®, 4532 Woodfieldet al. stand the test of time, the model free energies in
(1999. Egs.(2) and(3) are worth examining for their consequences, as
5P. Kumar, Phys. Rev. B8, 064505(2003. In the results reported here.
7p_ Kumar and A. Saxena, Philos. Mag.iﬂ, 1201(2002_ 14A. JUI’lOd, A. El’b, and C. Renner, Physica X17-318 333

8The reasons behind as well as the implications of the following (1999.
free energy have been discussed in Ku(]&;'e Ref. ﬁ In brief, 15F, Sharifi, A. Pargellis, R. C. Dynes, B. Miller, E. S. Hellman, J.
the goals are tqa) consider powers of the order parameter ~ Rosamilia, and E. H. Hartford, Jr., Phys. Rev. &, 12 521
which are invariant with respect to the symmetry operations and (1991; P. Szabo, P. Samuely, L. N. Bobrov, J. Marcus, C.
(b) allow the thermodynamic free energy to have the desired Escribe-Filippini, and M. Affronte, Physica @35, 1873(1994.
temperature and field dependence. In Ref. 6, there are two exX®D. R. Nelson,Defects and Geometry in Condensed Matter Phys-
pressions for the free energy, one with a weight function as ics (Cambridge University Press, Cambridge, 2002
below and the other with a Gaussian-like form similar to Egs.1’V. P. Mineev, Topologically Stable Defects and Solitons in Or-
(9) and(12). These expressions are related via a variable trans- dered Media(Harwood Academic, Amsterdam, 1998
formation. Because the latter contain fractional powers of the!®D. Vollhardt and P. WélfleThe Superfluid Phases tfie (Taylor
order parameter, we expect that the expressions given below are and Francis, London, 1990

more likely to be directly related to a microscopic theory. 19Here we limit ourselves to those defects that are described by a
9J. R. Schrieffer,Theory of SuperconductivitPerseus Books, GL type free energy in Eq$2) and(3).
Reading, MA, 1999 203, S. Langer and V. Ambegaokar, Phys. R&64, 498 (1967);
10M.  Tinkham, Introduction to Superconductivity 2nd  ed. also see, M. Tinkham, in Ref. 10, p. 288.
(McGraw-Hill, New York, 1996. 2IN. S. Manton, Nucl. Phys. BL50, 397 (1979.
1D, Hall, R. G. Goodrich, C. G. Grenier, P. Kumar, M. Chaparala,?’D. E. McCumber and B. |. Halperin, Phys. Rev. B 1054
and M. Norton, Philos. Mag. B30, 61 (2000. (1970.
2M. F. Hundley, J. D. Thompson, and G. H. Kwei, Solid State 23B. I. Ivlev and N. B. Kopnin, J. Low Temp. Phygd4, 453(1981).
Commun. 70, 1155(1989. 24, Khare, A. Saxena, and P. Kumampublishegl

104509-7



