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Long-range order in gapped magnetic systems induced by Bose-Einstein condensation
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We study the Heisenberg antiferromagnet with single-ion anisotropy in two and three dimensions and
present self-consistent intuitive theory to show the Bose-Einstein condensation-induced long-range order in the
gapped magnetic systems, when the energy gap is tuned to zero by changing the physical parameters or by
applying an external magnetic field. The recent experimental results o -M&ENH,), are interpreted by
the theory. Many other gapped magnetic systems share the same physical picture. The theory is also helpful in
understanding the superfluid-Mott insulator transition observed in the system of ultracold atoms in the optical
lattice.
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I. INTRODUCTION magnetic field is applied witlug the Bohr magneton. In one

Quantum spin systems have received considerable atteflmension, the modefl) with R=1 was extensively studied
tion from both theoretical and experimental points of view,IN connection with Haldane’s fascinating conjecttdé®ur-
Many magnetic systems show a singlet ground state and 89 Dci(~-0.29 <D<D,(~0.93, the system is in the
triplet excitation gap. When the energy gap, changing withHHaldane phase. While whed>D.3(~1.01), the system is
the physical parameters, goes to zero, a quantum phase tran-the largeD phasé'#with a singlet ground state and an
sition (QPT) occurs. On the other hand, an external magneti@xcitation gap; its difference from the Haldane phase can be
field can lower one of the Zeeman-split triplet componentsfound from the symmetry consideratidhThe field-induced
and at a critical magnetic field, may result in long-rangelong-range order in th&=1 antiferromagnetic chain was in-
magnetic order. Several low-dimensional materials, for exvestigated with the exact diagonalization of finite chafhs.
ample, S=1 antiferromagnetic chairis,antif(larromagnetic The models in higher dimensions are less studied. \ben
spin dimers; even-leg spin laddefsand S=; alternating =0, the system is in the Néel st&teand whenJ=0, the
chains or frustrated spin systerhsjere reported to exhibit system is in the larg® phase. There is a critic8l, denoting
field-induced magnetic ordering in the plane perpendicular tqne transition from the large- phase to the Néel phase. With
the applied field. _ _ _ a coupled-cluster expansion, Woeg al8 obtained critical

Although the QPT in low-dimensional systems has beer,ginis in various lattices. In the following, we use the bond

studied extensively, ~experimental results in three-gnerator formalism to study this model in two and three di-
dimensional systems are rare and intuitive theory to describgensions. In Sec. Il we give the self-consistent equations on

such  systems is still absent. Very recently, e 5=1 Heisenberg model with single-ion anisotropy and

NiCl;-4SGNH,),, which was regarded as lying in the three- ha, in Secs. 11l and IV, we study the phase transitions in-
d|me_n5|o_nal larged phase_, were experlmentally stu_dled and 4y ced by changing the physical parameters and by applying
the field-induced magnetic ordering was founih this pa-  an external magnetic field, respectively. The experimental

per, we give theoretical analysis of this system and obtain @gyits on NiCJ- 4SGNH,), are interpreted in Sec. IV. A
region of field-induced Néel order in the plane perpendiculagummary is given in Sec. V.

to the applied field, which coincides well with the experi-
ments. At the same time, we present a universal description
of QPT from the gapped singlet state to the gapless ordered !l SELF-CONSISTENT EQUATIONS ON THE S=1
state with the idea of Bose-Einstein condensatiB&C) of ~ HEISENBERG MODEL WITH SINGLE-ION ANISOTROPY
magnons, which has been used to study the magnetic-field
effects on various magnetic systefnst

Concerning the experimental results on
NiCl,-4SGNH,),, we study theS=1 Heisenberg antiferro-

For a singleS=1 spin, there are three eigenstdte$) and
|0). Along the same line as th=3 spins!® three boson
operators were introduced to denote the three eigengtates:

magnetic model with a single-ion anisotropy in two and three
dimgensions: ’ i 1= UTM‘ 10)= tZ|v>’ -1= dT|U>’ 2)

1 y 5 where [v) is the vacuum state. With a constraintu+d'd

H= 5‘12 (S8, ;+ §S/,;+RSS,5) + Dg (S +tlt,=1, the spin operators can be represented by
7,6
- gueBY S, (1) S'=\2(td+u't), S =\2(d", +tu),
P

whereX; 5 sums over the nearest neighbors and an external F=u'u-d'd. (3
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Substituting the above boson representation into the origi- 5 1 o 1
nal Hamiltonian(1) and assuming thé, bosons are con- C=uN(1-t) - ZNZR1 -9 - ZNZRH%' NZRF,
densed(t)=(t})=t, we get

(7)
H= EJE [tz(d;fdr»+[;+ U::+(;Ur+ Usdz, 5+ d}u;f+(§+ H.c) wherel is the number of the dimension and for the square
2 75 and simple cubic latticesZ=2I. ak:Xkuk+pkdfk, Br=xid_

+pUf with xZ=2(1+A /@) andpz=3(-1+A,/ ). The en-
ergy gap occurs &=, A=w-. The ground state energy per
site isey=(1/N)Z(w— Ay +(1/N)C. The Gibbs free energy
+dld) - Y (ufus—did) - > uulus+did:+2-1),  G=Ney-(1/AZn[1+n(w”)]-1/BEIn[1+n(w?)]  with

P P N(w)=1/(ef*«-1) and B=1/kgT. p, t?, u, and m can be
(4) obtained by the saddle-point equations

whereh=gugB and a temperature-dependent chemical po- 1 Ay 1 2
tential w; is introduced to impose the constraint condition of P=- ﬁ% Zkyk[l +n() +n(?)],
single occupancy. By a mean-field approximation, we re-

place the local constraint by a global one anddgt u. It is 1o A

pointed out thatu is still temperature dependent. We &t 2-22== M1 +n(0®) +n(w?)],
=1 in the following calculations. Making mean-field decou- N7 g

pling to the four operator terms

t - T -
+ RUfue — dld) (U, 5~ 07, 5091 + D (ufur
r

T N . Z A A
(Pt = 7)) (U 5~ i, 0) p= 52 = L +nwd) + n(w?)],
k k
1 t
= S(L =+ m)(Uur + Up, U )
2 1 ® @
. m= 12 [n(ey) = nw)]. t)

t } k

+ 5 (L=t m)(dide + o, o)

- p(usdz, 3+ deup, 3+ H.C) — %(1 -t2)? - %mZ +2p? ll. QUANTUM PHASE TRANSITIONS IN THE ABSENCE

OF MAGNETIC FIELD

®) We first study the case &=0. Without the external mag-
with <drTu;f 9=(dur»=p and m=(uluz) -(dldy), and after a netic field, the magnetizatiom is zero. In two- and three-

+

Fourier-Bogoliubov transformation, we get the diagonalizead'mens'on‘ijI cases, the effect piis small. At zero tempera-

Hamiltonian ture 'and'\'/vithp neglected, the self-consistent equations can
be simplified as
H=2 (o ooy + 0P Bl + 2 (0= AY +C,  (6) 22 -22) = 1,(y) + 15(y),
k k
with 1
ZYH=1ay) ~h(y) 9
1
o= o =h+ >ZRm with
y 27t
1 = b
of = o+ h=_ZRm ~p+D+3RZ1-t)
1 d'k 1 ( ——
_ A2 2 == | === == '
wk—\'Aﬁ—Az, Il(y) 77_I f V’1+y7k, I2(y) 77_| f \‘1+y7kd k,

1 2 2 (10
A==-p+D+ EZR(l ~t) 2%, where the integral region i©, 7).

An equation abouty can then be obtained:
A= (2= RpZy, D-(4/y+3iRZ+3RZI(y) +(2/y+3R)1ZIy(y)=0. When
y—1, the energy gap goes to 0, indicating a transition from
the largeb phase to the Néel phadg(y) andl,(y) are finite

Y= 12 cogk - 5), aty=1 and a concise formula for the critical point can be
175 obtained:
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FIG. 2. Critical temperaturd(D) for various D with R=0
(squarey 0.5 (circles, 1 (triangles, 1.5 (diamonds, 2 (hexagons
in three dimensions.

1w/ A

. 2=t =no(T) + 52 =1+ (o) +n(w?)],
M, k @k
1A 1 <A

p ZAWnO( ) 2N§ wk')’k[ N(wy”) + N(wy”)]

z(, A, Z i A Ay
==—|1=-—Ino(T) + =
" N( Aﬁ) o(T) N% o
X[1+n(e) + n(e?)]. (12)

FIG. 1. Changes of the energy gap(right axi and the stag-
gered magnetizatioM, (left axis) with D in two dimensions(a) By calculating the correlation functiodS;S), we can
and three dimensiongb) with R=0 (triangleg, 0.5 (circles, 1 get the staggered magnetization in tlxe direction m,

(squares 1.5 (diamonds, 2 (hexagons =2t\ny(T). At T=0 and neglectingp, we have ny(0)
=[4/(8+R)][(D.-D)/2Z] and
1 1 1
D.= (4 + ER)Z_ ZRle(l) - (2 + ZR>Z'1(1)' (1) m=2y2 - 3[1,(1) +1,(1)] - [4/(8 + R)][(D, - D)/2Z]

x\[4/(8 +R)|[(D. - D)/2Z].
When R=1, we getD.~5.471 andD./2Z~0.684 for the |t js pointed out that BEC only occurs &=0 in two-
two-dimensional square lattice, aft}~10.481 andD./2Z  dimensional case, which is consistent with Mermin-Wagner
~0.873 for the three-dimensional simple cubic lattice. Thesgneoren?? In three dimensions, a criticdl(D) exists, above
values agree qUite well with the results 0.798 and 0.884 OQNhiCh, BEC disappears and there is no Néel |0ng_range or-
tai_ned by Wonget al*® with the coupled-cluster_expansions. der. In Figs. 1a) and 1b), we show the changes of the stag-
With p included, the two values become 0.728 in two dimen-gered magnetization with in two and three dimensions for
sions and 0.889 in three dimensions, respectively. In FigsgR=0, 0.5, 1.0, 1.5, 2.0left axis). The results agree well with
1(a) and 1b) (right axig, we present the changes of the those obtained by Wongt al. with the coupled cluster
energy gap witlD for variousR=0, 0.5, 1.0, 1.5, 2.0 in tWo  expansiond8 In Fig. 2, we show the changes of the critical

and three dimensions. In two dimensions, the energy gagmperaturer (D) for variousR in three dimensions.
decreases linearly with decreasiBguntil D.; while in three

dimensions, the energy gap decreases linearly for l&rge
and nearD,, Ax(D-Dy)? with B~0.5. The anisotropyR
does not have large effects.

WhenD <D, the system entered into the Néel state. We Now we study the effects of the external magnetic field.
assume part of the excitations are condensek=at.?!  The excitations split in the external magnetic field and one
Keeping w,=0, we solve the self-consistent equatidi®  component decreases with the increasing magnetic field. At a
with a BEC amouni(T) extracted: critical magnetic fieldh,;=A, the energy gap goes to zero.

IV. LONG-RANGE ORDER INDUCED BY THE EXTERNAL
MAGNETIC FIELD
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FIG. 4. Changes of the field-induced staggered magnetization
M, with temperature in three dimensions, witk=16 andR=1. The
corresponding applied field is=10 (squarey 13 (circles, 15 (tri-
2+ angle$, 18 (hexagony and 20(diamonds.

and ZJ/ kg=4.5 K andD/kg=7.6 K from the zero-field sus-
ceptibility, which generateB/J~20. At D/J=20, we get a
T gap of 13.14, much larger than the reported critical magnetic
¢ field hy; or the excitation gap\g(~8J). Instead,D/J=16
produces a gap of 8.82close to the experimental value. In
Fig. 3(b), we show the variations of (h) with h at D=12,
16, and 20 andR=1. The results agree qualitatively with the
experimental results. Nedr,, fitting the data withh(T)
—h.1(0)cT*, we get a~1.5, consistent with that of the
J Bose-Einstein Hartree-Fock thedrand that of the cubic
coupled dimer models obtained from the quantum Monte
H Carlo simulationg! The experimentally reported value is
FIG. 3. Critical temperaturd@,(h) with D=8, R=1 in two di- 2.6, larger than our value. Di_screte values were repo_rted in
mensionga), and withD=12 (triangles, 16 (squarey 20 (circles other n12ater|als, l.e.a=2.2 in TICuCk and a=2.3 in
andR=1 in three dimensioné))' KCUCIg, a=15 in CL&(CSleNz)zCl‘l,S and a=1.95
when Hllc axis and 3.07 whenHLlc axis in
When the magnetic field further increases, we assume th®i(C-H,,N,),N5(ClO,) NDMAZ,! which deserves more de-
energy gap keeps zero and part of the excitations condensgijled studies. In Fig. 4, we show the change of the field-
Different from theh=0 case, now only those bosons denotedinquced staggered magnetizatibh, with the external mag-
by a are condensed. Consequently, a magnetization parallgletic field. We determine the critical magnetic fieigh at
to the external magnetic field appears and at the same time,zrq temperature. It is found that,=—u+D+RZ with p
staggered magnetization in tixedirection occurs. At a sec- =0, t=0, u=-Z, p=1, andm=1. The staggered magnetiza-
ond critical magnetic fielchs,, the magnetization saturates tjon is zero sincet=0. Nearhg, the critical temperature
and the staggered magnetization disappears. For a givef(h) s difficult to obtain. The reason may be ttais too
magnetic fieldh>hc,, there exists a critical temperature smga|| and the assumption ¢f condensation is not a good
Te(h), below which, the energy gap keeps zero, and part Oftarting point. However, more profound physics may exist
the excitations are condensed. With a BEC amounhere. Whert is small and comparable with the small amount
ny(T) extracted, we solve the self-consistent E(@®. with the minimum energy gap may deviate frof the con-
w,~h+3RZM=0. The staggered magnetization in theli-  densed bosons may have some other momentum, and then
rection ism,=2t\n,(T)y1-A,/A,. At T=0 and neglecting incommensurate phase will appear. A spin-polarized Lut-
p, we have nh(O):[—D/Z+4/y+ 1/2R—(2/y+;11R)|1(y) tinger liquid is observed nedr,, at low temperature®.
—%Rlz(y)]/[Z/(Z—y)+2/y+%R]. The uniform magnetizatiom shows a minimum around
Figure 3a) exhibits the criticalT,(h) as a function ofh  the transition temperatufg,(h), which has been observed in
with D=8, R=1 in the two-dimensional case. Fitting the data NiCl>- 4SGNH,), and other gapped magnetic systems such
with hey(T)—hgy(0) < T¢, we find a~ 1. In three dimensions, as TICuCh, KCuCl, and Cy(CsH1N,),Cl,. The change
we connect our calculations to the experimental data offom the bottom to the given highest amount is about 5%.
NiCl,-4SGNH,),.5 It is reported that 2)/kg=5.1 K and From Egs.(8), we getm=(wW/Aq,)nh(T)+(1/N)E|’([n(wf(l))
D/kg=8.3 K by fitting the data with the molecular theéty —n(wf))]. The first part comes from the BEC of magnons,
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which decreases with increasing temperature and goes ®&ons and present a self-consistent, intuitive theory to show
zero atT(h); the second one is from the thermal fluctuationsthe Bose-Einstein condensation-induced long-range order in
and always increases with increasing temperature. It is exhe gapped magnetic systems, when the energy gap is tuned
pected that a minimum appears aroundh). However, in  to zero by changing the physical parameters or by applying
our calculations, such a minimum is observed very close tgn external field. The very recent experimental results on
zero temperature, and the dip is much narrower and shagyic|,.4SGNH,), are interpreted. Many other gapped spin
ower (the change is about 1/100than the experimentally gy stems share the same physical picture, including the quasi-
reported values. It seems that the change of the BEC amougf,e_gimensionaB=1 chains, quantum spin dimer models,

is underestimated since we neglect the fluctuatioty.oThe the even-leg spin ladders and alternating spin chains or frus-

deviations may 3'5? partly com? frlom the_relerllxeg I(I: On.Strainttrated magnetic systems. The present theory may also shed
We extractD andJ from our calculations in the following. light on the superfluid-Mott insulator transition in the optical

The experimentally observe};=2.11 T,B.,=12.11 T, and .
B.,/B.,~5.74. Taking the critical magnetic fieB, as the lattice of ultracold atom$? a class of tunable strongly corre-
lated many body systens.

energy gapA(D) and the saturated magnetic fiedg, asD
+2Z, we have(D+22)/A(D)=5.74. Fitting this equation
with numerically calculated energy g4pig. 1(b)], we get
D/J=12.7 and the=0.74 K andD=9.45 K, they are not ACKNOWLEDGMENTS
far from the experimentally reported values.
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