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We study the Heisenberg antiferromagnet with single-ion anisotropy in two and three dimensions and
present self-consistent intuitive theory to show the Bose-Einstein condensation-induced long-range order in the
gapped magnetic systems, when the energy gap is tuned to zero by changing the physical parameters or by
applying an external magnetic field. The recent experimental results on NiCl2·4SCsNH2d2 are interpreted by
the theory. Many other gapped magnetic systems share the same physical picture. The theory is also helpful in
understanding the superfluid-Mott insulator transition observed in the system of ultracold atoms in the optical
lattice.
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I. INTRODUCTION

Quantum spin systems have received considerable atten-
tion from both theoretical and experimental points of view.
Many magnetic systems show a singlet ground state and a
triplet excitation gap. When the energy gap, changing with
the physical parameters, goes to zero, a quantum phase tran-
sition sQPTd occurs. On the other hand, an external magnetic
field can lower one of the Zeeman-split triplet components,
and at a critical magnetic field, may result in long-range
magnetic order. Several low-dimensional materials, for ex-
ample, S=1 antiferromagnetic chains,1 antiferromagnetic
spin dimers,2 even-leg spin ladders,3 and S= 1

2 alternating
chains or frustrated spin systems,4 were reported to exhibit
field-induced magnetic ordering in the plane perpendicular to
the applied field.

Although the QPT in low-dimensional systems has been
studied extensively, experimental results in three-
dimensional systems are rare and intuitive theory to describe
such systems is still absent. Very recently,
NiCl2·4SCsNH2d2, which was regarded as lying in the three-
dimensional large-D phase, were experimentally studied and
the field-induced magnetic ordering was found.5 In this pa-
per, we give theoretical analysis of this system and obtain a
region of field-induced Néel order in the plane perpendicular
to the applied field, which coincides well with the experi-
ments. At the same time, we present a universal description
of QPT from the gapped singlet state to the gapless ordered
state with the idea of Bose-Einstein condensationsBECd of
magnons,6 which has been used to study the magnetic-field
effects on various magnetic systems.7–11

Concerning the experimental results on
NiCl2·4SCsNH2d2, we study theS=1 Heisenberg antiferro-
magnetic model with a single-ion anisotropy in two and three
dimensions:
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whereorW,dW sums over the nearest neighbors and an external

magnetic field is applied withmB the Bohr magneton. In one
dimension, the models1d with R=1 was extensively studied
in connection with Haldane’s fascinating conjecture.12 Dur-
ing Dc1s,−0.29d,D,Dc2s,0.93d, the system is in the
Haldane phase. While whenD.Dc3s,1.01d, the system is
in the large-D phase13,14 with a singlet ground state and an
excitation gap; its difference from the Haldane phase can be
found from the symmetry consideration.15 The field-induced
long-range order in theS=1 antiferromagnetic chain was in-
vestigated with the exact diagonalization of finite chains.16

The models in higher dimensions are less studied. WhenD
=0, the system is in the Néel state17 and whenJ=0, the
system is in the large-D phase. There is a criticalDc denoting
the transition from the large-D phase to the Néel phase. With
a coupled-cluster expansion, Wonget al.18 obtained critical
points in various lattices. In the following, we use the bond
operator formalism to study this model in two and three di-
mensions. In Sec. II we give the self-consistent equations on
the S=1 Heisenberg model with single-ion anisotropy and
then in Secs. III and IV, we study the phase transitions in-
duced by changing the physical parameters and by applying
an external magnetic field, respectively. The experimental
results on NiCl2·4SCsNH2d2 are interpreted in Sec. IV. A
summary is given in Sec. V.

II. SELF-CONSISTENT EQUATIONS ON THE S=1
HEISENBERG MODEL WITH SINGLE-ION ANISOTROPY

For a singleS=1 spin, there are three eigenstatesu±1l and
u0l. Along the same line as theS= 1

2 spins,19 three boson
operators were introduced to denote the three eigenstates:20

u1l = u†uvl, u0l = tz
†uvl, u− 1l = d†uvl, s2d

where uvl is the vacuum state. With a constraintu†u+d†d
+ tz

†tz=1, the spin operators can be represented by

S+ = Î2stz
†d + u†tzd, S− = Î2sd†tz + tz

†ud,

Sz = u†u − d†d. s3d
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Substituting the above boson representation into the origi-
nal Hamiltonians1d and assuming thetz bosons are con-
densed,ktzl=ktz

†l= t, we get
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where h=gmBB and a temperature-dependent chemical po-
tential mrW is introduced to impose the constraint condition of
single occupancy. By a mean-field approximation, we re-
place the local constraint by a global one and letmrW=m. It is
pointed out thatm is still temperature dependent. We letJ
=1 in the following calculations. Making mean-field decou-
pling to the four operator terms
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with kdrW
†u

rW+dW
† l=kdrWurW+dWl=p andm=kurW

†urWl−kdrW
†drWl, and after a

Fourier-Bogoliubov transformation, we get the diagonalized
Hamiltonian
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where l is the number of the dimension and for the square
and simple cubic lattices,Z=2l. ak=xkuk+rkd−k

† , bk=xkd−k

+rkuk
† with xk

2= 1
2s1+Lk/vkd andrk

2= 1
2s−1+Lk/vkd. The en-

ergy gap occurs atkW =pW , D=vpW . The ground state energy per
site ise0=s1/Ndoksvk−Lkd+s1/NdC. The Gibbs free energy
G=Ne0−s1/bdoklnf1+nsvk

s1ddg−1/boklnf1+nsvk
s2ddg with

nsvkd=1/sebvk−1d and b=1/kBT. p, t2, m, and m can be
obtained by the saddle-point equations
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III. QUANTUM PHASE TRANSITIONS IN THE ABSENCE
OF MAGNETIC FIELD

We first study the case ofh=0. Without the external mag-
netic field, the magnetizationm is zero. In two- and three-
dimensional cases, the effect ofp is small. At zero tempera-
ture and withp neglected, the self-consistent equations can
be simplified as

2s2 − t2d = I1syd + I2syd,

1

Z
ym = I2syd − I1syd s9d

with

y =
2Zt2

− m + D + 1
2RZs1 − t2d

,

I1syd =
1

pl E dlk
Î1 + ygk

, I2syd =
1

pl E Î1 + ygkd
lk,

s10d

where the integral region isf0,pg.
An equation about y can then be obtained:

D− s4/y+ 1
2RdZ+ 1

4RZI2syd+ s2/y+ 1
4RdZI1syd=0. When

y→1, the energy gap goes to 0, indicating a transition from
the large-D phase to the Néel phase.I1syd andI2syd are finite
at y=1 and a concise formula for the critical point can be
obtained:
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Dc = S4 +
1

2
RDZ −

1

4
RZI2s1d − S2 +

1

4
RDZI1s1d. s11d

When R=1, we getDc<5.471 andDc/2Z<0.684 for the
two-dimensional square lattice, andDc<10.481 andDc/2Z
<0.873 for the three-dimensional simple cubic lattice. These
values agree quite well with the results 0.798 and 0.884 ob-
tained by Wonget al.18 with the coupled-cluster expansions.
With p included, the two values become 0.728 in two dimen-
sions and 0.889 in three dimensions, respectively. In Figs.
1sad and 1sbd sright axisd, we present the changes of the
energy gap withD for variousR=0, 0.5, 1.0, 1.5, 2.0 in two
and three dimensions. In two dimensions, the energy gap
decreases linearly with decreasingD until Dc; while in three
dimensions, the energy gap decreases linearly for largeD
and nearDc, D~ sD−Dcdb with b,0.5. The anisotropyR
does not have large effects.

WhenD,Dc, the system entered into the Néel state. We
assume part of the excitations are condensed atk=p.21

Keeping vp=0, we solve the self-consistent equationss8d
with a BEC amountn0sTd extracted:
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By calculating the correlation functionkS0
xSrW

xl, we can
get the staggered magnetization in thex direction mx

=2tÎn0sTd. At T=0 and neglectingp, we have n0s0d
=f4/s8+RdgfsDc−Dd /2Zg and

mx = 2Î2 − 1
2fI1s1d + I2s1dg − f4/s8 + RdgfsDc − Dd/2Zg

3Îf4/s8 + RdgfsDc − Dd/2Zg.

It is pointed out that BEC only occurs atT=0 in two-
dimensional case, which is consistent with Mermin-Wagner
theorem.22 In three dimensions, a criticalTcsDd exists, above
which, BEC disappears and there is no Néel long-range or-
der. In Figs. 1sad and 1sbd, we show the changes of the stag-
gered magnetization withD in two and three dimensions for
R=0, 0.5, 1.0, 1.5, 2.0sleft axisd. The results agree well with
those obtained by Wonget al. with the coupled cluster
expansions.18 In Fig. 2, we show the changes of the critical
temperatureTcsDd for variousR in three dimensions.

IV. LONG-RANGE ORDER INDUCED BY THE EXTERNAL
MAGNETIC FIELD

Now we study the effects of the external magnetic field.
The excitations split in the external magnetic field and one
component decreases with the increasing magnetic field. At a
critical magnetic fieldhc1=D0, the energy gap goes to zero.

FIG. 1. Changes of the energy gapD sright axisd and the stag-
gered magnetizationMx sleft axisd with D in two dimensionssad
and three dimensionssbd with R=0 strianglesd, 0.5 scirclesd, 1
ssquaresd, 1.5 sdiamondsd, 2 shexagonsd.

FIG. 2. Critical temperatureTcsDd for various D with R=0
ssquaresd, 0.5 scirclesd, 1 strianglesd, 1.5 sdiamondsd, 2 shexagonsd
in three dimensions.
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When the magnetic field further increases, we assume the
energy gap keeps zero and part of the excitations condense.
Different from theh=0 case, now only those bosons denoted
by a are condensed. Consequently, a magnetization parallel
to the external magnetic field appears and at the same time, a
staggered magnetization in thex direction occurs. At a sec-
ond critical magnetic fieldhc2, the magnetization saturates
and the staggered magnetization disappears. For a given
magnetic fieldh.hc1, there exists a critical temperature
Tcshd, below which, the energy gap keeps zero, and part of
the excitations are condensed. With a BEC amount
nhsTd extracted, we solve the self-consistent Eqs.s8d with
vp−h+ 1

2RZm=0. The staggered magnetization in thex di-
rection ismx=Î2tÎnhsTdÎ1−Dp /Lp. At T=0 and neglecting
p, we have nhs0d=f−D /Z+4/y+ 1 / 2R−s2/y+ 1

4RdI1syd
− 1

4RI2sydg /f2/s2−yd+2/y+ 1
2Rg.

Figure 3sad exhibits the criticalTcshd as a function ofh
with D=8, R=1 in the two-dimensional case. Fitting the data
with hc1sTd−hc1s0d~Ta, we finda,1. In three dimensions,
we connect our calculations to the experimental data of
NiCl2·4SCsNH2d2.

5 It is reported that 2zJ/kB=5.1 K and
D /kB=8.3 K by fitting the data with the molecular theory23

and 2zJ/kB=4.5 K andD /kB=7.6 K from the zero-field sus-
ceptibility, which generatesD /J,20. At D /J=20, we get a
gap of 13.14, much larger than the reported critical magnetic
field hc1 or the excitation gapD0s,8Jd. Instead,D /J=16
produces a gap of 8.62J, close to the experimental value. In
Fig. 3sbd, we show the variations ofTcshd with h at D=12,
16, and 20 andR=1. The results agree qualitatively with the
experimental results. Nearhc1, fitting the data withhc1sTd
−hc1s0d~Ta, we get a,1.5, consistent with that of the
Bose-Einstein Hartree-Fock theory9 and that of the cubic
coupled dimer models obtained from the quantum Monte
Carlo simulations.11 The experimentally reported value is
2.6, larger than our value. Discrete values were reported in
other materials, i.e.,a<2.2 in TlCuCl3 and a<2.3 in
KCuCl3,

2 a<1.5 in Cu2sC5H12N2d2Cl4,
3 and a<1.95

when H ic axis and 3.07 when H'c axis in
NisC5H14N2d2N3sClO4d NDMAZ,1 which deserves more de-
tailed studies. In Fig. 4, we show the change of the field-
induced staggered magnetizationMx with the external mag-
netic field. We determine the critical magnetic fieldhc2 at
zero temperature. It is found thathc2=−m+D+RZ with p
=0, t=0, m=−Z, r=1, andm=1. The staggered magnetiza-
tion is zero sincet=0. Near hc2, the critical temperature
Tcshd is difficult to obtain. The reason may be thatt is too
small and the assumption oftz condensation is not a good
starting point. However, more profound physics may exist
here. Whent is small and comparable with the small amount
p, the minimum energy gap may deviate frompW , the con-
densed bosons may have some other momentum, and then
incommensurate phase will appear. A spin-polarized Lut-
tinger liquid is observed nearhc2 at low temperatures.11

The uniform magnetizationm shows a minimum around
the transition temperatureTcshd, which has been observed in
NiCl2·4SCsNH2d2 and other gapped magnetic systems such
as TlCuCl3, KCuCl3, and Cu2sC5H12N2d2Cl4. The change
from the bottom to the given highest amount is about 5%.
From Eqs.s8d, we get m=svp /LpdnhsTd+s1/Ndok8fnsvk

s1dd
−nsvk

s2ddg. The first part comes from the BEC of magnons,

FIG. 3. Critical temperatureTcshd with D=8, R=1 in two di-
mensionssad, and withD=12 strianglesd, 16 ssquaresd, 20 scirclesd
andR=1 in three dimensionssbd.

FIG. 4. Changes of the field-induced staggered magnetization
Mx with temperature in three dimensions, withD=16 andR=1. The
corresponding applied field ish=10 ssquaresd, 13 scirclesd, 15 stri-
anglesd, 18 shexagonsd, and 20sdiamondsd.
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which decreases with increasing temperature and goes to
zero atTcshd; the second one is from the thermal fluctuations
and always increases with increasing temperature. It is ex-
pected that a minimum appears aroundTcshd. However, in
our calculations, such a minimum is observed very close to
zero temperature, and the dip is much narrower and shad-
ower sthe change is about 1/1000d than the experimentally
reported values. It seems that the change of the BEC amount
is underestimated since we neglect the fluctuation oftz. The
deviations may also partly come from the relaxed constraint.
We extractD and J from our calculations in the following.
The experimentally observedBc1=2.11 T,Bc2=12.11 T, and
Bc2/Bc1<5.74. Taking the critical magnetic fieldBc1 as the
energy gapDsDd and the saturated magnetic fieldBc2 as D
+2Z, we have sD+2Zd /DsDd=5.74. Fitting this equation
with numerically calculated energy gapfFig. 1sbdg, we get
D /J=12.7 and thenJ=0.74 K andD=9.45 K, they are not
far from the experimentally reported values.

V. SUMMARY

In summary, we studied the Heisenberg antiferromagnetic
model with a single-ion anisotropy in two and three dimen-

sions and present a self-consistent, intuitive theory to show
the Bose-Einstein condensation-induced long-range order in
the gapped magnetic systems, when the energy gap is tuned
to zero by changing the physical parameters or by applying
an external field. The very recent experimental results on
NiCl2·4SCsNH2d2 are interpreted. Many other gapped spin
systems share the same physical picture, including the quasi-
one-dimensionalS=1 chains, quantum spin dimer models,
the even-leg spin ladders and alternating spin chains or frus-
trated magnetic systems. The present theory may also shed
light on the superfluid-Mott insulator transition in the optical
lattice of ultracold atoms,24 a class of tunable strongly corre-
lated many body systems.25
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