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Monte Carlo simulations have been performed, aimed at finding a critical fractional véliMé associ-
ated with the onset of percolation for randomly oriented nanot(esndeed, any conductive particles with
large aspect ratigghat are randomly dispersed in a low thermo- or electroconductive medium. The nanotubes
were treated as capped interpenetrating conductive cyliritigisks”) with high (up to 2000 aspect ratia. It
has been found that for these aspect ratios the CFV is inversely proporticmasalting in surprisingly low
filler volume loadings, of the order of 0.01%, required to achieve percolation in such systems. By studying
fluctuations of the CFV and the density of the percolation clusters, various critical indices of the percolation
theory have been calculated including the critical index of conductivigor three-dimensional systems it has
been found that decreases substantially with an increase in the aspect ratio. The calculated thermal and
electrical conductivity of the nanotube suspensions and composites as functions of the nanotube loading is in
good agreement with recent experimental data.
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I. INTRODUCTION In Sec. II, we will describe computational and theoretical

Carbon nanotube suspensions and composites have farocedures f(_)r finding the critical fracti_onal volume of_nano-
cently attracted much interest due to their possible techndube composites. In Sec. lll, by studying the fluctuations of
logical applications: the addition of a very small amount ofthe CFV and the density of the percolation clusters, we will
nanotubes substantially modifies the transport properties d¢falculate the basic critical indices governing the behavior of
the matrix (fluid) with no or little affect on its mechanical these clusters. In Sec. IV, the scaling hypothesis will be used
(hydrodynamig propertiesi® Experimental studies of to estimate the preexponential factor in the expression for the
carbon-nanotube-in-oil suspensibnand carbon-nanotube- conductivity. And finally, in Sec. V we will apply percolation
epoxy compositésshow that their thermal conductivity is theory to analyze the electrical and thermal conductivity of
anomalously greater than that predicted by existing theoretisystems comprising interconnected carbon nanotubes im-
cal models(see Ref. 1 for referenceand is nonlinear with  mersed in a low-conductive medium above the percolation
nanotube loading. In comparison with other nanostructuregéhreshold.

materials(the so called nanofluigisincluding copper nano-

particles immersed in fluids, carbon nanotubes provide the
highest thermal conductivity enhancement, with the conduc-
tivity ratio exceeding 2.5 at approximately 1% of nanotube
volume fraction® In addition, measurements of the therial We have developed Monte Carlo simulation code aimed

and electrica conductivities of nanotube suspensibaad 4t finding the CFV of nanotube®r any oblong conductive
composite$™® reveals a negligibly small percolation thresh- particleg suspended in a low thermo- or electroconductive
old [critical fractional volume(CFV)] for these materials. medium. The code works as follows. A certain numiber
Based on these findings, attempts were made to explain th@maller than the critical oneof capped cylindergsphero-
conductivity of the materials in question using the frame-cyjinders or sticksof a given length and diameted (see

liquid suspensionésee Ref. 1 for detaijsfor which the CFV

is equal to zero. These models failed, however, to adequately
describe the experimental data on thermal conductivity of
carbon-nanotube suspensidnghey obviously cannot ac-
count for the recently observ&elpercolation scaling law that
describes the electrical conductivity of the composite mate-
rials as the carbon nanotube content is increased. By means
of Monte Carlo simulations we will demonstrate that, in ma-
terials with conductive filler made of particles with suffi-
ciently large aspect ratios, percolation theory can well ex-
plain both the very low-conductivity thresholds and the
nonlinear dependence of the conductivity on the filler load- FIG. 1. Carbon nanotube and its representation as a capped
ing. cylinder.

Il. CALCULATION OF THE CRITICAL FRACTIONAL
VOLUME
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cal volume, V(a), contained in all such sticks has been
evaluated by means of the following extrapolation formula:

Ve(l;a) = (N(1;@))V(1;2) = V(@) + AP (1)
Here A and\ are constants and

m2+3a)(1)\3
(1+2 )(5> @

is the volume of a capped cylind€Fig. 1). Then the CFV
can be calculated dsee Refs. 7 and 8 for details

V(l;a) =

$e=1-exi-Ve(a)]. 3

The CFV in Eq.(3) actually represents the probability of a
random point being inside any stick for a system of identical
interpenetrating sticks on the verge of the percolation thresh-
old. Figure 3 shows the procedure for finding the thermody-
namic limit of the total critical volume, V.(a)
=lim; 4 oVc(l; @), for systems of identical sticks with differ-
ent aspect ratios. It can be seen thatl;a) approaches its
thermodynamic limit in a different way for three-
dimensional(3D) systems comprising roun@=<1) and ob-
long (a>1) objects. The latter, apparently, are better con-
FIG. 2. Intersections of two capped cylinders. nected with the boundaries of the unit volume than with each
other. Conversely, the round objects are better connected
measured in the units of the unit cube $iZBhe centers of with each other than with the boundaries, and therefore as

mass of these sticks are given random coordinates, and /€ Size of the system increas®#(l;a) approaches its ther-
two angles, azimuthal, and polar,e, specifying the orien- modynamlc _Ilmlt from above, as has be_en observed in vari-
tation of their axes are randomly distributed within the inter-0US Simulations for spheres under different connectivity
vals (0,7/2) and (0,2m), respectively. To assure the correct Cfiteria®® o .
isotropic orientation of the nanotubes in the whole range of The diamonds in Fig. 4 show the CFV thus obtained for
solid angle, the ends of the sticks must span uniformly théystems of randomly distributed and randomly oriented in-
surface of a sphere. This can be achieved by choosing &rpenetrating sticks with different aspect ratamsFirst, it
weighted distribution for the azimuthal angfés) =sind (see should be mentioned 'Fhat in the limit of small aspect ratios
Ref. 6 for details a=l/d<1, when the st|ck§F|g. 1) can be treated as spheres
For the sake of computational simplicity, the sticks areOf diameterd, our simulations yield a CF\%:=0.29, which
considered to be interpenetrating or soft cake will dis- 1S in agreement with the well established resitfor soft-
cuss this assumption later on in this section and we will show#°re SPheres. This quantity is also a dimensidigt 3) in-
that it is not significant for objects with large aspect ratio. variant for a system of identical interpenetrataignedcon-
As sticks are added the code determines which, if any, of th¥eX objects, including sticks, of any aspect rdtid! [For
existing sticks are intersected by the new stick, and whethdpard-core aligned objectg.=0.16 (Refs. 7 and 8. How-
the new stick crosses the boundary of the unit c(fig. 2.  €Ver, as can be seen from Fig. 4, for a system of randomly
The code also updatéi necessarythe clusters formed by oriented sticks, the CVF is not an invariant for it drops as the
the sticks. Finally, it verifies if a percolation cluster has beerfSPect ratio increases. This kind of behavior can be justified
established, which connects opposite sides of the cube. If thi§ the context of excluded volume argumértisand the ex-
cluster is not detected, new sticks are added in small incretluded surface/random contact motfe(The excluded vol-

ments until percolation is achieved at a critical concentrationUMe, Vey, is the volume around an object in which the center
~ . . of an identical object should not be present if interpenetra-
Nc(I;a). For a givenl andd (or | and the aspect ratia

=1/d) the simulation was repeated up to a hundred times ir%Ion of the two objects is to be avoided.
order to find the value of the critical concentratidfy(l; a) In thg framework of these arguments, at th(_a thresholq of
~ ' percolation, the average number of bonded objects per given
=(Nc(l;a)), averaged over different realizations of the perco-object(the average number of contacts per nanofibe
lation cluster.
For a given aspect rati, this procedure was repeated for Be = Ne(Vey, (4)
successively increased size of the system or, which is equiva-
lent, for diminished size of the lengttof the sticks and their would serve as an approximate invariant of the problem,
diameterd=1/a. The thermodynamic limit of the total criti- rather than the CFV.. Here
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2
(Ve = 2d<§d2 + dl + |2<Siny)) (5) 10° : : :
is the excluded volume averaged over all possible mutual sessccscasscscssssces
orientations of two sticks in contacy, is the angle between R . \
these sticks, so that for the isotropic césiy)=/4.11 The ? 10— "‘-..\? Fully -
total critical volume,V,, that defines the CFV in E¢3) can S ‘ aligned
be expressed as s ) objects
V TS 2
Ve(@) =B, (6) g0 7
ST Ve
L~
where for the randomly oriented capped cylinders §
Vv 3a? S 107 -
Ve _ 2(4 + ) )
Y 2+3a RS
<>
The solid curve in Fig. 4 represents the CI3) calcu-
lated by means of Eq$6) and(7) with an average number of 0]“0_] 1‘00 T T —TY

bonds per stick equal tB.(a— 0)=2.74, which corresponds
to ¢(a—0)=0.29 for the problem of soft-core spheres. It

Aspect ratio, a

can be seen that a representation, whgf@— 0)=2.74 is FIG. 4. Critical fractional volume for the 3D systems of ran-
treated as an invariant, fails to describe the simulation data afomly oriented soft-core sticks.
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large aspect ratioa= 15. The reason is thd; is not a true It is also clear that as the orientation of the nanotubes

invariant of the problem but slightly drops asncreasessee  becomes less random, their CFV should sharply increase

also Ref. 6. The dark dashed curve in Fig. 4 is given by Egs.reaching its maximum valdé of 16% for the fully aligned

(3), (6), and(7) with B(a>1)=1.20 chosen to fit the data hard-core nanotubes of any aspect ratio. The recent data on

for large aspect ratioa=100. This value 0B,=1.20 is in  SWNT compositesseem to support this conclusion. The ex-

good agreement with that established in Ref. 6der160.  planation is that the disordered nanotubes form connections

Also, it is close to thea— « limit of B.=1 analytically pre- in the direction perpendicular to the current flow, thus pro-

dicted in Ref. 13 by a cluster expansion method. moting percolation at relatively low nanotube loadin@or
SinceV (a)< 1 for a> 1, then by expanding the exponent discussion, see Refs. 7 and)16

in Eq. (3) it is easy to show that for large aspect ratios the

CFV is inversely proportional ta:
Ill. DETERMINATION OF CRITICAL INDICES

B(a>1) - 0.60 (8) Studying fluctuations of the CF\¢,, in the Monte Carlo

2a a simulations allows the critical exponefindex, t, of the
. o ] conductivity problem to be found. In terms of this exponent,
Thg dashed straight !me in Fig. 4 shows this dependencqy, and the previously found CF\p.(a), the (electro- and/or
which properly describes the data from our Monte Carloghermoy conductivity of a nanotube suspension/composite in
simulations when the aspect ratio changes over several Ofe yicinity of the percolation threshold can be described as

ders of magnitude. _ _ the following function of the fractional volum@oad), ¢, of
Treating the nanotubes as soft-céiterpenetratingob-  he nanotubdd’

jects in our simulationgshown by the diamonds in Fig,) 4

ignores correlations in their spatial distribution, thus system- o(¢;a) = o[ — P(a) '@, (9
atically overestimating the values of the CFV compared to
the case of the redhard-core objects. However, in the limit
of large aspect rati@, also described by Ed23) with the
average number of bondg;=1.20, the error introduced is of lation cluster
the order of the ratio of the overlapping volume to the total )

volume of the nanotubes. This error can be shown to be of '° find the conductivity exponent, and its possible de-
the order of 14 which is less than 1% foa= 100. More- pendence on aspect rati,we will start from the estimation

over, usingB,(a>1)=1.20 in the interpolation formula), of the critical exponenty, of the correlation lengtH., of the

. N percolation cluster. Being a function of the concentrathén,
(6), and(7) with B(a>1)=1.20(see the dark dashed curve of the nanotubes, at the threshold of percolation the correla-

in Fig. 4) systematically underestimates the results of OULinn lenath diverges s
simulations, yielding¢.=0.14 that is fairly close tog, ¢ ¢
=0.16 of the hard-spheres problén@ne can conclude that L=1{1=N/NJ7"=1|1-¢lp| ", (10
the above interpolation formulas wiB(a>1)=1.20 can be

used for the evaluation of the CFV of a system of hard-coré’vhen b= e I—!ere N.° is the critical congentratlon of the
sticks of any aspect ratio. nanotubes antlis their length. We determined the exponent

For relatively short carbon fibers with an aspect ratio ” by studying ﬂuctuation$variance?a of the CFV ¢°.(a) .Of
=280 dispersed in an epoxy matA¥4 our simulations yield <SP Systéms of nanotubes of a given aspect ratiowith

$.=0.23% in a good agreement with an experimental valu&°nsecutively decreasing lengtrand diameted=I/a. Fig-
of 0.25 vol. % For catalytically grown carbon nanotubes Y™ 5 gives examples of such dependencies where the follow-
immersed in a polymer-based epoxy with a typical aspeci’d Scaling law (solid lines

ratio a=2000, we obtainedh;=0.029% as compared with var ¢(a)] = CIV (12)
0.025-0.04 wt. % found from the data on sharp onset in the

electrical conductivity of this materidlAlso, our results do has been used to find by means of a nonlinear fitting pro-
not contradict the recent data on thermal conductivity encedure(Here the diamonds describe the results of our Monte
hancement in nanotube-in-oil suspensfonwhere ¢,  Carlo simulations with each point representing the average
<0.05 vol. % fora=2000 as well as in vapor-grown carbon over 100 realizations of the percolation clustaile found
fibers (VGCF) and single-wall nanotube (SWNT) that contrary to the standard assertibhthe critical expo-
composited where ¢,=1-2 wt.% fora=100 (compared to Nnentw is not universal: it substantially drops from 1.0 to 0.6
$.=0.67% that follows from our simulationsand ¢, @s the aspect ratio increases over four orders of magnitude.
=0.1-0.2 wt. % fora=1000 (compared to the above calcu- We employed the scaling hypothesgee Ref. 9 and the
lated ¢, =0.058%, respectively. Also, our calculations are in next section for detaijgo relate the critical exponenisand

an excellent agreement with the recent experimental*dlatat:
on electrical conductivity of the SWNT-reinforced polyimide ty=(d=1)v (12)
(CP2 composites. One can conclude that, contrary to previ- d ’

ous suggestionspercolation theory can account for the sur- whered=2 or 3 is the dimensionality of the system. The
prisingly low percolation threshold observetlin carbon diamonds in Fig. 6 show the calculated critical exponegts
nanotubes suspensions and composites. for 3D systems consisting of identical randomly distributed

¢c(a >1) =

where oy is a preexponential factor that depends on the
conductivity of the individual nanotubes and or of the con-
tacts between them as well as on the topology of the perco-
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FIG. 5. Determination of the critical exponentof the correlation radius.

and randomly oriented spherocylinders. It can be seen thapnging to the percolation cluster, as a function of the total
in agreement with the previously obtained results for 3Dnumber of nanotube$\, measured in the units of the critical
systems of identical round objecétsthe conductivity expo- numbersN, at which the percolation has been achieved. This
nentt;=2.0 whena=< 1. Meanwhile, for 3D systems consist- was achieved as follows. After the critical percolation clus-
ing of oblong objects it is smaller than 2.0 and drops as theer, which connects the opposite sides of the system is de-
aspect ratio increases. In particular, for 3D systems of rantected, the code adds new nanotubes, and determines if they
domly distributed and randomly oriented nanotubes with asare connected to the percolation cluster, or cause other clus-
pect ratios of the order of 2610, the conductivity expo- ters to be joined to the percolation cluster. The number of
nent t;=1.2-1.6, which is close to the conductivity nanotubed\, in the modified percolation cluster is recorded.
exponent for 2D systems, whetrg=1.1-1.421"18Als0, the Typical results of these simulations for the systems of
above values of;=1.2—-1.6 are in a good agreement with nanotubes with different aspect ratiasre presented in Fig.
the recent experimental data on therhraadd electricdlcon- 7. Here the solid lines correspond to the best fit achieved by
ductivity of nanotube suspensions and composites where faneans of the following scaling law:

the lattert;=1.36% _ s
To verify the dependence of the conductivity exponent on P=C(N/N.- 1)%, (13

the aspect ratio, we studied the statistics of the percolatioyhere 8 is the so called critical exponent of the density of

clustersabove the percolation thresholdhe Monte Carlo  the percolation clustérl?

approach allowed us to find the density of the percolation e then used the Alexander-Orbach conjectUrehich

cluster, P=Np/N, that is, the fraction of the nanotubes be- agssumes that the so-called fracton or spectral dimendion,
which describes the number of frequency-dependent excita-

245 Spheres tions on fractals, is very close to 4/3 in all dimensiahs
o Oblong objects =2. It allowed us to relate the calculated expongrnd the
2.2 ® e O (nanotubes) previously found critical exponenty, of the correlation
- oo lengthL [ Eq. (10) ] with the exponenty of the conductivity
£ 20 °°° &H—& <o o problem:
3 o0 © - 1
3 - = — — —
:§‘ 1.8 . . © ty 2[(3d v - B, (14)
§ 1.6+ ®H whered=2 or 3 is the dimensionality of the system. Figure 5
5 o v shows the calculated exponégtthe circle$ as a function of
© 1.4 &O a. It can be seen that both the scaling hypoth€k# and the
Alexander-Orbach conjectufé4) yield quite similar results,
3 Lol namely, that for 3D systems, the conductivity exponent sub-
] stantially decreases with the increase of the aspect ratio of
10" 107 10° 102 10 the fillers.

Aspect ratio, a

IV. ESTIMATION OF THE PREEXPONENTIAL FACTOR
FIG. 6. Critical exponent for 3D systems of nanotubes as a

function of aspect ratio calculated by means @l the scaling ACCOY_ding to the §Caling hypothesﬁshe tOpqlogy of the_
hypothesis Ref. @diamonds and(b) the Alexander-Orbach conjec- percolation cluster is determined only by its correlation
ture (Ref. 17 (circles. length L. This conjecture allows one not only to relate the
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critical exponents of the correlation radius and of the conthere is an optimal point where the conductivity of the nano-
ductivity problem but also to estimate the preexponentiatube suspension/composite reaches a maximum as a function
factor in Eq.(9). Suppose, is the resistance of the nanotube of the aspect ratioa, given that the resistivity of the nano-

or of the contact between the nanotubes, whichever is largetubes exceeds that of the contacts between them. The analy-
and| is the length of the nanotub@r the typical distance sis of the experimental data available, which is presented in
between the contacts in questjoiThen the resistance of a the next section, shows that this may be the case for thermal
“macrobond,” whose length is of the order of the correlationconductivity in nanotube-in-oil suspensions.

length, isSR=RyL/l. On a scale greater thdn the percola-

tion cluster is homogeneous. Therefore, its conductivity is of v ELECTRICAL AND THERMAL CONDUCTIVITY:

the order of a cubésquare with a side equal td., i.e., o THEORY VERSUS EXPERMENT

=1/(RL%?). Then from Eq(10) it immediately follows that

_ 1l
o= RQ' d-2

This proves the validity of Eq(12) and shows that for 3D
systems the preexponential factor in E8).can be estimated
as

We have used Eq$9) and (16) combined with our cal-
culations ofty(a) and the CFV to analyze the experimental
data on electrical and thermal conductivity of the nanotube
suspensions and composites. It allowed us not only to ex-
plain the nonlinear dependence of the conductivity on the
nanotube loading, but also to draw certain conclusions on the
nature of the percolation clusters responsible for the transport
00=(Rol#®)7L. (16)  properties of these materials. In brief, our findings can be

o summarized as follows.
Let us assume, for a moment, that for sufficiently long

nanotubes, their resistance exceeds that of a contact between
them. (It may not be the case when the contact resistance is
very large, as will be demonstrated in the next section for The filled circles in Fig. 8 represent the experimental
electrical conductivity of carbon nanotube composjt®sen  datd on the thermal conductivity of multiwalled carbon
by means of Eqs(16) and(8) it is easy to show that nanotubesMWNT’s) of mean diameter of 25 nm and length
o~ o ]2l (17) 50 um (with an average aspect ratie= 2000 dispersed into
0 Tnt ' a synthetic poly(a-olefin) oil of very low thermal conduc-
where o, is the conductivity of a nanotube. From here thetivity o,;=0.1448 W/mK. It can be seen that the addition of
following important conclusion can be drawn, subject to thea very small quantity of nanotubes produces a remarkable
above assumption: even at relatively large logds 1, the  enhancement of the effective thermal conductivityof the
conductivity of a system of nanotubes of large aspect ratisuspension. Using the previously calculated C¥a) (Fig.
a>1 will be much smaller than that of the individual nano- 4), and the conductivity exponerita) (Fig. 6), we estimated
tubes. Therefore, one cannot take experimental data(@h ~ a CVF ¢.=0.00030 or 0.03% and a conductivity exponent
usually obtained for small nanotube loads<1), and ex- t=1.24 for the system in question. Then we used(Bpto fit
trapolate them t@p— 1 in order to estimate the conductivity (see Fig. 8, the dotted linghe experimental data with one
of the individual nanotubes even when the resistivity of thefree parametes,/ o =445.[Usingt=1.40 as an additional
network is fully determined by the resistance of the nanofree parametefthe solid ling yields oo/ oy =944, which
tubes. does not substantially improve the agreement between the
Also, from Egs.(9) and(17) it follows that as the aspect theory and experimertAs a result, the preexponential factor
ratio a increases, the preexponential factor in the expressioim Eqg. (9) can be estimated ag=64-137 W/mK. Then Eq.
for conductivity decreases while the exponential term in-(16) yields the thermal resistance of the nanotube or of the
creases, because above the percolation threspoidp<1  contact between the nanotubes, whichever is greater, to be of
andt(a), which is greater than unity, decreases. As a resultthe order ofR,=10"-10® K/W. This is in good agreement

= ool — ¢l (15)

A. Thermal conductivity
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FIG. 8. Thermal conductivity of the nanotube-in-oil suspensions
(measured in units of the conductivity of pilexperiment(Ref. 1) FIG. 9. Electrical conductivity of SWNT/CP2 compounds: ex-
vs theory. periment(Ref. 5 versus theory.

. . o contact resistance of 3.4® between two perpendicular
with the 7thermal resistance of an individual MWNRy  qywNT's recently calculated in Ref. 21. This \?er)?high value
=3.4x 10" K/W, estimated using an experimental room- ot R 'means that the electrical conductivity of the compound
temperature value ofo,=3000 W/mK for its thermal s controlled by a comparatively large, probably tunnel-type
conductivity® if one takesd=25 nm and =50 um. So, one  resistance of the contacts between the SWNTSs that belong to
can conclude that, contrary to conventional effective mediumhe percolation clustefThe authors of Ref. 4 have come to
models; the percolation theory approach gives a quite accuthe same conclusion while studying electrical conductivity of
rate quantitative description of the thermal conductivity ofpolymer (PmPV or PVA/carbon-nanotube composite thin

nanotube-in-oil suspensions. films.] In future experiments, it seems natural to explore how
the modification and/or functionalization of the SWNT sur-
B. Electrical conductivity faces would change the nanotube-nanotube contact resis-

tance that dominates the electrical properties of the compos-
The same procedure has been employed to compare thgg

predictions of our theory with recent experimental data on VI. CONCLUSIONS

the electrical conductivity of a SWNT-reinforced CP2  The Monte Carlo simulations and the percolation theory
composites. These composites were synthesizedibsitu  approach we have developed successfully explain the
polymerization of monomers of interest in the presence okxtremely-low-threshold carbon nanotube loads that are
sonication. This process enabled uniform dispersion oheeded to substantially enhance the conductivity of the low-
SWNT bundles in the polymer matr’xThe experimental conductive matrix or fluid, as well as the superlinear depen-
conductivity (Fig. 9, filled circle$ was found to obey a per- dence of the conductivity of nanocomposites and nanosus-
colationlike power law(9) with a relatively low percolation pensions on the nanotube load above the percolation
threshold loadingh.=0.0005, or 0.05%(This allowed us to threshold. In addition, it allowed us to extract some impor-
estimate the aspect rati@, to be close to 1200 which is tant information concerning the nature of the percolating net-
consistent with the results of transmission electron microsworks responsible for the transport phenomena in nanocom-
copy measurements. Then we employed the calculated de- posites. In particular, it has been shown ttatthe thermal
pendence(a) (Fig. 6), which gave ug=1.43. And finally, resistance of nanotube-in-oil suspensions above the percola-
we usedo,=7.7X10* S/cm to obtain the best fiFig. 9, tion threshold is fully determined by carbon nanotubes, but
the dotted curve with the experimental data(The solid (b) the electrical resistance of the SWNT/polymer com-
curve represents the best fit obtained by means of the twpounds is governed by the extremely high resistance of the
free parameters=1.60 ando,=1.6x 103 S/cm) Based on  contacts between the nanotubes belonging to the backbone
these values ofy, t, ¢, andl=10"°m, Eq.(16) allowed us  percolation cluster.

to estimate the resistand®, to be of the order of 1§ Q.
This value is many orders of magnitude greater than the re- ACKNOWLEDGMENTS
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