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The d-wave superconductivitysdSCd and antiferromagnetism are analytically studied in a renormalized
mean-field theory for a two-dimensionalt-J model plus an on-site repulsive Hubbard interactionU. The
purpose of introducing theU term is to partially impose the no-double-occupancy constraint by employing the
Gutzwiller approximation. The phase diagrams as functions of dopingd andU are studied. Using the standard
value oft /J=3.0 and in the large-U limit, we show that the antiferromagneticsAFd order emerges and coexists
with the dSC in the underdoped region below the dopingd,0.1. The dSC order parameter increases from zero
as the doping increases and reaches a maximum near the optimal dopingd,0.15. In the small-U limit, only
the dSC order survives while the AF order disappears. AsU increases up to a critical value, the AF order shows
up and coexists with the dSC in the underdoped regime. At half-filling, the system is in the dSC state for small
U and becomes an AF insulator for largeU. Within the present mean-field approach, we show that the
ground-state energy of the coexistent state is always lower than that of the pure dSC state.
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I. INTRODUCTION

In spite of tremendous theoretical and experimental ef-
forts dedicated to the studies of the anomalous properties of
high-Tc superconductorssHTSd, a full understanding of these
materials is still far from the final stage. As a basic point, it
is known that much of the physics should come from the
competition between thed-wave superconductivitysdSCd
and antiferromagnetism. Experimentally, it is generally sug-
gested that the ground state evolves from the antiferromag-
neticsAFd state to that of the dSC order as the carrier density
increases.1 However, since the early days of HTS, there also
have been persistent reports of the coexistence of the dSC
and AF orders2–8 in various cuprate samples. Especially in
the recent neutron-scattering experiments, the commensurate
AF order has been observed in the underdoped supercon-
ducting YBa2Cu3O6.5, providing unambiguous evidence for
an unusual spin-density-wave state coexisting with supercon-
ductivity sdSCd.6 Therefore, it is necessary to develop a mi-
croscopic theory in which both the antiferromagnetism and
the dSC are treated equally in order to understand the
ground-state property of the cuprate superconductors.

Theoretically, it has been widely accepted that the essen-
tial physics of cuprates can be effectively described by the
two-dimensional Hubbard model or its equivalentt-J model
in the large-U limit.9,10 Using the variational Monte Carlo
sVMCd method, several groups proposed wave functions
with coexisting AF and dSC orders and found that the coex-
isting state has a lower energy than either the pure dSC order
or the pure AF state in the underdoped regime.11–14Although
the slave particle mean-field theory for thet-J model was
originally introduced to investigate the formation of the RVB
state or the superconducting order,9,15–18it also has been ap-
plied to study the coexistence of the dSC and AF orders in
this system.19,20 Stimulated by the idea of the “gossamer su-
perconductors” proposed by Laughlin,21 Zhang and

co-workers22 employed thet-J-U model with the Gutzwiller
projected wave function23 to investigate the superconducting
order parameter and the electron pairing gapsor the RVB
order parameterd. There22 the on-site Coulomb interactionU
is introduced to partially impose the no-double-occupancy
constraint for the strongly correlated electron systems. In the
large-U limit, their result22 is consistent with that of Kotliar
and Liu16 using the slave boson mean-field approach for the
t-J model.

Following Ref. 22, we report a further investigation of the
same model by taking the AF order explicitly into consider-
ation. Within the Gutzwiller renormalized mean-field theory,
we find that for large Coulomb repulsionU, there is a coex-
istence between AF and dSC orders below the doping level
d,0.1. The coexisting state always has a lower energy than
that of the pure dSC state. The dSC order parameter in-
creases from zero as the doping increases in the underdoped
region and then reaches a maximum near the optimal doping
d,0.15, after which it decreases to zero atd,0.35 with
increasing doping. When the magnitude ofU is reduced, the
AF order parameter decreases very quickly with increasing
doping, and the coexistent region is squeezed toward the low
doping regime until it disappears forU,5.3t, where the
“gossamer superconductivity” is found even at half-filling.

The paper is organized as follows. In Sec. II, we outline
the theoretical framework. Thet-J-U model is introduced
and the Gutzwiller variational approach is formulated. A
renormalized Hamiltonian is obtained and further studied
within the mean-field theory. In Sec. III, our numerical re-
sults are displayed and compared with those from other theo-
ries and experiments. In Sec. IV, a summary of the paper will
be given.

II. THEORETICAL FRAMEWORK

We start from thet-J-U model on a square lattice,22
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H = Ht + Hs + HU, s1d

with

Ht = − to
iĥs

sCis
† Ci+ĥs + H . c .d,

Hs = Jo
iĥ

Si ·Si+ĥ,

HU = Uo
i

n̂i↑n̂i↓, s2d

whereĥ= x̂ and ŷ,Cis
† sCisd is the electron creationsannihila-

tiond operator,Si =oss8Cis
† sW ss8Cis8 /2 is the spin operator

with sW =ssx,sy,szd as Pauli matrices,n̂is=Cis
† Cis ,U is the

on-site Coulomb repulsion,t is the hopping parameter, andJ
is the exchange coupling constant. In the Hamiltonians1d,
the U term is introduced to partially impose the no-double-
occupancy constraint. In the limitU→`, the model is re-
duced to thet-J model.

To study the Hamiltonians1d with the Gutzwiller varia-
tional approach, we take the trial wave functionucl as

ucl = PGuc0sDd,Daf,mdl, s3d

wherePG is the Gutzwiller projection operator and it is de-
fined as

PG = pi
f1 − s1 − gdn̂i↑n̂i↓g, s4d

where g is a variational parameter which takes the value
between 0 and 1. The choiceg=0 corresponds to the situa-
tion with no doubly occupied sitessU→`d, while g=1 cor-
responds to the uncorrelated statesU=0d. uc0sDd,Daf ,mdl is
a Hartree-Fock-type wave function, whereDd,Daf ,m are the
parameters representing dSC, antiferromagnetism, and
chemical potential, respectively. The nature ofuc0l depends
on the expected long-range behavior. Since it is the purpose
of this paper to study the interplay between antiferromag-
netism and dSC, we will adopt the wave function which
includes both the dSC and antiferromagnetism in a unique
variational space.12,13

With help of the trial wave functions3d, the variational
energyEvar=kHl is given by

Evar =
kcuHucl
kcucl

= NUd+ kHtl + kHsl, s5d

where

kHtl =
kcuHtucl

kcucl
,

kHsl =
kcuHsucl

kcucl
, s6d

N is the total number of the lattice sites, andd=kni↑ni↓l is the
average double occupation number. Obviously, the double
occupancy can be modulated byU.

In the calculation of the variational energy, we adopt the
Gutzwiller projection method which was formulated origi-
nally for the Hubbard Hamiltonian. A clear and simple
explanation24 was given by Ogawaet al.and by Vollhardt. In
their scheme, the spatial correlations are neglected, and the
effect of the projection operator is taken into account by the
classical statistical weight factors. In this way, the hopping
average and the spin-spin correlation in the stateucl are re-
lated to those in the stateuc0l through the following rela-
tions:

kcuCis
† Cjsucl

kcucl
= gtkc0uCis

† Cjsuc0l,

kcuSi ·Sjucl
kcucl

= gskc0uSi ·Sjuc0l. s7d

In the thermodynamic limit, one has the following relation
betweeng andd:24

g2 =
ds1 − n + dd

s1 − rds1 − wdwr

sn − 2wrd2

sn − 2dd2 , s8d

and the renormalization factors can be derived as follows:

gt =
n − 2d

n − 2rw
FÎs1 − wds1 − n + dd

1 − r
+Îw

r
dG

3 FÎs1 − rds1 − n + dd
1 − w

+Î r

w
dG , s9d

gs = S n − 2d

n − 2wr
D2

. s10d

Heren is the average electron number per site. In consider-
ation of the AF order, the square lattice is divided into two
sublatticesA and B. For sublatticeA, we assumekn̂i↑l; r
=sn/2d+m andkn̂i↓l;w=sn/2d−m, i.e., a net magnetization
+m at each site. For sublatticeB, the electron occupation
numbersr andw are exchanged, meaning the magnetization
−m at each site. Herem represents the AF order parameter in
the stateuc0l. These renormalization factors,gt andgs, quan-
titatively describe the correlation effect of the on-site repul-
sion. We will comment further on this point below.

In terms of these renormalization factors, the variational
energyEvar=kHl is rewritten as

Evar = kHeffl0, s11d

whereHeff is the Gutzwiller renormalized Hamiltonian,
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Heff = gtHt + gsHs + HU = − gtto
iĥs

sCis
† Ci+ĥs + H . c .d

+ gsJo
iĥ

Si ·Si+ĥ + NUd. s12d

In the mean-field approximation, the renormalized Hamil-
tonian s12d can be rewritten as

HMF = NUd+
3

4
NgsJsD2 + x2d + 2NgsJm2 + o

ks

8hsek

− mdCks
† Cks + sek+Q − mdCk+Qs

† Ck+Qs

− sDafsCks
† Ck+Qs + Ck+Qs

† Cksdj − o
k

8DdhksC−k↓Ck↑

− C−k+Q↓Ck+Q↑ + Ck↑
† C−k↓

† − Ck+Q↑
† C−k+Q↓

† d, s13d

where the electron chemical potentialm has been added,Q
=sp ,pd is the commensurate nesting vector, and the prime
on the summation symbol indicates thatk is limited to half of
the original Brillouin zone. In the above equation, we have
introduced, respectively, the electron pairing order param-
eter, the uniform bond order, and the staggered magnetiza-
tion,

Dh = kCi↓Ci+h↑ − Ci↑Ci+h↓l0 = Ds− Dd whenh = xsyd,

s14d

xh = x = kCi↑
† Ci+h↑ + Ci↓

† Ci+h↓l0, s15d

m= s− 1dikCi↑
† Ci↑ − Ci↓

† Ci↓l0/2, s16d

with gk=2scoskx+coskyd ,hk=2scoskx−coskyd ,ek=−sgtt
+ 3

8gsJxdgk, Dd= 3
8gsJD, andDaf=2gsJm. Here the parameter

Dd is always associated with the factorhk in Eq. s13d, which
implies that the superconductivity has ad-wave-like symme-
try. The mean-field Hamiltonians13d is easily diagonalized,
giving rise to four bands, ±E1k and ±E2k, with

E1k = Îsjk − md2 + sDdhkd2,

E2k = Îs− jk − md2 + sDdhkd2,

jk = Îek
2 + Daf

2 . s17d

HereDdhk andDaf can be regarded, respectively, as the en-
ergy gaps associated with the dSC and AF order parameters.
The ground-state energy is given by

Evar/N = Ud − md −
1

N
o
k

8sE1k + E2kd +
3

4
gsJsD2 + x2d

+ 2gsJm2. s18d

By minimizing the ground-state energy, we can obtain the
self-consistent equations for the quantitiesD sthe electron
pairing order parameterd, x, m sstaggered magnetizationd,
andd. The chemical potentialm is adjusted to yield the right
filling. All the equations are presented as follows:

D =
1

4N
o
k

8hk
2DdS 1

E1k
+

1

E2k
D , s19d

x =
1

4N
o
k

8gk
ek

jk
S−

jk − m

E1k
+

− jk − m

E2k
D , s20d

m=
1

2N
o
k

8
Daf

jk
S jk − m

E1k
−

− jk − m

E2k
D −

1

4NgsJ
S ]Evar

]gt

]gt

]m

+
]Evar

]gs

]gs

]m
D , s21d

0 = UN +
]Evar

]gt

]gt

]d
+

]Evar

]gs

]gs

]d
, s22d

d =
1

N
o
k

8S jk − m

E1k
+

− jk − m

E2k
D . s23d

For each dopingd, all the parametersD ,x ,m,d, andm are
determined self-consistently by Eqs.s19d–s23d.

III. RESULTS AND DISCUSSION

Now we summarize our results. First we discuss the av-
erage double occupation numberd as a function ofU. Our
calculated results at the dopingd=0.0 ssolid lined, 0.05
sdashed lined and 0.1 sdotted lined for the parametert /J
=3.0 at the temperatureT=0 are shown in Fig. 1. Hereafter
we set J=1. We find that the average double occupation
numberd at d=0.0 decreases linearly as a function ofU until
U=9.3t, whered drops to zero discontinuously, similar to
that reported in Ref. 22. However, we would mention that the
recent work by Flecket al. based on the dynamic mean-field

FIG. 1. The average double occupation numberd as a function
of U at dopingd=0.0 ssolid lined, 0.05sdashed lined, and 0.1sdot-
ted lined for the parametert /J=3.0 atT=0.
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theory showed thatd decreases continuously with increasing
U for the half-filled Hubbard model25. The origin of this
discrepancy is not clear to us, but could be due to the ne-
glecting of the spin fluctuations in our mean-field calcula-
tion. For the doped cases, our numerically obtainedd as
functions ofU do not show this discontinuity, and they be-
come flattened and decrease slowly at largeU.

The Gutzwiller renormalization factorsgt andgs as func-
tions of dopingd for the parameterst /J=3.0 andU=20t at
T=0 are shown in Fig. 2. The dashed lines are the corre-
sponding results when the AF order is not considered, i.e.,m
is fixed to zero. As we mentioned in Sec. II, these factors
quantitatively reflect the partially enforced no-double-
occupancy constraint due to the on-site Coulomb repulsion
U. For largeU, the effect of the Gutzwiller renormalization
factors is to reduce the kinetic energy and enhance the spin-
spin correlation. We find that at low doping, the AF order
suppresses the magnitude ofgs while gt is only slightly af-
fected.

In Fig. 3, we plot the self-consistently obtained order pa-
rametersD andm as functions of dopingd for the parameters
t /J=3 andU=20t at T=0. The dashed line is the correspond-
ing D when the staggered magnetizationm is set to zero. It
should be noticed that these parameters are the expectation
values under the wave functionuc0l. It is clear that the elec-
tron pairing order parameterD is drastically suppressed at
low doping by the AF order. At half-filling,D is reduced to
zero andm reaches its maximum value. Neard,0.1, the AF
order vanishes whileD shows a peak.

We now discuss the dSC order parameterDSC and AF
order parametermAF under the wave functionucl, which are
defined as

DSCshd = kCi↓Ci+h↑ − Ci↑Ci+h↓l = DSCs− DSCd whenh = xsyd,

s24d

mAF = s− 1dikCi↑
† Ci↑ − Ci↓

† Ci↓l/2. s25d

In the Gutzwiller approximation, these parameters are easily
obtained fromD and m with the following renormalization
factors:

DSC= gDD,

mAF = gmm. s26d

Similar to the derivation ofgt andgs, we obtain

gD =
n − 2d

2sn − 2rwdHFÎs1 − wds1 − n + dd
1 − r

+Îw

r
dG2

+ FÎs1 − rds1 − n + dd
1 − w

+Î r

w
dG2J , s27d

gm =
n − 2d

n − 2wr
. s28d

In Fig. 4, we plot the dSC order parameterDSC, AF order
parametermAF, and the electron pairing gapsor the RVB
order parameter22d Dd= 3

8gsJD as functions of dopingd for
t /J=3.0 andU=20t at T=0. From this phase diagram, we
find that the AF and dSC order parameters coexist for a wide
doping range, up tod,0.1, in the ground state. It can also be
seen that the AF order parameter is a monotonically decreas-
ing function ofd, but the dSC order parameter shows a non-
monotonic dome shape: it increases from zero as the doping
increases in the underdoped region and then has a maximum
near d,0.15, after which it decreases to zero atd,0.35
with increasing doping. Although the present approach ap-
plies only atT=0, the superconducting transition tempera-
tureTcsdd is expected to exhibit a similard dependence, and
to have a maximum at the optimal dopingd,0.15. It should
be noticed that the electron pairing gapDd is also reduced to

FIG. 2. The Gutzwiller renormalization factorsgt and gs as
functions of dopingd for the parameterst /J=3.0 andU=20t at T
=0 ssolid linesd. The dashed lines are the corresponding results
when the AF order is not considered, i.e.,m is fixed to zero.

FIG. 3. The self-consistent parametersD andm as functions of
doping d for the parameterst /J=3.0,U=20t at T=0. The dashed
line givesD whenm is set to zero.
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zero at half-filling because of the presence of the AF order.
This is quite different from the result in Ref. 22, where the
AF order is not considered, and the electron pairing gap in-
creases as the doping decreases.

In order to further understand the effect of the Coulomb
repulsionU on the ground-state behavior, calculations for
several other values ofU are performed. In Fig. 5, we plot
the calculated results forU=5t ,7t ,10t, and 15t with t /J=3
and T=0. It is clearly seen that with decreasingU, the AF
order decreases very quickly with increasing doping, and the
coexistent region of the AF and dSC orders is squeezed to-

ward lower doping. Particularly forU=5t, the coexistence
disappears, and the AF order is completely suppressed by the
prevailing dSC order. To illustrate more clearly the depen-
dence of the order parameters onU, we present the param-
etersDSC andmAF as functions of the Coulomb repulsionU
for dopingd=0.0 sad, d=0.05 sbd, andd=0.1 scd at T=0 in
Fig. 6. At half-filling fsee Fig. 6sadg, for small Coulomb re-
pulsionU,5.3t, only the dSC order persists. AsU increases
up to U=5.3t, the AF order begins to show up and coexists
with the dSC and the transition appears to be second order.
At U=7t, there is a discontinuity in the slope ofmAF and the
dSC order gets completely suppressed by the AF order. For
U.9.3t, the double occupancy numberd drops discontinu-
ously to zero. As a result, the magnitude ofmAF jumps from
2.7 to 3.8 and then becomesU-independent. With increasing
dopingfsee Fig. 6sbdg, the AF order begins to emerge only at
largerU while the dSC order is always in existence. But for
dopingdù0.1 fsee Fig. 6scdg, the AF order completely dis-
appears independent of the magnitude ofU.

With the help of these self-consistent parameters, let us
compare the ground-state energy obtained from Eq.s18d with
that in Ref. 22 where the contribution from the AF order was
neglected. In Fig. 7, we plot our ground-state energyEvar/N
as a function of dopingd using the parametert /J=3.0 for
several different values ofU ssee the solid linesd. The dashed
lines here correspond to the results when the contribution
from the AF order is not included, i.e.,m is fixed to zero.22

From Fig. 7, we conclude that the ground-state energy with
the AF order considered is always lower than that without it.

We now discuss the relevance of our calculations to other
theories. Although thet-J model, derived from the large-U
Hubbard model, was originally introduced to study the su-
perconductivity based on the RVB theory without AF
order,9,15–18the inclusion of the AF order based on the same
approach was done at a much later stage. In all these studies,
the no-double-occupancy constraint has been globally en-

FIG. 4. The dSC order parameterDSC, AF order parametermAF,
and the electron pairing gapDd as functions of dopingd for U
=20t and t /J=3.0 atT=0.

FIG. 5. The dSC order parameterDSC, AF order parametermAF,
and the electron pairing gapDd as functions of dopingd for differ-
ent values ofU with t /J=3.0 andT=0.

FIG. 6. The dSC and AF order parametersDSC and mAF as
functions of the Coulomb repulsionU for different dopings with
t /J=3.0 andT=0.
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forced. By use of thet-J or similar models, several groups
have investigated the interplay between the AF and dSC or-
ders with somewhat different mean-field approximations
from ours.19,20,26–29 While the double occupancy is com-
pletely excluded from the standardt-J model, our current
t-J-U model with finiteU allows the partial double occupa-
tion so that we can understand the subtle effect due to the
electron-electron correlation. For smallU, our results show
that only the dSC order exists in the ground state, which
describes the physics of the “gossamer superconductor.” In
the limit of infinite U, the t-J-U model is reduced to the
t-J model. In this case, our phase diagrams show that the AF
and dSC orders coexist with each other from smalld up to
d,0.1, and after that the AF order completely disappears.
This feature is in good agreement with the VMC results for
the t-J model.12–14At the same time, we notice that the co-
existence between the AF and dSC orders persists up to op-
timal doping d,0.15 in the slave-boson scheme.19,20 We
would like to mention that a similar large coexistence can be
obtained if we neglect the derivatives ofgt andgs with m in
our derivation of the self-consistent equations, i.e., replace
Eq. s21d with the following one:

m=
1

2N
o
k

8
Daf

jk
S jk − m

E1k
−

− jk − m

E2k
D . s29d

In this way, we can perform similar calculations as above. In
Fig. 8, we present such a phase diagram witht /J=3.0 and
U=15t at T=0. It can be seen that in this case, the AF and
dSC orders coexist up to dopingd,0.18. However, if one
uses t /J=4.0 andU=15t, the coexistent region is pushed
downward to dopingd,0.15, which is consistent with the
slave-boson result. But such a large coexistent region seems
not to be favored by the experimental and simulation results.
Moreover, based on this approximation, the system at half-

filling would always be an AF insulator, independent of the
magnitude ofU. This is in strong contrast to what has been
obtained from our current approach based on minimizing the
total energy of the system.

So far the experimental evidence for the coexistence of
the AF and dSC orders in cuprate superconductors seems
inconclusive. For example, the long-range AF order observed
in the insulating La2−xSrxCuO4 is sensitive to doping,1 which
disappears rapidly atx,0.03. But there also existed several
experimental results which appeared to indicate the coexist-
ence of antiferromagnetism and superconductivity over a
wide doping range in cuprate superconductors.2–8 Especially,
the AF order was claimed to have been observed in under-
doped YBa2Cu3O6.5 and YBa2Cu3O6.6 superconductors by
neutron-scattering experiments from different groups.6,8 It is
apparent that more experiments are needed to confirm the
coexistence of the long-range AF order with the dSC state in
HTS.

IV. SUMMARY

In summary, we have studied the coexistence of the anti-
ferromagnetism and dSC in a renormalized mean-field theory
based on the Gutzwiller approximation for a two-
dimensionalt-J-U model. The role of the Hubbard interac-
tion U is to partially enforce the no-double-occupancy con-
straint, and it provides us with a better understanding of the
subtle effect due to the electron-electron correlation. Our re-
sults show that the AF and dSC orders coexist below the
dopingd,0.1 at largeU with t /J=3.0. And we find that the
coexisting state has a lower ground-state energy than that of
a pure dSC state. The dSC order increases from zero as dop-
ing increases in the underdoped regime and reaches a maxi-

FIG. 7. Doping dependence of the ground-state energy for sev-
eral differentU for t /J=3.0. The dashed lines are the corresponding
results when the AF order is not considered, i.e.,m is fixed to zero.

FIG. 8. The dSC order parameterDSC, AF order parametermAF,
and the electron pairing gapDd as functions of dopingd for U
=15t andt /J=3.0 atT=0. Here the derivatives ofgt andgs with m
in the self-consistent equations are neglected.
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mum near the optimal dopingd,0.15, after which it de-
creases to zero atd,0.35 with increasing doping. With
decreasingU, the coexistent region is squeezed toward low
doping. There is no coexistence between AF and dSC orders
for small U s,5.3td, where the AF order is completely sup-
pressed and the “gossamer superconductivity” is found even
at half-filling. For the largeU, our system at half-filling is
always an AF insulator in which both the electron pairing
gap and the dSC order parameter are suppressed to zero. Our
result at largeU should correspond to the physical regime.
The reason why the existence of the long-range AF order has
not been firmly confirmed by experiments in the underdoped
HTS is probably due to the neglecting of the AF fluctuations
in the mean-field approximation. It is believed that the effect
of the AF fluctuations may break the long-range AF order
into short-range orders, and this conjecture needs to be ex-
amined more carefully in future theories and experiments on
cuprate superconductors.

Finally, we would like to mention that in addition to the
AF and dSC orders considered here, there are other compet-

ing orders such as stripe and flux state, in the underdoped
region of cuprate superconductors.30,31 It has been found that
at zero temperature, the flux state is unstable in thet-J
model, but it may show up at finite temperature, or in the
vortex cores ifJ is chosen to be larger than 0.5t.31 In our
present mean-field theory, which is valid only at zero tem-
perature, the obtained order parameters for the dSC and the
staggered magnetization are spatially uniform. To seek the
inhomogeneous solutions such as stripe phases for these or-
der parameters, we need to use the variational Monte Carlo
method, or the Bogoliubov–de Gennes equations, and that
will be a topic for future study.
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