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Monte Carlo simulations have been performed, aimed at finding a critical fractional volumesCFVd associ-
ated with the onset of percolation for randomly oriented nanotubessor, indeed, any conductive particles with
large aspect ratiosd that are randomly dispersed in a low thermo- or electroconductive medium. The nanotubes
were treated as capped interpenetrating conductive cylinderss“sticks”d with high sup to 2000d aspect ratioa. It
has been found that for these aspect ratios the CFV is inversely proportional toa resulting in surprisingly low
filler volume loadings, of the order of 0.01%, required to achieve percolation in such systems. By studying
fluctuations of the CFV and the density of the percolation clusters, various critical indices of the percolation
theory have been calculated including the critical index of conductivity,t. For three-dimensional systems it has
been found thatt decreases substantially with an increase in the aspect ratio. The calculated thermal and
electrical conductivity of the nanotube suspensions and composites as functions of the nanotube loading is in
good agreement with recent experimental data.
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I. INTRODUCTION

Carbon nanotube suspensions and composites have re-
cently attracted much interest due to their possible techno-
logical applications: the addition of a very small amount of
nanotubes substantially modifies the transport properties of
the matrix sfluidd with no or little affect on its mechanical
shydrodynamicd properties.1–5 Experimental studies of
carbon-nanotube-in-oil suspensions1 and carbon-nanotube-
epoxy composites2 show that their thermal conductivity is
anomalously greater than that predicted by existing theoreti-
cal modelsssee Ref. 1 for referencesd and is nonlinear with
nanotube loading. In comparison with other nanostructured
materialssthe so called nanofluidsd, including copper nano-
particles immersed in fluids, carbon nanotubes provide the
highest thermal conductivity enhancement, with the conduc-
tivity ratio exceeding 2.5 at approximately 1% of nanotube
volume fraction.1 In addition, measurements of the thermal1,2

and electrical3–5 conductivities of nanotube suspensions1 and
composites2–5 reveals a negligibly small percolation thresh-
old fcritical fractional volumesCFVdg for these materials.
Based on these findings, attempts were made to explain the
conductivity of the materials in question using the frame-
work of conventional effective-medium models of solid/
liquid suspensionsssee Ref. 1 for detailsd, for which the CFV
is equal to zero. These models failed, however, to adequately
describe the experimental data on thermal conductivity of
carbon-nanotube suspensions.1 They obviously cannot ac-
count for the recently observed4,5 percolation scaling law that
describes the electrical conductivity of the composite mate-
rials as the carbon nanotube content is increased. By means
of Monte Carlo simulations we will demonstrate that, in ma-
terials with conductive filler made of particles with suffi-
ciently large aspect ratios, percolation theory can well ex-
plain both the very low-conductivity thresholds and the
nonlinear dependence of the conductivity on the filler load-
ing.

In Sec. II, we will describe computational and theoretical
procedures for finding the critical fractional volume of nano-
tube composites. In Sec. III, by studying the fluctuations of
the CFV and the density of the percolation clusters, we will
calculate the basic critical indices governing the behavior of
these clusters. In Sec. IV, the scaling hypothesis will be used
to estimate the preexponential factor in the expression for the
conductivity. And finally, in Sec. V we will apply percolation
theory to analyze the electrical and thermal conductivity of
systems comprising interconnected carbon nanotubes im-
mersed in a low-conductive medium above the percolation
threshold.

II. CALCULATION OF THE CRITICAL FRACTIONAL
VOLUME

We have developed Monte Carlo simulation code aimed
at finding the CFV of nanotubessor any oblong conductive
particlesd suspended in a low thermo- or electroconductive
medium. The code works as follows. A certain numberN
ssmaller than the critical oned of capped cylindersssphero-
cylinders or sticksd of a given lengthl and diameterd ssee
Fig. 1d are randomly planted in a unit cubesboth l andd are

FIG. 1. Carbon nanotube and its representation as a capped
cylinder.
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measured in the units of the unit cube sized. The centers of
mass of these sticks are given random coordinates, and the
two angles, azimuthal,u, and polar,w, specifying the orien-
tation of their axes are randomly distributed within the inter-
vals s0,p /2d and s0,2pd, respectively. To assure the correct
isotropic orientation of the nanotubes in the whole range of
solid angle, the ends of the sticks must span uniformly the
surface of a sphere. This can be achieved by choosing a
weighted distribution for the azimuthal angle:fsud=sinu ssee
Ref. 6 for detailsd.

For the sake of computational simplicity, the sticks are
considered to be interpenetrating or soft core.sWe will dis-
cuss this assumption later on in this section and we will show
that it is not significant for objects with large aspect ratio.d
As sticks are added the code determines which, if any, of the
existing sticks are intersected by the new stick, and whether
the new stick crosses the boundary of the unit cubesFig. 2d.
The code also updatessif necessaryd the clusters formed by
the sticks. Finally, it verifies if a percolation cluster has been
established, which connects opposite sides of the cube. If this
cluster is not detected, new sticks are added in small incre-
ments until percolation is achieved at a critical concentration,

Ñcsl ;ad. For a givenl and d sor l and the aspect ratioa
= l /dd the simulation was repeated up to a hundred times in
order to find the value of the critical concentration,Ncsl ;ad
=kÑcsl ;adl, averaged over different realizations of the perco-
lation cluster.

For a given aspect ratioa, this procedure was repeated for
successively increased size of the system or, which is equiva-
lent, for diminished size of the lengthl of the sticks and their
diameterd= l /a. The thermodynamic limit of the total criti-

cal volume, Vcsad, contained in all such sticks has been
evaluated by means of the following extrapolation formula:

Vcsl ;ad = kÑcsl ;adlVsl ;ad = Vcsad + All. s1d

HereA andl are constants and

Vsl ;ad =
ps2 + 3ad

12
S l

a
D3

s2d

is the volume of a capped cylindersFig. 1d. Then the CFV
can be calculated asssee Refs. 7 and 8 for detailsd

fc = 1 − expf− Vcsadg. s3d

The CFV in Eq.s3d actually represents the probability of a
random point being inside any stick for a system of identical
interpenetrating sticks on the verge of the percolation thresh-
old. Figure 3 shows the procedure for finding the thermody-
namic limit of the total critical volume, Vcsad
=liml,d→0Vcsl ;ad, for systems of identical sticks with differ-
ent aspect ratios. It can be seen thatVcsl ;ad approaches its
thermodynamic limit in a different way for three-
dimensionals3Dd systems comprising roundsa&1d and ob-
long sa@1d objects. The latter, apparently, are better con-
nected with the boundaries of the unit volume than with each
other. Conversely, the round objects are better connected
with each other than with the boundaries, and therefore as
the size of the system increases,Vcsl ;ad approaches its ther-
modynamic limit from above, as has been observed in vari-
ous simulations for spheres under different connectivity
criteria.9,10

The diamonds in Fig. 4 show the CFV thus obtained for
systems of randomly distributed and randomly oriented in-
terpenetrating sticks with different aspect ratiosa. First, it
should be mentioned that in the limit of small aspect ratios
a= l /d!1, when the stickssFig. 1d can be treated as spheres
of diameterd, our simulations yield a CFVfc=0.29, which
is in agreement with the well established results7,8 for soft-
core spheres. This quantity is also a dimensionalsD=3d in-
variant for a system of identical interpenetratingalignedcon-
vex objects, including sticks, of any aspect ratio.7–9,11 fFor
hard-core aligned objects,fc=0.16 sRefs. 7 and 8dg. How-
ever, as can be seen from Fig. 4, for a system of randomly
oriented sticks, the CVF is not an invariant for it drops as the
aspect ratio increases. This kind of behavior can be justified
in the context of excluded volume arguments8,11 and the ex-
cluded surface/random contact model.12 sThe excluded vol-
ume,Vex, is the volume around an object in which the center
of an identical object should not be present if interpenetra-
tion of the two objects is to be avoided.d

In the framework of these arguments, at the threshold of
percolation, the average number of bonded objects per given
object sthe average number of contacts per nanotubed11

Bc = NckVexl, s4d

would serve as an approximate invariant of the problem,
rather than the CFV,fc. Here

FIG. 2. Intersections of two capped cylinders.
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kVexl = 2dS2p

3
d2 + pdl + l2ksinglD s5d

is the excluded volume averaged over all possible mutual
orientations of two sticks in contact;g is the angle between
these sticks, so that for the isotropic caseksingl=p /4.11 The
total critical volume,Vc, that defines the CFV in Eq.s3d can
be expressed as

Vcsad = Bc
V

kVexl
, s6d

where for the randomly oriented capped cylinders

kVexl
V

= 2S4 +
3a2

2 + 3a
D . s7d

The solid curve in Fig. 4 represents the CFVs3d calcu-
lated by means of Eqs.s6d ands7d with an average number of
bonds per stick equal toBcsa→0d=2.74, which corresponds
to fcsa→0d=0.29 for the problem of soft-core spheres. It
can be seen that a representation, whereBcsa→0d=2.74 is
treated as an invariant, fails to describe the simulation data at

FIG. 3. Determination of the thermodynamic limit of the CFV.

FIG. 4. Critical fractional volume for the 3D systems of ran-
domly oriented soft-core sticks.
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large aspect ratiosa*15. The reason is thatBc is not a true
invariant of the problem but slightly drops asa increasesssee
also Ref. 6d. The dark dashed curve in Fig. 4 is given by Eqs.
s3d, s6d, and s7d with Bcsa@1d=1.20 chosen to fit the data
for large aspect ratiosaù100. This value ofBc=1.20 is in
good agreement with that established in Ref. 6 fora.160.
Also, it is close to thea→` limit of Bc=1 analytically pre-
dicted in Ref. 13 by a cluster expansion method.

SinceVcsad!1 for a@1, then by expanding the exponent
in Eq. s3d it is easy to show that for large aspect ratios the
CFV is inversely proportional toa:

fcsa @ 1d .
Bcsa @ 1d

2a
=

0.60

a
. s8d

The dashed straight line in Fig. 4 shows this dependence,
which properly describes the data from our Monte Carlo
simulations when the aspect ratio changes over several or-
ders of magnitude.

Treating the nanotubes as soft-coresinterpenetratingd ob-
jects in our simulationssshown by the diamonds in Fig. 4d
ignores correlations in their spatial distribution, thus system-
atically overestimating the values of the CFV compared to
the case of the realshard-cored objects. However, in the limit
of large aspect ratioa, also described by Eq.s3d with the
average number of bondsBc=1.20, the error introduced is of
the order of the ratio of the overlapping volume to the total
volume of the nanotubes. This error can be shown to be of
the order of 1/a, which is less than 1% foraù100. More-
over, usingBcsa@1d=1.20 in the interpolation formulass3d,
s6d, ands7d with Bcsa@1d=1.20 ssee the dark dashed curve
in Fig. 4d systematically underestimates the results of our
simulations, yieldingfc=0.14 that is fairly close tofc
=0.16 of the hard-spheres problem.7 One can conclude that
the above interpolation formulas withBcsa@1d=1.20 can be
used for the evaluation of the CFV of a system of hard-core
sticks of any aspect ratio.

For relatively short carbon fibers with an aspect ratioa
=280 dispersed in an epoxy matrix,3,14 our simulations yield
fc=0.23% in a good agreement with an experimental value
of 0.25 vol. %.14 For catalytically grown carbon nanotubes
immersed in a polymer-based epoxy with a typical aspect
ratio a=2000, we obtainedfc=0.029% as compared with
0.025–0.04 wt. % found from the data on sharp onset in the
electrical conductivity of this material.3 Also, our results do
not contradict the recent data on thermal conductivity en-
hancement in nanotube-in-oil suspensions1 where fc
,0.05 vol. % fora=2000 as well as in vapor-grown carbon
fibers sVGCFd and single-wall nanotube sSWNTd
composites2 wherefc=1–2 wt.% fora=100 scompared to
fc=0.67% that follows from our simulationsd and fc
=0.1–0.2 wt. % fora=1000 scompared to the above calcu-
latedfc=0.058%d, respectively. Also, our calculations are in
an excellent agreement with the recent experimental data15

on electrical conductivity of the SWNT-reinforced polyimide
sCP2d composites. One can conclude that, contrary to previ-
ous suggestions,1 percolation theory can account for the sur-
prisingly low percolation threshold observed1–5 in carbon
nanotubes suspensions and composites.

It is also clear that as the orientation of the nanotubes
becomes less random, their CFV should sharply increase
reaching its maximum value7,8 of 16% for the fully aligned
hard-core nanotubes of any aspect ratio. The recent data on
SWNT composites2 seem to support this conclusion. The ex-
planation is that the disordered nanotubes form connections
in the direction perpendicular to the current flow, thus pro-
moting percolation at relatively low nanotube loadings.sFor
discussion, see Refs. 7 and 16d

III. DETERMINATION OF CRITICAL INDICES

Studying fluctuations of the CFV,fc, in the Monte Carlo
simulations allows the critical exponentsindexd, t, of the
conductivity problem to be found. In terms of this exponent,
t, and the previously found CFV,fcsad, the selectro- and/or
thermo-d conductivity of a nanotube suspension/composite in
the vicinity of the percolation threshold can be described as
the following function of the fractional volumesloadd, f, of
the nanotubes9,17

ssf;ad = s0ff − fcsadgtsad, s9d

wheres0 is a preexponential factor that depends on the
conductivity of the individual nanotubes and or of the con-
tacts between them as well as on the topology of the perco-
lation cluster.

To find the conductivity exponent,t, and its possible de-
pendence on aspect ratio,a, we will start from the estimation
of the critical exponent,n, of the correlation length,L, of the
percolation cluster. Being a function of the concentration,N,
of the nanotubes, at the threshold of percolation the correla-
tion length diverges as9

L . l u1 − N/Ncu−n = l u1 − f/fcu−n, s10d

when f→fc. Here Nc is the critical concentration of the
nanotubes andl is their length. We determined the exponent
n by studying fluctuationssvariancesd of the CFV fcsad of
3D systems of nanotubes of a given aspect ratio,a, with
consecutively decreasing lengthl and diameterd= l /a. Fig-
ure 5 gives examples of such dependencies where the follow-
ing scaling law9 ssolid linesd

varffcsadg = Cl1/n s11d

has been used to findn by means of a nonlinear fitting pro-
cedure.sHere the diamonds describe the results of our Monte
Carlo simulations with each point representing the average
over 100 realizations of the percolation cluster.d We found
that contrary to the standard assertions,17 the critical expo-
nentn is not universal: it substantially drops from 1.0 to 0.6
as the aspect ratio increases over four orders of magnitude.

We employed the scaling hypothesisssee Ref. 9 and the
next section for detailsd to relate the critical exponentsn and
t:

td = sd − 1dn, s12d

where d=2 or 3 is the dimensionality of the system. The
diamonds in Fig. 6 show the calculated critical exponentst3
for 3D systems consisting of identical randomly distributed
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and randomly oriented spherocylinders. It can be seen that,
in agreement with the previously obtained results for 3D
systems of identical round objects,17 the conductivity expo-
nentt3.2.0 whena&1. Meanwhile, for 3D systems consist-
ing of oblong objects it is smaller than 2.0 and drops as the
aspect ratio increases. In particular, for 3D systems of ran-
domly distributed and randomly oriented nanotubes with as-
pect ratios of the order of 102–103, the conductivity expo-
nent t3.1.2–1.6, which is close to the conductivity
exponent for 2D systems, wheret2.1.1–1.4.9,17,18Also, the
above values oft3.1.2–1.6 are in a good agreement with
the recent experimental data on thermal1 and electrical4 con-
ductivity of nanotube suspensions and composites where for
the lattert3=1.36.4

To verify the dependence of the conductivity exponent on
the aspect ratio, we studied the statistics of the percolation
clustersabove the percolation threshold. The Monte Carlo
approach allowed us to find the density of the percolation
cluster,P=Np/N, that is, the fraction of the nanotubes be-

longing to the percolation cluster, as a function of the total
number of nanotubes,N, measured in the units of the critical
numbersNc at which the percolation has been achieved. This
was achieved as follows. After the critical percolation clus-
ter, which connects the opposite sides of the system is de-
tected, the code adds new nanotubes, and determines if they
are connected to the percolation cluster, or cause other clus-
ters to be joined to the percolation cluster. The number of
nanotubesNp in the modified percolation cluster is recorded.

Typical results of these simulations for the systems of
nanotubes with different aspect ratiosa are presented in Fig.
7. Here the solid lines correspond to the best fit achieved by
means of the following scaling law:

P = CsN/Nc − 1db, s13d

whereb is the so called critical exponent of the density of
the percolation cluster.9,17

We then used the Alexander-Orbach conjecture17 which
assumes that the so-called fracton or spectral dimension,ds,
which describes the number of frequency-dependent excita-
tions on fractals, is very close to 4/3 in all dimensionsd
ù2. It allowed us to relate the calculated exponentb and the
previously found critical exponent,n, of the correlation
lengthL f Eq. s10d g with the exponenttd of the conductivity
problem:

td =
1

2
fs3d − 4dn − bg, s14d

whered=2 or 3 is the dimensionality of the system. Figure 5
shows the calculated exponentt3 sthe circlesd as a function of
a. It can be seen that both the scaling hypothesiss12d and the
Alexander-Orbach conjectures14d yield quite similar results,
namely, that for 3D systems, the conductivity exponent sub-
stantially decreases with the increase of the aspect ratio of
the fillers.

IV. ESTIMATION OF THE PREEXPONENTIAL FACTOR

According to the scaling hypothesis,9 the topology of the
percolation cluster is determined only by its correlation
length L. This conjecture allows one not only to relate the

FIG. 5. Determination of the critical exponentn of the correlation radius.

FIG. 6. Critical exponentt for 3D systems of nanotubes as a
function of aspect ratio calculated by means of:sad the scaling
hypothesis Ref. 9sdiamondsd andsbd the Alexander-Orbach conjec-
ture sRef. 17d scirclesd.
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critical exponents of the correlation radius and of the con-
ductivity problem but also to estimate the preexponential
factor in Eq.s9d. SupposeR0 is the resistance of the nanotube
or of the contact between the nanotubes, whichever is larger,
and l is the length of the nanotubesor the typical distance
between the contacts in questiond. Then the resistance of a
“macrobond,” whose length is of the order of the correlation
length, isR.R0L / l. On a scale greater thanL, the percola-
tion cluster is homogeneous. Therefore, its conductivity is of
the order of a cubessquared with a side equal toL, i.e., s
.1/sRLd−2d. Then from Eq.s10d it immediately follows that

s .
u1 − f/fcusd−1dn

R0l
d−2 = s0uf − fcutd. s15d

This proves the validity of Eq.s12d and shows that for 3D
systems the preexponential factor in Eq.s9d can be estimated
as

s0 . sR0lfc
t3d−1. s16d

Let us assume, for a moment, that for sufficiently long
nanotubes, their resistance exceeds that of a contact between
them.sIt may not be the case when the contact resistance is
very large, as will be demonstrated in the next section for
electrical conductivity of carbon nanotube composites.d Then
by means of Eqs.s16d and s8d it is easy to show that

s0 . snt/a
2−t3, s17d

wheresnt is the conductivity of a nanotube. From here the
following important conclusion can be drawn, subject to the
above assumption: even at relatively large loadsf.1, the
conductivity of a system of nanotubes of large aspect ratio
a@1 will be much smaller than that of the individual nano-
tubes. Therefore, one cannot take experimental data onssfd,
usually obtained for small nanotube loadssf!1d, and ex-
trapolate them tof→1 in order to estimate the conductivity
of the individual nanotubes even when the resistivity of the
network is fully determined by the resistance of the nano-
tubes.

Also, from Eqs.s9d and s17d it follows that as the aspect
ratio a increases, the preexponential factor in the expression
for conductivity decreases while the exponential term in-
creases, because above the percolation thresholdfc!f,1
and tsad, which is greater than unity, decreases. As a result,

there is an optimal point where the conductivity of the nano-
tube suspension/composite reaches a maximum as a function
of the aspect ratio,a, given that the resistivity of the nano-
tubes exceeds that of the contacts between them. The analy-
sis of the experimental data available, which is presented in
the next section, shows that this may be the case for thermal
conductivity in nanotube-in-oil suspensions.

V. ELECTRICAL AND THERMAL CONDUCTIVITY:
THEORY VERSUS EXPERMENT

We have used Eqs.s9d and s16d combined with our cal-
culations oft3sad and the CFV to analyze the experimental
data on electrical and thermal conductivity of the nanotube
suspensions and composites. It allowed us not only to ex-
plain the nonlinear dependence of the conductivity on the
nanotube loading, but also to draw certain conclusions on the
nature of the percolation clusters responsible for the transport
properties of these materials. In brief, our findings can be
summarized as follows.

A. Thermal conductivity

The filled circles in Fig. 8 represent the experimental
data1 on the thermal conductivity of multiwalled carbon
nanotubessMWNT’sd of mean diameter of 25 nm and length
50 mm swith an average aspect ratioa=2000d dispersed into
a synthetic polysa-olefind oil of very low thermal conduc-
tivity soil =0.1448 W/mK. It can be seen that the addition of
a very small quantity of nanotubes produces a remarkable
enhancement of the effective thermal conductivity,s, of the
suspension. Using the previously calculated CFV,fcsad sFig.
4d, and the conductivity exponent,tsad sFig. 6d, we estimated
a CVF fc=0.00030 or 0.03% and a conductivity exponent
t=1.24 for the system in question. Then we used Eq.s9d to fit
ssee Fig. 8, the dotted lined the experimental data with one
free parameters0/soil =445. fUsing t=1.40 as an additional
free parametersthe solid lined yields s0/soil =944, which
does not substantially improve the agreement between the
theory and experiment.g As a result, the preexponential factor
in Eq. s9d can be estimated ass0=64–137 W/mK. Then Eq.
s16d yields the thermal resistance of the nanotube or of the
contact between the nanotubes, whichever is greater, to be of
the order ofR0=107–108 K/W. This is in good agreement

FIG. 7. The density of the per-
colation cluster,P, as a function
of nanotube loading. Fora=1, the
exponentb=0.43; for a=750, b
=0.85.
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with the thermal resistance of an individual MWNT,Rnt
=3.43107 K/W, estimated using an experimental room-
temperature value ofsnt=3000 W/mK for its thermal
conductivity19 if one takesd=25 nm andl =50 mm. So, one
can conclude that, contrary to conventional effective medium
models,1 the percolation theory approach gives a quite accu-
rate quantitative description of the thermal conductivity of
nanotube-in-oil suspensions.

B. Electrical conductivity

The same procedure has been employed to compare the
predictions of our theory with recent experimental data on
the electrical conductivity of a SWNT-reinforced CP2
composites.5 These composites were synthesized byin situ
polymerization of monomers of interest in the presence of
sonication. This process enabled uniform dispersion of
SWNT bundles in the polymer matrix.5 The experimental
conductivity sFig. 9, filled circlesd was found to obey a per-
colationlike power laws9d with a relatively low percolation
threshold loadingfc=0.0005, or 0.05%.sThis allowed us to
estimate the aspect ratio,a, to be close to 1200 which is
consistent with the results of transmission electron micros-
copy measurements.5 d Then we employed the calculated de-
pendencetsad sFig. 6d, which gave ust=1.43. And finally,
we useds0=7.7310−4 S/cm to obtain the best fitsFig. 9,
the dotted curved with the experimental data.sThe solid
curve represents the best fit obtained by means of the two
free parameters:t=1.60 ands0=1.6310−3 S/cm.d Based on
these values ofs0, t, fc, andl .10−6 m, Eq.s16d allowed us
to estimate the resistanceR0 to be of the order of 1013 V.
This value is many orders of magnitude greater than the re-
sistance,Rnt.104–105 V, of SWNT’s of comparable size.20

Also, it substantially exceeds the 1 MV resistance of the
SWNT/Pt contact measured in Ref. 20, as well as the rigid-

contact resistance of 3.4 MV between two perpendicular
SWNT’s recently calculated in Ref. 21. This very high value
of R0 means that the electrical conductivity of the compound
is controlled by a comparatively large, probably tunnel-type
resistance of the contacts between the SWNTs that belong to
the percolation cluster.fThe authors of Ref. 4 have come to
the same conclusion while studying electrical conductivity of
polymer sPmPV or PVAd/carbon-nanotube composite thin
films.g In future experiments, it seems natural to explore how
the modification and/or functionalization of the SWNT sur-
faces would change the nanotube-nanotube contact resis-
tance that dominates the electrical properties of the compos-
ites.

VI. CONCLUSIONS

The Monte Carlo simulations and the percolation theory
approach we have developed successfully explain the
extremely-low-threshold carbon nanotube loads that are
needed to substantially enhance the conductivity of the low-
conductive matrix or fluid, as well as the superlinear depen-
dence of the conductivity of nanocomposites and nanosus-
pensions on the nanotube load above the percolation
threshold. In addition, it allowed us to extract some impor-
tant information concerning the nature of the percolating net-
works responsible for the transport phenomena in nanocom-
posites. In particular, it has been shown thatsad the thermal
resistance of nanotube-in-oil suspensions above the percola-
tion threshold is fully determined by carbon nanotubes, but
sbd the electrical resistance of the SWNT/polymer com-
pounds is governed by the extremely high resistance of the
contacts between the nanotubes belonging to the backbone
percolation cluster.
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FIG. 8. Thermal conductivity of the nanotube-in-oil suspensions
smeasured in units of the conductivity of oild: experimentsRef. 1d
vs theory.

FIG. 9. Electrical conductivity of SWNT/CP2 compounds: ex-
perimentsRef. 5d versus theory.
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