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Searching for characteristic signatures of a higher order phase transitionsspecifically of the order of three or
fourd, we have calculated the spatial profiles and the energies of a spatially varying order parameter in one
dimension. In the case of apth order phase transition to a superconducting ground state, the free energy density
depends on temperature asap, wherea=a0s1−T/Tcd is the reduced temperature. The energy of a domain
wall between two degenerate ground states isep.ap−1/2. We have also investigated the effects of a supercur-
rent in a narrow wire. These effects are limited by a critical current which has a temperature dependence
JcsTd.as2p−1d/2. The phase slip center profiles and their energies are also calculated. Given the suggestion that
the superconducting transition insBa1−xKxdBiO3, for x=0.4, may be of the order of four, these predictions have
relevance for future experiments.
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I. INTRODUCTION

A large part of statistical mechanics, having to do with the
physics of phase transitions and nonlinear properties is based
on a rather fundamental generalization, due to Landau,1,2 of

the well-known Gibbs free energy. There is a functionalF̃
depending on ansin general complexd “order parameter”
Msr d, given by

F̃fM sr dg =E dvf− auM u2 + buM u4 + cu ¹ M u2 − M ·Hg,

s1d

wherea~ s1−T/Tcd andb andc are non-negative, tempera-
ture independentsor weakly sod constants. HereH represents
an external field which couples directly to the order param-
eter.

This free energy is the backbone of a vast literature3 on
second order phase transitions, critical phenomena as well as
nonlinear properties. Regardless of the microscopic fabric of
the system under consideration, near a second order phase
transition where universal features appear which are inde-
pendent of the details of interaction, this free energy contains
all of the necessary information. Thus a superconductor or a
magnet or a nematic liquid crystal, all have the same
Ginzburg-LandausGLd free energy as long as the appropriate
order parameterM is identified. It is, however, limited to
describe only the vicinity of a second order phase transition.
When the fluctuations are ignored, the corresponding Gibbs

free energyG, identified as the minimum of the functionalF̃,
has the temperature dependence ofG.a2.

According to the classification of phase transitions as pro-
posed by Ehrenfest,4 the transitions in general can be of any
order. In a second order phase transition, the specific heat
and the compressibility, which are the second order deriva-
tives of the free energyswith respect to temperature and
pressure, respectivelyd, are discontinuous at the transition. In
general though, the discontinuity is often replaced by a weak,
often logarithmic singularity. One could then view the

Ehrenfest definition of an order as one where the lower de-
rivatives of the free energy are continuous at the transition
but the higher derivatives are singular. Thus in a fourth order
phase transition, all third order derivatives are continuous
and all fifth order derivatives are singular at the transition.
The fourth order derivatives are either discontinuous or are
weakly singular.

The generalization of the Landau free energy to a higher
order phase transition is achieved via a weight function. For
third and fourth order phase transitions, we need,5–7 respec-
tively, within mean field in the sense discussed above,
G.a3 andG.a4. This can be obtained8 from “Landau-like”
free energies defined with a weight function

FIII =E dvuMu2f− a3uMu2 + b3uMu4 + c3u ¹ Mu2g, s2d

FIV =E dvuMu4f− a4uMu2 + b4uMu4 + c4u ¹ Mu2g. s3d

In general the weight function is given byuMu2sp−2d for
p.2. Hereap’s change sign atTc and are often used below
for the reduced temperatureap=ap

0s1−T/Tcd. The other con-
stantsbp andcp, p=3, 4 are non-negative and can be taken
generally temperature independent in the vicinity ofTc. In a
charged fluidssuch as a superconductor9,10d, the coupling to a
magnetic field takes the form of a gauge transformation
¹→ ¹−2piA /f0. Heref0=h/2e is the superconducting flux
quantum andA is the magnitude of the vector potential. The
corresponding Gibbs free energy is to be identified with the
minimum of the functionalF above with respect to the order
parameter. It has the expected temperature and field depen-
dence.

The relevance of these free energies is highlighted by the
recent discovery5,11 of anomalies in the superconducting
transition insBi1−xKxdBiO3sx=0.4d or BKBO. These anoma-
lies, a missing discontinuity in specific heat12,13as well as in
susceptibility,5,11 indicate a phase transition of order higher
than second. The actual order in BKBO has been
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determined5 to be fourth. In another example, the specific
heat14 in Bi2212 sBi2Sr2CaCu2O8d has been noted to be
kinklike, representing a third order phase transition. The
telltale signature of a third order phase transition, namely a
penetration depthl−2.a2 remains to be investigated.
There are other examples in Ref. 6 where some of the
anomalies have been seen but a detailed study still needs to
be carried out. Regardless of the detailed microscopic
reasons, the free energies in Eqs.s2d ands3d characterize the
phase transition in its entirety. For BKBO, the functionM is
the superconducting order parameter. In the absence of a
microscopic theory we do not know whether it is also
the energy gap at the Fermi surface, although the tunneling
measurements15 seem to be consistent with this identifica-
tion. The earlier analysis5–7 has been based on a uniform
order parameter, except for some straightforward effects
of a magnetic field such as a derivation of the London
equation and the temperature dependence of the penetration
length.

This paper is aimed at studying the properties of a sub-
stantially inhomogeneous order parameter such as found16–18

in defects and textures in the condensed state. Their analysis
is sometimes carried out within homotopy theory17 where the
geometrical/topological aspects can be studied in detail.
Thesesgeometrical/topologicald properties, characteristic of
a mapping between the real space and the order parameter
space, will be unaffected by the order of the transition. All
quantitative properties16 for example the energies of defects,
how do two defects interact or the effects of the defects and
textures on the thermodynamic properties; they will all be
different. In this paper19 we are interested in the solutions of
the relevant nonlinear differential equation. To begin with,
let us limit ourselves to one space dimension. The defects
discussed here are domain walls in three dimensionss3Dd or
topological point defects that occur in narrow wires. In
physical terms, these are the energies and the profiles of the
order parameter between two degenerate superconducting
states. A special case in Sec. IV below refers to phase slip
centers. Voltage drops appear across these objects in a nar-
row wire in the presence of a current.

To recall the results of an earlier analysis5–7 for a pth
order phase transition:s1d The thermodynamic free energy at
the order parameter minimum followsFop~ap. s2d The su-
perfluid density satisfiesrs~ap−1. This leads to the result that
l−2.Hc1~ap−1, wherel is the London penetration depth.
s3d Since the coherence lengthj, which measures the stiff-
ness of the order parameter, has the temperature dependence
j−2~a, the Landau parameterk=l /j is temperature depen-
dent sin contrast to a superconductor undergoing a second
order phase transition wherek is a temperature independent
constantd and follows,k~a1−p/2.

The principal results in this paper are: When a defect is
created, the order parameter is suppressed in a small region
of order of the coherence length,j. If the bulk condensation
energy densitysenergy per unit lengthd is E0, the energy of a
defect is ~E0j. This has the temperature dependence of
ap−1/2. The numerical factor in front of this expression is
calculated below in detail for some specific cases. The criti-
cal current in a narrow wire is known to beJcsTd~aq with
q=3/2 for asecond order phase transition. Below we derive

this exponent for a third and a fourth order phase transition,
where, respectively,q=5/2 and 7/2. For apth order
phase transition, the exponent can be estimated as follows.
Consider the free energy of a narrow wire in the presence
of a currentJ; it must beF.ap.J2/2rs. It follows readily
that given the temperature dependences described above,
q=s2p−1d /2. The energy of a phase slip center, and there-
fore the temperature dependence of resistivity near a su-
prconducting phase transition was calculated by Langer and
Ambegaokar.10,20 A thermal distribution of these localized
voltage points leads to an activated/exponential rise in resis-
tance with the activation energy being the energy of a single
phase slip center. The latter in turn is the above mentioned
energy of a defect, of the order of~E0j.

The outline of this paper is as follows. Section II contains
the mathematical formalism we have used. In particular
this section contains the Euler-Lagrange equation for a
one dimensional nonlinear field theory derived from Eqs.s2d
ands3d. In Sec. III, we describe the solutions of the nonlinear
partial differential equations. The current induced effects
are discussed in Sec. IV. These include temperature depen-
dence of the critical current in a narrow wire and the
temperature dependence of the resistance near the phase tran-
sition. Finally, the last section contains a summary of our
conclusions.

II. MATHEMATICAL INFRASTRUCTURE

The gradient terms in Eqs.s2d and s3d, contain informa-
tion about the stiffness of the order parameter. The
precise degree of this stiffness, represented by the
coefficients and which can be measured in a superconductor
in either the upper critical fieldsthe resistance of the
order parameter to spatial variationd or in the London
penetration depthsand the lower critical field, measuring
the resistance to magnetic fieldd, depends on the material
parameters. The limitation to the lowest order gradient
terms is initially motivated by an esthetic curiosity about
the long wavelength phenomena. Eventually though, the
ability of this formalism to describe defects and textures is
an a posteriori rationalization.

An Euler-Lagrange equation for the free energysfor
a scalar order parameterMd described in Eq.s2d is given
by

0 = − 2a3M
3 + 3b3M

5 − c3fMs¹Md2 + M2s¹2Mdg. s4d

In one dimensions1Dd, ¹=]z and¹2=]zz. The letter sub-
scripts denote differentiation. The dimensional variables can
be scaled out with the transformations

M =Î2a3

3b3
n; y = z/j3; j3

2 = c3/2a3. s5d

Equations4d then becomes

nsnyd2 + n2nyy + n3 − n5 = 0. s6d

The functionf =n2 satisfies

− 1
2 fyy − f + f2 = 0. s7d
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The corresponding energies are then calculated to be

FIII = E3e3; E3 = j3
s2a3d3

s3b3d2 , s8d

and

e3 =
1

6
E dyF1 − 3f2 + 2f3 +

3

2
S ] f

]y
D2G . s9d

Since the defects are localized over a spatial region of order
j3, we notice that the energy scale follows the temperature
dependencea3

3j3. The function nsyd approaches61 in
the bulk. The dimensionless energy expression has been
adjusted to define the defect energy with respect to the
state with a uniform order parameter. The constant 1 is added
in Eq. s9d which makes the free energy vanish forf =1
everywhere.

The functionalFIII ffsydg has to be limited tofsydù0. If
it were not so, then Eq.s9d as a functional off would
be unbounded from below and the mean field theory
swhere the sum over possible configurations is believed to be
dominated by the minimum energy configurationd is then
undefined. Sincef =n2, the condition is also a natural
requirement.

The physics derived from Eq.s3d for a fourth order tran-
sition is similar, although analytically less tractable. The
Euler-Lagrange equation, in this case, becomes

c4fM4Mzz+ 2M3sMzd2g + 3a4M
5 − 4b4M

7 = 0. s10d

Following very similar transformationssremoval of di-
mensional variablesd, but with an important difference,
namely thatf ~M3, the equation corresponding to Eq.s7d
becomes

1
3 fyy + f − f5/3 = 0, s11d

where f1/3=n=M /Î3a4/4b4 and y=z/j4 with j4
2=c4/3a4.

Also, the energy of these textures is given byFIV=E4e4 with
E4=j4s3a4d4/ s4b4d3. The quantitye4, as an integral, is given
by

e4 =
1

12
E dyF1 − 4f2 + 3f8/3 +

4

3
S ] f

]y
D2G . s12d

Again a constant 1 has been added to the equation above
to ensure thate4=0 for f =1 everywhere. That is,e4 measures
the excess energy above a uniform ground state.

III. SPATIAL CONFIGURATIONS

In this section we calculate the spatial profiles. This is
accomplished separately for the third and fourth order free
energies. The solutions are for a scalar order parameter in
one dimension.

A. Third Order Free Energy

In case of Eqs.s2d ands6d the transformationf =n2 elimi-
nates a sign degeneracy. It also restrictsf ù0. A domain wall
between regions withn=1 and n=−1, the two degenerate

ground states in bulk, becomes a profile wheref =1 every-
where, except in a narrow region of orderj, where it van-
ishes. Let us first consider the solution for Eq.s7d. A first
integral is obtained by multiplying Eq.s7d by fy and integrat-
ing over y. This leads to the first invariant, a constant of
motion

1

4
sfyd2 +

f2

2
−

f3

3
= K. s13d

Recall that the traditional analysis from here onwards,
notices, that ify were time,K would be the energy of a
particle with positionf, moving in a potential well −V, where
V is the gradient-free part of the free energysfor f ù0d.
For smallK, the solutions are periodic, similar to a periodic
arrangement of holes in the condensate. Equations13d may
be integrated in terms of elliptic functions. AsK increases,
the sinusoidal functions sharpen into square wavelike
structures, their wavelength increases until eventually for
K→K0=1/6, oneobtains a solitary wave solution.sIn gen-
eral, K0=1/2p.d The center of the solitary wave infsyd is
linear. Since at the center the order parameter is small it
follows that fsyd.2ÎKy.

For smallK, the potential for the motion of the fictitious
particle is simplyf2. The motion in a quadratic well is de-
scribed byf =Î2KusinsyÎ2du. Since f ù0, the analytic solu-
tion needs to be understood in light of this positivity con-
straint.

The energy of the small amplitude periodic structuresup
to order linear inKd is zero, as can be evaluated by direct
calculation. AsK increases and the periodic structure begins
to resemble a soliton antisoliton lattice with wide separation
between the kinks, the energy reduces to the sum of the rest
masses of the individual kinks, reduced by the attractive in-
teraction between them. For large distancesd between two
domain walls, the asymptotic interaction between a soliton
and an antisoliton21 is given by

Usdd = − 36Î2e−Î2d. s14d

Integrating Eq.s13d for K=1/6 we get

f =
1

2F3 tanh2Sy + X
Î2

D − 1G . s15d

Here X is the second integration constant, it represents
the translational freedom in locating the center of the
solitary wave anywhere. Sincef ù0, it follows that
XùXc=Î2 tanh−1s1/Î3d=0.93. The solution fory,0 is ob-
tained by folding the result around the vertical axis. Figure 1
shows the solution forfsyd. This is different from a solution
one obtains for a conventional solitary wave as in Eq.s1d, for
a second order transition. There is a discontinuity of slope at
y=0 which is remnant of the similar discontinuity in the
small amplitude solutions. It arises from the constraint
f .0.

The solution of the original Eq.s6d is obtained from
n=Îf with the positive root fory.0 and the negative root
for y,0. The functionnsyd is shown in Fig. 2. Near the
center the functionnsyd~Îy.

The energy of the solitary wave structure is given by
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e3 =
3Î2

5 S1 −
2

3Î3
D = 0.522. s16d

B. Fourth Order Free Energy

For a fourth order transition free energy, Eq.s3d, the
Euler-Lagrange equation, Eq.s11d, can be readily integrated
once. The resulting expression is

1
6sfyd2 + 1

2 f2 − 3
8 f 8/3 = K. s17d

Again for smallK, one has the periodic solutions which start
out as sinusoidal solutions but sharpen into square wavelike
functions sresembling a soliton antisoliton latticed as K in-
creases. ForK=1/8, thesolution for a single defect is given
implicitly by the integral

E
fs0d

f df

Î1 − 4f2 + 3f 8/3
=

Î3

2
y. s18d

The solutionfsyd with fs0d=0, is sketched in Fig. 3 as the
set of crosses. A numerical integration of Eq.s12d leads
to the value of the integral ase4=0.241. The defect energies
get smaller for the higher order free energies. The ratio
e3/e4=2.17. In comparison, the domain wall energy for Eq.
s1d, e2=2Î2/3=0.943 ande2/e3=1.81.

An approximate solution for Eqs.s10d and s11d can be
worked out by starting with the free energy in dimensionless
variables, as described in Eq.s12d. This free energy can be
broken into two parts;e4=A+B where

A =
1

12
E dyF1 − 3f2 + 2f3 +

4

3
S ] f

]y
D2G s19d

and

B =
1

12
E dyf3f 8/3 − f2s1 + 2fdg. s20d

The separation here is guided by the solvability. Its validity
is justified a posteriori. The unperturbed part of the free
energy, represented byA is similar to Eq.s9d. There is an
overall factor of 2se4 is smallerd and the size of the structure
is slightly smaller by a factorÎ8/9. The perturbationB is
nonzero only whenf Þ1.

The solution to Eq.s19d is readily obtained

f 0syd = 1
2h3 tanh2f3sy + Xd/4g − 1j. s21d

The energy of this structure is given byA=0.246, rather
close to the exact value for the energys0.241d cited follow-
ing Eq.s18d. The integral forB can be evaluated usingf 0syd.
It is equal to20.001. Shown in Fig. 3 as the solid line, is the
solution described in Eq.s21d. The difference between the

FIG. 1. The functionfsyd as a function ofy for a third order free
energy.

FIG. 2. Domain wall profilensyd for a third order phase
transition.

FIG. 3. The approximate solution, Eq.s21d ssolid lined, and
numerically exact solutionscrossesd of the function fsyd=n3 for a
fourth order phase transition, obtained from Eq.s18d.

FARID et al. PHYSICAL REVIEW B 71, 104509s2005d

104509-4



exact numerically integrated solution and the approximate
one is negligible.

IV. CURRENT FLOW EFFECTS

Consider a narrow wireslateral dimensions smaller than
the coherence lengthd made of a material described by the
generalized free energies. If the wire carries currentJ, the
superfluid density is reduced, first quadratically but as the
current reaches the critical current, more precipitously. The
superfluid density vanishes at a critical currentJcsTd. How-
ever even forJøJcsTd, voltage drops appear in small regions
called phase slip centers. A comprehensive and lucid discus-
sion of both the mathematical as well as physical effects has
been provided by Langer and Ambegaokar.20

The physical effects remain qualitatively the same for
a higher order phase transition. The mathematical details,
however, are different for the free energies in Eqs.s2d and
s3d. In the presence of a constant currentJ, the free
energy corresponding to Eq.s2d for a third order transition
becomes

F̃j = F − J . A

=E dvuMu2F− a3uMu2 + b3uMu4 + c3u ¹ Mu2 −
J2

4c3M
6G .

s22d

HereA is a vector potential, conjugate to the supercurrentJ.
Because of the use here of the Legendre’s transformation to

developF̃j as a function of specifiedJ, the final equation is
entirely in terms of the amplitude of the order parameter. Its
minimum yields the equilibrium order parameter, including
the effects of a finite supercurrentJ.

The physics described in Eq.s22d begins with the usual
free energy in Eq.s2d for J=0. With increasingJ, the order
parameterM corresponding to the minimum of the free en-
ergy moves to smaller values. The free energy also has a
local maximum which separates the minimum from the nor-
mal state forM =0. Both the minimum as well as the maxi-
mum disappear forJùJcsTd and there is no order parameter
solution. The minimum free energy order parameter solution
MsJd is a solution of the equation

J2 = c3M
5f4a3M

3 − 6b3M
5g. s23d

For eachJ,Jc, there are two solutions. The smallerM
corresponds to the local maximum of the free energy. The
larger solution closer to the zero current equilibrium value is
the global minimum and ceases to exist forJ.JcsTd. The
corresponding problem for Eq.s1d leads to a temperature
dependence ofJcsTd.a3/2. For Eq. s2d, the result isJcsTd
.a3

5/2. For Eq. s3d, the critical current has an even weaker
temperature dependence,JcsTd.a3

7/2. It is straightforward to
extend this calculation to an arbitrary order phase transition.
For a pth order transition the exponent for the temperature
dependence iss2p−1d /2. We thus have another characteris-
tic signature of the order of a transition in the temperature
dependence of the critical current in a wire.

The solution corresponding to a phase slip center for
Eq. s1d was originally obtained20,22,23 by Langer and
Ambegaokar. In dimensionless variables, Eq.s22d transforms
into

F̃III = E3E dyF−
1

2
f2 +

1

3
f3 +

1

4
fy
2 −

g2

2f2G . s24d

The notation is similar to that following Eqs.s5d and s8d
with the addition for the current. Thusg2=sJ2/2c3d
3fs3bd4/ s2a3d5g. In terms of the dimensionless variables,
Eq. s23d becomes

g2 = f4s1 − fd. s25d

A consequence here is that for smallg, f .1−g2. The maxi-
mum current for which a minimum exists in the free energy
Eq. s24d is gc=0.286 corresponding tof =4/5.

The Euler-Lagrange equation is given by

1

2
fyy + f − f2 −

g2

f3 = 0. s26d

For a given currentJ fless thanJcsTdg, there are two solu-
tions to Eq.s25d. The largef corresponds to the order pa-
rameter reduced in the presence of the current. The smallerf
solution corresponds to the local maximum in the free en-
ergy. Equations26d can be integrated once to lead to

1

4
fy
2 + Usfd = K; Usfd =

f2

2
−

f3

3
+

g2

2f2 . s27d

Here too, the solutions are those corresponding to the
motion of a particle with positionf, time y, moving in
a potentialUsfd. The allowed values ofK are bounded by
K1,K,K2. Here K1 corresponds to the value ofU at the
local minimum. In the free energy this is the maximum
corresponding to the smallerf solution of Eq. s25d. For
K*K1, the solutions oscillate about the extremumfmax with
a wavelength determined by other parameters of the prob-
lem. K2 refers to the value ofU at the local maximum. This
corresponds to the free energy minimum and the order pa-
rameter as reduced by the current. ForK&K2, the order pa-
rameterf is constant everywhere except in a small region,
where it drops down to a valuefmin such thatUsfmind=K2.

Equations27d needs to be finally integrated. The solution
can be expressed as an integral

E
fmin

f fdf
Î2f 5 − 3f 4 + 6Kf2 − 3g2

=Î2

3
y. s28d

The profile is shown in Fig. 4. Qualitatively the profile is
similar20 to the one found for Eq.s1d. The details, however,
are all quite different. Figure 5 shows the energy of the phase
slip centers as a function of the dimensionless supercurrentg
for the third order free energy. When properly scaled, the
results for a fourth order free energy look identical.

A similar analysis can also be carried out for Eq.s3d,
generalized to include the effect of a supercurrent. In the
dimensionless units the free energy becomes
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F̃IV = E4E F−
1

3
f2 +

1

4
f8/3 +

1

9
fy
2 −

g2

3f2G . s29d

Here the notation is identical to that following Eq.s11d. The
dimensionless currentg2=s3J2/4c4dfs4bd6/ s3ad7g is given
by

g2 = f 4s1 − f2/3d. s30d

One straightforward consequence of this equationfor Eq.
s25dg is that the suppression of the order parameter due to a
supercurrent is given here byf2/3.1−g2. This and the result
corresponding to Eq.s25d f .1−g2 look different only be-
causef depends differently on the order parameter. Here the
maximum ing2 occursswhen the two solutions merge and
there is no solution for larger gd at f0=s6/7d3/2=0.78, corre-
sponding togc=0.24.

We have not integrated the Euler-Lagrange equation for a
phase slip center in this case. In earlier calculations related to
Eq. s3d, the final calculation seems to be possible only nu-
merically. Qualitatively the main features of the solutions for

Eq. s2d remain useful in offering insight into the solutions
here. We expect the profile of a phase slip center to follow
the basic features of the solution described in Eq.s28d. The
phase slip center will again appear as a spatially localized
suppression of the order parameter, over a length scale which
will vary with current. Overall the energy of this structure
will be E4j4.

V. SUMMARY AND CONCLUSIONS

In view of the success of a Landau free energy in describ-
ing issues connected with a second order phase transition, we
have been stimulated to explore the properties of defects and
textures in the presence of a higher order phase transition
using generalized Landau free energy functionals. We expect
that, regardless of the so far unknown microscopic details,
properties near a higher order transition can be described by
a generalized free energy in essentially the same way that the
usual Landau free energy captures the essential properties
near a second order phase transition.

For a third order free energy, the transformation
fsyd=n2syd changes Eq.s2d into Eq.s9d. In the latter version,
the order parameter must be positive also because otherwise
the free energy is unbounded below. That would eliminate
the notion of exps−fd as a configuration probability. The con-
straint, however, leads to a very different mathematical struc-
ture for the defect profile. In particular, the profile has a
discontinuity in the slopefy at the origin. It is not altogether
surprising that the positivity constraint leads to the disconti-
nuity.

For Eq.s3d, the transformed free energy for BKBO is seen
in Eq. s12d. The term f 8/3 could be defined so that one is
always taking the positive root. There are, it seems, no sym-
metry considerations which will restrictf and in this case the
microscopic theories will have more to say about whether the
powers of the terms in the free energy are justifiable and the
protocol for the proper approach tof =0. For instance, one
possibility for the fractional powers off, which has been
explored earlier5 is that there are auxiliary degrees of free-
dom which, when integrated out, lead to the fractional pow-
ers. The constraintf .0 has consequences for stability of the
spatial textures which will be reported24 separately.

There are defect and current related characteristic signa-
tures of a higher order phase transition. The current induced
suppression of the order parameter is quadraticsin supercur-
rentd for small currents. The critical current, at which the
order parameter vanishes and superconductivity disappears,
has a temperature dependenceJcsTd.as2p−1d/2. We have also
calculated the energy and spatial profiles of structures such
as an interface between degenerate superconducting states
and a phase slip center which appears when the supercurrent
approaches the critical current. We expect these theoretical
predictions will stimulate measurements of critical currents
and their temperature dependence.
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FIG. 4. Order parameter profilef3syd for a third order phase
transition in the presence of a current withg=0.035, 0.134, and
0.250.

FIG. 5. The energy of a phase slip center, numerically integrated
from Eq. s24d for a third order phase transition free energy.
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